| #!/bin/sh |
| |
| # We don't regenerate it on every "make" invocation - only by hand. |
| # The reason is that the changes to generated code are difficult |
| # to visualize by looking only at this script, it helps when the commit |
| # also contains the diff of the generated file. |
| exec >hash_md5_sha_x86-64.S |
| |
| # Based on http://arctic.org/~dean/crypto/sha1.html. |
| # ("This SHA1 implementation is public domain.") |
| # |
| # x86-64 has at least SSE2 vector insns always available. |
| # We can use them without any CPUID checks (and without a need |
| # for a fallback code if needed insns are not available). |
| # This code uses them to calculate W[] ahead of time. |
| # |
| # Unfortunately, results are passed from vector unit to |
| # integer ALUs on the stack. MOVD/Q insns to move them directly |
| # from vector to integer registers are slower than store-to-load |
| # forwarding in LSU (on Skylake at least). |
| # |
| # The win against a purely integer code is small on Skylake, |
| # only about 7-8%. We offload about 1/3 of our operations to the vector unit. |
| # It can do 4 ops at once in one 128-bit register, |
| # but we have to use x2 of them because of W[0] complication, |
| # SSE2 has no "rotate each word by N bits" insns, |
| # moving data to/from vector unit is clunky, and Skylake |
| # has four integer ALUs unified with three vector ALUs, |
| # which makes pure integer code rather fast, and makes |
| # vector ops compete with integer ones. |
| # |
| # Zen3, with its separate vector ALUs, wins more, about 12%. |
| |
| xmmT1="%xmm4" |
| xmmT2="%xmm5" |
| xmmRCONST="%xmm6" |
| xmmALLRCONST="%xmm7" |
| T=`printf '\t'` |
| |
| # SSE instructions are longer than 4 bytes on average. |
| # Intel CPUs (up to Tiger Lake at least) can't decode |
| # more than 16 bytes of code in one cycle. |
| # By interleaving SSE code and integer code |
| # we mostly achieve a situation where 16-byte decode fetch window |
| # contains 4 (or more) insns. |
| # |
| # However. On Skylake, there was no observed difference, |
| # but on Zen3, non-interleaved code is ~3% faster |
| # (822 Mb/s versus 795 Mb/s hashing speed). |
| # Off for now: |
| interleave=false |
| |
| INTERLEAVE() { |
| $interleave || \ |
| { |
| # Generate non-interleaved code |
| # (it should work correctly too) |
| echo "$1" |
| echo "$2" |
| return |
| } |
| ( |
| echo "$1" | grep -v '^$' >"$0.temp1" |
| echo "$2" | grep -v '^$' >"$0.temp2" |
| exec 3<"$0.temp1" |
| exec 4<"$0.temp2" |
| IFS='' |
| while :; do |
| line1='' |
| line2='' |
| while :; do |
| read -r line1 <&3 |
| if test "${line1:0:1}" != "#" && test "${line1:0:2}" != "$T#"; then |
| break |
| fi |
| echo "$line1" |
| done |
| while :; do |
| read -r line2 <&4 |
| if test "${line2:0:4}" = "${T}lea"; then |
| # We use 7-8 byte long forms of LEA. |
| # Do not interleave them with SSE insns |
| # which are also long. |
| echo "$line2" |
| read -r line2 <&4 |
| echo "$line2" |
| continue |
| fi |
| if test "${line2:0:1}" != "#" && test "${line2:0:2}" != "$T#"; then |
| break |
| fi |
| echo "$line2" |
| done |
| test "$line1$line2" || break |
| echo "$line1" |
| echo "$line2" |
| done |
| rm "$0.temp1" "$0.temp2" |
| ) |
| } |
| |
| # movaps bswap32_mask(%rip), $xmmT1 |
| # Load W[] to xmm0..3, byteswapping on the fly. |
| # For iterations 0..15, we pass RCONST+W[] in rsi,r8..r14 |
| # for use in RD1As instead of spilling them to stack. |
| # (We use rsi instead of rN because this makes two |
| # ADDs in two first RD1As shorter by one byte). |
| # movups 16*0(%rdi), %xmm0 |
| # pshufb $xmmT1, %xmm0 #SSSE3 insn |
| # movaps %xmm0, $xmmT2 |
| # paddd $xmmRCONST, $xmmT2 |
| # movq $xmmT2, %rsi |
| # #pextrq \$1, $xmmT2, %r8 #SSE4.1 insn |
| # #movhpd $xmmT2, %r8 #can only move to mem, not to reg |
| # shufps \$0x0e, $xmmT2, $xmmT2 # have to use two-insn sequence |
| # movq $xmmT2, %r8 # instead |
| # ... |
| # <repeat for xmm1,2,3> |
| # ... |
| #- leal $RCONST(%r$e,%rsi), %e$e # e += RCONST + W[n] |
| #+ addl %esi, %e$e # e += RCONST + W[n] |
| # ^^^^^^^^^^^^^^^^^^^^^^^^ |
| # The above is -97 bytes of code... |
| # ...but pshufb is a SSSE3 insn. Can't use it. |
| |
| echo \ |
| "### Generated by hash_md5_sha_x86-64.S.sh ### |
| |
| #if CONFIG_SHA1_SMALL == 0 && defined(__GNUC__) && defined(__x86_64__) |
| .section .text.sha1_process_block64, \"ax\", @progbits |
| .globl sha1_process_block64 |
| .hidden sha1_process_block64 |
| .type sha1_process_block64, @function |
| |
| .balign 8 # allow decoders to fetch at least 5 first insns |
| sha1_process_block64: |
| pushq %rbp # 1 byte insn |
| pushq %rbx # 1 byte insn |
| # pushq %r15 # 2 byte insn |
| pushq %r14 # 2 byte insn |
| pushq %r13 # 2 byte insn |
| pushq %r12 # 2 byte insn |
| pushq %rdi # we need ctx at the end |
| |
| #Register and stack use: |
| # eax..edx: a..d |
| # ebp: e |
| # esi,edi,r8..r14: temps |
| # r15: unused |
| # xmm0..xmm3: W[] |
| # xmm4,xmm5: temps |
| # xmm6: current round constant |
| # xmm7: all round constants |
| # -64(%rsp): area for passing RCONST + W[] from vector to integer units |
| |
| movl 80(%rdi), %eax # a = ctx->hash[0] |
| movl 84(%rdi), %ebx # b = ctx->hash[1] |
| movl 88(%rdi), %ecx # c = ctx->hash[2] |
| movl 92(%rdi), %edx # d = ctx->hash[3] |
| movl 96(%rdi), %ebp # e = ctx->hash[4] |
| |
| movaps sha1const(%rip), $xmmALLRCONST |
| pshufd \$0x00, $xmmALLRCONST, $xmmRCONST |
| |
| # Load W[] to xmm0..3, byteswapping on the fly. |
| # |
| # For iterations 0..15, we pass W[] in rsi,r8..r14 |
| # for use in RD1As instead of spilling them to stack. |
| # We lose parallelized addition of RCONST, but LEA |
| # can do two additions at once, so it is probably a wash. |
| # (We use rsi instead of rN because this makes two |
| # LEAs in two first RD1As shorter by one byte). |
| movq 4*0(%rdi), %rsi |
| movq 4*2(%rdi), %r8 |
| bswapq %rsi |
| bswapq %r8 |
| rolq \$32, %rsi # rsi = W[1]:W[0] |
| rolq \$32, %r8 # r8 = W[3]:W[2] |
| movq %rsi, %xmm0 |
| movq %r8, $xmmT1 |
| punpcklqdq $xmmT1, %xmm0 # xmm0 = r8:rsi = (W[0],W[1],W[2],W[3]) |
| # movaps %xmm0, $xmmT1 # add RCONST, spill to stack |
| # paddd $xmmRCONST, $xmmT1 |
| # movups $xmmT1, -64+16*0(%rsp) |
| |
| movq 4*4(%rdi), %r9 |
| movq 4*6(%rdi), %r10 |
| bswapq %r9 |
| bswapq %r10 |
| rolq \$32, %r9 # r9 = W[5]:W[4] |
| rolq \$32, %r10 # r10 = W[7]:W[6] |
| movq %r9, %xmm1 |
| movq %r10, $xmmT1 |
| punpcklqdq $xmmT1, %xmm1 # xmm1 = r10:r9 = (W[4],W[5],W[6],W[7]) |
| |
| movq 4*8(%rdi), %r11 |
| movq 4*10(%rdi), %r12 |
| bswapq %r11 |
| bswapq %r12 |
| rolq \$32, %r11 # r11 = W[9]:W[8] |
| rolq \$32, %r12 # r12 = W[11]:W[10] |
| movq %r11, %xmm2 |
| movq %r12, $xmmT1 |
| punpcklqdq $xmmT1, %xmm2 # xmm2 = r12:r11 = (W[8],W[9],W[10],W[11]) |
| |
| movq 4*12(%rdi), %r13 |
| movq 4*14(%rdi), %r14 |
| bswapq %r13 |
| bswapq %r14 |
| rolq \$32, %r13 # r13 = W[13]:W[12] |
| rolq \$32, %r14 # r14 = W[15]:W[14] |
| movq %r13, %xmm3 |
| movq %r14, $xmmT1 |
| punpcklqdq $xmmT1, %xmm3 # xmm3 = r14:r13 = (W[12],W[13],W[14],W[15]) |
| " |
| |
| PREP() { |
| local xmmW0=$1 |
| local xmmW4=$2 |
| local xmmW8=$3 |
| local xmmW12=$4 |
| # the above must be %xmm0..3 in some permutation |
| local dstmem=$5 |
| #W[0] = rol(W[13] ^ W[8] ^ W[2] ^ W[0], 1); |
| #W[1] = rol(W[14] ^ W[9] ^ W[3] ^ W[1], 1); |
| #W[2] = rol(W[15] ^ W[10] ^ W[4] ^ W[2], 1); |
| #W[3] = rol( 0 ^ W[11] ^ W[5] ^ W[3], 1); |
| #W[3] ^= rol(W[0], 1); |
| echo "# PREP $@ |
| movaps $xmmW12, $xmmT1 |
| psrldq \$4, $xmmT1 # rshift by 4 bytes: T1 = ([13],[14],[15],0) |
| |
| # pshufd \$0x4e, $xmmW0, $xmmT2 # 01001110=2,3,0,1 shuffle, ([2],[3],x,x) |
| # punpcklqdq $xmmW4, $xmmT2 # T2 = W4[0..63]:T2[0..63] = ([2],[3],[4],[5]) |
| # same result as above, but shorter and faster: |
| # pshufd/shufps are subtly different: pshufd takes all dwords from source operand, |
| # shufps takes dwords 0,1 from *2nd* operand, and dwords 2,3 from 1st one! |
| movaps $xmmW0, $xmmT2 |
| shufps \$0x4e, $xmmW4, $xmmT2 # 01001110=(T2.dw[2], T2.dw[3], W4.dw[0], W4.dw[1]) = ([2],[3],[4],[5]) |
| |
| xorps $xmmW8, $xmmW0 # ([8],[9],[10],[11]) ^ ([0],[1],[2],[3]) |
| xorps $xmmT1, $xmmT2 # ([13],[14],[15],0) ^ ([2],[3],[4],[5]) |
| xorps $xmmT2, $xmmW0 # ^ |
| # W0 = unrotated (W[0]..W[3]), still needs W[3] fixup |
| movaps $xmmW0, $xmmT2 |
| |
| xorps $xmmT1, $xmmT1 # rol(W0,1): |
| pcmpgtd $xmmW0, $xmmT1 # ffffffff for elements <0 (ones with msb bit 1) |
| paddd $xmmW0, $xmmW0 # shift left by 1 |
| psubd $xmmT1, $xmmW0 # add 1 to those who had msb bit 1 |
| # W0 = rotated (W[0]..W[3]), still needs W[3] fixup |
| |
| pslldq \$12, $xmmT2 # lshift by 12 bytes: T2 = (0,0,0,unrotW[0]) |
| movaps $xmmT2, $xmmT1 |
| pslld \$2, $xmmT2 |
| psrld \$30, $xmmT1 |
| # xorps $xmmT1, $xmmT2 # rol((0,0,0,unrotW[0]),2) |
| xorps $xmmT1, $xmmW0 # same result, but does not depend on/does not modify T2 |
| |
| xorps $xmmT2, $xmmW0 # W0 = rol(W[0]..W[3],1) ^ (0,0,0,rol(unrotW[0],2)) |
| " |
| # movq $xmmW0, %r8 # high latency (~6 cycles) |
| # movaps $xmmW0, $xmmT1 |
| # psrldq \$8, $xmmT1 # rshift by 8 bytes: move upper 64 bits to lower |
| # movq $xmmT1, %r10 # high latency |
| # movq %r8, %r9 |
| # movq %r10, %r11 |
| # shrq \$32, %r9 |
| # shrq \$32, %r11 |
| # ^^^ slower than passing the results on stack (!!!) |
| echo " |
| movaps $xmmW0, $xmmT2 |
| paddd $xmmRCONST, $xmmT2 |
| movups $xmmT2, $dstmem |
| " |
| } |
| |
| # It's possible to interleave integer insns in rounds to mostly eliminate |
| # dependency chains, but this likely to only help old Pentium-based |
| # CPUs (ones without OOO, which can only simultaneously execute a pair |
| # of _adjacent_ insns). |
| # Testing on old-ish Silvermont CPU (which has OOO window of only |
| # about ~8 insns) shows very small (~1%) speedup. |
| |
| RD1A() { |
| local a=$1;local b=$2;local c=$3;local d=$4;local e=$5 |
| local n=$(($6)) |
| local n0=$(((n+0) & 15)) |
| local rN=$((7+n0/2)) |
| echo " |
| # $n |
| ";test $n0 = 0 && echo " |
| leal $RCONST(%r$e,%rsi), %e$e # e += RCONST + W[n] |
| shrq \$32, %rsi |
| ";test $n0 = 1 && echo " |
| leal $RCONST(%r$e,%rsi), %e$e # e += RCONST + W[n] |
| ";test $n0 -ge 2 && test $((n0 & 1)) = 0 && echo " |
| leal $RCONST(%r$e,%r$rN), %e$e # e += RCONST + W[n] |
| shrq \$32, %r$rN |
| ";test $n0 -ge 2 && test $((n0 & 1)) = 1 && echo " |
| leal $RCONST(%r$e,%r$rN), %e$e # e += RCONST + W[n] |
| ";echo " |
| movl %e$c, %edi # c |
| xorl %e$d, %edi # ^d |
| andl %e$b, %edi # &b |
| xorl %e$d, %edi # (((c ^ d) & b) ^ d) |
| addl %edi, %e$e # e += (((c ^ d) & b) ^ d) |
| movl %e$a, %edi # |
| roll \$5, %edi # rotl32(a,5) |
| addl %edi, %e$e # e += rotl32(a,5) |
| rorl \$2, %e$b # b = rotl32(b,30) |
| " |
| } |
| RD1B() { |
| local a=$1;local b=$2;local c=$3;local d=$4;local e=$5 |
| local n=$(($6)) |
| local n13=$(((n+13) & 15)) |
| local n8=$(((n+8) & 15)) |
| local n2=$(((n+2) & 15)) |
| local n0=$(((n+0) & 15)) |
| echo " |
| # $n |
| movl %e$c, %edi # c |
| xorl %e$d, %edi # ^d |
| andl %e$b, %edi # &b |
| xorl %e$d, %edi # (((c ^ d) & b) ^ d) |
| addl -64+4*$n0(%rsp), %e$e # e += RCONST + W[n & 15] |
| addl %edi, %e$e # e += (((c ^ d) & b) ^ d) |
| movl %e$a, %esi # |
| roll \$5, %esi # rotl32(a,5) |
| addl %esi, %e$e # e += rotl32(a,5) |
| rorl \$2, %e$b # b = rotl32(b,30) |
| " |
| } |
| |
| RD2() { |
| local a=$1;local b=$2;local c=$3;local d=$4;local e=$5 |
| local n=$(($6)) |
| local n13=$(((n+13) & 15)) |
| local n8=$(((n+8) & 15)) |
| local n2=$(((n+2) & 15)) |
| local n0=$(((n+0) & 15)) |
| echo " |
| # $n |
| movl %e$c, %edi # c |
| xorl %e$d, %edi # ^d |
| xorl %e$b, %edi # ^b |
| addl -64+4*$n0(%rsp), %e$e # e += RCONST + W[n & 15] |
| addl %edi, %e$e # e += (c ^ d ^ b) |
| movl %e$a, %esi # |
| roll \$5, %esi # rotl32(a,5) |
| addl %esi, %e$e # e += rotl32(a,5) |
| rorl \$2, %e$b # b = rotl32(b,30) |
| " |
| } |
| |
| RD3() { |
| local a=$1;local b=$2;local c=$3;local d=$4;local e=$5 |
| local n=$(($6)) |
| local n13=$(((n+13) & 15)) |
| local n8=$(((n+8) & 15)) |
| local n2=$(((n+2) & 15)) |
| local n0=$(((n+0) & 15)) |
| echo " |
| # $n |
| movl %e$b, %edi # di: b |
| movl %e$b, %esi # si: b |
| orl %e$c, %edi # di: b | c |
| andl %e$c, %esi # si: b & c |
| andl %e$d, %edi # di: (b | c) & d |
| orl %esi, %edi # ((b | c) & d) | (b & c) |
| addl %edi, %e$e # += ((b | c) & d) | (b & c) |
| addl -64+4*$n0(%rsp), %e$e # e += RCONST + W[n & 15] |
| movl %e$a, %esi # |
| roll \$5, %esi # rotl32(a,5) |
| addl %esi, %e$e # e += rotl32(a,5) |
| rorl \$2, %e$b # b = rotl32(b,30) |
| " |
| } |
| |
| { |
| # Round 1 |
| RCONST=0x5A827999 |
| RD1A ax bx cx dx bp 0; RD1A bp ax bx cx dx 1; RD1A dx bp ax bx cx 2; RD1A cx dx bp ax bx 3; |
| RD1A bx cx dx bp ax 4; RD1A ax bx cx dx bp 5; RD1A bp ax bx cx dx 6; RD1A dx bp ax bx cx 7; |
| a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"` |
| b=`RD1A cx dx bp ax bx 8; RD1A bx cx dx bp ax 9; RD1A ax bx cx dx bp 10; RD1A bp ax bx cx dx 11;` |
| INTERLEAVE "$a" "$b" |
| a=`echo " pshufd \\$0x55, $xmmALLRCONST, $xmmRCONST" |
| PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"` |
| b=`RD1A dx bp ax bx cx 12; RD1A cx dx bp ax bx 13; RD1A bx cx dx bp ax 14; RD1A ax bx cx dx bp 15;` |
| INTERLEAVE "$a" "$b" |
| a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"` |
| b=`RD1B bp ax bx cx dx 16; RD1B dx bp ax bx cx 17; RD1B cx dx bp ax bx 18; RD1B bx cx dx bp ax 19;` |
| INTERLEAVE "$a" "$b" |
| |
| # Round 2 |
| RCONST=0x6ED9EBA1 |
| a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"` |
| b=`RD2 ax bx cx dx bp 20; RD2 bp ax bx cx dx 21; RD2 dx bp ax bx cx 22; RD2 cx dx bp ax bx 23;` |
| INTERLEAVE "$a" "$b" |
| a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"` |
| b=`RD2 bx cx dx bp ax 24; RD2 ax bx cx dx bp 25; RD2 bp ax bx cx dx 26; RD2 dx bp ax bx cx 27;` |
| INTERLEAVE "$a" "$b" |
| a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"` |
| b=`RD2 cx dx bp ax bx 28; RD2 bx cx dx bp ax 29; RD2 ax bx cx dx bp 30; RD2 bp ax bx cx dx 31;` |
| INTERLEAVE "$a" "$b" |
| a=`echo " pshufd \\$0xaa, $xmmALLRCONST, $xmmRCONST" |
| PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"` |
| b=`RD2 dx bp ax bx cx 32; RD2 cx dx bp ax bx 33; RD2 bx cx dx bp ax 34; RD2 ax bx cx dx bp 35;` |
| INTERLEAVE "$a" "$b" |
| a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"` |
| b=`RD2 bp ax bx cx dx 36; RD2 dx bp ax bx cx 37; RD2 cx dx bp ax bx 38; RD2 bx cx dx bp ax 39;` |
| INTERLEAVE "$a" "$b" |
| |
| # Round 3 |
| RCONST=0x8F1BBCDC |
| a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"` |
| b=`RD3 ax bx cx dx bp 40; RD3 bp ax bx cx dx 41; RD3 dx bp ax bx cx 42; RD3 cx dx bp ax bx 43;` |
| INTERLEAVE "$a" "$b" |
| a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"` |
| b=`RD3 bx cx dx bp ax 44; RD3 ax bx cx dx bp 45; RD3 bp ax bx cx dx 46; RD3 dx bp ax bx cx 47;` |
| INTERLEAVE "$a" "$b" |
| a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"` |
| b=`RD3 cx dx bp ax bx 48; RD3 bx cx dx bp ax 49; RD3 ax bx cx dx bp 50; RD3 bp ax bx cx dx 51;` |
| INTERLEAVE "$a" "$b" |
| a=`echo " pshufd \\$0xff, $xmmALLRCONST, $xmmRCONST" |
| PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"` |
| b=`RD3 dx bp ax bx cx 52; RD3 cx dx bp ax bx 53; RD3 bx cx dx bp ax 54; RD3 ax bx cx dx bp 55;` |
| INTERLEAVE "$a" "$b" |
| a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"` |
| b=`RD3 bp ax bx cx dx 56; RD3 dx bp ax bx cx 57; RD3 cx dx bp ax bx 58; RD3 bx cx dx bp ax 59;` |
| INTERLEAVE "$a" "$b" |
| |
| # Round 4 has the same logic as round 2, only n and RCONST are different |
| RCONST=0xCA62C1D6 |
| a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"` |
| b=`RD2 ax bx cx dx bp 60; RD2 bp ax bx cx dx 61; RD2 dx bp ax bx cx 62; RD2 cx dx bp ax bx 63;` |
| INTERLEAVE "$a" "$b" |
| a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"` |
| b=`RD2 bx cx dx bp ax 64; RD2 ax bx cx dx bp 65; RD2 bp ax bx cx dx 66; RD2 dx bp ax bx cx 67;` |
| INTERLEAVE "$a" "$b" |
| a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"` |
| b=`RD2 cx dx bp ax bx 68; RD2 bx cx dx bp ax 69; RD2 ax bx cx dx bp 70; RD2 bp ax bx cx dx 71;` |
| INTERLEAVE "$a" "$b" |
| RD2 dx bp ax bx cx 72; RD2 cx dx bp ax bx 73; RD2 bx cx dx bp ax 74; RD2 ax bx cx dx bp 75; |
| RD2 bp ax bx cx dx 76; RD2 dx bp ax bx cx 77; RD2 cx dx bp ax bx 78; RD2 bx cx dx bp ax 79; |
| } | grep -v '^$' |
| |
| echo " |
| popq %rdi # |
| popq %r12 # |
| addl %eax, 80(%rdi) # ctx->hash[0] += a |
| popq %r13 # |
| addl %ebx, 84(%rdi) # ctx->hash[1] += b |
| popq %r14 # |
| addl %ecx, 88(%rdi) # ctx->hash[2] += c |
| # popq %r15 # |
| addl %edx, 92(%rdi) # ctx->hash[3] += d |
| popq %rbx # |
| addl %ebp, 96(%rdi) # ctx->hash[4] += e |
| popq %rbp # |
| |
| ret |
| .size sha1_process_block64, .-sha1_process_block64 |
| |
| .section .rodata.cst16.sha1const, \"aM\", @progbits, 16 |
| .balign 16 |
| sha1const: |
| .long 0x5A827999 |
| .long 0x6ED9EBA1 |
| .long 0x8F1BBCDC |
| .long 0xCA62C1D6 |
| |
| #endif" |