| /* |
| * Copyright (C) 2021 Denys Vlasenko |
| * |
| * Licensed under GPLv2, see file LICENSE in this source tree. |
| */ |
| #include "tls.h" |
| |
| #define SP_DEBUG 0 |
| #define FIXED_SECRET 0 |
| #define FIXED_PEER_PUBKEY 0 |
| |
| #if SP_DEBUG |
| # define dbg(...) fprintf(stderr, __VA_ARGS__) |
| static void dump_hex(const char *fmt, const void *vp, int len) |
| { |
| char hexbuf[32 * 1024 + 4]; |
| const uint8_t *p = vp; |
| |
| bin2hex(hexbuf, (void*)p, len)[0] = '\0'; |
| dbg(fmt, hexbuf); |
| } |
| #else |
| # define dbg(...) ((void)0) |
| # define dump_hex(...) ((void)0) |
| #endif |
| |
| typedef int32_t sp_digit; |
| |
| /* The code below is taken from parts of |
| * wolfssl-3.15.3/wolfcrypt/src/sp_c32.c |
| * and heavily modified. |
| * Header comment is kept intact: |
| */ |
| |
| /* sp.c |
| * |
| * Copyright (C) 2006-2018 wolfSSL Inc. |
| * |
| * This file is part of wolfSSL. |
| * |
| * wolfSSL is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * wolfSSL is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA |
| */ |
| |
| /* Implementation by Sean Parkinson. */ |
| |
| typedef struct sp_point { |
| sp_digit x[2 * 10]; |
| sp_digit y[2 * 10]; |
| sp_digit z[2 * 10]; |
| int infinity; |
| } sp_point; |
| |
| /* The modulus (prime) of the curve P256. */ |
| static const sp_digit p256_mod[10] = { |
| 0x3ffffff,0x3ffffff,0x3ffffff,0x003ffff,0x0000000, |
| 0x0000000,0x0000000,0x0000400,0x3ff0000,0x03fffff, |
| }; |
| |
| #define p256_mp_mod ((sp_digit)0x000001) |
| |
| /* Normalize the values in each word to 26 bits. */ |
| static void sp_256_norm_10(sp_digit* a) |
| { |
| int i; |
| for (i = 0; i < 9; i++) { |
| a[i+1] += a[i] >> 26; |
| a[i] &= 0x3ffffff; |
| } |
| } |
| |
| /* Write r as big endian to byte array. |
| * Fixed length number of bytes written: 32 |
| * |
| * r A single precision integer. |
| * a Byte array. |
| */ |
| static void sp_256_to_bin_10(sp_digit* r, uint8_t* a) |
| { |
| int i, j, s = 0, b; |
| |
| sp_256_norm_10(r); |
| |
| j = 256 / 8 - 1; |
| a[j] = 0; |
| for (i = 0; i < 10 && j >= 0; i++) { |
| b = 0; |
| a[j--] |= r[i] << s; b += 8 - s; |
| if (j < 0) |
| break; |
| while (b < 26) { |
| a[j--] = r[i] >> b; b += 8; |
| if (j < 0) |
| break; |
| } |
| s = 8 - (b - 26); |
| if (j >= 0) |
| a[j] = 0; |
| if (s != 0) |
| j++; |
| } |
| } |
| |
| /* Read big endian unsigned byte array into r. |
| * |
| * r A single precision integer. |
| * a Byte array. |
| * n Number of bytes in array to read. |
| */ |
| static void sp_256_from_bin_10(sp_digit* r, const uint8_t* a) |
| { |
| int i, j = 0, s = 0; |
| |
| r[0] = 0; |
| for (i = 32 - 1; i >= 0; i--) { |
| r[j] |= ((sp_digit)a[i]) << s; |
| if (s >= 18) { |
| r[j] &= 0x3ffffff; |
| s = 26 - s; |
| r[++j] = a[i] >> s; |
| s = 8 - s; |
| } |
| else |
| s += 8; |
| } |
| } |
| |
| #if SP_DEBUG |
| static void dump_256(const char *fmt, const sp_digit* cr) |
| { |
| sp_digit* r = (sp_digit*)cr; |
| uint8_t b32[32]; |
| sp_256_to_bin_10(r, b32); |
| dump_hex(fmt, b32, 32); |
| } |
| static void dump_512(const char *fmt, const sp_digit* cr) |
| { |
| sp_digit* r = (sp_digit*)cr; |
| uint8_t a[64]; |
| int i, j, s, b; |
| |
| /* sp_512_norm_10: */ |
| for (i = 0; i < 19; i++) { |
| r[i+1] += r[i] >> 26; |
| r[i] &= 0x3ffffff; |
| } |
| /* sp_512_to_bin_10: */ |
| s = 0; |
| j = 512 / 8 - 1; |
| a[j] = 0; |
| for (i = 0; i < 20 && j >= 0; i++) { |
| b = 0; |
| a[j--] |= r[i] << s; b += 8 - s; |
| if (j < 0) |
| break; |
| while (b < 26) { |
| a[j--] = r[i] >> b; b += 8; |
| if (j < 0) |
| break; |
| } |
| s = 8 - (b - 26); |
| if (j >= 0) |
| a[j] = 0; |
| if (s != 0) |
| j++; |
| } |
| |
| dump_hex(fmt, a, 64); |
| } |
| #else |
| # define dump_256(...) ((void)0) |
| # define dump_512(...) ((void)0) |
| #endif |
| |
| /* Convert a point of big-endian 32-byte x,y pair to type sp_point. */ |
| static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32) |
| { |
| memset(p, 0, sizeof(*p)); |
| /*p->infinity = 0;*/ |
| sp_256_from_bin_10(p->x, bin2x32); |
| sp_256_from_bin_10(p->y, bin2x32 + 32); |
| p->z[0] = 1; /* p->z = 1 */ |
| } |
| |
| /* Compare a with b. |
| * |
| * return -ve, 0 or +ve if a is less than, equal to or greater than b |
| * respectively. |
| */ |
| static sp_digit sp_256_cmp_10(const sp_digit* a, const sp_digit* b) |
| { |
| sp_digit r; |
| int i; |
| for (i = 9; i >= 0; i--) { |
| r = a[i] - b[i]; |
| if (r != 0) |
| break; |
| } |
| return r; |
| } |
| |
| /* Compare two numbers to determine if they are equal. |
| * |
| * return 1 when equal and 0 otherwise. |
| */ |
| static int sp_256_cmp_equal_10(const sp_digit* a, const sp_digit* b) |
| { |
| return sp_256_cmp_10(a, b) == 0; |
| } |
| |
| /* Add b to a into r. (r = a + b) */ |
| static void sp_256_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b) |
| { |
| int i; |
| for (i = 0; i < 10; i++) |
| r[i] = a[i] + b[i]; |
| } |
| |
| /* Sub b from a into r. (r = a - b) */ |
| static void sp_256_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b) |
| { |
| int i; |
| for (i = 0; i < 10; i++) |
| r[i] = a[i] - b[i]; |
| } |
| |
| /* Multiply a and b into r. (r = a * b) */ |
| static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b) |
| { |
| int i, j, k; |
| int64_t c; |
| |
| c = ((int64_t)a[9]) * b[9]; |
| r[19] = (sp_digit)(c >> 26); |
| c = (c & 0x3ffffff) << 26; |
| for (k = 17; k >= 0; k--) { |
| for (i = 9; i >= 0; i--) { |
| j = k - i; |
| if (j >= 10) |
| break; |
| if (j < 0) |
| continue; |
| c += ((int64_t)a[i]) * b[j]; |
| } |
| r[k + 2] += c >> 52; |
| r[k + 1] = (c >> 26) & 0x3ffffff; |
| c = (c & 0x3ffffff) << 26; |
| } |
| r[0] = (sp_digit)(c >> 26); |
| } |
| |
| /* Shift number right one bit. Bottom bit is lost. */ |
| static void sp_256_rshift1_10(sp_digit* r, sp_digit* a) |
| { |
| int i; |
| for (i = 0; i < 9; i++) |
| r[i] = ((a[i] >> 1) | (a[i + 1] << 25)) & 0x3ffffff; |
| r[9] = a[9] >> 1; |
| } |
| |
| /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) */ |
| static void sp_256_div2_10(sp_digit* r, const sp_digit* a, const sp_digit* m) |
| { |
| if (a[0] & 1) |
| sp_256_add_10(r, a, m); |
| sp_256_norm_10(r); |
| sp_256_rshift1_10(r, r); |
| } |
| |
| /* Add two Montgomery form numbers (r = a + b % m) */ |
| static void sp_256_mont_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b, |
| const sp_digit* m) |
| { |
| sp_256_add_10(r, a, b); |
| sp_256_norm_10(r); |
| if ((r[9] >> 22) > 0) |
| sp_256_sub_10(r, r, m); |
| sp_256_norm_10(r); |
| } |
| |
| /* Subtract two Montgomery form numbers (r = a - b % m) */ |
| static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b, |
| const sp_digit* m) |
| { |
| sp_256_sub_10(r, a, b); |
| if (r[9] >> 22) |
| sp_256_add_10(r, r, m); |
| sp_256_norm_10(r); |
| } |
| |
| /* Double a Montgomery form number (r = a + a % m) */ |
| static void sp_256_mont_dbl_10(sp_digit* r, const sp_digit* a, const sp_digit* m) |
| { |
| sp_256_add_10(r, a, a); |
| sp_256_norm_10(r); |
| if ((r[9] >> 22) > 0) |
| sp_256_sub_10(r, r, m); |
| sp_256_norm_10(r); |
| } |
| |
| /* Triple a Montgomery form number (r = a + a + a % m) */ |
| static void sp_256_mont_tpl_10(sp_digit* r, const sp_digit* a, const sp_digit* m) |
| { |
| sp_256_add_10(r, a, a); |
| sp_256_norm_10(r); |
| if ((r[9] >> 22) > 0) |
| sp_256_sub_10(r, r, m); |
| sp_256_norm_10(r); |
| sp_256_add_10(r, r, a); |
| sp_256_norm_10(r); |
| if ((r[9] >> 22) > 0) |
| sp_256_sub_10(r, r, m); |
| sp_256_norm_10(r); |
| } |
| |
| /* Shift the result in the high 256 bits down to the bottom. */ |
| static void sp_256_mont_shift_10(sp_digit* r, const sp_digit* a) |
| { |
| int i; |
| sp_digit n, s; |
| |
| s = a[10]; |
| n = a[9] >> 22; |
| for (i = 0; i < 9; i++) { |
| n += (s & 0x3ffffff) << 4; |
| r[i] = n & 0x3ffffff; |
| n >>= 26; |
| s = a[11 + i] + (s >> 26); |
| } |
| n += s << 4; |
| r[9] = n; |
| memset(&r[10], 0, sizeof(*r) * 10); |
| } |
| |
| /* Mul a by scalar b and add into r. (r += a * b) */ |
| static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, sp_digit b) |
| { |
| int64_t t = 0; |
| int i; |
| |
| for (i = 0; i < 10; i++) { |
| t += ((int64_t)b * a[i]) + r[i]; |
| r[i] = t & 0x3ffffff; |
| t >>= 26; |
| } |
| r[10] += t; |
| } |
| |
| /* Reduce the number back to 256 bits using Montgomery reduction. |
| * |
| * a A single precision number to reduce in place. |
| * m The single precision number representing the modulus. |
| * mp The digit representing the negative inverse of m mod 2^n. |
| */ |
| static void sp_256_mont_reduce_10(sp_digit* a /*, const sp_digit* m, sp_digit mp*/) |
| { |
| const sp_digit* m = p256_mod; |
| sp_digit mp = p256_mp_mod; |
| |
| int i; |
| sp_digit mu; |
| |
| if (mp != 1) { |
| for (i = 0; i < 9; i++) { |
| mu = (a[i] * mp) & 0x3ffffff; |
| sp_256_mul_add_10(a+i, m, mu); |
| a[i+1] += a[i] >> 26; |
| } |
| mu = (a[i] * mp) & 0x03fffff; |
| sp_256_mul_add_10(a+i, m, mu); |
| a[i+1] += a[i] >> 26; |
| a[i] &= 0x3ffffff; |
| } |
| else { /* Same code for explicit mp == 1 (which is always the case for P256) */ |
| for (i = 0; i < 9; i++) { |
| mu = a[i] & 0x3ffffff; |
| sp_256_mul_add_10(a+i, m, mu); |
| a[i+1] += a[i] >> 26; |
| } |
| mu = a[i] & 0x03fffff; |
| sp_256_mul_add_10(a+i, m, mu); |
| a[i+1] += a[i] >> 26; |
| a[i] &= 0x3ffffff; |
| } |
| |
| sp_256_mont_shift_10(a, a); |
| //TODO: can below condition ever be true? Doesn't it require 512+th bit(s) in a to be set? |
| if ((a[9] >> 22) > 0) |
| { |
| dbg("THIS HAPPENS\n"); |
| sp_256_sub_10(a, a, m); |
| } |
| sp_256_norm_10(a); |
| } |
| |
| /* Multiply two Montogmery form numbers mod the modulus (prime). |
| * (r = a * b mod m) |
| * |
| * r Result of multiplication. |
| * a First number to multiply in Montogmery form. |
| * b Second number to multiply in Montogmery form. |
| * m Modulus (prime). |
| * mp Montogmery mulitplier. |
| */ |
| static void sp_256_mont_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b |
| /*, const sp_digit* m, sp_digit mp*/) |
| { |
| //const sp_digit* m = p256_mod; |
| //sp_digit mp = p256_mp_mod; |
| |
| sp_256_mul_10(r, a, b); |
| sp_256_mont_reduce_10(r /*, m, mp*/); |
| } |
| |
| /* Square the Montgomery form number. (r = a * a mod m) |
| * |
| * r Result of squaring. |
| * a Number to square in Montogmery form. |
| * m Modulus (prime). |
| * mp Montogmery mulitplier. |
| */ |
| static void sp_256_mont_sqr_10(sp_digit* r, const sp_digit* a |
| /*, const sp_digit* m, sp_digit mp*/) |
| { |
| //const sp_digit* m = p256_mod; |
| //sp_digit mp = p256_mp_mod; |
| |
| sp_256_mont_mul_10(r, a, a /*, m, mp*/); |
| } |
| |
| /* Invert the number, in Montgomery form, modulo the modulus (prime) of the |
| * P256 curve. (r = 1 / a mod m) |
| * |
| * r Inverse result. |
| * a Number to invert. |
| */ |
| #if 0 |
| /* Mod-2 for the P256 curve. */ |
| static const uint32_t p256_mod_2[8] = { |
| 0xfffffffd,0xffffffff,0xffffffff,0x00000000, |
| 0x00000000,0x00000000,0x00000001,0xffffffff, |
| }; |
| //Bit pattern: |
| //2 2 2 2 2 2 2 1...1 |
| //5 5 4 3 2 1 0 9...0 9...1 |
| //543210987654321098765432109876543210987654321098765432109876543210...09876543210...09876543210 |
| //111111111111111111111111111111110000000000000000000000000000000100...00000111111...11111111101 |
| #endif |
| static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a) |
| { |
| sp_digit t[2*10]; //can be just [10]? |
| int i; |
| |
| memcpy(t, a, sizeof(sp_digit) * 10); |
| for (i = 254; i >= 0; i--) { |
| sp_256_mont_sqr_10(t, t /*, p256_mod, p256_mp_mod*/); |
| /*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/ |
| if (i >= 224 || i == 192 || (i <= 95 && i != 1)) |
| sp_256_mont_mul_10(t, t, a /*, p256_mod, p256_mp_mod*/); |
| } |
| memcpy(r, t, sizeof(sp_digit) * 10); |
| } |
| |
| /* Multiply a number by Montogmery normalizer mod modulus (prime). |
| * |
| * r The resulting Montgomery form number. |
| * a The number to convert. |
| */ |
| static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a) |
| { |
| int64_t t[8]; |
| int64_t o; |
| uint32_t a32; |
| |
| /* 1 1 0 -1 -1 -1 -1 0 */ |
| /* 0 1 1 0 -1 -1 -1 -1 */ |
| /* 0 0 1 1 0 -1 -1 -1 */ |
| /* -1 -1 0 2 2 1 0 -1 */ |
| /* 0 -1 -1 0 2 2 1 0 */ |
| /* 0 0 -1 -1 0 2 2 1 */ |
| /* -1 -1 0 0 0 1 3 2 */ |
| /* 1 0 -1 -1 -1 -1 0 3 */ |
| // t[] should be calculated from "a" (converted from 26-bit to 32-bit vector a32[8]) |
| // according to the above matrix: |
| //t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6] ; |
| //t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7] ; |
| //t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7] ; |
| //t[3] = 0 - a32[0] - a32[1] + 2*a32[3] + 2*a32[4] + a32[5] - a32[7] ; |
| //t[4] = 0 - a32[1] - a32[2] + 2*a32[4] + 2*a32[5] + a32[6] ; |
| //t[5] = 0 - a32[2] - a32[3] + 2*a32[5] + 2*a32[6] + a32[7] ; |
| //t[6] = 0 - a32[0] - a32[1] + a32[5] + 3*a32[6] + 2*a32[7]; |
| //t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3*a32[7]; |
| // We can do it "piecemeal" after each a32[i] is known, no need to store entire a32[8] vector: |
| |
| #define A32 (int64_t)a32 |
| a32 = a[0] | (a[1] << 26); |
| t[0] = 0 + A32; |
| t[3] = 0 - A32; |
| t[6] = 0 - A32; |
| t[7] = 0 + A32; |
| |
| a32 = (a[1] >> 6) | (a[2] << 20); |
| t[0] += A32 ; |
| t[1] = 0 + A32; |
| t[3] -= A32 ; |
| t[4] = 0 - A32; |
| t[6] -= A32 ; |
| |
| a32 = (a[2] >> 12) | (a[3] << 14); |
| t[1] += A32 ; |
| t[2] = 0 + A32; |
| t[4] -= A32 ; |
| t[5] = 0 - A32; |
| t[7] -= A32 ; |
| |
| a32 = (a[3] >> 18) | (a[4] << 8); |
| t[0] -= A32 ; |
| t[2] += A32 ; |
| t[3] += 2*A32; |
| t[5] -= A32 ; |
| t[7] -= A32 ; |
| |
| a32 = (a[4] >> 24) | (a[5] << 2) | (a[6] << 28); |
| t[0] -= A32 ; |
| t[1] -= A32 ; |
| t[3] += 2*A32; |
| t[4] += 2*A32; |
| t[7] -= A32 ; |
| |
| a32 = (a[6] >> 4) | (a[7] << 22); |
| t[0] -= A32 ; |
| t[1] -= A32 ; |
| t[2] -= A32 ; |
| t[3] += A32 ; |
| t[4] += 2*A32; |
| t[5] += 2*A32; |
| t[6] += A32 ; |
| t[7] -= A32 ; |
| |
| a32 = (a[7] >> 10) | (a[8] << 16); |
| t[0] -= A32 ; |
| t[1] -= A32 ; |
| t[2] -= A32 ; |
| t[4] += A32 ; |
| t[5] += 2*A32; |
| t[6] += 3*A32; |
| |
| a32 = (a[8] >> 16) | (a[9] << 10); |
| t[1] -= A32 ; |
| t[2] -= A32 ; |
| t[3] -= A32 ; |
| t[5] += A32 ; |
| t[6] += 2*A32; |
| t[7] += 3*A32; |
| #undef A32 |
| |
| t[1] += t[0] >> 32; t[0] &= 0xffffffff; |
| t[2] += t[1] >> 32; t[1] &= 0xffffffff; |
| t[3] += t[2] >> 32; t[2] &= 0xffffffff; |
| t[4] += t[3] >> 32; t[3] &= 0xffffffff; |
| t[5] += t[4] >> 32; t[4] &= 0xffffffff; |
| t[6] += t[5] >> 32; t[5] &= 0xffffffff; |
| t[7] += t[6] >> 32; t[6] &= 0xffffffff; |
| o = t[7] >> 32; t[7] &= 0xffffffff; |
| t[0] += o; |
| t[3] -= o; |
| t[6] -= o; |
| t[7] += o; |
| t[1] += t[0] >> 32; //t[0] &= 0xffffffff; |
| t[2] += t[1] >> 32; //t[1] &= 0xffffffff; |
| t[3] += t[2] >> 32; //t[2] &= 0xffffffff; |
| t[4] += t[3] >> 32; //t[3] &= 0xffffffff; |
| t[5] += t[4] >> 32; //t[4] &= 0xffffffff; |
| t[6] += t[5] >> 32; //t[5] &= 0xffffffff; |
| t[7] += t[6] >> 32; //t[6] &= 0xffffffff; - (uint32_t)t[i] casts below accomplish masking |
| |
| r[0] = 0x3ffffff & ((sp_digit)((uint32_t)t[0])); |
| r[1] = 0x3ffffff & ((sp_digit)((uint32_t)t[0] >> 26) | ((sp_digit)t[1] << 6)); |
| r[2] = 0x3ffffff & ((sp_digit)((uint32_t)t[1] >> 20) | ((sp_digit)t[2] << 12)); |
| r[3] = 0x3ffffff & ((sp_digit)((uint32_t)t[2] >> 14) | ((sp_digit)t[3] << 18)); |
| r[4] = 0x3ffffff & ((sp_digit)((uint32_t)t[3] >> 8) | ((sp_digit)t[4] << 24)); |
| r[5] = 0x3ffffff & ((sp_digit)((uint32_t)t[4] >> 2)); |
| r[6] = 0x3ffffff & ((sp_digit)((uint32_t)t[4] >> 28) | ((sp_digit)t[5] << 4)); |
| r[7] = 0x3ffffff & ((sp_digit)((uint32_t)t[5] >> 22) | ((sp_digit)t[6] << 10)); |
| r[8] = 0x3ffffff & ((sp_digit)((uint32_t)t[6] >> 16) | ((sp_digit)t[7] << 16)); |
| r[9] = ((sp_digit)((uint32_t)t[7] >> 10)); |
| } |
| |
| /* Map the Montgomery form projective co-ordinate point to an affine point. |
| * |
| * r Resulting affine co-ordinate point. |
| * p Montgomery form projective co-ordinate point. |
| */ |
| static void sp_256_map_10(sp_point* r, sp_point* p) |
| { |
| sp_digit t1[2*10]; |
| sp_digit t2[2*10]; |
| |
| sp_256_mont_inv_10(t1, p->z); |
| |
| sp_256_mont_sqr_10(t2, t1 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_10(t1, t2, t1 /*, p256_mod, p256_mp_mod*/); |
| |
| /* x /= z^2 */ |
| sp_256_mont_mul_10(r->x, p->x, t2 /*, p256_mod, p256_mp_mod*/); |
| memset(r->x + 10, 0, sizeof(r->x) / 2); |
| sp_256_mont_reduce_10(r->x /*, p256_mod, p256_mp_mod*/); |
| /* Reduce x to less than modulus */ |
| if (sp_256_cmp_10(r->x, p256_mod) >= 0) |
| sp_256_sub_10(r->x, r->x, p256_mod); |
| sp_256_norm_10(r->x); |
| |
| /* y /= z^3 */ |
| sp_256_mont_mul_10(r->y, p->y, t1 /*, p256_mod, p256_mp_mod*/); |
| memset(r->y + 10, 0, sizeof(r->y) / 2); |
| sp_256_mont_reduce_10(r->y /*, p256_mod, p256_mp_mod*/); |
| /* Reduce y to less than modulus */ |
| if (sp_256_cmp_10(r->y, p256_mod) >= 0) |
| sp_256_sub_10(r->y, r->y, p256_mod); |
| sp_256_norm_10(r->y); |
| |
| memset(r->z, 0, sizeof(r->z)); |
| r->z[0] = 1; |
| } |
| |
| /* Double the Montgomery form projective point p. |
| * |
| * r Result of doubling point. |
| * p Point to double. |
| */ |
| static void sp_256_proj_point_dbl_10(sp_point* r, sp_point* p) |
| { |
| sp_digit t1[2*10]; |
| sp_digit t2[2*10]; |
| |
| /* Put point to double into result */ |
| if (r != p) |
| *r = *p; /* struct copy */ |
| |
| if (r->infinity) /* If infinity, don't double */ |
| return; |
| |
| /* T1 = Z * Z */ |
| sp_256_mont_sqr_10(t1, r->z /*, p256_mod, p256_mp_mod*/); |
| /* Z = Y * Z */ |
| sp_256_mont_mul_10(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/); |
| /* Z = 2Z */ |
| sp_256_mont_dbl_10(r->z, r->z, p256_mod); |
| /* T2 = X - T1 */ |
| sp_256_mont_sub_10(t2, r->x, t1, p256_mod); |
| /* T1 = X + T1 */ |
| sp_256_mont_add_10(t1, r->x, t1, p256_mod); |
| /* T2 = T1 * T2 */ |
| sp_256_mont_mul_10(t2, t1, t2 /*, p256_mod, p256_mp_mod*/); |
| /* T1 = 3T2 */ |
| sp_256_mont_tpl_10(t1, t2, p256_mod); |
| /* Y = 2Y */ |
| sp_256_mont_dbl_10(r->y, r->y, p256_mod); |
| /* Y = Y * Y */ |
| sp_256_mont_sqr_10(r->y, r->y /*, p256_mod, p256_mp_mod*/); |
| /* T2 = Y * Y */ |
| sp_256_mont_sqr_10(t2, r->y /*, p256_mod, p256_mp_mod*/); |
| /* T2 = T2/2 */ |
| sp_256_div2_10(t2, t2, p256_mod); |
| /* Y = Y * X */ |
| sp_256_mont_mul_10(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/); |
| /* X = T1 * T1 */ |
| sp_256_mont_mul_10(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/); |
| /* X = X - Y */ |
| sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod); |
| /* X = X - Y */ |
| sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod); |
| /* Y = Y - X */ |
| sp_256_mont_sub_10(r->y, r->y, r->x, p256_mod); |
| /* Y = Y * T1 */ |
| sp_256_mont_mul_10(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/); |
| /* Y = Y - T2 */ |
| sp_256_mont_sub_10(r->y, r->y, t2, p256_mod); |
| } |
| |
| /* Add two Montgomery form projective points. |
| * |
| * r Result of addition. |
| * p Frist point to add. |
| * q Second point to add. |
| */ |
| static void sp_256_proj_point_add_10(sp_point* r, sp_point* p, sp_point* q) |
| { |
| sp_digit t1[2*10]; |
| sp_digit t2[2*10]; |
| sp_digit t3[2*10]; |
| sp_digit t4[2*10]; |
| sp_digit t5[2*10]; |
| |
| /* Ensure only the first point is the same as the result. */ |
| if (q == r) { |
| sp_point* a = p; |
| p = q; |
| q = a; |
| } |
| |
| /* Check double */ |
| sp_256_sub_10(t1, p256_mod, q->y); |
| sp_256_norm_10(t1); |
| if (sp_256_cmp_equal_10(p->x, q->x) |
| && sp_256_cmp_equal_10(p->z, q->z) |
| && (sp_256_cmp_equal_10(p->y, q->y) || sp_256_cmp_equal_10(p->y, t1)) |
| ) { |
| sp_256_proj_point_dbl_10(r, p); |
| } |
| else { |
| sp_point tp; |
| sp_point *v; |
| |
| v = r; |
| if (p->infinity | q->infinity) { |
| memset(&tp, 0, sizeof(tp)); |
| v = &tp; |
| } |
| |
| *r = p->infinity ? *q : *p; /* struct copy */ |
| |
| /* U1 = X1*Z2^2 */ |
| sp_256_mont_sqr_10(t1, q->z /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_10(t3, t1, q->z /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_10(t1, t1, v->x /*, p256_mod, p256_mp_mod*/); |
| /* U2 = X2*Z1^2 */ |
| sp_256_mont_sqr_10(t2, v->z /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_10(t4, t2, v->z /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_10(t2, t2, q->x /*, p256_mod, p256_mp_mod*/); |
| /* S1 = Y1*Z2^3 */ |
| sp_256_mont_mul_10(t3, t3, v->y /*, p256_mod, p256_mp_mod*/); |
| /* S2 = Y2*Z1^3 */ |
| sp_256_mont_mul_10(t4, t4, q->y /*, p256_mod, p256_mp_mod*/); |
| /* H = U2 - U1 */ |
| sp_256_mont_sub_10(t2, t2, t1, p256_mod); |
| /* R = S2 - S1 */ |
| sp_256_mont_sub_10(t4, t4, t3, p256_mod); |
| /* Z3 = H*Z1*Z2 */ |
| sp_256_mont_mul_10(v->z, v->z, q->z /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_10(v->z, v->z, t2 /*, p256_mod, p256_mp_mod*/); |
| /* X3 = R^2 - H^3 - 2*U1*H^2 */ |
| sp_256_mont_sqr_10(v->x, t4 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_sqr_10(t5, t2 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_10(v->y, t1, t5 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_10(t5, t5, t2 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_sub_10(v->x, v->x, t5, p256_mod); |
| sp_256_mont_dbl_10(t1, v->y, p256_mod); |
| sp_256_mont_sub_10(v->x, v->x, t1, p256_mod); |
| /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */ |
| sp_256_mont_sub_10(v->y, v->y, v->x, p256_mod); |
| sp_256_mont_mul_10(v->y, v->y, t4 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_10(t5, t5, t3 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_sub_10(v->y, v->y, t5, p256_mod); |
| } |
| } |
| |
| /* Multiply the point by the scalar and return the result. |
| * If map is true then convert result to affine co-ordinates. |
| * |
| * r Resulting point. |
| * g Point to multiply. |
| * k Scalar to multiply by. |
| * map Indicates whether to convert result to affine. |
| */ |
| static void sp_256_ecc_mulmod_10(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/) |
| { |
| enum { map = 1 }; /* we always convert result to affine coordinates */ |
| sp_point t[3]; |
| sp_digit n; |
| int i; |
| int c, y; |
| |
| memset(t, 0, sizeof(t)); |
| |
| /* t[0] = {0, 0, 1} * norm */ |
| t[0].infinity = 1; |
| /* t[1] = {g->x, g->y, g->z} * norm */ |
| sp_256_mod_mul_norm_10(t[1].x, g->x); |
| sp_256_mod_mul_norm_10(t[1].y, g->y); |
| sp_256_mod_mul_norm_10(t[1].z, g->z); |
| dump_512("t[1].x %s\n", t[1].x); |
| dump_512("t[1].y %s\n", t[1].y); |
| dump_512("t[1].z %s\n", t[1].z); |
| |
| i = 9; |
| c = 22; |
| n = k[i--] << (26 - c); |
| for (; ; c--) { |
| if (c == 0) { |
| if (i == -1) |
| break; |
| |
| n = k[i--]; |
| c = 26; |
| } |
| |
| y = (n >> 25) & 1; |
| n <<= 1; |
| |
| sp_256_proj_point_add_10(&t[y^1], &t[0], &t[1]); |
| memcpy(&t[2], &t[y], sizeof(sp_point)); |
| sp_256_proj_point_dbl_10(&t[2], &t[2]); |
| memcpy(&t[y], &t[2], sizeof(sp_point)); |
| } |
| |
| if (map) |
| sp_256_map_10(r, &t[0]); |
| else |
| memcpy(r, &t[0], sizeof(sp_point)); |
| |
| memset(t, 0, sizeof(t)); //paranoia |
| } |
| |
| /* Multiply the base point of P256 by the scalar and return the result. |
| * If map is true then convert result to affine co-ordinates. |
| * |
| * r Resulting point. |
| * k Scalar to multiply by. |
| * map Indicates whether to convert result to affine. |
| */ |
| static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/) |
| { |
| /* Since this function is called only once, save space: |
| * don't have "static const sp_point p256_base = {...}", |
| * it would have more zeros than data. |
| */ |
| static const uint8_t p256_base_bin[] = { |
| /* x (big-endian) */ |
| 0x6b,0x17,0xd1,0xf2,0xe1,0x2c,0x42,0x47,0xf8,0xbc,0xe6,0xe5,0x63,0xa4,0x40,0xf2,0x77,0x03,0x7d,0x81,0x2d,0xeb,0x33,0xa0,0xf4,0xa1,0x39,0x45,0xd8,0x98,0xc2,0x96, |
| /* y */ |
| 0x4f,0xe3,0x42,0xe2,0xfe,0x1a,0x7f,0x9b,0x8e,0xe7,0xeb,0x4a,0x7c,0x0f,0x9e,0x16,0x2b,0xce,0x33,0x57,0x6b,0x31,0x5e,0xce,0xcb,0xb6,0x40,0x68,0x37,0xbf,0x51,0xf5, |
| /* z will be set to 1, infinity flag to "false" */ |
| }; |
| sp_point p256_base; |
| |
| sp_256_point_from_bin2x32(&p256_base, p256_base_bin); |
| |
| sp_256_ecc_mulmod_10(r, &p256_base, k /*, map*/); |
| } |
| |
| /* Multiply the point by the scalar and serialize the X ordinate. |
| * The number is 0 padded to maximum size on output. |
| * |
| * priv Scalar to multiply the point by. |
| * pub2x32 Point to multiply. |
| * out32 Buffer to hold X ordinate. |
| */ |
| static void sp_ecc_secret_gen_256(const sp_digit priv[10], const uint8_t *pub2x32, uint8_t* out32) |
| { |
| sp_point point[1]; |
| |
| #if FIXED_PEER_PUBKEY |
| memset((void*)pub2x32, 0x55, 64); |
| #endif |
| dump_hex("peerkey %s\n", pub2x32, 32); /* in TLS, this is peer's public key */ |
| dump_hex(" %s\n", pub2x32 + 32, 32); |
| |
| sp_256_point_from_bin2x32(point, pub2x32); |
| dump_hex("point->x %s\n", point->x, sizeof(point->x)); |
| dump_hex("point->y %s\n", point->y, sizeof(point->y)); |
| |
| sp_256_ecc_mulmod_10(point, point, priv); |
| |
| sp_256_to_bin_10(point->x, out32); |
| dump_hex("out32: %s\n", out32, 32); |
| } |
| |
| /* Generates a scalar that is in the range 1..order-1. */ |
| #define SIMPLIFY 1 |
| /* Add 1 to a. (a = a + 1) */ |
| static void sp_256_add_one_10(sp_digit* a) |
| { |
| a[0]++; |
| sp_256_norm_10(a); |
| } |
| static void sp_256_ecc_gen_k_10(sp_digit k[10]) |
| { |
| #if !SIMPLIFY |
| /* The order of the curve P256 minus 2. */ |
| static const sp_digit p256_order2[10] = { |
| 0x063254f,0x272b0bf,0x1e84f3b,0x2b69c5e,0x3bce6fa, |
| 0x3ffffff,0x3ffffff,0x00003ff,0x3ff0000,0x03fffff, |
| }; |
| #endif |
| uint8_t buf[32]; |
| |
| for (;;) { |
| tls_get_random(buf, sizeof(buf)); |
| #if FIXED_SECRET |
| memset(buf, 0x77, sizeof(buf)); |
| #endif |
| sp_256_from_bin_10(k, buf); |
| #if !SIMPLIFY |
| if (sp_256_cmp_10(k, p256_order2) < 0) |
| break; |
| #else |
| /* non-loopy version (and not needing p256_order2[]): |
| * if most-significant word seems that k can be larger |
| * than p256_order2, fix it up: |
| */ |
| if (k[9] >= 0x03fffff) |
| k[9] = 0x03ffffe; |
| break; |
| #endif |
| } |
| sp_256_add_one_10(k); |
| #undef SIMPLIFY |
| } |
| |
| /* Makes a random EC key pair. */ |
| static void sp_ecc_make_key_256(sp_digit privkey[10], uint8_t *pubkey) |
| { |
| sp_point point[1]; |
| |
| sp_256_ecc_gen_k_10(privkey); |
| dump_256("privkey %s\n", privkey); |
| sp_256_ecc_mulmod_base_10(point, privkey); |
| dump_512("point->x %s\n", point->x); |
| dump_512("point->y %s\n", point->y); |
| sp_256_to_bin_10(point->x, pubkey); |
| sp_256_to_bin_10(point->y, pubkey + 32); |
| |
| memset(point, 0, sizeof(point)); //paranoia |
| } |
| |
| void FAST_FUNC curve_P256_compute_pubkey_and_premaster( |
| uint8_t *pubkey2x32, uint8_t *premaster32, |
| const uint8_t *peerkey2x32) |
| { |
| sp_digit privkey[10]; |
| |
| sp_ecc_make_key_256(privkey, pubkey2x32); |
| dump_hex("pubkey: %s\n", pubkey2x32, 32); |
| dump_hex(" %s\n", pubkey2x32 + 32, 32); |
| |
| /* Combine our privkey and peer's public key to generate premaster */ |
| sp_ecc_secret_gen_256(privkey, /*x,y:*/peerkey2x32, premaster32); |
| dump_hex("premaster: %s\n", premaster32, 32); |
| } |