Use SHA-256 to provide security against DNS cache poisoning.

Use the SHA-256 hash function to verify that DNS answers
received are for the questions originally asked. This replaces
the slightly insecure SHA-1 (when compiled with DNSSEC) or
the very insecure CRC32 (otherwise). Refer: CERT VU#434904.
diff --git a/src/hash_questions.c b/src/hash_questions.c
new file mode 100644
index 0000000..ae112ac
--- /dev/null
+++ b/src/hash_questions.c
@@ -0,0 +1,281 @@
+/* Copyright (c) 2012-2020 Simon Kelley
+
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; version 2 dated June, 1991, or
+   (at your option) version 3 dated 29 June, 2007.
+
+   This program is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with this program.  If not, see <http://www.gnu.org/licenses/>.
+*/
+
+
+/* Hash the question section. This is used to safely detect query 
+   retransmission and to detect answers to questions we didn't ask, which 
+   might be poisoning attacks. Note that we decode the name rather 
+   than CRC the raw bytes, since replies might be compressed differently. 
+   We ignore case in the names for the same reason. 
+
+   The hash used is SHA-256. If we're building with DNSSEC support,
+   we use the Nettle cypto library. If not, we prefer not to
+   add a dependency on Nettle, and use a stand-alone implementaion. 
+*/
+
+#include "dnsmasq.h"
+
+#ifdef HAVE_DNSSEC
+unsigned char *hash_questions(struct dns_header *header, size_t plen, char *name)
+{
+  int q;
+  unsigned char *p = (unsigned char *)(header+1);
+  const struct nettle_hash *hash;
+  void *ctx;
+  unsigned char *digest;
+  
+  if (!(hash = hash_find("sha256")) || !hash_init(hash, &ctx, &digest))
+    {
+      /* don't think this can ever happen. */
+      static unsigned char dummy[HASH_SIZE];
+      static int warned = 0;
+
+      if (warned)
+	my_syslog(LOG_ERR, _("Failed to create SHA-256 hash object"));
+      warned = 1;
+     
+      return dummy;
+    }
+  
+  for (q = ntohs(header->qdcount); q != 0; q--) 
+    {
+      char *cp, c;
+
+      if (!extract_name(header, plen, &p, name, 1, 4))
+	break; /* bad packet */
+
+      for (cp = name; (c = *cp); cp++)
+	 if (c >= 'A' && c <= 'Z')
+	   *cp += 'a' - 'A';
+
+      hash->update(ctx, cp - name, (unsigned char *)name);
+      /* CRC the class and type as well */
+      hash->update(ctx, 4, p);
+
+      p += 4;
+      if (!CHECK_LEN(header, p, plen, 0))
+	break; /* bad packet */
+    }
+  
+  hash->digest(ctx, hash->digest_size, digest);
+  return digest;
+}
+
+#else /* HAVE_DNSSEC */
+
+#define SHA256_BLOCK_SIZE 32            // SHA256 outputs a 32 byte digest
+typedef unsigned char BYTE;             // 8-bit byte
+typedef unsigned int  WORD;             // 32-bit word, change to "long" for 16-bit machines
+
+typedef struct {
+  BYTE data[64];
+  WORD datalen;
+  unsigned long long bitlen;
+  WORD state[8];
+} SHA256_CTX;
+
+static void sha256_init(SHA256_CTX *ctx);
+static void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len);
+static void sha256_final(SHA256_CTX *ctx, BYTE hash[]);
+
+
+unsigned char *hash_questions(struct dns_header *header, size_t plen, char *name)
+{
+  int q;
+  unsigned char *p = (unsigned char *)(header+1);
+  SHA256_CTX ctx;
+  static BYTE digest[SHA256_BLOCK_SIZE];
+  
+  sha256_init(&ctx);
+    
+  for (q = ntohs(header->qdcount); q != 0; q--) 
+    {
+      char *cp, c;
+
+      if (!extract_name(header, plen, &p, name, 1, 4))
+	break; /* bad packet */
+
+      for (cp = name; (c = *cp); cp++)
+	 if (c >= 'A' && c <= 'Z')
+	   *cp += 'a' - 'A';
+
+      sha256_update(&ctx, (BYTE *)name, cp - name);
+      /* CRC the class and type as well */
+      sha256_update(&ctx, (BYTE *)p, 4);
+
+      p += 4;
+      if (!CHECK_LEN(header, p, plen, 0))
+	break; /* bad packet */
+    }
+  
+  sha256_final(&ctx, digest);
+  return (unsigned char *)digest;
+}
+
+/* Code from here onwards comes from https://github.com/B-Con/crypto-algorithms
+   and was written by Brad Conte (brad@bradconte.com), to whom all credit is given.
+
+   This code is in the public domain, and the copyright notice at the head of this 
+   file does not apply to it.
+*/
+
+
+/****************************** MACROS ******************************/
+#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
+#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
+
+#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
+#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
+#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
+#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
+#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
+#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
+
+/**************************** VARIABLES *****************************/
+static const WORD k[64] = {
+			   0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
+			   0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
+			   0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
+			   0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
+			   0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
+			   0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
+			   0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
+			   0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
+};
+
+/*********************** FUNCTION DEFINITIONS ***********************/
+static void sha256_transform(SHA256_CTX *ctx, const BYTE data[])
+{
+  WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
+  
+  for (i = 0, j = 0; i < 16; ++i, j += 4)
+    m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
+  for ( ; i < 64; ++i)
+    m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
+
+  a = ctx->state[0];
+  b = ctx->state[1];
+  c = ctx->state[2];
+  d = ctx->state[3];
+  e = ctx->state[4];
+  f = ctx->state[5];
+  g = ctx->state[6];
+  h = ctx->state[7];
+
+  for (i = 0; i < 64; ++i)
+    {
+      t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
+      t2 = EP0(a) + MAJ(a,b,c);
+      h = g;
+      g = f;
+      f = e;
+      e = d + t1;
+      d = c;
+      c = b;
+      b = a;
+      a = t1 + t2;
+    }
+  
+  ctx->state[0] += a;
+  ctx->state[1] += b;
+  ctx->state[2] += c;
+  ctx->state[3] += d;
+  ctx->state[4] += e;
+  ctx->state[5] += f;
+  ctx->state[6] += g;
+  ctx->state[7] += h;
+}
+
+static void sha256_init(SHA256_CTX *ctx)
+{
+  ctx->datalen = 0;
+  ctx->bitlen = 0;
+  ctx->state[0] = 0x6a09e667;
+  ctx->state[1] = 0xbb67ae85;
+  ctx->state[2] = 0x3c6ef372;
+  ctx->state[3] = 0xa54ff53a;
+  ctx->state[4] = 0x510e527f;
+  ctx->state[5] = 0x9b05688c;
+  ctx->state[6] = 0x1f83d9ab;
+  ctx->state[7] = 0x5be0cd19;
+}
+
+static void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len)
+{
+  WORD i;
+  
+  for (i = 0; i < len; ++i)
+    {
+      ctx->data[ctx->datalen] = data[i];
+      ctx->datalen++;
+      if (ctx->datalen == 64) {
+	sha256_transform(ctx, ctx->data);
+	ctx->bitlen += 512;
+	ctx->datalen = 0;
+      }
+    }
+}
+
+static void sha256_final(SHA256_CTX *ctx, BYTE hash[])
+{
+  WORD i;
+  
+  i = ctx->datalen;
+
+  // Pad whatever data is left in the buffer.
+  if (ctx->datalen < 56)
+    {
+      ctx->data[i++] = 0x80;
+      while (i < 56)
+	ctx->data[i++] = 0x00;
+    }
+  else
+    {
+      ctx->data[i++] = 0x80;
+      while (i < 64)
+	ctx->data[i++] = 0x00;
+      sha256_transform(ctx, ctx->data);
+      memset(ctx->data, 0, 56);
+    }
+  
+  // Append to the padding the total message's length in bits and transform.
+  ctx->bitlen += ctx->datalen * 8;
+  ctx->data[63] = ctx->bitlen;
+  ctx->data[62] = ctx->bitlen >> 8;
+  ctx->data[61] = ctx->bitlen >> 16;
+  ctx->data[60] = ctx->bitlen >> 24;
+  ctx->data[59] = ctx->bitlen >> 32;
+  ctx->data[58] = ctx->bitlen >> 40;
+  ctx->data[57] = ctx->bitlen >> 48;
+  ctx->data[56] = ctx->bitlen >> 56;
+  sha256_transform(ctx, ctx->data);
+  
+  // Since this implementation uses little endian byte ordering and SHA uses big endian,
+  // reverse all the bytes when copying the final state to the output hash.
+  for (i = 0; i < 4; ++i)
+    {
+      hash[i]      = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
+      hash[i + 4]  = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
+      hash[i + 8]  = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
+      hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
+      hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
+      hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
+      hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
+      hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
+    }
+}
+
+#endif