Use SHA-256 to provide security against DNS cache poisoning.
Use the SHA-256 hash function to verify that DNS answers
received are for the questions originally asked. This replaces
the slightly insecure SHA-1 (when compiled with DNSSEC) or
the very insecure CRC32 (otherwise). Refer: CERT VU#434904.
diff --git a/src/hash_questions.c b/src/hash_questions.c
new file mode 100644
index 0000000..ae112ac
--- /dev/null
+++ b/src/hash_questions.c
@@ -0,0 +1,281 @@
+/* Copyright (c) 2012-2020 Simon Kelley
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; version 2 dated June, 1991, or
+ (at your option) version 3 dated 29 June, 2007.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+
+/* Hash the question section. This is used to safely detect query
+ retransmission and to detect answers to questions we didn't ask, which
+ might be poisoning attacks. Note that we decode the name rather
+ than CRC the raw bytes, since replies might be compressed differently.
+ We ignore case in the names for the same reason.
+
+ The hash used is SHA-256. If we're building with DNSSEC support,
+ we use the Nettle cypto library. If not, we prefer not to
+ add a dependency on Nettle, and use a stand-alone implementaion.
+*/
+
+#include "dnsmasq.h"
+
+#ifdef HAVE_DNSSEC
+unsigned char *hash_questions(struct dns_header *header, size_t plen, char *name)
+{
+ int q;
+ unsigned char *p = (unsigned char *)(header+1);
+ const struct nettle_hash *hash;
+ void *ctx;
+ unsigned char *digest;
+
+ if (!(hash = hash_find("sha256")) || !hash_init(hash, &ctx, &digest))
+ {
+ /* don't think this can ever happen. */
+ static unsigned char dummy[HASH_SIZE];
+ static int warned = 0;
+
+ if (warned)
+ my_syslog(LOG_ERR, _("Failed to create SHA-256 hash object"));
+ warned = 1;
+
+ return dummy;
+ }
+
+ for (q = ntohs(header->qdcount); q != 0; q--)
+ {
+ char *cp, c;
+
+ if (!extract_name(header, plen, &p, name, 1, 4))
+ break; /* bad packet */
+
+ for (cp = name; (c = *cp); cp++)
+ if (c >= 'A' && c <= 'Z')
+ *cp += 'a' - 'A';
+
+ hash->update(ctx, cp - name, (unsigned char *)name);
+ /* CRC the class and type as well */
+ hash->update(ctx, 4, p);
+
+ p += 4;
+ if (!CHECK_LEN(header, p, plen, 0))
+ break; /* bad packet */
+ }
+
+ hash->digest(ctx, hash->digest_size, digest);
+ return digest;
+}
+
+#else /* HAVE_DNSSEC */
+
+#define SHA256_BLOCK_SIZE 32 // SHA256 outputs a 32 byte digest
+typedef unsigned char BYTE; // 8-bit byte
+typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
+
+typedef struct {
+ BYTE data[64];
+ WORD datalen;
+ unsigned long long bitlen;
+ WORD state[8];
+} SHA256_CTX;
+
+static void sha256_init(SHA256_CTX *ctx);
+static void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len);
+static void sha256_final(SHA256_CTX *ctx, BYTE hash[]);
+
+
+unsigned char *hash_questions(struct dns_header *header, size_t plen, char *name)
+{
+ int q;
+ unsigned char *p = (unsigned char *)(header+1);
+ SHA256_CTX ctx;
+ static BYTE digest[SHA256_BLOCK_SIZE];
+
+ sha256_init(&ctx);
+
+ for (q = ntohs(header->qdcount); q != 0; q--)
+ {
+ char *cp, c;
+
+ if (!extract_name(header, plen, &p, name, 1, 4))
+ break; /* bad packet */
+
+ for (cp = name; (c = *cp); cp++)
+ if (c >= 'A' && c <= 'Z')
+ *cp += 'a' - 'A';
+
+ sha256_update(&ctx, (BYTE *)name, cp - name);
+ /* CRC the class and type as well */
+ sha256_update(&ctx, (BYTE *)p, 4);
+
+ p += 4;
+ if (!CHECK_LEN(header, p, plen, 0))
+ break; /* bad packet */
+ }
+
+ sha256_final(&ctx, digest);
+ return (unsigned char *)digest;
+}
+
+/* Code from here onwards comes from https://github.com/B-Con/crypto-algorithms
+ and was written by Brad Conte (brad@bradconte.com), to whom all credit is given.
+
+ This code is in the public domain, and the copyright notice at the head of this
+ file does not apply to it.
+*/
+
+
+/****************************** MACROS ******************************/
+#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
+#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
+
+#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
+#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
+#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
+#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
+#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
+#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
+
+/**************************** VARIABLES *****************************/
+static const WORD k[64] = {
+ 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
+ 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
+ 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
+ 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
+ 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
+ 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
+ 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
+ 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
+};
+
+/*********************** FUNCTION DEFINITIONS ***********************/
+static void sha256_transform(SHA256_CTX *ctx, const BYTE data[])
+{
+ WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
+
+ for (i = 0, j = 0; i < 16; ++i, j += 4)
+ m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
+ for ( ; i < 64; ++i)
+ m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
+
+ a = ctx->state[0];
+ b = ctx->state[1];
+ c = ctx->state[2];
+ d = ctx->state[3];
+ e = ctx->state[4];
+ f = ctx->state[5];
+ g = ctx->state[6];
+ h = ctx->state[7];
+
+ for (i = 0; i < 64; ++i)
+ {
+ t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
+ t2 = EP0(a) + MAJ(a,b,c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + t1;
+ d = c;
+ c = b;
+ b = a;
+ a = t1 + t2;
+ }
+
+ ctx->state[0] += a;
+ ctx->state[1] += b;
+ ctx->state[2] += c;
+ ctx->state[3] += d;
+ ctx->state[4] += e;
+ ctx->state[5] += f;
+ ctx->state[6] += g;
+ ctx->state[7] += h;
+}
+
+static void sha256_init(SHA256_CTX *ctx)
+{
+ ctx->datalen = 0;
+ ctx->bitlen = 0;
+ ctx->state[0] = 0x6a09e667;
+ ctx->state[1] = 0xbb67ae85;
+ ctx->state[2] = 0x3c6ef372;
+ ctx->state[3] = 0xa54ff53a;
+ ctx->state[4] = 0x510e527f;
+ ctx->state[5] = 0x9b05688c;
+ ctx->state[6] = 0x1f83d9ab;
+ ctx->state[7] = 0x5be0cd19;
+}
+
+static void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len)
+{
+ WORD i;
+
+ for (i = 0; i < len; ++i)
+ {
+ ctx->data[ctx->datalen] = data[i];
+ ctx->datalen++;
+ if (ctx->datalen == 64) {
+ sha256_transform(ctx, ctx->data);
+ ctx->bitlen += 512;
+ ctx->datalen = 0;
+ }
+ }
+}
+
+static void sha256_final(SHA256_CTX *ctx, BYTE hash[])
+{
+ WORD i;
+
+ i = ctx->datalen;
+
+ // Pad whatever data is left in the buffer.
+ if (ctx->datalen < 56)
+ {
+ ctx->data[i++] = 0x80;
+ while (i < 56)
+ ctx->data[i++] = 0x00;
+ }
+ else
+ {
+ ctx->data[i++] = 0x80;
+ while (i < 64)
+ ctx->data[i++] = 0x00;
+ sha256_transform(ctx, ctx->data);
+ memset(ctx->data, 0, 56);
+ }
+
+ // Append to the padding the total message's length in bits and transform.
+ ctx->bitlen += ctx->datalen * 8;
+ ctx->data[63] = ctx->bitlen;
+ ctx->data[62] = ctx->bitlen >> 8;
+ ctx->data[61] = ctx->bitlen >> 16;
+ ctx->data[60] = ctx->bitlen >> 24;
+ ctx->data[59] = ctx->bitlen >> 32;
+ ctx->data[58] = ctx->bitlen >> 40;
+ ctx->data[57] = ctx->bitlen >> 48;
+ ctx->data[56] = ctx->bitlen >> 56;
+ sha256_transform(ctx, ctx->data);
+
+ // Since this implementation uses little endian byte ordering and SHA uses big endian,
+ // reverse all the bytes when copying the final state to the output hash.
+ for (i = 0; i < 4; ++i)
+ {
+ hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
+ hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
+ hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
+ hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
+ hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
+ hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
+ hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
+ hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
+ }
+}
+
+#endif