Fix potential pointer use err in SI95

In SIconnect it was possible for a freed struct to be used
if the session didn't connect.

This change also picks up whitespace changes to the docs.

Issue-ID: RIC-626

Signed-off-by: E. Scott Daniels <daniels@research.att.com>
Change-Id: Ie23f4925c6a29b301f0143e938c11f57f0ed5631
diff --git a/docs/rmr_call.3.rst b/docs/rmr_call.3.rst
index bb02415..a8e02e5 100644
--- a/docs/rmr_call.3.rst
+++ b/docs/rmr_call.3.rst
@@ -1,14 +1,14 @@
-.. This work is licensed under a Creative Commons Attribution 4.0 International License. 
-.. SPDX-License-Identifier: CC-BY-4.0 
-.. CAUTION: this document is generated from source in doc/src/rtd. 
-.. To make changes edit the source and recompile the document. 
-.. Do NOT make changes directly to .rst or .md files. 
- 
-============================================================================================ 
-Man Page: rmr_call 
-============================================================================================ 
- 
- 
+.. This work is licensed under a Creative Commons Attribution 4.0 International License.
+.. SPDX-License-Identifier: CC-BY-4.0
+.. CAUTION: this document is generated from source in doc/src/rtd.
+.. To make changes edit the source and recompile the document.
+.. Do NOT make changes directly to .rst or .md files.
+
+============================================================================================
+Man Page: rmr_call
+============================================================================================
+
+
 
 
 RMR LIBRARY FUNCTIONS
@@ -19,227 +19,227 @@
 NAME
 ----
 
-rmr_call 
+rmr_call
 
 
 SYNOPSIS
 --------
 
- 
-:: 
- 
- #include <rmr/rmr.h>
-  
- extern rmr_mbuf_t* rmr_call( void* vctx, rmr_mbuf_t* msg );
- 
+
+::
+
+  #include <rmr/rmr.h>
+
+  extern rmr_mbuf_t* rmr_call( void* vctx, rmr_mbuf_t* msg );
+
 
 
 DESCRIPTION
 -----------
 
-The ``rmr_call`` function sends the user application message 
-to a remote endpoint, and waits for a corresponding response 
-message before returning control to the user application. The 
-user application supplies a completed message buffer, as it 
-would for a ``rmr_send`` call, but unlike with the send, the 
-buffer returned will have the response from the application 
-that received the message. 
- 
-Messages which are received while waiting for the response 
-are queued internally by RMR, and are returned to the user 
-application when ``rmr_rcv_msg`` is invoked. These messages 
-are returned in the order received, one per call to 
-``rmr_rcv_msg.`` 
+The ``rmr_call`` function sends the user application message
+to a remote endpoint, and waits for a corresponding response
+message before returning control to the user application. The
+user application supplies a completed message buffer, as it
+would for a ``rmr_send`` call, but unlike with the send, the
+buffer returned will have the response from the application
+that received the message.
+
+Messages which are received while waiting for the response
+are queued internally by RMR, and are returned to the user
+application when ``rmr_rcv_msg`` is invoked. These messages
+are returned in the order received, one per call to
+``rmr_rcv_msg.``
 
 
 Call Timeout
 ------------
 
-The ``rmr_call`` function implements a timeout failsafe to 
-prevent, in most cases, the function from blocking forever. 
-The timeout period is **not** based on time (calls to clock 
-are deemed too expensive for a low latency system level 
-library), but instead the period is based on the number of 
-received messages which are not the response. Using a 
-mechanism which is not time based for *timeout* prevents the 
-async queue from filling (which would lead to message drops) 
-in an environment where there is heavy message traffic. 
- 
-When the threshold number of messages have been queued 
-without receiving a response message, control is returned to 
-the user application and a nil pointer is returned to 
-indicate that no message was received to process. Currently 
-the threshold is fixed at 20 messages, though in future 
-versions of the library this might be extended to be a 
-parameter which the user application may set. 
+The ``rmr_call`` function implements a timeout failsafe to
+prevent, in most cases, the function from blocking forever.
+The timeout period is **not** based on time (calls to clock
+are deemed too expensive for a low latency system level
+library), but instead the period is based on the number of
+received messages which are not the response. Using a
+mechanism which is not time based for *timeout* prevents the
+async queue from filling (which would lead to message drops)
+in an environment where there is heavy message traffic.
+
+When the threshold number of messages have been queued
+without receiving a response message, control is returned to
+the user application and a nil pointer is returned to
+indicate that no message was received to process. Currently
+the threshold is fixed at 20 messages, though in future
+versions of the library this might be extended to be a
+parameter which the user application may set.
 
 
 Retries
 -------
 
-The send operations in RMR will retry *soft* send failures 
-until one of three conditions occurs: 
- 
- 
-* The message is sent without error 
-  
-* The underlying transport reports a *hard* failure 
-  
-* The maximum number of retry loops has been attempted 
- 
- 
-A retry loop consists of approximately 1000 send attempts 
-**without** any intervening calls to *sleep()* or *usleep().* 
-The number of retry loops defaults to 1, thus a maximum of 
-1000 send attempts is performed before returning to the user 
-application. This value can be set at any point after RMR 
-initialisation using the *rmr_set_stimeout()* function 
-allowing the user application to completely disable retires 
-(set to 0), or to increase the number of retry loops. 
+The send operations in RMR will retry *soft* send failures
+until one of three conditions occurs:
+
+
+* The message is sent without error
+
+* The underlying transport reports a *hard* failure
+
+* The maximum number of retry loops has been attempted
+
+
+A retry loop consists of approximately 1000 send attempts
+**without** any intervening calls to *sleep()* or *usleep().*
+The number of retry loops defaults to 1, thus a maximum of
+1000 send attempts is performed before returning to the user
+application. This value can be set at any point after RMR
+initialisation using the *rmr_set_stimeout()* function
+allowing the user application to completely disable retires
+(set to 0), or to increase the number of retry loops.
 
 
 Transport Level Blocking
 ------------------------
 
-The underlying transport mechanism used to send messages is 
-configured in *non-blocking* mode. This means that if a 
-message cannot be sent immediately the transport mechanism 
-will **not** pause with the assumption that the inability to 
-send will clear quickly (within a few milliseconds). This 
-means that when the retry loop is completely disabled (set to 
-0), that the failure to accept a message for sending by the 
-underlying mechanisms (software or hardware) will be reported 
-immediately to the user application. 
- 
-It should be noted that depending on the underlying transport 
-mechanism being used, it is extremely likely that retry 
-conditions will happen during normal operations. These are 
-completely out of RMR's control, and there is nothing that 
-RMR can do to avoid or mitigate these other than by allowing 
-RMR to retry the send operation, and even then it is possible 
-(e.g., during connection reattempts), that a single retry 
-loop is not enough to guarantee a successful send. 
+The underlying transport mechanism used to send messages is
+configured in *non-blocking* mode. This means that if a
+message cannot be sent immediately the transport mechanism
+will **not** pause with the assumption that the inability to
+send will clear quickly (within a few milliseconds). This
+means that when the retry loop is completely disabled (set to
+0), that the failure to accept a message for sending by the
+underlying mechanisms (software or hardware) will be reported
+immediately to the user application.
+
+It should be noted that depending on the underlying transport
+mechanism being used, it is extremely likely that retry
+conditions will happen during normal operations. These are
+completely out of RMR's control, and there is nothing that
+RMR can do to avoid or mitigate these other than by allowing
+RMR to retry the send operation, and even then it is possible
+(e.g., during connection reattempts), that a single retry
+loop is not enough to guarantee a successful send.
 
 
 RETURN VALUE
 ------------
 
-The ``rmr_call`` function returns a pointer to a message 
-buffer with the state set to reflect the overall state of 
-call processing (see Errors below). In some cases a nil 
-pointer will be returned; when this is the case only *errno* 
-will be available to describe the reason for failure. 
+The ``rmr_call`` function returns a pointer to a message
+buffer with the state set to reflect the overall state of
+call processing (see Errors below). In some cases a nil
+pointer will be returned; when this is the case only *errno*
+will be available to describe the reason for failure.
 
 
 ERRORS
 ------
 
-These values are reflected in the state field of the returned 
-message. 
- 
- 
-   .. list-table:: 
-     :widths: auto 
-     :header-rows: 0 
-     :class: borderless 
-      
-     * - **RMR_OK** 
-       - 
-         The call was successful and the message buffer references the 
-         response message. 
-      
-     * - **RMR_ERR_CALLFAILED** 
-       - 
-         The call failed and the value of *errno,* as described below, 
-         should be checked for the specific reason. 
-          
- 
- 
-The global "variable" *errno* will be set to one of the 
-following values if the overall call processing was not 
-successful. 
- 
- 
-   .. list-table:: 
-     :widths: auto 
-     :header-rows: 0 
-     :class: borderless 
-      
-     * - **ETIMEDOUT** 
-       - 
-         Too many messages were queued before receiving the expected 
-         response 
-      
-     * - **ENOBUFS** 
-       - 
-         The queued message ring is full, messages were dropped 
-      
-     * - **EINVAL** 
-       - 
-         A parameter was not valid 
-      
-     * - **EAGAIN** 
-       - 
-         The underlying message system was interrupted or the device 
-         was busy; the message was **not** sent, and the user 
-         application should call this function with the message again. 
-          
- 
+These values are reflected in the state field of the returned
+message.
+
+
+    .. list-table::
+      :widths: auto
+      :header-rows: 0
+      :class: borderless
+
+      * - **RMR_OK**
+        -
+          The call was successful and the message buffer references the
+          response message.
+
+      * - **RMR_ERR_CALLFAILED**
+        -
+          The call failed and the value of *errno,* as described below,
+          should be checked for the specific reason.
+
+
+
+The global "variable" *errno* will be set to one of the
+following values if the overall call processing was not
+successful.
+
+
+    .. list-table::
+      :widths: auto
+      :header-rows: 0
+      :class: borderless
+
+      * - **ETIMEDOUT**
+        -
+          Too many messages were queued before receiving the expected
+          response
+
+      * - **ENOBUFS**
+        -
+          The queued message ring is full, messages were dropped
+
+      * - **EINVAL**
+        -
+          A parameter was not valid
+
+      * - **EAGAIN**
+        -
+          The underlying message system was interrupted or the device
+          was busy; the message was **not** sent, and the user
+          application should call this function with the message again.
+
+
 
 
 EXAMPLE
 -------
 
-The following code snippet shows one way of using the 
-``rmr_call`` function, and illustrates how the transaction ID 
-must be set. 
- 
- 
-:: 
- 
-     int retries_left = 5;               // max retries on dev not available
-     int retry_delay = 50000;            // retry delay (usec)
-     static rmr_mbuf_t*  mbuf = NULL;    // response msg
-     msg_t*  pm;                         // application struct for payload
-  
-     // get a send buffer and reference the payload
-     mbuf = rmr_alloc_msg( mr, sizeof( pm->req ) );
-     pm = (msg_t*) mbuf->payload;
-  
-     // generate an xaction ID and fill in payload with data and msg type
-     snprintf( mbuf->xaction, RMR_MAX_XID, "%s", gen_xaction() );
-     snprintf( pm->req, sizeof( pm->req ), "{ \\"req\\": \\"num users\\"}" );
-     mbuf->mtype = MT_REQ;
-  
-     msg = rmr_call( mr, msg );
-     if( ! msg ) {               // probably a timeout and no msg received
-         return NULL;            // let errno trickle up
-     }
-  
-     if( mbuf->state != RMR_OK ) {
-         while( retries_left-- > 0 &&             // loop as long as eagain
-                errno == EAGAIN &&
-                (msg = rmr_call( mr, msg )) != NULL &&
-                mbuf->state != RMR_OK ) {
-  
-             usleep( retry_delay );
-         }
-  
-         if( mbuf == NULL || mbuf->state != RMR_OK ) {
-             rmr_free_msg( mbuf );        // safe if nil
-             return NULL;
-         }
-     }
-  
-     // do something with mbuf
- 
+The following code snippet shows one way of using the
+``rmr_call`` function, and illustrates how the transaction ID
+must be set.
+
+
+::
+
+      int retries_left = 5;               // max retries on dev not available
+      int retry_delay = 50000;            // retry delay (usec)
+      static rmr_mbuf_t*  mbuf = NULL;    // response msg
+      msg_t*  pm;                         // application struct for payload
+
+      // get a send buffer and reference the payload
+      mbuf = rmr_alloc_msg( mr, sizeof( pm->req ) );
+      pm = (msg_t*) mbuf->payload;
+
+      // generate an xaction ID and fill in payload with data and msg type
+      snprintf( mbuf->xaction, RMR_MAX_XID, "%s", gen_xaction() );
+      snprintf( pm->req, sizeof( pm->req ), "{ \\"req\\": \\"num users\\"}" );
+      mbuf->mtype = MT_REQ;
+
+      msg = rmr_call( mr, msg );
+      if( ! msg ) {               // probably a timeout and no msg received
+          return NULL;            // let errno trickle up
+      }
+
+      if( mbuf->state != RMR_OK ) {
+          while( retries_left-- > 0 &&             // loop as long as eagain
+                 errno == EAGAIN &&
+                 (msg = rmr_call( mr, msg )) != NULL &&
+                 mbuf->state != RMR_OK ) {
+
+              usleep( retry_delay );
+          }
+
+          if( mbuf == NULL || mbuf->state != RMR_OK ) {
+              rmr_free_msg( mbuf );        // safe if nil
+              return NULL;
+          }
+      }
+
+      // do something with mbuf
+
 
 
 SEE ALSO
 --------
 
-rmr_alloc_msg(3), rmr_free_msg(3), rmr_init(3), 
-rmr_payload_size(3), rmr_send_msg(3), rmr_rcv_msg(3), 
-rmr_rcv_specific(3), rmr_rts_msg(3), rmr_ready(3), 
-rmr_fib(3), rmr_has_str(3), rmr_set_stimeout(3), 
-rmr_tokenise(3), rmr_mk_ring(3), rmr_ring_free(3) 
+rmr_alloc_msg(3), rmr_free_msg(3), rmr_init(3),
+rmr_payload_size(3), rmr_send_msg(3), rmr_rcv_msg(3),
+rmr_rcv_specific(3), rmr_rts_msg(3), rmr_ready(3),
+rmr_fib(3), rmr_has_str(3), rmr_set_stimeout(3),
+rmr_tokenise(3), rmr_mk_ring(3), rmr_ring_free(3)