| /* dnssec.c is Copyright (c) 2012 Giovanni Bajo <rasky@develer.com> |
| and Copyright (c) 2012-2014 Simon Kelley |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; version 2 dated June, 1991, or |
| (at your option) version 3 dated 29 June, 2007. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "dnsmasq.h" |
| |
| #ifdef HAVE_DNSSEC |
| |
| #include "dnssec-crypto.h" |
| #include <assert.h> |
| |
| /* Maximum length in octects of a domain name, in wire format */ |
| #define MAXCDNAME 256 |
| |
| #define MAXRRSET 16 |
| |
| #define SERIAL_UNDEF -100 |
| #define SERIAL_EQ 0 |
| #define SERIAL_LT -1 |
| #define SERIAL_GT 1 |
| |
| /* Implement RFC1982 wrapped compare for 32-bit numbers */ |
| static int serial_compare_32(unsigned long s1, unsigned long s2) |
| { |
| if (s1 == s2) |
| return SERIAL_EQ; |
| |
| if ((s1 < s2 && (s2 - s1) < (1UL<<31)) || |
| (s1 > s2 && (s1 - s2) > (1UL<<31))) |
| return SERIAL_LT; |
| if ((s1 < s2 && (s2 - s1) > (1UL<<31)) || |
| (s1 > s2 && (s1 - s2) < (1UL<<31))) |
| return SERIAL_GT; |
| return SERIAL_UNDEF; |
| } |
| |
| |
| /* process_domain_name() - do operations with domain names in canonicalized wire format. |
| * |
| * Handling domain names in wire format can be done with buffers as large as MAXCDNAME (256), |
| * while the representation format (as created by, eg., extract_name) requires MAXDNAME (1024). |
| * |
| * With "canonicalized wire format", we mean the standard DNS wire format, eg: |
| * |
| * <3>www<7>example<3>org<0> |
| * |
| * with all ÅSCII letters converted to lowercase, and no wire-level compression. |
| * |
| * The function works with two different buffers: |
| * - Input buffer: 'rdata' is a pointer to the actual wire data, and 'rdlen' is |
| * the total length till the end of the rdata or DNS packet section. Both |
| * variables are updated after processing the domain name, so that rdata points |
| * after it, and rdlen is decreased by the amount of the processed octects. |
| * - Output buffer: 'out' points to it. In some cases, this buffer can be prefilled |
| * and used as additional input (see below). |
| * |
| * The argument "action" decides what to do with the submitted domain name: |
| * |
| * PDN_EXTRACT: |
| * Extract the domain name from input buffer into the output buffer, possibly uncompressing it. |
| * Return the length of the domain name in the output buffer in octects, or zero if error. |
| * |
| * PDN_COMPARE: |
| * Compare the domain name in the input buffer and the one in the output buffer (ignoring |
| * differences in compression). Returns 0 in case of error, a positive number |
| * if they are equal, or a negative number if they are different. This function always |
| * consumes the whole name in the input buffer (there is no early exit). |
| * |
| * PDN_ORDER: |
| * Order between the domain name in the input buffer and the domain name in the output buffer. |
| * Returns 0 if the names are equal, 1 if input > output, or -1 if input < output. This |
| * function early-exits when it finds a difference, so rdata might not be fully updated. |
| * |
| * Notice: because of compression, rdata/rdlen might be updated with a different quantity than |
| * the returned number of octects. For instance, if we extract a compressed domain name, rdata/rdlen |
| * might be updated only by 2 bytes (that is, rdata is incresed by 2, and rdlen decreased by 2), |
| * because it then reuses existing data elsewhere in the DNS packet, while the return value might be |
| * larger, reflecting the total number of octects composing the domain name. |
| * |
| */ |
| #define PWN_EXTRACT 0 |
| #define PWN_COMPARE 1 |
| #define PWN_ORDER 2 |
| static int process_domain_name(struct dns_header *header, size_t pktlen, |
| unsigned char** rdata, size_t* rdlen, |
| unsigned char *out, int action) |
| { |
| int hops = 0, total = 0, i; |
| unsigned char label_type; |
| unsigned char *end = (unsigned char *)header + pktlen; |
| unsigned char count; unsigned char *p = *rdata; |
| int nonequal = 0; |
| |
| #define PROCESS(ch) \ |
| do { \ |
| if (action == PWN_EXTRACT) \ |
| *out++ = ch; \ |
| else if (action == PWN_COMPARE) \ |
| { \ |
| if (*out++ != ch) \ |
| nonequal = 1; \ |
| } \ |
| else if (action == PWN_ORDER) \ |
| { \ |
| char _ch = *out++; \ |
| if (ch < _ch) \ |
| return -1; \ |
| else if (_ch > ch) \ |
| return 1; \ |
| } \ |
| } while (0) |
| |
| while (1) |
| { |
| if (p >= end) |
| return 0; |
| if (!(count = *p++)) |
| break; |
| label_type = count & 0xC0; |
| if (label_type == 0xC0) |
| { |
| int l2; |
| if (p >= end) |
| return 0; |
| l2 = *p++; |
| if (hops == 0) |
| { |
| if (p - *rdata > *rdlen) |
| return 0; |
| *rdlen -= p - *rdata; |
| *rdata = p; |
| } |
| if (++hops == 256) |
| return 0; |
| p = (unsigned char*)header + (count & 0x3F) * 256 + l2; |
| } |
| else if (label_type == 0x00) |
| { |
| if (p+count-1 >= end) |
| return 0; |
| total += count+1; |
| if (total >= MAXCDNAME) |
| return 0; |
| PROCESS(count); |
| for (i = 0; i < count; ++i) |
| { |
| unsigned char ch = *p++; |
| if (ch >= 'A' && ch <= 'Z') |
| ch += 'a' - 'A'; |
| PROCESS(ch); |
| } |
| } |
| else |
| return 0; /* unsupported label_type */ |
| } |
| |
| if (hops == 0) |
| { |
| if (p - *rdata > *rdlen) |
| return 0; |
| *rdlen -= p - *rdata; |
| *rdata = p; |
| } |
| ++total; |
| if (total >= MAXCDNAME) |
| return 0; |
| PROCESS(0); |
| |
| /* If we arrived here without early-exit, they're equal */ |
| if (action == PWN_ORDER) |
| return 0; |
| return nonequal ? -total : total; |
| |
| #undef PROCESS |
| } |
| |
| |
| /* RDATA meta-description. |
| * |
| * RFC4034 §6.2 introduces the concept of a "canonical form of a RR". This canonical |
| * form is used in two important points within the DNSSEC protocol/algorithm: |
| * |
| * 1) When computing the hash for verifying the RRSIG signature, we need to do it on |
| * the canonical form. |
| * 2) When ordering a RRset in canonical order (§6.3), we need to lexicographically sort |
| * the RRs in canonical form. |
| * |
| * The canonical form of a RR is specifically tricky because it also affects the RDATA, |
| * which is different for each RR type; in fact, RFC4034 says that "domain names in |
| * RDATA must be canonicalized" (= uncompressed and lower-cased). |
| * |
| * To handle this correctly, we then need a way to describe how the RDATA section is |
| * composed for each RR type; we don't need to describe every field, but just to specify |
| * where domain names are. The following array contains this description, and it is |
| * used by rrset_canonical_order() and verifyalg_add_rdata(), to adjust their behaviour |
| * for each RR type. |
| * |
| * The format of the description is very easy, for instance: |
| * |
| * { 12, RDESC_DOMAIN, RDESC_DOMAIN, 4, RDESC_DOMAIN, RDESC_END } |
| * |
| * This means that this (ficticious) RR type has a RDATA section containing 12 octects |
| * (we don't care what they contain), followed by 2 domain names, followed by 4 octects, |
| * followed by 1 domain name, and then followed by an unspecificied number of octects (0 |
| * or more). |
| */ |
| |
| #define RDESC_DOMAIN -1 |
| #define RDESC_END 0 |
| static const int rdata_description[][8] = |
| { |
| /**/ { RDESC_END }, |
| /* 1: A */ { RDESC_END }, |
| /* 2: NS */ { RDESC_DOMAIN, RDESC_END }, |
| /* 3: .. */ { RDESC_END }, |
| /* 4: .. */ { RDESC_END }, |
| /* 5: CNAME */ { RDESC_DOMAIN, RDESC_END }, |
| /* 6: SOA */ { RDESC_DOMAIN, RDESC_DOMAIN, RDESC_END }, |
| /* 7: */ { RDESC_END }, |
| /* 8: */ { RDESC_END }, |
| /* 9: */ { RDESC_END }, |
| /* 10: */ { RDESC_END }, |
| /* 11: */ { RDESC_END }, |
| /* 12: */ { RDESC_END }, |
| /* 13: */ { RDESC_END }, |
| /* 14: */ { RDESC_END }, |
| /* 15: MX */ { 2, RDESC_DOMAIN, RDESC_END }, |
| }; |
| |
| |
| /* On-the-fly rdata canonicalization |
| * |
| * This set of functions allow the user to iterate over the rdata section of a RR |
| * while canonicalizing it on-the-fly. This is a great memory saving since the user |
| * doesn't need to allocate memory for a copy of the whole rdata section. |
| * |
| * Sample usage: |
| * |
| * RDataCFrom cf; |
| * rdata_cfrom_init( |
| * &cf, |
| * header, pktlen, // dns_header |
| * rdata, // pointer to rdata section |
| * rrtype, // RR tyep |
| * tmpbuf); // temporary buf (MAXCDNAME) |
| * |
| * while ((p = rdata_cfrom_next(&cf, &len)) |
| * { |
| * // Process p[0..len] |
| * } |
| * |
| * if (rdata_cfrom_error(&cf)) |
| * // error occurred while parsing |
| * |
| */ |
| typedef struct |
| { |
| struct dns_header *header; |
| size_t pktlen; |
| unsigned char *rdata; |
| unsigned char *tmpbuf; |
| size_t rdlen; |
| int rrtype; |
| int cnt; |
| } RDataCForm; |
| |
| static void rdata_cform_init(RDataCForm *ctx, struct dns_header *header, size_t pktlen, |
| unsigned char *rdata, int rrtype, unsigned char *tmpbuf) |
| { |
| if (rrtype >= countof(rdata_description)) |
| rrtype = 0; |
| ctx->header = header; |
| ctx->pktlen = pktlen; |
| ctx->rdata = rdata; |
| ctx->rrtype = rrtype; |
| ctx->tmpbuf = tmpbuf; |
| ctx->cnt = -1; |
| GETSHORT(ctx->rdlen, ctx->rdata); |
| } |
| |
| static int rdata_cform_error(RDataCForm *ctx) |
| { |
| return ctx->cnt == -2; |
| } |
| |
| static unsigned char *rdata_cform_next(RDataCForm *ctx, size_t *len) |
| { |
| if (ctx->cnt != -1 && rdata_description[ctx->rrtype][ctx->cnt] == RDESC_END) |
| return NULL; |
| |
| int d = rdata_description[ctx->rrtype][++ctx->cnt]; |
| if (d == RDESC_DOMAIN) |
| { |
| *len = process_domain_name(ctx->header, ctx->pktlen, &ctx->rdata, &ctx->rdlen, ctx->tmpbuf, PWN_EXTRACT); |
| if (!*len) |
| { |
| ctx->cnt = -2; |
| return NULL; |
| } |
| return ctx->tmpbuf; |
| } |
| else if (d == RDESC_END) |
| { |
| *len = ctx->rdlen; |
| return ctx->rdata; |
| } |
| else |
| { |
| unsigned char *ret = ctx->rdata; |
| ctx->rdlen -= d; |
| ctx->rdata += d; |
| *len = d; |
| return ret; |
| } |
| } |
| |
| |
| /* Check whether today/now is between date_start and date_end */ |
| static int check_date_range(unsigned long date_start, unsigned long date_end) |
| { |
| /* TODO: double-check that time(0) is the correct time we are looking for */ |
| /* TODO: dnssec requires correct timing; implement SNTP in dnsmasq? */ |
| unsigned long curtime = time(0); |
| |
| /* We must explicitly check against wanted values, because of SERIAL_UNDEF */ |
| return serial_compare_32(curtime, date_start) == SERIAL_GT |
| && serial_compare_32(curtime, date_end) == SERIAL_LT; |
| } |
| |
| |
| /* Sort RRs within a RRset in canonical order, according to RFC4034, §6.3 |
| Notice that the RRDATA sections have been already normalized, so a memcpy |
| is sufficient. |
| NOTE: r1/r2 point immediately after the owner name. */ |
| |
| struct { |
| struct dns_header *header; |
| size_t pktlen; |
| } rrset_canonical_order_ctx; |
| |
| static int rrset_canonical_order(const void *r1, const void *r2) |
| { |
| size_t r1len, r2len; |
| int rrtype; |
| unsigned char *pr1=*(unsigned char**)r1, *pr2=*(unsigned char**)r2; |
| unsigned char tmp1[MAXCDNAME], tmp2[MAXCDNAME]; /* TODO: use part of daemon->namebuff */ |
| |
| GETSHORT(rrtype, pr1); |
| pr1 += 6; pr2 += 8; |
| |
| RDataCForm cf1, cf2; |
| rdata_cform_init(&cf1, rrset_canonical_order_ctx.header, rrset_canonical_order_ctx.pktlen, |
| pr1, rrtype, tmp1); |
| rdata_cform_init(&cf2, rrset_canonical_order_ctx.header, rrset_canonical_order_ctx.pktlen, |
| pr2, rrtype, tmp2); |
| while ((pr1 = rdata_cform_next(&cf1, &r1len)) && |
| (pr2 = rdata_cform_next(&cf2, &r2len))) |
| { |
| int res = memcmp(pr1, pr2, MIN(r1len,r2len)); |
| if (res != 0) |
| return res; |
| if (r1len < r2len) |
| return -1; |
| if (r2len > r1len) |
| return 1; |
| } |
| |
| /* If we reached this point, the two RRs are identical (or an error occurred). |
| RFC2181 says that an RRset is not allowed to contain duplicate |
| records. If it happens, it is a protocol error and anything goes. */ |
| return 1; |
| } |
| |
| typedef struct PendingRRSIGValidation |
| { |
| VerifyAlgCtx *alg; |
| char *signer_name; |
| int keytag; |
| } PendingRRSIGValidation; |
| |
| |
| /* Convert from presentation format to wire format, in place. |
| Also map UC -> LC. |
| Note that using extract_name to get presentation format |
| then calling to_wire() removes compression and maps case, |
| thus generating names in canonical form. |
| Calling to_wire followed by from_wire is almost an identity, |
| except that the UC remains mapped to LC. |
| */ |
| static int to_wire(char *name) |
| { |
| unsigned char *l, *p, term; |
| int len; |
| |
| for (l = (unsigned char*)name; *l != 0; l = p) |
| { |
| for (p = l; *p != '.' && *p != 0; p++) |
| if (*p >= 'A' && *p <= 'Z') |
| *p = *p - 'A' + 'a'; |
| |
| term = *p; |
| |
| if ((len = p - l) != 0) |
| memmove(l+1, l, len); |
| *l = len; |
| |
| p++; |
| |
| if (term == 0) |
| *p = 0; |
| } |
| |
| return l + 1 - (unsigned char *)name; |
| } |
| |
| /* Note: no compression allowed in input. */ |
| static void from_wire(char *name) |
| { |
| unsigned char *l; |
| int len; |
| |
| for (l = (unsigned char *)name; *l != 0; l += len+1) |
| { |
| len = *l; |
| memmove(l, l+1, len); |
| l[len] = '.'; |
| } |
| |
| *(l-1) = 0; |
| } |
| |
| |
| /* Pass a resource record's rdata field through the currently-initailized digest algorithm. |
| |
| We must pass the record in DNS wire format, but if the record contains domain names, |
| they must be uncompressed. This makes things very tricky, because */ |
| static int digestalg_add_rdata(int sigtype, struct dns_header *header, size_t pktlen, |
| unsigned char *rdata) |
| { |
| size_t len; |
| unsigned char *p; |
| unsigned short total; |
| unsigned char tmpbuf[MAXDNAME]; /* TODO: reuse part of daemon->namebuff */ |
| RDataCForm cf1, cf2; |
| |
| /* Initialize two iterations over the canonical form*/ |
| rdata_cform_init(&cf1, header, pktlen, rdata, sigtype, tmpbuf); |
| cf2 = cf1; |
| |
| /* Iteration 1: go through the canonical record and count the total octects. |
| This number might be different from the non-canonical rdata length |
| because of domain names compression. */ |
| total = 0; |
| while ((p = rdata_cform_next(&cf1, &len))) |
| total += len; |
| if (rdata_cform_error(&cf1)) |
| return 0; |
| |
| /* Iteration 2: process the canonical record through the hash function */ |
| total = htons(total); |
| digestalg_add_data(&total, 2); |
| |
| while ((p = rdata_cform_next(&cf2, &len))) |
| digestalg_add_data(p, len); |
| |
| return 1; |
| } |
| |
| size_t dnssec_generate_query(struct dns_header *header, char *end, char *name, int class, int type, union mysockaddr *addr) |
| { |
| unsigned char *p; |
| char types[20]; |
| |
| querystr("dnssec", types, type); |
| |
| if (addr->sa.sa_family == AF_INET) |
| log_query(F_DNSSEC | F_IPV4, name, (struct all_addr *)&addr->in.sin_addr, types); |
| #ifdef HAVE_IPV6 |
| else |
| log_query(F_DNSSEC | F_IPV6, name, (struct all_addr *)&addr->in6.sin6_addr, types); |
| #endif |
| |
| header->qdcount = htons(1); |
| header->ancount = htons(0); |
| header->nscount = htons(0); |
| header->arcount = htons(0); |
| |
| header->hb3 = HB3_RD; |
| SET_OPCODE(header, QUERY); |
| header->hb4 = HB4_CD; |
| |
| /* ID filled in later */ |
| |
| p = (unsigned char *)(header+1); |
| |
| p = do_rfc1035_name(p, name); |
| *p++ = 0; |
| PUTSHORT(type, p); |
| PUTSHORT(class, p); |
| |
| return add_do_bit(header, p - (unsigned char *)header, end); |
| } |
| |
| /* The DNS packet is expected to contain the answer to a DNSKEY query. |
| Leave name of qury in name. |
| Put all DNSKEYs in the answer which are valid into the cache. |
| return codes: |
| STAT_INSECURE bad packet, no DNSKEYs in reply. |
| STAT_SECURE At least one valid DNSKEY found and in cache. |
| STAT_BOGUS No DNSKEYs found, which can be validated with DS, |
| or self-sign for DNSKEY RRset is not valid. |
| STAT_NEED_DS DS records to validate a key not found, name in keyname |
| */ |
| int dnssec_validate_by_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class) |
| { |
| unsigned char *psave, *p = (unsigned char *)(header+1); |
| struct crec *crecp, *recp1; |
| int rc, j, qtype, qclass, ttl, rdlen, flags, algo, valid, keytag; |
| struct blockdata *key; |
| |
| if (ntohs(header->qdcount) != 1) |
| return STAT_INSECURE; |
| |
| if (!extract_name(header, plen, &p, name, 1, 4)) |
| return STAT_INSECURE; |
| |
| GETSHORT(qtype, p); |
| GETSHORT(qclass, p); |
| |
| if (qtype != T_DNSKEY || qclass != class || ntohs(header->ancount) == 0) |
| return STAT_INSECURE; |
| |
| /* See if we have cached a DS record which validates this key */ |
| if (!(crecp = cache_find_by_name(NULL, name, now, F_DS))) |
| { |
| strcpy(keyname, name); |
| return STAT_NEED_DS; |
| } |
| |
| cache_start_insert(); |
| |
| /* NOTE, we need to find ONE DNSKEY which matches the DS */ |
| for (valid = 0, j = ntohs(header->ancount); j != 0; j--) |
| { |
| /* Ensure we have type, class TTL and length */ |
| if (!(rc = extract_name(header, plen, &p, name, 0, 10))) |
| return STAT_INSECURE; /* bad packet */ |
| |
| GETSHORT(qtype, p); |
| GETSHORT(qclass, p); |
| GETLONG(ttl, p); |
| GETSHORT(rdlen, p); |
| |
| if (qclass != class || qtype != T_DNSKEY || rc == 2) |
| { |
| if (ADD_RDLEN(header, p, plen, rdlen)) |
| continue; |
| |
| return STAT_INSECURE; /* bad packet */ |
| } |
| |
| if (!CHECK_LEN(header, p, plen, rdlen) || rdlen < 4) |
| return STAT_INSECURE; /* bad packet */ |
| |
| psave = p; |
| |
| /* length at least covers flags, protocol and algo now. */ |
| GETSHORT(flags, p); |
| if (*p++ != 3) |
| return STAT_INSECURE; |
| algo = *p++; |
| keytag = dnskey_keytag(algo, flags, p, rdlen - 4); |
| |
| /* Put the key into the cache. Note that if the validation fails, we won't |
| call cache_end_insert() and this will never be committed. */ |
| if ((key = blockdata_alloc((char*)p, rdlen - 4)) && |
| (recp1 = cache_insert(name, NULL, now, ttl, F_FORWARD | F_DNSKEY))) |
| { |
| recp1->uid = rdlen - 4; |
| recp1->addr.key.keydata = key; |
| recp1->addr.key.algo = algo; |
| recp1->addr.key.keytag = keytag; |
| } |
| |
| p = psave; |
| if (!ADD_RDLEN(header, p, plen, rdlen)) |
| return STAT_INSECURE; /* bad packet */ |
| |
| /* Already determined that message is OK. Just loop stuffing cache */ |
| if (valid || !key) |
| continue; |
| |
| for (recp1 = crecp; recp1; recp1 = cache_find_by_name(recp1, name, now, F_DS)) |
| if (recp1->addr.key.algo == algo && |
| recp1->addr.key.keytag == keytag && |
| (flags & 0x100) && /* zone key flag */ |
| digestalg_supported(recp1->addr.key.digest)) |
| { |
| int wire_len = to_wire(name); |
| |
| digestalg_begin(recp1->addr.key.digest); |
| digestalg_add_data(name, wire_len); |
| digestalg_add_data((char *)psave, rdlen); |
| |
| from_wire(name); |
| |
| /* TODO fragented digest */ |
| if (memcmp(digestalg_final(), recp1->addr.key.keydata->key, digestalg_len()) == 0 && |
| validate_rrset(now, header, plen, class, T_DNSKEY, name, keyname, key, rdlen - 4, algo, keytag)) |
| { |
| struct all_addr a; |
| valid = 1; |
| a.addr.keytag = keytag; |
| log_query(F_KEYTAG | F_UPSTREAM, name, &a, "DNSKEY keytag %u"); |
| break; |
| } |
| } |
| } |
| |
| if (valid) |
| { |
| /* commit cache insert. */ |
| cache_end_insert(); |
| return STAT_SECURE; |
| } |
| |
| log_query(F_UPSTREAM, name, NULL, "BOGUS DNSKEY"); |
| return STAT_BOGUS; |
| } |
| |
| |
| /* The DNS packet is expected to contain the answer to a DS query |
| Leave name of DS query in name. |
| Put all DSs in the answer which are valid into the cache. |
| return codes: |
| STAT_INSECURE bad packet, no DS in reply. |
| STAT_SECURE At least one valid DS found and in cache. |
| STAT_BOGUS At least one DS found, which fails validation. |
| STAT_NEED_DNSKEY DNSKEY records to validate a DS not found, name in keyname |
| */ |
| |
| int dnssec_validate_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class) |
| { |
| unsigned char *psave, *p = (unsigned char *)(header+1); |
| struct crec *crecp; |
| int qtype, qclass, val, j, gotone; |
| struct blockdata *key; |
| |
| if (ntohs(header->qdcount) != 1) |
| return STAT_INSECURE; |
| |
| if (!extract_name(header, plen, &p, name, 1, 4)) |
| return STAT_INSECURE; |
| |
| GETSHORT(qtype, p); |
| GETSHORT(qclass, p); |
| |
| if (qtype != T_DS || qclass != class || ntohs(header->ancount) == 0) |
| return STAT_INSECURE; |
| |
| val = validate_rrset(now, header, plen, class, T_DS, name, keyname, NULL, 0, 0, 0); |
| |
| if (val == STAT_BOGUS) |
| log_query(F_UPSTREAM, name, NULL, "BOGUS DS"); |
| |
| /* failed to validate or missing key. */ |
| if (val != STAT_SECURE) |
| return val; |
| |
| cache_start_insert(); |
| |
| for (gotone = 0, j = ntohs(header->ancount); j != 0; j--) |
| { |
| int ttl, rdlen, rc, algo, digest, keytag; |
| |
| /* Ensure we have type, class TTL and length */ |
| if (!(rc = extract_name(header, plen, &p, name, 0, 10))) |
| return STAT_INSECURE; /* bad packet */ |
| |
| GETSHORT(qtype, p); |
| GETSHORT(qclass, p); |
| GETLONG(ttl, p); |
| GETSHORT(rdlen, p); |
| |
| /* check type, class and name, skip if not in DS rrset */ |
| if (qclass == class && qtype == T_DS && rc == 1) |
| { |
| if (!CHECK_LEN(header, p, plen, rdlen) || rdlen < 4) |
| return STAT_INSECURE; /* bad packet */ |
| |
| psave = p; |
| GETSHORT(keytag, p); |
| algo = *p++; |
| digest = *p++; |
| |
| /* We've proved that the DS is OK, store it in the cache */ |
| if ((key = blockdata_alloc((char*)p, rdlen - 4)) && |
| (crecp = cache_insert(name, NULL, now, ttl, F_FORWARD | F_DS))) |
| { |
| struct all_addr a; |
| a.addr.keytag = keytag; |
| log_query(F_KEYTAG | F_UPSTREAM, name, &a, "DS keytag %u"); |
| crecp->addr.key.digest = digest; |
| crecp->addr.key.keydata = key; |
| crecp->addr.key.algo = algo; |
| crecp->addr.key.keytag = keytag; |
| } |
| else |
| return STAT_INSECURE; /* cache problem */ |
| |
| p = psave; |
| } |
| |
| if (!ADD_RDLEN(header, p, plen, rdlen)) |
| return STAT_INSECURE; /* bad packet */ |
| |
| } |
| |
| cache_end_insert(); |
| |
| return STAT_SECURE; |
| } |
| |
| |
| |
| /* Validate a single RRset (class, type, name) in the supplied DNS reply |
| Return code: |
| STAT_SECURE if it validates. |
| STAT_INSECURE can't validate (no RRSIG, bad packet). |
| STAT_BOGUS signature is wrong. |
| STAT_NEED_KEY need DNSKEY to complete validation (name is returned in keyname) |
| |
| if key is non-NULL, use that key, which has the algo and tag given in the params of those names, |
| otherwise find the key in the cache. |
| */ |
| int validate_rrset(time_t now, struct dns_header *header, size_t plen, int class, |
| int type, char *name, char *keyname, struct blockdata *key, int keylen, int algo_in, int keytag_in) |
| { |
| unsigned char *p; |
| int rrsetidx, sigidx, res, rdlen, j; |
| struct crec *crecp = NULL; |
| void *rrset[MAXRRSET], *sigs[MAXRRSET]; /* TODO: max RRset size? */ |
| int type_covered, algo, labels, orig_ttl, sig_expiration, sig_inception, key_tag; |
| |
| if (!(p = skip_questions(header, plen))) |
| return STAT_INSECURE; |
| |
| /* look for an RRSIG record for this RRset and get pointers to each record */ |
| for (rrsetidx = 0, sigidx = 0, j = ntohs(header->ancount) + ntohs(header->nscount); |
| j != 0; j--) |
| { |
| unsigned char *pstart; |
| int stype, sclass, sttl; |
| |
| if (!(res = extract_name(header, plen, &p, name, 0, 10))) |
| return STAT_INSECURE; /* bad packet */ |
| |
| pstart = p; |
| |
| GETSHORT(stype, p); |
| GETSHORT(sclass, p); |
| GETLONG(sttl, p); |
| GETSHORT(rdlen, p); |
| |
| (void)sttl; |
| |
| if (!CHECK_LEN(header, p, plen, rdlen)) |
| return STAT_INSECURE; /* bad packet */ |
| |
| if (res == 1 && sclass == class) |
| { |
| if (stype == type) |
| { |
| rrset[rrsetidx++] = pstart; |
| if (rrsetidx == MAXRRSET) |
| return STAT_INSECURE; /* RRSET too big TODO */ |
| } |
| |
| if (stype == T_RRSIG) |
| { |
| sigs[sigidx++] = pstart; |
| if (sigidx == MAXRRSET) |
| return STAT_INSECURE; /* RRSET too big TODO */ |
| } |
| } |
| |
| if (!ADD_RDLEN(header, p, plen, rdlen)) |
| return STAT_INSECURE; |
| } |
| |
| /* RRset empty, no RRSIGs */ |
| if (rrsetidx == 0 || sigidx == 0) |
| return STAT_INSECURE; |
| |
| /* Now try all the sigs to try and find one which validates */ |
| for (j = 0; j <sigidx; j++) |
| { |
| unsigned char *psav; |
| int i, wire_len; |
| VerifyAlgCtx *alg; |
| u16 ntype, nclass; |
| u32 nsigttl; |
| |
| p = sigs[j] + 8; /* skip type, class and ttl */ |
| |
| GETSHORT(rdlen, p); |
| |
| if (rdlen < 18) |
| return STAT_INSECURE; /* bad packet */ |
| |
| psav = p; |
| |
| GETSHORT(type_covered, p); |
| algo = *p++; |
| labels = *p++; |
| GETLONG(orig_ttl, p); |
| GETLONG(sig_expiration, p); |
| GETLONG(sig_inception, p); |
| GETSHORT(key_tag, p); |
| |
| if (type_covered != type || |
| !check_date_range(sig_inception, sig_expiration) || |
| !verifyalg_supported(algo)) |
| { |
| /* covers wrong type or out of date - skip */ |
| p = psav; |
| if (!ADD_RDLEN(header, p, plen, rdlen)) |
| return STAT_INSECURE; |
| continue; |
| } |
| |
| if (!extract_name(header, plen, &p, keyname, 1, 0)) |
| return STAT_INSECURE; |
| |
| /* OK, we have the signature record, see if the relevant DNSKEY is in the cache. */ |
| if (!key && !(crecp = cache_find_by_name(NULL, keyname, now, F_DNSKEY))) |
| return STAT_NEED_KEY; |
| |
| /* Sort RRset records in canonical order. */ |
| rrset_canonical_order_ctx.header = header; |
| rrset_canonical_order_ctx.pktlen = plen; |
| qsort(rrset, rrsetidx, sizeof(void*), rrset_canonical_order); |
| |
| alg = verifyalg_alloc(algo); |
| alg->sig = p; |
| alg->siglen = rdlen - (p - psav); |
| |
| ntype = htons(type); |
| nclass = htons(class); |
| nsigttl = htonl(orig_ttl); |
| |
| digestalg_begin(alg->vtbl->digest_algo); |
| digestalg_add_data(psav, 18); |
| wire_len = to_wire(keyname); |
| digestalg_add_data(keyname, wire_len); |
| from_wire(keyname); |
| |
| /* TODO wildcard rules : 4035 5.3.2 */ |
| for (i = 0; i < rrsetidx; ++i) |
| { |
| p = (unsigned char*)(rrset[i]); |
| |
| wire_len = to_wire(name); |
| digestalg_add_data(name, wire_len); |
| from_wire(name); |
| digestalg_add_data(&ntype, 2); |
| digestalg_add_data(&nclass, 2); |
| digestalg_add_data(&nsigttl, 4); |
| |
| p += 8; |
| if (!digestalg_add_rdata(type, header, plen, p)) |
| return STAT_INSECURE; |
| } |
| |
| memcpy(alg->digest, digestalg_final(), digestalg_len()); |
| |
| if (key) |
| { |
| if (algo_in == algo && keytag_in == key_tag && |
| alg->vtbl->verify(alg, key, keylen)) |
| return STAT_SECURE; |
| } |
| else |
| { |
| /* iterate through all possible keys 4035 5.3.1 */ |
| for (; crecp; crecp = cache_find_by_name(crecp, keyname, now, F_DNSKEY)) |
| if (crecp->addr.key.algo == algo && crecp->addr.key.keytag == key_tag && |
| alg->vtbl->verify(alg, crecp->addr.key.keydata, crecp->uid)) |
| return STAT_SECURE; |
| } |
| } |
| |
| return STAT_BOGUS; |
| } |
| |
| |
| /* Validate all the RRsets in the answer and authority sections of the reply (4035:3.2.3) */ |
| int dnssec_validate_reply(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int *class) |
| { |
| unsigned char *ans_start, *p1, *p2; |
| int type1, class1, rdlen1, type2, class2, rdlen2; |
| int i, j, rc; |
| |
| if (!(ans_start = skip_questions(header, plen))) |
| return STAT_INSECURE; |
| |
| for (p1 = ans_start, i = 0; i < ntohs(header->ancount) + ntohs(header->nscount); i++) |
| { |
| if (!extract_name(header, plen, &p1, name, 1, 10)) |
| return STAT_INSECURE; /* bad packet */ |
| |
| GETSHORT(type1, p1); |
| GETSHORT(class1, p1); |
| p1 += 4; /* TTL */ |
| GETSHORT(rdlen1, p1); |
| |
| /* Don't try and validate RRSIGs! */ |
| if (type1 != T_RRSIG) |
| { |
| /* Check if we've done this RRset already */ |
| for (p2 = ans_start, j = 0; j < i; j++) |
| { |
| if (!(rc = extract_name(header, plen, &p2, name, 0, 10))) |
| return STAT_INSECURE; /* bad packet */ |
| |
| GETSHORT(type2, p2); |
| GETSHORT(class2, p2); |
| p2 += 4; /* TTL */ |
| GETSHORT(rdlen2, p2); |
| |
| if (type2 == type1 && class2 == class1 && rc == 1) |
| break; /* Done it before: name, type, class all match. */ |
| |
| if (!ADD_RDLEN(header, p2, plen, rdlen2)) |
| return STAT_INSECURE; |
| } |
| |
| /* Not done, validate now */ |
| if (j == i && (rc = validate_rrset(now, header, plen, class1, type1, name, keyname, NULL, 0, 0, 0)) != STAT_SECURE) |
| { |
| *class = class1; /* Class for DS or DNSKEY */ |
| return rc; |
| } |
| } |
| |
| if (!ADD_RDLEN(header, p1, plen, rdlen1)) |
| return STAT_INSECURE; |
| } |
| |
| return STAT_SECURE; |
| } |
| |
| |
| /* Compute keytag (checksum to quickly index a key). See RFC4034 */ |
| int dnskey_keytag(int alg, int flags, unsigned char *key, int keylen) |
| { |
| if (alg == 1) |
| { |
| /* Algorithm 1 (RSAMD5) has a different (older) keytag calculation algorithm. |
| See RFC4034, Appendix B.1 */ |
| return key[keylen-4] * 256 + key[keylen-3]; |
| } |
| else |
| { |
| unsigned long ac; |
| int i; |
| |
| ac = ((htons(flags) >> 8) | ((htons(flags) << 8) & 0xff00)) + 0x300 + alg; |
| for (i = 0; i < keylen; ++i) |
| ac += (i & 1) ? key[i] : key[i] << 8; |
| ac += (ac >> 16) & 0xffff; |
| return ac & 0xffff; |
| } |
| } |
| |
| |
| #endif /* HAVE_DNSSEC */ |