blob: 7b7336a879ee2ed2d1c43196e6773636ba51d608 [file] [log] [blame]
// :vim ts=4 sw=4 noet:
/*
==================================================================================
Copyright (c) 2019 Nokia
Copyright (c) 2018-2019 AT&T Intellectual Property.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==================================================================================
*/
/*
Mnemonic: caller.c
Abstract: This is a simple sender which will send a series of messages using
rmr_call(). N threads are started each sending the desired number
of messages and expecting an 'ack' for each. Each ack is examined
to verify that the thread id placed into the message matches (meaning
that the ack was delivered by RMr to the correct thread's chute.
In addition, the main thread listens for messages in order to verify
that a main or receiving thread can receive messages concurrently
while call acks are pending and being processed.
Message format is:
ck1 ck2|<msg-txt> @ tid<nil>
Ck1 is the simple check sum of the msg-text (NOT includeing <nil>)
Ck2 is the simple check sum of the trace data which is a nil terminated
series of bytes.
tid is the thread id assigned by the main thread.
Parms: argv[1] == number of msgs to send (10)
argv[2] == delay (mu-seconds, 1000000 default)
argv[3] == number of threads (3)
argv[4] == listen port
Sender will send for at most 20 seconds, so if nmsgs and delay extend
beyond that period the total number of messages sent will be less
than n.
Date: 18 April 2019
Author: E. Scott Daniels
*/
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <time.h>
#include <pthread.h>
#include <rmr/rmr.h>
#define TRACE_SIZE 40 // bytes in header to provide for trace junk
/*
Thread data
*/
typedef struct tdata {
int id; // the id we'll pass to RMr mt-call function NOT the thread id
int n2send; // number of messages to send
int delay; // ms delay between messages
void* mrc; // RMr context
int state;
} tdata_t;
// --------------------------------------------------------------------------------
static int sum( char* str ) {
int sum = 0;
int i = 0;
while( *str ) {
sum += *(str++) + i++;
}
return sum % 255;
}
/*
Executed as a thread, this puppy will generate calls to ensure that we get the
response back to the right thread, that we can handle threads, etc.
*/
static void* mk_calls( void* data ) {
tdata_t* control;
rmr_mbuf_t* sbuf; // send buffer
int count = 0;
int rt_count = 0; // number of messages requiring a spin retry
int ok_msg = 0; // received messages that were sent by us
int bad_msg = 0; // received messages that were sent by a different thread
int drops = 0;
int fail_count = 0; // # of failure sends after first successful send
int successful = 0; // set to true after we have a successful send
char wbuf[1024];
char xbuf[1024]; // build transaction string here
char trace[1024];
int xaction_id = 1;
char* tok;
int state = 0;
if( (control = (tdata_t *) data) == NULL ) {
fprintf( stderr, "thread data was nil; bailing out\n" );
}
//fprintf( stderr, "<THRD> thread started with parallel call id=%d sending=%d delay=%d\n", control->id, control->n2send, control->delay );
sbuf = rmr_alloc_msg( control->mrc, 512 ); // alloc first send buffer; subsequent buffers allcoated on send
memset( trace, 0, sizeof( trace ) );
while( count < control->n2send ) { // we send n messages after the first message is successful
snprintf( trace, 100, "%lld", (long long) time( NULL ) );
rmr_set_trace( sbuf, trace, TRACE_SIZE ); // fully populate so we dont cause a buffer realloc
snprintf( wbuf, 200, "count=%d tr=%s %d stand up and cheer! @ %d", count, trace, rand(), control->id );
snprintf( sbuf->payload, 300, "%d %d|%s", sum( wbuf ), sum( trace ), wbuf );
snprintf( xbuf, 200, "%31d", xaction_id );
rmr_bytes2xact( sbuf, xbuf, 32 );
sbuf->mtype = 5; // mtype is always 5 as the test receiver acks just mtype 5 messages
sbuf->len = strlen( sbuf->payload ) + 1; // our receiver likely wants a nice acsii-z string
sbuf->state = 0;
sbuf = rmr_mt_call( control->mrc, sbuf, control->id, 1000 ); // send it (send returns an empty payload on success, or the original payload on fail/retry)
if( sbuf && sbuf->state == RMR_ERR_RETRY ) { // number of times we had to spin to send
rt_count++;
}
while( sbuf != NULL && sbuf->state == RMR_ERR_RETRY ) { // send blocked; keep trying
sbuf = rmr_mt_call( control->mrc, sbuf, control->id, 100 ); // call and wait up to 100ms for a response
}
if( sbuf != NULL ) {
switch( sbuf->state ) {
case RMR_OK: // we should have a buffer back from the sender here
successful = 1;
if( (tok = strchr( sbuf->payload, '@' )) != NULL ) {
if( atoi( tok+1 ) == control->id ) {
//fprintf( stderr, "<THRD> tid=%-2d ok ack\n", control->id );
ok_msg++;
} else {
bad_msg++;
//fprintf( stderr, "<THRD> tid=%-2d bad ack %s\n", control->id, sbuf->payload );
}
}
//fprintf( stderr, "<THRD> tid=%-2d call returned valid msg: %s\n", control->id, sbuf->payload );
// future -- verify that we see our ID at the end of the message
count++;
break;
default:
fprintf( stderr, "unexpected error: tid=%d rmr-state=%d ernro=%d\n", control->id, sbuf->state, errno );
sbuf = rmr_alloc_msg( control->mrc, 512 ); // allocate a sendable buffer
if( successful ) {
fail_count++; // count failures after first successful message
} else {
// some error (not connected likely), don't count this
sleep( 1 );
}
break;
}
} else {
//fprintf( stderr, "<THRD> tid=%-2d call finished, no sbuf\n", control->id );
sbuf = rmr_alloc_msg( control->mrc, 512 ); // loop expects an subf
drops++;
count++;
}
if( control->delay > 0 ) {
usleep( control->delay );
}
}
state = 1;
if( ok_msg < (control->n2send-1) || bad_msg > 0 ) { // allow one drop to pass
state = 0;
}
if( count < control->n2send ) {
state = 0;
}
control->state = -state; // signal inactive to main thread; -1 == pass, 0 == fail
fprintf( stderr, "<THRD> [%s] tid=%-2d sent=%d ok-acks=%d bad-acks=%d drops=%d failures=%d retries=%d\n",
state ? "PASS" : "FAIL", control->id, count, ok_msg, bad_msg, drops, fail_count, rt_count );
return NULL;
}
int main( int argc, char** argv ) {
void* mrc; // msg router context
rmr_mbuf_t* rbuf = NULL; // received on 'normal' flow
struct epoll_event events[1]; // list of events to give to epoll
struct epoll_event epe; // event definition for event to listen to
int ep_fd = -1; // epoll's file des (given to epoll_wait)
int rcv_fd; // file des that NNG tickles -- give this to epoll to listen on
int nready; // number of events ready for receive
char* listen_port = "43086";
long timeout = 0;
int delay = 100000; // usec between send attempts
int nmsgs = 10; // number of messages to send
int nthreads = 3;
tdata_t* cvs; // vector of control blocks
int i;
pthread_t* pt_info; // thread stuff
int failures = 0;
int pings = 0; // number of messages received on normal channel
if( argc > 1 ) {
nmsgs = atoi( argv[1] );
}
if( argc > 2 ) {
delay = atoi( argv[2] );
}
if( argc > 3 ) {
nthreads = atoi( argv[3] );
}
if( argc > 4 ) {
listen_port = argv[4];
}
fprintf( stderr, "<CALL> listen port: %s; sending %d messages; delay=%d\n", listen_port, nmsgs, delay );
if( (mrc = rmr_init( listen_port, 1400, RMRFL_MTCALL )) == NULL ) { // initialise with multi-threaded call enabled
fprintf( stderr, "<CALL> unable to initialise RMr\n" );
exit( 1 );
}
rmr_init_trace( mrc, TRACE_SIZE );
if( (rcv_fd = rmr_get_rcvfd( mrc )) >= 0 ) { // epoll only available from NNG -- skip receive later if not NNG
if( rcv_fd < 0 ) {
fprintf( stderr, "<CALL> unable to set up polling fd\n" );
exit( 1 );
}
if( (ep_fd = epoll_create1( 0 )) < 0 ) {
fprintf( stderr, "<CALL> [FAIL] unable to create epoll fd: %d\n", errno );
exit( 1 );
}
epe.events = EPOLLIN;
epe.data.fd = rcv_fd;
if( epoll_ctl( ep_fd, EPOLL_CTL_ADD, rcv_fd, &epe ) != 0 ) {
fprintf( stderr, "<CALL> [FAIL] epoll_ctl status not 0 : %s\n", strerror( errno ) );
exit( 1 );
}
} else {
rmr_set_rtimeout( mrc, 0 ); // for nano we must set the receive timeout to 0; non-blocking receive
}
cvs = malloc( sizeof( tdata_t ) * nthreads );
pt_info = malloc( sizeof( pthread_t ) * nthreads );
if( cvs == NULL ) {
fprintf( stderr, "<CALL> unable to allocate control vector\n" );
exit( 1 );
}
timeout = time( NULL ) + 20; // give rmr 20s to find the route table (shouldn't need that much)
while( ! rmr_ready( mrc ) ) { // must have a route table before we can send; wait til RMr says it has one
fprintf( stderr, "<CALL> waiting for rmr to show ready\n" );
sleep( 1 );
if( time( NULL ) > timeout ) {
fprintf( stderr, "<CALL> giving up\n" );
exit( 1 );
}
}
fprintf( stderr, "<CALL> rmr is ready; starting threads\n" );
for( i = 0; i < nthreads; i++ ) {
cvs[i].mrc = mrc;
cvs[i].id = i + 2; // we pass this as the call-id to rmr, so must be >1
cvs[i].delay = delay;
cvs[i].n2send = nmsgs;
cvs[i].state = 1;
pthread_create( &pt_info[i], NULL, mk_calls, &cvs[i] ); // kick a thread
}
timeout = time( NULL ) + 20;
i = 0;
while( nthreads > 0 ) {
if( cvs[i].state < 1 ) { // states 0 or below indicate done. 0 == failure, -n == success
nthreads--;
if( cvs[i].state == 0 ) {
failures++;
}
i++;
} else {
// sleep( 1 );
rbuf = rmr_torcv_msg( mrc, rbuf, 1000 );
if( rbuf != NULL && rbuf->state != RMR_ERR_RETRY ) {
pings++;
rmr_free_msg( rbuf );
rbuf = NULL;
}
}
if( time( NULL ) > timeout ) {
failures += nthreads;
fprintf( stderr, "<CALL> timeout waiting for threads to finish; %d were not finished\n", nthreads );
break;
}
}
fprintf( stderr, "<CALL> [%s] failing threads=%d pings reeived=%d\n", failures == 0 ? "PASS" : "FAIL", failures, pings );
rmr_close( mrc );
return failures > 0;
}