| /* |
| * Arithmetic code ripped out of ash shell for code sharing. |
| * |
| * This code is derived from software contributed to Berkeley by |
| * Kenneth Almquist. |
| * |
| * Original BSD copyright notice is retained at the end of this file. |
| * |
| * Copyright (c) 1989, 1991, 1993, 1994 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * Copyright (c) 1997-2005 Herbert Xu <herbert@gondor.apana.org.au> |
| * was re-ported from NetBSD and debianized. |
| * |
| * rewrite arith.y to micro stack based cryptic algorithm by |
| * Copyright (c) 2001 Aaron Lehmann <aaronl@vitelus.com> |
| * |
| * Modified by Paul Mundt <lethal@linux-sh.org> (c) 2004 to support |
| * dynamic variables. |
| * |
| * Modified by Vladimir Oleynik <dzo@simtreas.ru> (c) 2001-2005 to be |
| * used in busybox and size optimizations, |
| * rewrote arith (see notes to this), added locale support, |
| * rewrote dynamic variables. |
| * |
| * Licensed under GPLv2 or later, see file LICENSE in this source tree. |
| */ |
| /* Copyright (c) 2001 Aaron Lehmann <aaronl@vitelus.com> |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining |
| * a copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sublicense, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be |
| * included in all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
| * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY |
| * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
| * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
| * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /* This is my infix parser/evaluator. It is optimized for size, intended |
| * as a replacement for yacc-based parsers. However, it may well be faster |
| * than a comparable parser written in yacc. The supported operators are |
| * listed in #defines below. Parens, order of operations, and error handling |
| * are supported. This code is thread safe. The exact expression format should |
| * be that which POSIX specifies for shells. |
| * |
| * The code uses a simple two-stack algorithm. See |
| * http://www.onthenet.com.au/~grahamis/int2008/week02/lect02.html |
| * for a detailed explanation of the infix-to-postfix algorithm on which |
| * this is based (this code differs in that it applies operators immediately |
| * to the stack instead of adding them to a queue to end up with an |
| * expression). |
| */ |
| |
| /* |
| * Aug 24, 2001 Manuel Novoa III |
| * |
| * Reduced the generated code size by about 30% (i386) and fixed several bugs. |
| * |
| * 1) In arith_apply(): |
| * a) Cached values of *numptr and &(numptr[-1]). |
| * b) Removed redundant test for zero denominator. |
| * |
| * 2) In arith(): |
| * a) Eliminated redundant code for processing operator tokens by moving |
| * to a table-based implementation. Also folded handling of parens |
| * into the table. |
| * b) Combined all 3 loops which called arith_apply to reduce generated |
| * code size at the cost of speed. |
| * |
| * 3) The following expressions were treated as valid by the original code: |
| * 1() , 0! , 1 ( *3 ) . |
| * These bugs have been fixed by internally enclosing the expression in |
| * parens and then checking that all binary ops and right parens are |
| * preceded by a valid expression (NUM_TOKEN). |
| * |
| * Note: It may be desirable to replace Aaron's test for whitespace with |
| * ctype's isspace() if it is used by another busybox applet or if additional |
| * whitespace chars should be considered. Look below the "#include"s for a |
| * precompiler test. |
| */ |
| /* |
| * Aug 26, 2001 Manuel Novoa III |
| * |
| * Return 0 for null expressions. Pointed out by Vladimir Oleynik. |
| * |
| * Merge in Aaron's comments previously posted to the busybox list, |
| * modified slightly to take account of my changes to the code. |
| * |
| */ |
| /* |
| * (C) 2003 Vladimir Oleynik <dzo@simtreas.ru> |
| * |
| * - allow access to variable, |
| * use recursive value indirection: c="2*2"; a="c"; echo $((a+=2)) produce 6 |
| * - implement assign syntax (VAR=expr, +=, *= etc) |
| * - implement exponentiation (** operator) |
| * - implement comma separated - expr, expr |
| * - implement ++expr --expr expr++ expr-- |
| * - implement expr ? expr : expr (but second expr is always calculated) |
| * - allow hexadecimal and octal numbers |
| * - restore lost XOR operator |
| * - protect $((num num)) as true zero expr (Manuel's error) |
| * - always use special isspace(), see comment from bash ;-) |
| */ |
| #include "libbb.h" |
| #include "math.h" |
| |
| #define lookupvar (math_state->lookupvar) |
| #define setvar (math_state->setvar ) |
| //#define endofname (math_state->endofname) |
| |
| typedef unsigned char operator; |
| |
| /* An operator's token id is a bit of a bitfield. The lower 5 bits are the |
| * precedence, and 3 high bits are an ID unique across operators of that |
| * precedence. The ID portion is so that multiple operators can have the |
| * same precedence, ensuring that the leftmost one is evaluated first. |
| * Consider * and / |
| */ |
| #define tok_decl(prec,id) (((id)<<5) | (prec)) |
| #define PREC(op) ((op) & 0x1F) |
| |
| #define TOK_LPAREN tok_decl(0,0) |
| |
| #define TOK_COMMA tok_decl(1,0) |
| |
| /* All assignments are right associative and have the same precedence, |
| * but there are 11 of them, which doesn't fit into 3 bits for unique id. |
| * Abusing another precedence level: |
| */ |
| #define TOK_ASSIGN tok_decl(2,0) |
| #define TOK_AND_ASSIGN tok_decl(2,1) |
| #define TOK_OR_ASSIGN tok_decl(2,2) |
| #define TOK_XOR_ASSIGN tok_decl(2,3) |
| #define TOK_PLUS_ASSIGN tok_decl(2,4) |
| #define TOK_MINUS_ASSIGN tok_decl(2,5) |
| #define TOK_LSHIFT_ASSIGN tok_decl(2,6) |
| #define TOK_RSHIFT_ASSIGN tok_decl(2,7) |
| |
| #define TOK_MUL_ASSIGN tok_decl(3,0) |
| #define TOK_DIV_ASSIGN tok_decl(3,1) |
| #define TOK_REM_ASSIGN tok_decl(3,2) |
| |
| #define fix_assignment_prec(prec) do { if (prec == 3) prec = 2; } while (0) |
| |
| /* Ternary conditional operator is right associative too */ |
| #define TOK_CONDITIONAL tok_decl(4,0) |
| #define TOK_CONDITIONAL_SEP tok_decl(4,1) |
| |
| #define TOK_OR tok_decl(5,0) |
| |
| #define TOK_AND tok_decl(6,0) |
| |
| #define TOK_BOR tok_decl(7,0) |
| |
| #define TOK_BXOR tok_decl(8,0) |
| |
| #define TOK_BAND tok_decl(9,0) |
| |
| #define TOK_EQ tok_decl(10,0) |
| #define TOK_NE tok_decl(10,1) |
| |
| #define TOK_LT tok_decl(11,0) |
| #define TOK_GT tok_decl(11,1) |
| #define TOK_GE tok_decl(11,2) |
| #define TOK_LE tok_decl(11,3) |
| |
| #define TOK_LSHIFT tok_decl(12,0) |
| #define TOK_RSHIFT tok_decl(12,1) |
| |
| #define TOK_ADD tok_decl(13,0) |
| #define TOK_SUB tok_decl(13,1) |
| |
| #define TOK_MUL tok_decl(14,0) |
| #define TOK_DIV tok_decl(14,1) |
| #define TOK_REM tok_decl(14,2) |
| |
| /* Exponent is right associative */ |
| #define TOK_EXPONENT tok_decl(15,1) |
| |
| /* Unary operators */ |
| #define UNARYPREC 16 |
| #define TOK_BNOT tok_decl(UNARYPREC,0) |
| #define TOK_NOT tok_decl(UNARYPREC,1) |
| |
| #define TOK_UMINUS tok_decl(UNARYPREC+1,0) |
| #define TOK_UPLUS tok_decl(UNARYPREC+1,1) |
| |
| #define PREC_PRE (UNARYPREC+2) |
| |
| #define TOK_PRE_INC tok_decl(PREC_PRE, 0) |
| #define TOK_PRE_DEC tok_decl(PREC_PRE, 1) |
| |
| #define PREC_POST (UNARYPREC+3) |
| |
| #define TOK_POST_INC tok_decl(PREC_POST, 0) |
| #define TOK_POST_DEC tok_decl(PREC_POST, 1) |
| |
| #define SPEC_PREC (UNARYPREC+4) |
| |
| #define TOK_NUM tok_decl(SPEC_PREC, 0) |
| #define TOK_RPAREN tok_decl(SPEC_PREC, 1) |
| |
| static int |
| is_assign_op(operator op) |
| { |
| operator prec = PREC(op); |
| fix_assignment_prec(prec); |
| return prec == PREC(TOK_ASSIGN) |
| || prec == PREC_PRE |
| || prec == PREC_POST; |
| } |
| |
| static int |
| is_right_associative(operator prec) |
| { |
| return prec == PREC(TOK_ASSIGN) |
| || prec == PREC(TOK_EXPONENT) |
| || prec == PREC(TOK_CONDITIONAL); |
| } |
| |
| |
| typedef struct { |
| arith_t val; |
| /* We acquire second_val only when "expr1 : expr2" part |
| * of ternary ?: op is evaluated. |
| * We treat ?: as two binary ops: (expr ? (expr1 : expr2)). |
| * ':' produces a new value which has two parts, val and second_val; |
| * then '?' selects one of them based on its left side. |
| */ |
| arith_t second_val; |
| char second_val_present; |
| /* If NULL then it's just a number, else it's a named variable */ |
| char *var; |
| } var_or_num_t; |
| |
| typedef struct remembered_name { |
| struct remembered_name *next; |
| const char *var; |
| } remembered_name; |
| |
| |
| static arith_t FAST_FUNC |
| evaluate_string(arith_state_t *math_state, const char *expr); |
| |
| static const char* |
| arith_lookup_val(arith_state_t *math_state, var_or_num_t *t) |
| { |
| if (t->var) { |
| const char *p = lookupvar(t->var); |
| if (p) { |
| remembered_name *cur; |
| remembered_name cur_save; |
| |
| /* did we already see this name? |
| * testcase: a=b; b=a; echo $((a)) |
| */ |
| for (cur = math_state->list_of_recursed_names; cur; cur = cur->next) { |
| if (strcmp(cur->var, t->var) == 0) { |
| /* Yes */ |
| return "expression recursion loop detected"; |
| } |
| } |
| |
| /* push current var name */ |
| cur = math_state->list_of_recursed_names; |
| cur_save.var = t->var; |
| cur_save.next = cur; |
| math_state->list_of_recursed_names = &cur_save; |
| |
| /* recursively evaluate p as expression */ |
| t->val = evaluate_string(math_state, p); |
| |
| /* pop current var name */ |
| math_state->list_of_recursed_names = cur; |
| |
| return math_state->errmsg; |
| } |
| /* treat undefined var as 0 */ |
| t->val = 0; |
| } |
| return 0; |
| } |
| |
| /* "Applying" a token means performing it on the top elements on the integer |
| * stack. For an unary operator it will only change the top element, but a |
| * binary operator will pop two arguments and push the result */ |
| static NOINLINE const char* |
| arith_apply(arith_state_t *math_state, operator op, var_or_num_t *numstack, var_or_num_t **numstackptr) |
| { |
| #define NUMPTR (*numstackptr) |
| |
| var_or_num_t *top_of_stack; |
| arith_t rez; |
| const char *err; |
| |
| /* There is no operator that can work without arguments */ |
| if (NUMPTR == numstack) |
| goto err; |
| |
| top_of_stack = NUMPTR - 1; |
| |
| /* Resolve name to value, if needed */ |
| err = arith_lookup_val(math_state, top_of_stack); |
| if (err) |
| return err; |
| |
| rez = top_of_stack->val; |
| if (op == TOK_UMINUS) |
| rez = -rez; |
| else if (op == TOK_NOT) |
| rez = !rez; |
| else if (op == TOK_BNOT) |
| rez = ~rez; |
| else if (op == TOK_POST_INC || op == TOK_PRE_INC) |
| rez++; |
| else if (op == TOK_POST_DEC || op == TOK_PRE_DEC) |
| rez--; |
| else if (op != TOK_UPLUS) { |
| /* Binary operators */ |
| arith_t right_side_val; |
| char bad_second_val; |
| |
| /* Binary operators need two arguments */ |
| if (top_of_stack == numstack) |
| goto err; |
| /* ...and they pop one */ |
| NUMPTR = top_of_stack; /* this decrements NUMPTR */ |
| |
| bad_second_val = top_of_stack->second_val_present; |
| if (op == TOK_CONDITIONAL) { /* ? operation */ |
| /* Make next if (...) protect against |
| * $((expr1 ? expr2)) - that is, missing ": expr" */ |
| bad_second_val = !bad_second_val; |
| } |
| if (bad_second_val) { |
| /* Protect against $((expr <not_?_op> expr1 : expr2)) */ |
| return "malformed ?: operator"; |
| } |
| |
| top_of_stack--; /* now points to left side */ |
| |
| if (op != TOK_ASSIGN) { |
| /* Resolve left side value (unless the op is '=') */ |
| err = arith_lookup_val(math_state, top_of_stack); |
| if (err) |
| return err; |
| } |
| |
| right_side_val = rez; |
| rez = top_of_stack->val; |
| if (op == TOK_CONDITIONAL) /* ? operation */ |
| rez = (rez ? right_side_val : top_of_stack[1].second_val); |
| else if (op == TOK_CONDITIONAL_SEP) { /* : operation */ |
| if (top_of_stack == numstack) { |
| /* Protect against $((expr : expr)) */ |
| return "malformed ?: operator"; |
| } |
| top_of_stack->second_val_present = op; |
| top_of_stack->second_val = right_side_val; |
| } |
| else if (op == TOK_BOR || op == TOK_OR_ASSIGN) |
| rez |= right_side_val; |
| else if (op == TOK_OR) |
| rez = right_side_val || rez; |
| else if (op == TOK_BAND || op == TOK_AND_ASSIGN) |
| rez &= right_side_val; |
| else if (op == TOK_BXOR || op == TOK_XOR_ASSIGN) |
| rez ^= right_side_val; |
| else if (op == TOK_AND) |
| rez = rez && right_side_val; |
| else if (op == TOK_EQ) |
| rez = (rez == right_side_val); |
| else if (op == TOK_NE) |
| rez = (rez != right_side_val); |
| else if (op == TOK_GE) |
| rez = (rez >= right_side_val); |
| else if (op == TOK_RSHIFT || op == TOK_RSHIFT_ASSIGN) |
| rez >>= right_side_val; |
| else if (op == TOK_LSHIFT || op == TOK_LSHIFT_ASSIGN) |
| rez <<= right_side_val; |
| else if (op == TOK_GT) |
| rez = (rez > right_side_val); |
| else if (op == TOK_LT) |
| rez = (rez < right_side_val); |
| else if (op == TOK_LE) |
| rez = (rez <= right_side_val); |
| else if (op == TOK_MUL || op == TOK_MUL_ASSIGN) |
| rez *= right_side_val; |
| else if (op == TOK_ADD || op == TOK_PLUS_ASSIGN) |
| rez += right_side_val; |
| else if (op == TOK_SUB || op == TOK_MINUS_ASSIGN) |
| rez -= right_side_val; |
| else if (op == TOK_ASSIGN || op == TOK_COMMA) |
| rez = right_side_val; |
| else if (op == TOK_EXPONENT) { |
| arith_t c; |
| if (right_side_val < 0) |
| return "exponent less than 0"; |
| c = 1; |
| while (--right_side_val >= 0) |
| c *= rez; |
| rez = c; |
| } |
| else if (right_side_val == 0) |
| return "divide by zero"; |
| else if (op == TOK_DIV || op == TOK_DIV_ASSIGN |
| || op == TOK_REM || op == TOK_REM_ASSIGN) { |
| /* |
| * bash 4.2.45 x86 64bit: SEGV on 'echo $((2**63 / -1))' |
| * |
| * MAX_NEGATIVE_INT / -1 = MAX_POSITIVE_INT+1 |
| * and thus is not representable. |
| * Some CPUs segfault trying such op. |
| * Others overflow MAX_POSITIVE_INT+1 to |
| * MAX_NEGATIVE_INT (0x7fff+1 = 0x8000). |
| * Make sure to at least not SEGV here: |
| */ |
| if (right_side_val == -1 |
| && rez << 1 == 0 /* MAX_NEGATIVE_INT or 0 */ |
| ) { |
| right_side_val = 1; |
| } |
| if (op == TOK_DIV || op == TOK_DIV_ASSIGN) |
| rez /= right_side_val; |
| else { |
| rez %= right_side_val; |
| } |
| } |
| } |
| |
| if (is_assign_op(op)) { |
| char buf[sizeof(arith_t)*3 + 2]; |
| |
| if (top_of_stack->var == NULL) { |
| /* Hmm, 1=2 ? */ |
| //TODO: actually, bash allows ++7 but for some reason it evals to 7, not 8 |
| goto err; |
| } |
| /* Save to shell variable */ |
| sprintf(buf, ARITH_FMT, rez); |
| setvar(top_of_stack->var, buf); |
| /* After saving, make previous value for v++ or v-- */ |
| if (op == TOK_POST_INC) |
| rez--; |
| else if (op == TOK_POST_DEC) |
| rez++; |
| } |
| |
| top_of_stack->val = rez; |
| /* Erase var name, it is just a number now */ |
| top_of_stack->var = NULL; |
| return NULL; |
| err: |
| return "arithmetic syntax error"; |
| #undef NUMPTR |
| } |
| |
| /* longest must be first */ |
| static const char op_tokens[] ALIGN1 = { |
| '<','<','=',0, TOK_LSHIFT_ASSIGN, |
| '>','>','=',0, TOK_RSHIFT_ASSIGN, |
| '<','<', 0, TOK_LSHIFT, |
| '>','>', 0, TOK_RSHIFT, |
| '|','|', 0, TOK_OR, |
| '&','&', 0, TOK_AND, |
| '!','=', 0, TOK_NE, |
| '<','=', 0, TOK_LE, |
| '>','=', 0, TOK_GE, |
| '=','=', 0, TOK_EQ, |
| '|','=', 0, TOK_OR_ASSIGN, |
| '&','=', 0, TOK_AND_ASSIGN, |
| '*','=', 0, TOK_MUL_ASSIGN, |
| '/','=', 0, TOK_DIV_ASSIGN, |
| '%','=', 0, TOK_REM_ASSIGN, |
| '+','=', 0, TOK_PLUS_ASSIGN, |
| '-','=', 0, TOK_MINUS_ASSIGN, |
| '-','-', 0, TOK_POST_DEC, |
| '^','=', 0, TOK_XOR_ASSIGN, |
| '+','+', 0, TOK_POST_INC, |
| '*','*', 0, TOK_EXPONENT, |
| '!', 0, TOK_NOT, |
| '<', 0, TOK_LT, |
| '>', 0, TOK_GT, |
| '=', 0, TOK_ASSIGN, |
| '|', 0, TOK_BOR, |
| '&', 0, TOK_BAND, |
| '*', 0, TOK_MUL, |
| '/', 0, TOK_DIV, |
| '%', 0, TOK_REM, |
| '+', 0, TOK_ADD, |
| '-', 0, TOK_SUB, |
| '^', 0, TOK_BXOR, |
| /* uniq */ |
| '~', 0, TOK_BNOT, |
| ',', 0, TOK_COMMA, |
| '?', 0, TOK_CONDITIONAL, |
| ':', 0, TOK_CONDITIONAL_SEP, |
| ')', 0, TOK_RPAREN, |
| '(', 0, TOK_LPAREN, |
| 0 |
| }; |
| #define ptr_to_rparen (&op_tokens[sizeof(op_tokens)-7]) |
| |
| static arith_t FAST_FUNC |
| evaluate_string(arith_state_t *math_state, const char *expr) |
| { |
| operator lasttok; |
| const char *errmsg; |
| const char *start_expr = expr = skip_whitespace(expr); |
| unsigned expr_len = strlen(expr) + 2; |
| /* Stack of integers */ |
| /* The proof that there can be no more than strlen(startbuf)/2+1 |
| * integers in any given correct or incorrect expression |
| * is left as an exercise to the reader. */ |
| var_or_num_t *const numstack = alloca((expr_len / 2) * sizeof(numstack[0])); |
| var_or_num_t *numstackptr = numstack; |
| /* Stack of operator tokens */ |
| operator *const stack = alloca(expr_len * sizeof(stack[0])); |
| operator *stackptr = stack; |
| |
| /* Start with a left paren */ |
| *stackptr++ = lasttok = TOK_LPAREN; |
| errmsg = NULL; |
| |
| while (1) { |
| const char *p; |
| operator op; |
| operator prec; |
| char arithval; |
| |
| expr = skip_whitespace(expr); |
| arithval = *expr; |
| if (arithval == '\0') { |
| if (expr == start_expr) { |
| /* Null expression */ |
| numstack->val = 0; |
| goto ret; |
| } |
| |
| /* This is only reached after all tokens have been extracted from the |
| * input stream. If there are still tokens on the operator stack, they |
| * are to be applied in order. At the end, there should be a final |
| * result on the integer stack */ |
| |
| if (expr != ptr_to_rparen + 1) { |
| /* If we haven't done so already, |
| * append a closing right paren |
| * and let the loop process it */ |
| expr = ptr_to_rparen; |
| continue; |
| } |
| /* At this point, we're done with the expression */ |
| if (numstackptr != numstack + 1) { |
| /* ...but if there isn't, it's bad */ |
| goto err; |
| } |
| if (numstack->var) { |
| /* expression is $((var)) only, lookup now */ |
| errmsg = arith_lookup_val(math_state, numstack); |
| } |
| goto ret; |
| } |
| |
| p = endofname(expr); |
| if (p != expr) { |
| /* Name */ |
| size_t var_name_size = (p-expr) + 1; /* +1 for NUL */ |
| numstackptr->var = alloca(var_name_size); |
| safe_strncpy(numstackptr->var, expr, var_name_size); |
| expr = p; |
| num: |
| numstackptr->second_val_present = 0; |
| numstackptr++; |
| lasttok = TOK_NUM; |
| continue; |
| } |
| |
| if (isdigit(arithval)) { |
| /* Number */ |
| numstackptr->var = NULL; |
| errno = 0; |
| numstackptr->val = strto_arith_t(expr, (char**) &expr, 0); |
| if (errno) |
| numstackptr->val = 0; /* bash compat */ |
| goto num; |
| } |
| |
| /* Should be an operator */ |
| p = op_tokens; |
| while (1) { |
| // TODO: bash allows 7+++v, treats it as 7 + ++v |
| // we treat it as 7++ + v and reject |
| /* Compare expr to current op_tokens[] element */ |
| const char *e = expr; |
| while (1) { |
| if (*p == '\0') { |
| /* Match: operator is found */ |
| expr = e; |
| goto tok_found; |
| } |
| if (*p != *e) |
| break; |
| p++; |
| e++; |
| } |
| /* No match, go to next element of op_tokens[] */ |
| while (*p) |
| p++; |
| p += 2; /* skip NUL and TOK_foo bytes */ |
| if (*p == '\0') { |
| /* No next element, operator not found */ |
| //math_state->syntax_error_at = expr; |
| goto err; |
| } |
| } |
| tok_found: |
| op = p[1]; /* fetch TOK_foo value */ |
| /* NB: expr now points past the operator */ |
| |
| /* post grammar: a++ reduce to num */ |
| if (lasttok == TOK_POST_INC || lasttok == TOK_POST_DEC) |
| lasttok = TOK_NUM; |
| |
| /* Plus and minus are binary (not unary) _only_ if the last |
| * token was a number, or a right paren (which pretends to be |
| * a number, since it evaluates to one). Think about it. |
| * It makes sense. */ |
| if (lasttok != TOK_NUM) { |
| switch (op) { |
| case TOK_ADD: |
| op = TOK_UPLUS; |
| break; |
| case TOK_SUB: |
| op = TOK_UMINUS; |
| break; |
| case TOK_POST_INC: |
| op = TOK_PRE_INC; |
| break; |
| case TOK_POST_DEC: |
| op = TOK_PRE_DEC; |
| break; |
| } |
| } |
| /* We don't want an unary operator to cause recursive descent on the |
| * stack, because there can be many in a row and it could cause an |
| * operator to be evaluated before its argument is pushed onto the |
| * integer stack. |
| * But for binary operators, "apply" everything on the operator |
| * stack until we find an operator with a lesser priority than the |
| * one we have just extracted. If op is right-associative, |
| * then stop "applying" on the equal priority too. |
| * Left paren is given the lowest priority so it will never be |
| * "applied" in this way. |
| */ |
| prec = PREC(op); |
| if ((prec > 0 && prec < UNARYPREC) || prec == SPEC_PREC) { |
| /* not left paren or unary */ |
| if (lasttok != TOK_NUM) { |
| /* binary op must be preceded by a num */ |
| goto err; |
| } |
| while (stackptr != stack) { |
| operator prev_op = *--stackptr; |
| if (op == TOK_RPAREN) { |
| /* The algorithm employed here is simple: while we don't |
| * hit an open paren nor the bottom of the stack, pop |
| * tokens and apply them */ |
| if (prev_op == TOK_LPAREN) { |
| /* Any operator directly after a |
| * close paren should consider itself binary */ |
| lasttok = TOK_NUM; |
| goto next; |
| } |
| } else { |
| operator prev_prec = PREC(prev_op); |
| fix_assignment_prec(prec); |
| fix_assignment_prec(prev_prec); |
| if (prev_prec < prec |
| || (prev_prec == prec && is_right_associative(prec)) |
| ) { |
| stackptr++; |
| break; |
| } |
| } |
| errmsg = arith_apply(math_state, prev_op, numstack, &numstackptr); |
| if (errmsg) |
| goto err_with_custom_msg; |
| } |
| if (op == TOK_RPAREN) |
| goto err; |
| } |
| |
| /* Push this operator to the stack and remember it */ |
| *stackptr++ = lasttok = op; |
| next: ; |
| } /* while (1) */ |
| |
| err: |
| errmsg = "arithmetic syntax error"; |
| err_with_custom_msg: |
| numstack->val = -1; |
| ret: |
| math_state->errmsg = errmsg; |
| return numstack->val; |
| } |
| |
| arith_t FAST_FUNC |
| arith(arith_state_t *math_state, const char *expr) |
| { |
| math_state->errmsg = NULL; |
| math_state->list_of_recursed_names = NULL; |
| return evaluate_string(math_state, expr); |
| } |
| |
| /* |
| * Copyright (c) 1989, 1991, 1993, 1994 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * This code is derived from software contributed to Berkeley by |
| * Kenneth Almquist. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of the University nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ''AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |