blob: f0f709de95a748253470b05fd76b09b66f271a6c [file] [log] [blame]
/* dnssec.c is Copyright (c) 2012 Giovanni Bajo <rasky@develer.com>
and Copyright (c) 2012-2014 Simon Kelley
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 dated June, 1991, or
(at your option) version 3 dated 29 June, 2007.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "dnsmasq.h"
#ifdef HAVE_DNSSEC
#include "dnssec-crypto.h"
#include <assert.h>
/* Maximum length in octects of a domain name, in wire format */
#define MAXCDNAME 256
#define MAXRRSET 16
#define SERIAL_UNDEF -100
#define SERIAL_EQ 0
#define SERIAL_LT -1
#define SERIAL_GT 1
/* Implement RFC1982 wrapped compare for 32-bit numbers */
static int serial_compare_32(unsigned long s1, unsigned long s2)
{
if (s1 == s2)
return SERIAL_EQ;
if ((s1 < s2 && (s2 - s1) < (1UL<<31)) ||
(s1 > s2 && (s1 - s2) > (1UL<<31)))
return SERIAL_LT;
if ((s1 < s2 && (s2 - s1) > (1UL<<31)) ||
(s1 > s2 && (s1 - s2) < (1UL<<31)))
return SERIAL_GT;
return SERIAL_UNDEF;
}
/* process_domain_name() - do operations with domain names in canonicalized wire format.
*
* Handling domain names in wire format can be done with buffers as large as MAXCDNAME (256),
* while the representation format (as created by, eg., extract_name) requires MAXDNAME (1024).
*
* With "canonicalized wire format", we mean the standard DNS wire format, eg:
*
* <3>www<7>example<3>org<0>
*
* with all ÅSCII letters converted to lowercase, and no wire-level compression.
*
* The function works with two different buffers:
* - Input buffer: 'rdata' is a pointer to the actual wire data, and 'rdlen' is
* the total length till the end of the rdata or DNS packet section. Both
* variables are updated after processing the domain name, so that rdata points
* after it, and rdlen is decreased by the amount of the processed octects.
* - Output buffer: 'out' points to it. In some cases, this buffer can be prefilled
* and used as additional input (see below).
*
* The argument "action" decides what to do with the submitted domain name:
*
* PDN_EXTRACT:
* Extract the domain name from input buffer into the output buffer, possibly uncompressing it.
* Return the length of the domain name in the output buffer in octects, or zero if error.
*
* PDN_COMPARE:
* Compare the domain name in the input buffer and the one in the output buffer (ignoring
* differences in compression). Returns 0 in case of error, a positive number
* if they are equal, or a negative number if they are different. This function always
* consumes the whole name in the input buffer (there is no early exit).
*
* PDN_ORDER:
* Order between the domain name in the input buffer and the domain name in the output buffer.
* Returns 0 if the names are equal, 1 if input > output, or -1 if input < output. This
* function early-exits when it finds a difference, so rdata might not be fully updated.
*
* Notice: because of compression, rdata/rdlen might be updated with a different quantity than
* the returned number of octects. For instance, if we extract a compressed domain name, rdata/rdlen
* might be updated only by 2 bytes (that is, rdata is incresed by 2, and rdlen decreased by 2),
* because it then reuses existing data elsewhere in the DNS packet, while the return value might be
* larger, reflecting the total number of octects composing the domain name.
*
*/
#define PWN_EXTRACT 0
#define PWN_COMPARE 1
#define PWN_ORDER 2
static int process_domain_name(struct dns_header *header, size_t pktlen,
unsigned char** rdata, size_t* rdlen,
unsigned char *out, int action)
{
int hops = 0, total = 0, i;
unsigned char label_type;
unsigned char *end = (unsigned char *)header + pktlen;
unsigned char count; unsigned char *p = *rdata;
int nonequal = 0;
#define PROCESS(ch) \
do { \
if (action == PWN_EXTRACT) \
*out++ = ch; \
else if (action == PWN_COMPARE) \
{ \
if (*out++ != ch) \
nonequal = 1; \
} \
else if (action == PWN_ORDER) \
{ \
char _ch = *out++; \
if (ch < _ch) \
return -1; \
else if (_ch > ch) \
return 1; \
} \
} while (0)
while (1)
{
if (p >= end)
return 0;
if (!(count = *p++))
break;
label_type = count & 0xC0;
if (label_type == 0xC0)
{
int l2;
if (p >= end)
return 0;
l2 = *p++;
if (hops == 0)
{
if (p - *rdata > *rdlen)
return 0;
*rdlen -= p - *rdata;
*rdata = p;
}
if (++hops == 256)
return 0;
p = (unsigned char*)header + (count & 0x3F) * 256 + l2;
}
else if (label_type == 0x00)
{
if (p+count-1 >= end)
return 0;
total += count+1;
if (total >= MAXCDNAME)
return 0;
PROCESS(count);
for (i = 0; i < count; ++i)
{
unsigned char ch = *p++;
if (ch >= 'A' && ch <= 'Z')
ch += 'a' - 'A';
PROCESS(ch);
}
}
else
return 0; /* unsupported label_type */
}
if (hops == 0)
{
if (p - *rdata > *rdlen)
return 0;
*rdlen -= p - *rdata;
*rdata = p;
}
++total;
if (total >= MAXCDNAME)
return 0;
PROCESS(0);
/* If we arrived here without early-exit, they're equal */
if (action == PWN_ORDER)
return 0;
return nonequal ? -total : total;
#undef PROCESS
}
/* RDATA meta-description.
*
* RFC4034 §6.2 introduces the concept of a "canonical form of a RR". This canonical
* form is used in two important points within the DNSSEC protocol/algorithm:
*
* 1) When computing the hash for verifying the RRSIG signature, we need to do it on
* the canonical form.
* 2) When ordering a RRset in canonical order (§6.3), we need to lexicographically sort
* the RRs in canonical form.
*
* The canonical form of a RR is specifically tricky because it also affects the RDATA,
* which is different for each RR type; in fact, RFC4034 says that "domain names in
* RDATA must be canonicalized" (= uncompressed and lower-cased).
*
* To handle this correctly, we then need a way to describe how the RDATA section is
* composed for each RR type; we don't need to describe every field, but just to specify
* where domain names are. The following array contains this description, and it is
* used by rrset_canonical_order() and verifyalg_add_rdata(), to adjust their behaviour
* for each RR type.
*
* The format of the description is very easy, for instance:
*
* { 12, RDESC_DOMAIN, RDESC_DOMAIN, 4, RDESC_DOMAIN, RDESC_END }
*
* This means that this (ficticious) RR type has a RDATA section containing 12 octects
* (we don't care what they contain), followed by 2 domain names, followed by 4 octects,
* followed by 1 domain name, and then followed by an unspecificied number of octects (0
* or more).
*/
#define RDESC_DOMAIN -1
#define RDESC_END 0
static const int rdata_description[][8] =
{
/**/ { RDESC_END },
/* 1: A */ { RDESC_END },
/* 2: NS */ { RDESC_DOMAIN, RDESC_END },
/* 3: .. */ { RDESC_END },
/* 4: .. */ { RDESC_END },
/* 5: CNAME */ { RDESC_DOMAIN, RDESC_END },
/* 6: SOA */ { RDESC_DOMAIN, RDESC_DOMAIN, RDESC_END },
/* 7: */ { RDESC_END },
/* 8: */ { RDESC_END },
/* 9: */ { RDESC_END },
/* 10: */ { RDESC_END },
/* 11: */ { RDESC_END },
/* 12: */ { RDESC_END },
/* 13: */ { RDESC_END },
/* 14: */ { RDESC_END },
/* 15: MX */ { 2, RDESC_DOMAIN, RDESC_END },
};
/* On-the-fly rdata canonicalization
*
* This set of functions allow the user to iterate over the rdata section of a RR
* while canonicalizing it on-the-fly. This is a great memory saving since the user
* doesn't need to allocate memory for a copy of the whole rdata section.
*
* Sample usage:
*
* RDataCFrom cf;
* rdata_cfrom_init(
* &cf,
* header, pktlen, // dns_header
* rdata, // pointer to rdata section
* rrtype, // RR tyep
* tmpbuf); // temporary buf (MAXCDNAME)
*
* while ((p = rdata_cfrom_next(&cf, &len))
* {
* // Process p[0..len]
* }
*
* if (rdata_cfrom_error(&cf))
* // error occurred while parsing
*
*/
typedef struct
{
struct dns_header *header;
size_t pktlen;
unsigned char *rdata;
unsigned char *tmpbuf;
size_t rdlen;
int rrtype;
int cnt;
} RDataCForm;
static void rdata_cform_init(RDataCForm *ctx, struct dns_header *header, size_t pktlen,
unsigned char *rdata, int rrtype, unsigned char *tmpbuf)
{
if (rrtype >= countof(rdata_description))
rrtype = 0;
ctx->header = header;
ctx->pktlen = pktlen;
ctx->rdata = rdata;
ctx->rrtype = rrtype;
ctx->tmpbuf = tmpbuf;
ctx->cnt = -1;
GETSHORT(ctx->rdlen, ctx->rdata);
}
static int rdata_cform_error(RDataCForm *ctx)
{
return ctx->cnt == -2;
}
static unsigned char *rdata_cform_next(RDataCForm *ctx, size_t *len)
{
if (ctx->cnt != -1 && rdata_description[ctx->rrtype][ctx->cnt] == RDESC_END)
return NULL;
int d = rdata_description[ctx->rrtype][++ctx->cnt];
if (d == RDESC_DOMAIN)
{
*len = process_domain_name(ctx->header, ctx->pktlen, &ctx->rdata, &ctx->rdlen, ctx->tmpbuf, PWN_EXTRACT);
if (!*len)
{
ctx->cnt = -2;
return NULL;
}
return ctx->tmpbuf;
}
else if (d == RDESC_END)
{
*len = ctx->rdlen;
return ctx->rdata;
}
else
{
unsigned char *ret = ctx->rdata;
ctx->rdlen -= d;
ctx->rdata += d;
*len = d;
return ret;
}
}
/* Check whether today/now is between date_start and date_end */
static int check_date_range(unsigned long date_start, unsigned long date_end)
{
/* TODO: double-check that time(0) is the correct time we are looking for */
/* TODO: dnssec requires correct timing; implement SNTP in dnsmasq? */
unsigned long curtime = time(0);
/* We must explicitly check against wanted values, because of SERIAL_UNDEF */
return serial_compare_32(curtime, date_start) == SERIAL_GT
&& serial_compare_32(curtime, date_end) == SERIAL_LT;
}
/* Sort RRs within a RRset in canonical order, according to RFC4034, §6.3
Notice that the RRDATA sections have been already normalized, so a memcpy
is sufficient.
NOTE: r1/r2 point immediately after the owner name. */
struct {
struct dns_header *header;
size_t pktlen;
} rrset_canonical_order_ctx;
static int rrset_canonical_order(const void *r1, const void *r2)
{
size_t r1len, r2len;
int rrtype;
unsigned char *pr1=*(unsigned char**)r1, *pr2=*(unsigned char**)r2;
unsigned char tmp1[MAXCDNAME], tmp2[MAXCDNAME]; /* TODO: use part of daemon->namebuff */
GETSHORT(rrtype, pr1);
pr1 += 6; pr2 += 8;
RDataCForm cf1, cf2;
rdata_cform_init(&cf1, rrset_canonical_order_ctx.header, rrset_canonical_order_ctx.pktlen,
pr1, rrtype, tmp1);
rdata_cform_init(&cf2, rrset_canonical_order_ctx.header, rrset_canonical_order_ctx.pktlen,
pr2, rrtype, tmp2);
while ((pr1 = rdata_cform_next(&cf1, &r1len)) &&
(pr2 = rdata_cform_next(&cf2, &r2len)))
{
int res = memcmp(pr1, pr2, MIN(r1len,r2len));
if (res != 0)
return res;
if (r1len < r2len)
return -1;
if (r2len > r1len)
return 1;
}
/* If we reached this point, the two RRs are identical (or an error occurred).
RFC2181 says that an RRset is not allowed to contain duplicate
records. If it happens, it is a protocol error and anything goes. */
return 1;
}
typedef struct PendingRRSIGValidation
{
VerifyAlgCtx *alg;
char *signer_name;
int keytag;
} PendingRRSIGValidation;
/* Convert from presentation format to wire format, in place.
Also map UC -> LC.
Note that using extract_name to get presentation format
then calling to_wire() removes compression and maps case,
thus generating names in canonical form.
Calling to_wire followed by from_wire is almost an identity,
except that the UC remains mapped to LC.
*/
static int to_wire(char *name)
{
unsigned char *l, *p, term;
int len;
for (l = (unsigned char*)name; *l != 0; l = p)
{
for (p = l; *p != '.' && *p != 0; p++)
if (*p >= 'A' && *p <= 'Z')
*p = *p - 'A' + 'a';
term = *p;
if ((len = p - l) != 0)
memmove(l+1, l, len);
*l = len;
p++;
if (term == 0)
*p = 0;
}
return l + 1 - (unsigned char *)name;
}
/* Note: no compression allowed in input. */
static void from_wire(char *name)
{
unsigned char *l;
int len;
for (l = (unsigned char *)name; *l != 0; l += len+1)
{
len = *l;
memmove(l, l+1, len);
l[len] = '.';
}
*(l-1) = 0;
}
/* Pass a resource record's rdata field through the currently-initailized digest algorithm.
We must pass the record in DNS wire format, but if the record contains domain names,
they must be uncompressed. This makes things very tricky, because */
static int digestalg_add_rdata(int sigtype, struct dns_header *header, size_t pktlen,
unsigned char *rdata)
{
size_t len;
unsigned char *p;
unsigned short total;
unsigned char tmpbuf[MAXDNAME]; /* TODO: reuse part of daemon->namebuff */
RDataCForm cf1, cf2;
/* Initialize two iterations over the canonical form*/
rdata_cform_init(&cf1, header, pktlen, rdata, sigtype, tmpbuf);
cf2 = cf1;
/* Iteration 1: go through the canonical record and count the total octects.
This number might be different from the non-canonical rdata length
because of domain names compression. */
total = 0;
while ((p = rdata_cform_next(&cf1, &len)))
total += len;
if (rdata_cform_error(&cf1))
return 0;
/* Iteration 2: process the canonical record through the hash function */
total = htons(total);
digestalg_add_data(&total, 2);
while ((p = rdata_cform_next(&cf2, &len)))
digestalg_add_data(p, len);
return 1;
}
size_t dnssec_generate_query(struct dns_header *header, char *end, char *name, int class, int type, union mysockaddr *addr)
{
unsigned char *p;
char types[20];
querystr("dnssec", types, type);
if (addr->sa.sa_family == AF_INET)
log_query(F_DNSSEC | F_IPV4, name, (struct all_addr *)&addr->in.sin_addr, types);
#ifdef HAVE_IPV6
else
log_query(F_DNSSEC | F_IPV6, name, (struct all_addr *)&addr->in6.sin6_addr, types);
#endif
header->qdcount = htons(1);
header->ancount = htons(0);
header->nscount = htons(0);
header->arcount = htons(0);
header->hb3 = HB3_RD;
SET_OPCODE(header, QUERY);
header->hb4 = HB4_CD;
/* ID filled in later */
p = (unsigned char *)(header+1);
p = do_rfc1035_name(p, name);
*p++ = 0;
PUTSHORT(type, p);
PUTSHORT(class, p);
return add_do_bit(header, p - (unsigned char *)header, end);
}
/* The DNS packet is expected to contain the answer to a DNSKEY query.
Leave name of qury in name.
Put all DNSKEYs in the answer which are valid into the cache.
return codes:
STAT_INSECURE bad packet, no DNSKEYs in reply.
STAT_SECURE At least one valid DNSKEY found and in cache.
STAT_BOGUS No DNSKEYs found, which can be validated with DS,
or self-sign for DNSKEY RRset is not valid.
STAT_NEED_DS DS records to validate a key not found, name in keyname
*/
int dnssec_validate_by_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class)
{
unsigned char *psave, *p = (unsigned char *)(header+1);
struct crec *crecp, *recp1;
int rc, j, qtype, qclass, ttl, rdlen, flags, algo, valid, keytag;
struct blockdata *key;
if (ntohs(header->qdcount) != 1)
return STAT_INSECURE;
if (!extract_name(header, plen, &p, name, 1, 4))
return STAT_INSECURE;
GETSHORT(qtype, p);
GETSHORT(qclass, p);
if (qtype != T_DNSKEY || qclass != class || ntohs(header->ancount) == 0)
return STAT_INSECURE;
/* See if we have cached a DS record which validates this key */
if (!(crecp = cache_find_by_name(NULL, name, now, F_DS)))
{
strcpy(keyname, name);
return STAT_NEED_DS;
}
cache_start_insert();
/* NOTE, we need to find ONE DNSKEY which matches the DS */
for (valid = 0, j = ntohs(header->ancount); j != 0; j--)
{
/* Ensure we have type, class TTL and length */
if (!(rc = extract_name(header, plen, &p, name, 0, 10)))
return STAT_INSECURE; /* bad packet */
GETSHORT(qtype, p);
GETSHORT(qclass, p);
GETLONG(ttl, p);
GETSHORT(rdlen, p);
if (qclass != class || qtype != T_DNSKEY || rc == 2)
{
if (ADD_RDLEN(header, p, plen, rdlen))
continue;
return STAT_INSECURE; /* bad packet */
}
if (!CHECK_LEN(header, p, plen, rdlen) || rdlen < 4)
return STAT_INSECURE; /* bad packet */
psave = p;
/* length at least covers flags, protocol and algo now. */
GETSHORT(flags, p);
if (*p++ != 3)
return STAT_INSECURE;
algo = *p++;
keytag = dnskey_keytag(algo, flags, p, rdlen - 4);
/* Put the key into the cache. Note that if the validation fails, we won't
call cache_end_insert() and this will never be committed. */
if ((key = blockdata_alloc((char*)p, rdlen - 4)) &&
(recp1 = cache_insert(name, NULL, now, ttl, F_FORWARD | F_DNSKEY)))
{
recp1->uid = rdlen - 4;
recp1->addr.key.keydata = key;
recp1->addr.key.algo = algo;
recp1->addr.key.keytag = keytag;
}
p = psave;
if (!ADD_RDLEN(header, p, plen, rdlen))
return STAT_INSECURE; /* bad packet */
/* Already determined that message is OK. Just loop stuffing cache */
if (valid || !key)
continue;
for (recp1 = crecp; recp1; recp1 = cache_find_by_name(recp1, name, now, F_DS))
if (recp1->addr.key.algo == algo &&
recp1->addr.key.keytag == keytag &&
(flags & 0x100) && /* zone key flag */
digestalg_supported(recp1->addr.key.digest))
{
int wire_len = to_wire(name);
digestalg_begin(recp1->addr.key.digest);
digestalg_add_data(name, wire_len);
digestalg_add_data((char *)psave, rdlen);
from_wire(name);
/* TODO fragented digest */
if (memcmp(digestalg_final(), recp1->addr.key.keydata->key, digestalg_len()) == 0 &&
validate_rrset(now, header, plen, class, T_DNSKEY, name, keyname, key, rdlen - 4, algo, keytag))
{
struct all_addr a;
valid = 1;
a.addr.keytag = keytag;
log_query(F_KEYTAG | F_UPSTREAM, name, &a, "DNSKEY keytag %u");
break;
}
}
}
if (valid)
{
/* commit cache insert. */
cache_end_insert();
return STAT_SECURE;
}
log_query(F_UPSTREAM, name, NULL, "BOGUS DNSKEY");
return STAT_BOGUS;
}
/* The DNS packet is expected to contain the answer to a DS query
Leave name of DS query in name.
Put all DSs in the answer which are valid into the cache.
return codes:
STAT_INSECURE bad packet, no DS in reply.
STAT_SECURE At least one valid DS found and in cache.
STAT_BOGUS At least one DS found, which fails validation.
STAT_NEED_DNSKEY DNSKEY records to validate a DS not found, name in keyname
*/
int dnssec_validate_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class)
{
unsigned char *psave, *p = (unsigned char *)(header+1);
struct crec *crecp;
int qtype, qclass, val, j, gotone;
struct blockdata *key;
if (ntohs(header->qdcount) != 1)
return STAT_INSECURE;
if (!extract_name(header, plen, &p, name, 1, 4))
return STAT_INSECURE;
GETSHORT(qtype, p);
GETSHORT(qclass, p);
if (qtype != T_DS || qclass != class || ntohs(header->ancount) == 0)
return STAT_INSECURE;
val = validate_rrset(now, header, plen, class, T_DS, name, keyname, NULL, 0, 0, 0);
if (val == STAT_BOGUS)
log_query(F_UPSTREAM, name, NULL, "BOGUS DS");
/* failed to validate or missing key. */
if (val != STAT_SECURE)
return val;
cache_start_insert();
for (gotone = 0, j = ntohs(header->ancount); j != 0; j--)
{
int ttl, rdlen, rc, algo, digest, keytag;
/* Ensure we have type, class TTL and length */
if (!(rc = extract_name(header, plen, &p, name, 0, 10)))
return STAT_INSECURE; /* bad packet */
GETSHORT(qtype, p);
GETSHORT(qclass, p);
GETLONG(ttl, p);
GETSHORT(rdlen, p);
/* check type, class and name, skip if not in DS rrset */
if (qclass == class && qtype == T_DS && rc == 1)
{
if (!CHECK_LEN(header, p, plen, rdlen) || rdlen < 4)
return STAT_INSECURE; /* bad packet */
psave = p;
GETSHORT(keytag, p);
algo = *p++;
digest = *p++;
/* We've proved that the DS is OK, store it in the cache */
if ((key = blockdata_alloc((char*)p, rdlen - 4)) &&
(crecp = cache_insert(name, NULL, now, ttl, F_FORWARD | F_DS)))
{
struct all_addr a;
a.addr.keytag = keytag;
log_query(F_KEYTAG | F_UPSTREAM, name, &a, "DS keytag %u");
crecp->addr.key.digest = digest;
crecp->addr.key.keydata = key;
crecp->addr.key.algo = algo;
crecp->addr.key.keytag = keytag;
}
else
return STAT_INSECURE; /* cache problem */
p = psave;
}
if (!ADD_RDLEN(header, p, plen, rdlen))
return STAT_INSECURE; /* bad packet */
}
cache_end_insert();
return STAT_SECURE;
}
/* Validate a single RRset (class, type, name) in the supplied DNS reply
Return code:
STAT_SECURE if it validates.
STAT_INSECURE can't validate (no RRSIG, bad packet).
STAT_BOGUS signature is wrong.
STAT_NEED_KEY need DNSKEY to complete validation (name is returned in keyname)
if key is non-NULL, use that key, which has the algo and tag given in the params of those names,
otherwise find the key in the cache.
*/
int validate_rrset(time_t now, struct dns_header *header, size_t plen, int class,
int type, char *name, char *keyname, struct blockdata *key, int keylen, int algo_in, int keytag_in)
{
unsigned char *p;
int rrsetidx, sigidx, res, rdlen, j;
struct crec *crecp = NULL;
void *rrset[MAXRRSET], *sigs[MAXRRSET]; /* TODO: max RRset size? */
int type_covered, algo, labels, orig_ttl, sig_expiration, sig_inception, key_tag;
if (!(p = skip_questions(header, plen)))
return STAT_INSECURE;
/* look for an RRSIG record for this RRset and get pointers to each record */
for (rrsetidx = 0, sigidx = 0, j = ntohs(header->ancount) + ntohs(header->nscount);
j != 0; j--)
{
unsigned char *pstart;
int stype, sclass, sttl;
if (!(res = extract_name(header, plen, &p, name, 0, 10)))
return STAT_INSECURE; /* bad packet */
pstart = p;
GETSHORT(stype, p);
GETSHORT(sclass, p);
GETLONG(sttl, p);
GETSHORT(rdlen, p);
(void)sttl;
if (!CHECK_LEN(header, p, plen, rdlen))
return STAT_INSECURE; /* bad packet */
if (res == 1 && sclass == class)
{
if (stype == type)
{
rrset[rrsetidx++] = pstart;
if (rrsetidx == MAXRRSET)
return STAT_INSECURE; /* RRSET too big TODO */
}
if (stype == T_RRSIG)
{
sigs[sigidx++] = pstart;
if (sigidx == MAXRRSET)
return STAT_INSECURE; /* RRSET too big TODO */
}
}
if (!ADD_RDLEN(header, p, plen, rdlen))
return STAT_INSECURE;
}
/* RRset empty, no RRSIGs */
if (rrsetidx == 0 || sigidx == 0)
return STAT_INSECURE;
/* Now try all the sigs to try and find one which validates */
for (j = 0; j <sigidx; j++)
{
unsigned char *psav;
int i, wire_len;
VerifyAlgCtx *alg;
u16 ntype, nclass;
u32 nsigttl;
p = sigs[j] + 8; /* skip type, class and ttl */
GETSHORT(rdlen, p);
if (rdlen < 18)
return STAT_INSECURE; /* bad packet */
psav = p;
GETSHORT(type_covered, p);
algo = *p++;
labels = *p++;
GETLONG(orig_ttl, p);
GETLONG(sig_expiration, p);
GETLONG(sig_inception, p);
GETSHORT(key_tag, p);
if (type_covered != type ||
!check_date_range(sig_inception, sig_expiration) ||
!verifyalg_supported(algo))
{
/* covers wrong type or out of date - skip */
p = psav;
if (!ADD_RDLEN(header, p, plen, rdlen))
return STAT_INSECURE;
continue;
}
if (!extract_name(header, plen, &p, keyname, 1, 0))
return STAT_INSECURE;
/* OK, we have the signature record, see if the relevant DNSKEY is in the cache. */
if (!key && !(crecp = cache_find_by_name(NULL, keyname, now, F_DNSKEY)))
return STAT_NEED_KEY;
/* Sort RRset records in canonical order. */
rrset_canonical_order_ctx.header = header;
rrset_canonical_order_ctx.pktlen = plen;
qsort(rrset, rrsetidx, sizeof(void*), rrset_canonical_order);
alg = verifyalg_alloc(algo);
alg->sig = p;
alg->siglen = rdlen - (p - psav);
ntype = htons(type);
nclass = htons(class);
nsigttl = htonl(orig_ttl);
digestalg_begin(alg->vtbl->digest_algo);
digestalg_add_data(psav, 18);
wire_len = to_wire(keyname);
digestalg_add_data(keyname, wire_len);
from_wire(keyname);
/* TODO wildcard rules : 4035 5.3.2 */
for (i = 0; i < rrsetidx; ++i)
{
p = (unsigned char*)(rrset[i]);
wire_len = to_wire(name);
digestalg_add_data(name, wire_len);
from_wire(name);
digestalg_add_data(&ntype, 2);
digestalg_add_data(&nclass, 2);
digestalg_add_data(&nsigttl, 4);
p += 8;
if (!digestalg_add_rdata(type, header, plen, p))
return STAT_INSECURE;
}
memcpy(alg->digest, digestalg_final(), digestalg_len());
if (key)
{
if (algo_in == algo && keytag_in == key_tag &&
alg->vtbl->verify(alg, key, keylen))
return STAT_SECURE;
}
else
{
/* iterate through all possible keys 4035 5.3.1 */
for (; crecp; crecp = cache_find_by_name(crecp, keyname, now, F_DNSKEY))
if (crecp->addr.key.algo == algo && crecp->addr.key.keytag == key_tag &&
alg->vtbl->verify(alg, crecp->addr.key.keydata, crecp->uid))
return STAT_SECURE;
}
}
return STAT_BOGUS;
}
/* Validate all the RRsets in the answer and authority sections of the reply (4035:3.2.3) */
int dnssec_validate_reply(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int *class)
{
unsigned char *ans_start, *p1, *p2;
int type1, class1, rdlen1, type2, class2, rdlen2;
int i, j, rc;
if (!(ans_start = skip_questions(header, plen)))
return STAT_INSECURE;
for (p1 = ans_start, i = 0; i < ntohs(header->ancount) + ntohs(header->nscount); i++)
{
if (!extract_name(header, plen, &p1, name, 1, 10))
return STAT_INSECURE; /* bad packet */
GETSHORT(type1, p1);
GETSHORT(class1, p1);
p1 += 4; /* TTL */
GETSHORT(rdlen1, p1);
/* Don't try and validate RRSIGs! */
if (type1 != T_RRSIG)
{
/* Check if we've done this RRset already */
for (p2 = ans_start, j = 0; j < i; j++)
{
if (!(rc = extract_name(header, plen, &p2, name, 0, 10)))
return STAT_INSECURE; /* bad packet */
GETSHORT(type2, p2);
GETSHORT(class2, p2);
p2 += 4; /* TTL */
GETSHORT(rdlen2, p2);
if (type2 == type1 && class2 == class1 && rc == 1)
break; /* Done it before: name, type, class all match. */
if (!ADD_RDLEN(header, p2, plen, rdlen2))
return STAT_INSECURE;
}
/* Not done, validate now */
if (j == i && (rc = validate_rrset(now, header, plen, class1, type1, name, keyname, NULL, 0, 0, 0)) != STAT_SECURE)
{
*class = class1; /* Class for DS or DNSKEY */
return rc;
}
}
if (!ADD_RDLEN(header, p1, plen, rdlen1))
return STAT_INSECURE;
}
return STAT_SECURE;
}
/* Compute keytag (checksum to quickly index a key). See RFC4034 */
int dnskey_keytag(int alg, int flags, unsigned char *key, int keylen)
{
if (alg == 1)
{
/* Algorithm 1 (RSAMD5) has a different (older) keytag calculation algorithm.
See RFC4034, Appendix B.1 */
return key[keylen-4] * 256 + key[keylen-3];
}
else
{
unsigned long ac;
int i;
ac = ((htons(flags) >> 8) | ((htons(flags) << 8) & 0xff00)) + 0x300 + alg;
for (i = 0; i < keylen; ++i)
ac += (i & 1) ? key[i] : key[i] << 8;
ac += (ac >> 16) & 0xffff;
return ac & 0xffff;
}
}
#endif /* HAVE_DNSSEC */