blob: c629c4763af32624a525169d4164fe3505145f00 [file] [log] [blame]
/* vi: set sw=4 ts=4: */
/*
* Licensed under GPLv2 or later, see file LICENSE in this source tree.
* Adapted from https://github.com/gavinhoward/bc
* Original code copyright (c) 2018 Gavin D. Howard and contributors.
*/
//TODO:
// maybe implement a^b for non-integer b? (see zbc_num_p())
#define DEBUG_LEXER 0
#define DEBUG_COMPILE 0
#define DEBUG_EXEC 0
// This can be left enabled for production as well:
#define SANITY_CHECKS 1
//config:config BC
//config: bool "bc (45 kb)"
//config: default y
//config: select FEATURE_DC_BIG
//config: help
//config: bc is a command-line, arbitrary-precision calculator with a
//config: Turing-complete language. See the GNU bc manual
//config: (https://www.gnu.org/software/bc/manual/bc.html) and bc spec
//config: (http://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html).
//config:
//config: This bc has five differences to the GNU bc:
//config: 1) The period (.) is a shortcut for "last", as in the BSD bc.
//config: 2) Arrays are copied before being passed as arguments to
//config: functions. This behavior is required by the bc spec.
//config: 3) Arrays can be passed to the builtin "length" function to get
//config: the number of elements in the array. This prints "1":
//config: a[0] = 0; length(a[])
//config: 4) The precedence of the boolean "not" operator (!) is equal to
//config: that of the unary minus (-) negation operator. This still
//config: allows POSIX-compliant scripts to work while somewhat
//config: preserving expected behavior (versus C) and making parsing
//config: easier.
//config: 5) "read()" accepts expressions, not only numeric literals.
//config:
//config:config DC
//config: bool "dc (36 kb)"
//config: default y
//config: help
//config: dc is a reverse-polish notation command-line calculator which
//config: supports unlimited precision arithmetic. See the FreeBSD man page
//config: (https://www.unix.com/man-page/FreeBSD/1/dc/) and GNU dc manual
//config: (https://www.gnu.org/software/bc/manual/dc-1.05/html_mono/dc.html).
//config:
//config: This dc has a few differences from the two above:
//config: 1) When printing a byte stream (command "P"), this dc follows what
//config: the FreeBSD dc does.
//config: 2) Implements the GNU extensions for divmod ("~") and
//config: modular exponentiation ("|").
//config: 3) Implements all FreeBSD extensions, except for "J" and "M".
//config: 4) Like the FreeBSD dc, this dc supports extended registers.
//config: However, they are implemented differently. When it encounters
//config: whitespace where a register should be, it skips the whitespace.
//config: If the character following is not a lowercase letter, an error
//config: is issued. Otherwise, the register name is parsed by the
//config: following regex: [a-z][a-z0-9_]*
//config: This generally means that register names will be surrounded by
//config: whitespace. Examples:
//config: l idx s temp L index S temp2 < do_thing
//config: Also note that, like the FreeBSD dc, extended registers are not
//config: allowed unless the "-x" option is given.
//config:
//config:if BC || DC # for menuconfig indenting
//config:
//config:config FEATURE_DC_BIG
//config: bool "Use bc code base for dc (larger, more features)"
//config: default y
//config:
//config:config FEATURE_DC_LIBM
//config: bool "Enable power and exp functions (requires libm)"
//config: default y
//config: depends on DC && !BC && !FEATURE_DC_BIG
//config: help
//config: Enable power and exp functions.
//config: NOTE: This will require libm to be present for linking.
//config:
//config:config FEATURE_BC_INTERACTIVE
//config: bool "Interactive mode (+4kb)"
//config: default y
//config: depends on BC || (DC && FEATURE_DC_BIG)
//config: help
//config: Enable interactive mode: when started on a tty,
//config: ^C interrupts execution and returns to command line,
//config: errors also return to command line instead of exiting,
//config: line editing with history is available.
//config:
//config: With this option off, input can still be taken from tty,
//config: but all errors are fatal, ^C is fatal,
//config: tty is treated exactly the same as any other
//config: standard input (IOW: no line editing).
//config:
//config:config FEATURE_BC_LONG_OPTIONS
//config: bool "Enable bc/dc long options"
//config: default y
//config: depends on BC || (DC && FEATURE_DC_BIG)
//config:
//config:endif
//applet:IF_BC(APPLET(bc, BB_DIR_USR_BIN, BB_SUID_DROP))
//applet:IF_DC(APPLET(dc, BB_DIR_USR_BIN, BB_SUID_DROP))
//kbuild:lib-$(CONFIG_BC) += bc.o
//kbuild:lib-$(CONFIG_DC) += bc.o
//See www.gnu.org/software/bc/manual/bc.html
//usage:#define bc_trivial_usage
//usage: "[-sqlw] [FILE]..."
//usage:
//usage:#define bc_full_usage "\n"
//usage: "\nArbitrary precision calculator"
//usage: "\n"
///////: "\n -i Interactive" - has no effect for now
//usage: "\n -q Quiet"
//usage: "\n -l Load standard library"
//usage: "\n -s Be POSIX compatible"
//usage: "\n -w Warn if extensions are used"
///////: "\n -v Version"
//usage: "\n"
//usage: "\n$BC_LINE_LENGTH changes output width"
//usage:
//usage:#define bc_example_usage
//usage: "3 + 4.129\n"
//usage: "1903 - 2893\n"
//usage: "-129 * 213.28935\n"
//usage: "12 / -1932\n"
//usage: "12 % 12\n"
//usage: "34 ^ 189\n"
//usage: "scale = 13\n"
//usage: "ibase = 2\n"
//usage: "obase = A\n"
//usage:
//usage:#define dc_trivial_usage
//usage: IF_FEATURE_DC_BIG("[-x] ")"[-eSCRIPT]... [-fFILE]... [FILE]..."
//usage:
//usage:#define dc_full_usage "\n"
//usage: "\nTiny RPN calculator. Operations:"
//usage: "\nArithmetic: + - * / % ^"
//usage: IF_FEATURE_DC_BIG(
//usage: "\n~ - divide with remainder"
//usage: "\n| - modular exponentiation"
//usage: "\nv - square root"
//////// "\nA-F - digits 10..15
//////// "\n_NNN - push negative number -NNN
//////// "\n[string] - push string (in FreeBSD, \[, \] and \\ are escapes, not implemented here and in GNU)
//////// "\nR - DC_LEX_POP pop and discard
//////// "\nc - DC_LEX_CLEAR_STACK clear stack
//////// "\nd - DC_LEX_DUPLICATE duplicate top-of-stack
//////// "\nr - DC_LEX_SWAP swap top-of-stack
//////// "\n:r - DC_LEX_COLON pop index, pop value, store to array 'r'
//////// "\n;r - DC_LEX_SCOLON pop index, fetch from array 'r', push
//////// "\nLr - DC_LEX_LOAD_POP pop register 'r', push
//////// "\nSr - DC_LEX_STORE_PUSH pop, push to register 'r'
//////// "\nlr - DC_LEX_LOAD read register 'r', push
//////// "\nsr - DC_LEX_OP_ASSIGN pop, assign to register 'r'
//////// "\n? - DC_LEX_READ read line and execute
//////// "\nx - DC_LEX_EXECUTE pop string and execute
//////// "\n<r - XC_LEX_OP_REL_GT pop, pop, execute register 'r' if top-of-stack was less
//////// "\n>r - XC_LEX_OP_REL_LT pop, pop, execute register 'r' if top-of-stack was greater
//////// "\n=r - XC_LEX_OP_REL_EQ pop, pop, execute register 'r' if equal
//////// "\n !<r !>r !=r - negated forms
//////// "\n >tef - "if greater execute register 't' else execute 'f'"
//////// "\nQ - DC_LEX_NQUIT pop, "break N" from macro invocations
//////// "\nq - DC_LEX_QUIT "break 2" (if less than 2 levels of macros, exit dc)
//////// "\nX - DC_LEX_SCALE_FACTOR pop, push number of fractional digits
//////// "\nZ - DC_LEX_LENGTH pop, push number of digits it has (or number of characters in string)
//////// "\na - DC_LEX_ASCIIFY pop, push low-order byte as char or 1st char of string
//////// "\n( - DC_LEX_LPAREN (FreeBSD, not in GNU) pop, pop, if top-of-stack was less push 1 else push 0
//////// "\n{ - DC_LEX_LBRACE (FreeBSD, not in GNU) pop, pop, if top-of-stack was less-or-equal push 1 else push 0
//////// "\nG - DC_LEX_EQ_NO_REG (FreeBSD, not in GNU) pop, pop, if equal push 1 else push 0
//////// "\nN - DC_LEX_OP_BOOL_NOT (FreeBSD, not in GNU) pop, if 0 push 1 else push 0
//////// FreeBSD also has J and M commands, used internally by bc
//////// "\nn - DC_LEX_PRINT_POP pop, print without newline
//////// "\nP - DC_LEX_PRINT_STREAM pop, print string or hex bytes
//usage: )
//usage: "\np - print top of the stack without popping"
//usage: "\nf - print entire stack"
//////// "\nz - DC_LEX_STACK_LEVEL push stack depth
//////// "\nK - DC_LEX_SCALE push precision
//////// "\nI - DC_LEX_IBASE push input radix
//////// "\nO - DC_LEX_OBASE push output radix
//usage: IF_FEATURE_DC_BIG(
//usage: "\nk - pop the value and set precision"
//usage: "\ni - pop the value and set input radix"
//usage: )
//usage: "\no - pop the value and set output radix"
//usage: "\nExamples: dc -e'2 2 + p' -> 4, dc -e'8 8 * 2 2 + / p' -> 16"
//usage:
//usage:#define dc_example_usage
//usage: "$ dc -e'2 2 + p'\n"
//usage: "4\n"
//usage: "$ dc -e'8 8 \\* 2 2 + / p'\n"
//usage: "16\n"
//usage: "$ dc -e'0 1 & p'\n"
//usage: "0\n"
//usage: "$ dc -e'0 1 | p'\n"
//usage: "1\n"
//usage: "$ echo '72 9 / 8 * p' | dc\n"
//usage: "64\n"
#include "libbb.h"
#include "common_bufsiz.h"
#if !ENABLE_BC && !ENABLE_FEATURE_DC_BIG
# include "dc.c"
#else
#if DEBUG_LEXER
static uint8_t lex_indent;
#define dbg_lex(...) \
do { \
fprintf(stderr, "%*s", lex_indent, ""); \
bb_error_msg(__VA_ARGS__); \
} while (0)
#define dbg_lex_enter(...) \
do { \
dbg_lex(__VA_ARGS__); \
lex_indent++; \
} while (0)
#define dbg_lex_done(...) \
do { \
lex_indent--; \
dbg_lex(__VA_ARGS__); \
} while (0)
#else
# define dbg_lex(...) ((void)0)
# define dbg_lex_enter(...) ((void)0)
# define dbg_lex_done(...) ((void)0)
#endif
#if DEBUG_COMPILE
# define dbg_compile(...) bb_error_msg(__VA_ARGS__)
#else
# define dbg_compile(...) ((void)0)
#endif
#if DEBUG_EXEC
# define dbg_exec(...) bb_error_msg(__VA_ARGS__)
#else
# define dbg_exec(...) ((void)0)
#endif
typedef enum BcStatus {
BC_STATUS_SUCCESS = 0,
BC_STATUS_FAILURE = 1,
} BcStatus;
#define BC_VEC_INVALID_IDX ((size_t) -1)
#define BC_VEC_START_CAP (1 << 5)
typedef void (*BcVecFree)(void *) FAST_FUNC;
typedef struct BcVec {
char *v;
size_t len;
size_t cap;
size_t size;
BcVecFree dtor;
} BcVec;
typedef signed char BcDig;
typedef struct BcNum {
BcDig *restrict num;
size_t rdx;
size_t len;
size_t cap;
bool neg;
} BcNum;
#define BC_NUM_MAX_IBASE 36
// larger value might speed up BIGNUM calculations a bit:
#define BC_NUM_DEF_SIZE 16
#define BC_NUM_PRINT_WIDTH 70
#define BC_NUM_KARATSUBA_LEN 32
typedef enum BcInst {
#if ENABLE_BC
BC_INST_INC_PRE,
BC_INST_DEC_PRE,
BC_INST_INC_POST,
BC_INST_DEC_POST,
#endif
XC_INST_NEG, // order
XC_INST_REL_EQ, // should
XC_INST_REL_LE, // match
XC_INST_REL_GE, // LEX
XC_INST_REL_NE, // constants
XC_INST_REL_LT, // for
XC_INST_REL_GT, // these
XC_INST_POWER, // operations
XC_INST_MULTIPLY, // |
XC_INST_DIVIDE, // |
XC_INST_MODULUS, // |
XC_INST_PLUS, // |
XC_INST_MINUS, // |
XC_INST_BOOL_NOT, // |
XC_INST_BOOL_OR, // |
XC_INST_BOOL_AND, // |
#if ENABLE_BC
BC_INST_ASSIGN_POWER, // |
BC_INST_ASSIGN_MULTIPLY,// |
BC_INST_ASSIGN_DIVIDE, // |
BC_INST_ASSIGN_MODULUS, // |
BC_INST_ASSIGN_PLUS, // |
BC_INST_ASSIGN_MINUS, // |
#endif
XC_INST_ASSIGN, // V
XC_INST_NUM,
XC_INST_VAR,
XC_INST_ARRAY_ELEM,
XC_INST_ARRAY,
XC_INST_SCALE_FUNC,
XC_INST_IBASE, // order of these constans should match other enums
XC_INST_OBASE, // order of these constans should match other enums
XC_INST_SCALE, // order of these constans should match other enums
IF_BC(BC_INST_LAST,) // order of these constans should match other enums
XC_INST_LENGTH,
XC_INST_READ,
XC_INST_SQRT,
XC_INST_PRINT,
XC_INST_PRINT_POP,
XC_INST_STR,
XC_INST_PRINT_STR,
#if ENABLE_BC
BC_INST_HALT,
BC_INST_JUMP,
BC_INST_JUMP_ZERO,
BC_INST_CALL,
BC_INST_RET0,
#endif
XC_INST_RET,
XC_INST_POP,
#if ENABLE_DC
DC_INST_POP_EXEC,
DC_INST_MODEXP,
DC_INST_DIVMOD,
DC_INST_EXECUTE,
DC_INST_EXEC_COND,
DC_INST_ASCIIFY,
DC_INST_PRINT_STREAM,
DC_INST_PRINT_STACK,
DC_INST_CLEAR_STACK,
DC_INST_STACK_LEN,
DC_INST_DUPLICATE,
DC_INST_SWAP,
DC_INST_LOAD,
DC_INST_PUSH_VAR,
DC_INST_PUSH_TO_VAR,
DC_INST_QUIT,
DC_INST_NQUIT,
DC_INST_INVALID = -1,
#endif
} BcInst;
typedef struct BcId {
char *name;
size_t idx;
} BcId;
typedef struct BcFunc {
BcVec code;
IF_BC(BcVec labels;)
IF_BC(BcVec autos;)
IF_BC(BcVec strs;)
IF_BC(BcVec consts;)
IF_BC(size_t nparams;)
IF_BC(bool voidfunc;)
} BcFunc;
typedef enum BcResultType {
XC_RESULT_TEMP,
IF_BC(BC_RESULT_VOID,) // same as TEMP, but INST_PRINT will ignore it
XC_RESULT_VAR,
XC_RESULT_ARRAY_ELEM,
XC_RESULT_ARRAY,
XC_RESULT_STR,
//code uses "inst - XC_INST_IBASE + XC_RESULT_IBASE" construct,
XC_RESULT_IBASE, // relative order should match for: XC_INST_IBASE
XC_RESULT_OBASE, // relative order should match for: XC_INST_OBASE
XC_RESULT_SCALE, // relative order should match for: XC_INST_SCALE
IF_BC(BC_RESULT_LAST,) // relative order should match for: BC_INST_LAST
XC_RESULT_CONSTANT,
IF_BC(BC_RESULT_ONE,)
} BcResultType;
typedef union BcResultData {
BcNum n;
BcVec v;
BcId id;
} BcResultData;
typedef struct BcResult {
BcResultType t;
BcResultData d;
} BcResult;
typedef struct BcInstPtr {
size_t func;
size_t inst_idx;
} BcInstPtr;
typedef enum BcType {
BC_TYPE_VAR,
BC_TYPE_ARRAY,
BC_TYPE_REF,
} BcType;
typedef enum BcLexType {
XC_LEX_EOF,
XC_LEX_INVALID,
XC_LEX_NLINE,
XC_LEX_WHITESPACE,
XC_LEX_STR,
XC_LEX_NAME,
XC_LEX_NUMBER,
XC_LEX_1st_op,
XC_LEX_NEG = XC_LEX_1st_op, // order
XC_LEX_OP_REL_EQ, // should
XC_LEX_OP_REL_LE, // match
XC_LEX_OP_REL_GE, // INST
XC_LEX_OP_REL_NE, // constants
XC_LEX_OP_REL_LT, // for
XC_LEX_OP_REL_GT, // these
XC_LEX_OP_POWER, // operations
XC_LEX_OP_MULTIPLY, // |
XC_LEX_OP_DIVIDE, // |
XC_LEX_OP_MODULUS, // |
XC_LEX_OP_PLUS, // |
XC_LEX_OP_MINUS, // |
XC_LEX_OP_last = XC_LEX_OP_MINUS,
#if ENABLE_BC
BC_LEX_OP_BOOL_NOT, // |
BC_LEX_OP_BOOL_OR, // |
BC_LEX_OP_BOOL_AND, // |
BC_LEX_OP_ASSIGN_POWER, // |
BC_LEX_OP_ASSIGN_MULTIPLY, // |
BC_LEX_OP_ASSIGN_DIVIDE, // |
BC_LEX_OP_ASSIGN_MODULUS, // |
BC_LEX_OP_ASSIGN_PLUS, // |
BC_LEX_OP_ASSIGN_MINUS, // |
BC_LEX_OP_ASSIGN, // V
BC_LEX_OP_INC,
BC_LEX_OP_DEC,
BC_LEX_LPAREN, // () are 0x28 and 0x29
BC_LEX_RPAREN, // must be LPAREN+1: code uses (c - '(' + BC_LEX_LPAREN)
BC_LEX_LBRACKET, // [] are 0x5B and 0x5D
BC_LEX_COMMA,
BC_LEX_RBRACKET, // must be LBRACKET+2: code uses (c - '[' + BC_LEX_LBRACKET)
BC_LEX_LBRACE, // {} are 0x7B and 0x7D
BC_LEX_SCOLON,
BC_LEX_RBRACE, // must be LBRACE+2: code uses (c - '{' + BC_LEX_LBRACE)
BC_LEX_KEY_1st_keyword,
BC_LEX_KEY_AUTO = BC_LEX_KEY_1st_keyword,
BC_LEX_KEY_BREAK,
BC_LEX_KEY_CONTINUE,
BC_LEX_KEY_DEFINE,
BC_LEX_KEY_ELSE,
BC_LEX_KEY_FOR,
BC_LEX_KEY_HALT,
// code uses "type - BC_LEX_KEY_IBASE + XC_INST_IBASE" construct,
BC_LEX_KEY_IBASE, // relative order should match for: XC_INST_IBASE
BC_LEX_KEY_OBASE, // relative order should match for: XC_INST_OBASE
BC_LEX_KEY_IF,
BC_LEX_KEY_LAST, // relative order should match for: BC_INST_LAST
BC_LEX_KEY_LENGTH,
BC_LEX_KEY_LIMITS,
BC_LEX_KEY_PRINT,
BC_LEX_KEY_QUIT,
BC_LEX_KEY_READ,
BC_LEX_KEY_RETURN,
BC_LEX_KEY_SCALE,
BC_LEX_KEY_SQRT,
BC_LEX_KEY_WHILE,
#endif // ENABLE_BC
#if ENABLE_DC
DC_LEX_OP_BOOL_NOT = XC_LEX_OP_last + 1,
DC_LEX_OP_ASSIGN,
DC_LEX_LPAREN,
DC_LEX_SCOLON,
DC_LEX_READ,
DC_LEX_IBASE,
DC_LEX_SCALE,
DC_LEX_OBASE,
DC_LEX_LENGTH,
DC_LEX_PRINT,
DC_LEX_QUIT,
DC_LEX_SQRT,
DC_LEX_LBRACE,
DC_LEX_EQ_NO_REG,
DC_LEX_OP_MODEXP,
DC_LEX_OP_DIVMOD,
DC_LEX_COLON,
DC_LEX_ELSE,
DC_LEX_EXECUTE,
DC_LEX_PRINT_STACK,
DC_LEX_CLEAR_STACK,
DC_LEX_STACK_LEVEL,
DC_LEX_DUPLICATE,
DC_LEX_SWAP,
DC_LEX_POP,
DC_LEX_ASCIIFY,
DC_LEX_PRINT_STREAM,
// code uses "t - DC_LEX_STORE_IBASE + XC_INST_IBASE" construct,
DC_LEX_STORE_IBASE, // relative order should match for: XC_INST_IBASE
DC_LEX_STORE_OBASE, // relative order should match for: XC_INST_OBASE
DC_LEX_STORE_SCALE, // relative order should match for: XC_INST_SCALE
DC_LEX_LOAD,
DC_LEX_LOAD_POP,
DC_LEX_STORE_PUSH,
DC_LEX_PRINT_POP,
DC_LEX_NQUIT,
DC_LEX_SCALE_FACTOR,
#endif
} BcLexType;
// must match order of BC_LEX_KEY_foo etc above
#if ENABLE_BC
struct BcLexKeyword {
char name8[8];
};
#define LEX_KW_ENTRY(a, b) \
{ .name8 = a /*, .posix = b */ }
static const struct BcLexKeyword bc_lex_kws[20] ALIGN8 = {
LEX_KW_ENTRY("auto" , 1), // 0
LEX_KW_ENTRY("break" , 1), // 1
LEX_KW_ENTRY("continue", 0), // 2 note: this one has no terminating NUL
LEX_KW_ENTRY("define" , 1), // 3
LEX_KW_ENTRY("else" , 0), // 4
LEX_KW_ENTRY("for" , 1), // 5
LEX_KW_ENTRY("halt" , 0), // 6
LEX_KW_ENTRY("ibase" , 1), // 7
LEX_KW_ENTRY("obase" , 1), // 8
LEX_KW_ENTRY("if" , 1), // 9
LEX_KW_ENTRY("last" , 0), // 10
LEX_KW_ENTRY("length" , 1), // 11
LEX_KW_ENTRY("limits" , 0), // 12
LEX_KW_ENTRY("print" , 0), // 13
LEX_KW_ENTRY("quit" , 1), // 14
LEX_KW_ENTRY("read" , 0), // 15
LEX_KW_ENTRY("return" , 1), // 16
LEX_KW_ENTRY("scale" , 1), // 17
LEX_KW_ENTRY("sqrt" , 1), // 18
LEX_KW_ENTRY("while" , 1), // 19
};
#undef LEX_KW_ENTRY
#define STRING_else (bc_lex_kws[4].name8)
#define STRING_for (bc_lex_kws[5].name8)
#define STRING_if (bc_lex_kws[9].name8)
#define STRING_while (bc_lex_kws[19].name8)
enum {
POSIX_KWORD_MASK = 0
| (1 << 0) // 0
| (1 << 1) // 1
| (0 << 2) // 2
| (1 << 3) // 3
| (0 << 4) // 4
| (1 << 5) // 5
| (0 << 6) // 6
| (1 << 7) // 7
| (1 << 8) // 8
| (1 << 9) // 9
| (0 << 10) // 10
| (1 << 11) // 11
| (0 << 12) // 12
| (0 << 13) // 13
| (1 << 14) // 14
| (0 << 15) // 15
| (1 << 16) // 16
| (1 << 17) // 17
| (1 << 18) // 18
| (1 << 19) // 19
};
#define keyword_is_POSIX(i) ((1 << (i)) & POSIX_KWORD_MASK)
// This is a bit array that corresponds to token types. An entry is
// true if the token is valid in an expression, false otherwise.
// Used to figure out when expr parsing should stop *without error message*
// - 0 element indicates this condition. 1 means "this token is to be eaten
// as part of the expression", it can then still be determined to be invalid
// by later processing.
enum {
#define EXBITS(a,b,c,d,e,f,g,h) \
((uint64_t)((a << 0)+(b << 1)+(c << 2)+(d << 3)+(e << 4)+(f << 5)+(g << 6)+(h << 7)))
BC_PARSE_EXPRS_BITS = 0 // corresponding BC_LEX_xyz:
+ (EXBITS(0,0,0,0,0,1,1,1) << (0*8)) // 0: EOF INVAL NL WS STR NAME NUM -
+ (EXBITS(1,1,1,1,1,1,1,1) << (1*8)) // 8: == <= >= != < > ^ *
+ (EXBITS(1,1,1,1,1,1,1,1) << (2*8)) // 16: / % + - ! || && ^=
+ (EXBITS(1,1,1,1,1,1,1,1) << (3*8)) // 24: *= /= %= += -= = ++ --
+ (EXBITS(1,1,0,0,0,0,0,0) << (4*8)) // 32: ( ) [ , ] { ; }
+ (EXBITS(0,0,0,0,0,0,0,1) << (5*8)) // 40: auto break cont define else for halt ibase
+ (EXBITS(1,0,1,1,0,0,0,1) << (6*8)) // 48: obase if last length limits print quit read
+ (EXBITS(0,1,1,0,0,0,0,0) << (7*8)) // 56: return scale sqrt while
#undef EXBITS
};
static ALWAYS_INLINE long lex_allowed_in_bc_expr(unsigned i)
{
#if ULONG_MAX > 0xffffffff
// 64-bit version (will not work correctly for 32-bit longs!)
return BC_PARSE_EXPRS_BITS & (1UL << i);
#else
// 32-bit version
unsigned long m = (uint32_t)BC_PARSE_EXPRS_BITS;
if (i >= 32) {
m = (uint32_t)(BC_PARSE_EXPRS_BITS >> 32);
i &= 31;
}
return m & (1UL << i);
#endif
}
// This is an array of data for operators that correspond to
// [XC_LEX_1st_op...] token types.
static const uint8_t bc_ops_prec_and_assoc[] ALIGN1 = {
#define OP(p,l) ((int)(l) * 0x10 + (p))
OP(1, false), // neg
OP(6, true ), OP( 6, true ), OP( 6, true ), OP( 6, true ), OP( 6, true ), OP( 6, true ), // == <= >= != < >
OP(2, false), // pow
OP(3, true ), OP( 3, true ), OP( 3, true ), // mul div mod
OP(4, true ), OP( 4, true ), // + -
OP(1, false), // not
OP(7, true ), OP( 7, true ), // or and
OP(5, false), OP( 5, false ), OP( 5, false ), OP( 5, false ), OP( 5, false ), // ^= *= /= %= +=
OP(5, false), OP( 5, false ), // -= =
OP(0, false), OP( 0, false ), // inc dec
#undef OP
};
#define bc_operation_PREC(i) (bc_ops_prec_and_assoc[i] & 0x0f)
#define bc_operation_LEFT(i) (bc_ops_prec_and_assoc[i] & 0x10)
#endif // ENABLE_BC
#if ENABLE_DC
static const //BcLexType - should be this type
uint8_t
dc_char_to_LEX[] ALIGN1 = {
// %&'(
XC_LEX_OP_MODULUS, XC_LEX_INVALID, XC_LEX_INVALID, DC_LEX_LPAREN,
// )*+,
XC_LEX_INVALID, XC_LEX_OP_MULTIPLY, XC_LEX_OP_PLUS, XC_LEX_INVALID,
// -./
XC_LEX_OP_MINUS, XC_LEX_INVALID, XC_LEX_OP_DIVIDE,
// 0123456789
XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID,
XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID,
XC_LEX_INVALID, XC_LEX_INVALID,
// :;<=>?@
DC_LEX_COLON, DC_LEX_SCOLON, XC_LEX_OP_REL_GT, XC_LEX_OP_REL_EQ,
XC_LEX_OP_REL_LT, DC_LEX_READ, XC_LEX_INVALID,
// ABCDEFGH
XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID,
XC_LEX_INVALID, XC_LEX_INVALID, DC_LEX_EQ_NO_REG, XC_LEX_INVALID,
// IJKLMNOP
DC_LEX_IBASE, XC_LEX_INVALID, DC_LEX_SCALE, DC_LEX_LOAD_POP,
XC_LEX_INVALID, DC_LEX_OP_BOOL_NOT, DC_LEX_OBASE, DC_LEX_PRINT_STREAM,
// QRSTUVWX
DC_LEX_NQUIT, DC_LEX_POP, DC_LEX_STORE_PUSH, XC_LEX_INVALID,
XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, DC_LEX_SCALE_FACTOR,
// YZ
XC_LEX_INVALID, DC_LEX_LENGTH,
// [\]
XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID,
// ^_`
XC_LEX_OP_POWER, XC_LEX_NEG, XC_LEX_INVALID,
// abcdefgh
DC_LEX_ASCIIFY, XC_LEX_INVALID, DC_LEX_CLEAR_STACK, DC_LEX_DUPLICATE,
DC_LEX_ELSE, DC_LEX_PRINT_STACK, XC_LEX_INVALID, XC_LEX_INVALID,
// ijklmnop
DC_LEX_STORE_IBASE, XC_LEX_INVALID, DC_LEX_STORE_SCALE, DC_LEX_LOAD,
XC_LEX_INVALID, DC_LEX_PRINT_POP, DC_LEX_STORE_OBASE, DC_LEX_PRINT,
// qrstuvwx
DC_LEX_QUIT, DC_LEX_SWAP, DC_LEX_OP_ASSIGN, XC_LEX_INVALID,
XC_LEX_INVALID, DC_LEX_SQRT, XC_LEX_INVALID, DC_LEX_EXECUTE,
// yz
XC_LEX_INVALID, DC_LEX_STACK_LEVEL,
// {|}~
DC_LEX_LBRACE, DC_LEX_OP_MODEXP, XC_LEX_INVALID, DC_LEX_OP_DIVMOD,
};
static const //BcInst - should be this type. Using signed narrow type since DC_INST_INVALID is -1
int8_t
dc_LEX_to_INST[] ALIGN1 = { //starts at XC_LEX_OP_POWER // corresponding XC/DC_LEX_xyz:
XC_INST_POWER, XC_INST_MULTIPLY, // XC_LEX_OP_POWER XC_LEX_OP_MULTIPLY
XC_INST_DIVIDE, XC_INST_MODULUS, // XC_LEX_OP_DIVIDE XC_LEX_OP_MODULUS
XC_INST_PLUS, XC_INST_MINUS, // XC_LEX_OP_PLUS XC_LEX_OP_MINUS
XC_INST_BOOL_NOT, // DC_LEX_OP_BOOL_NOT
DC_INST_INVALID, // DC_LEX_OP_ASSIGN
XC_INST_REL_GT, // DC_LEX_LPAREN
DC_INST_INVALID, // DC_LEX_SCOLON
DC_INST_INVALID, // DC_LEX_READ
XC_INST_IBASE, // DC_LEX_IBASE
XC_INST_SCALE, // DC_LEX_SCALE
XC_INST_OBASE, // DC_LEX_OBASE
XC_INST_LENGTH, // DC_LEX_LENGTH
XC_INST_PRINT, // DC_LEX_PRINT
DC_INST_QUIT, // DC_LEX_QUIT
XC_INST_SQRT, // DC_LEX_SQRT
XC_INST_REL_GE, // DC_LEX_LBRACE
XC_INST_REL_EQ, // DC_LEX_EQ_NO_REG
DC_INST_MODEXP, DC_INST_DIVMOD, // DC_LEX_OP_MODEXP DC_LEX_OP_DIVMOD
DC_INST_INVALID, DC_INST_INVALID, // DC_LEX_COLON DC_LEX_ELSE
DC_INST_EXECUTE, // DC_LEX_EXECUTE
DC_INST_PRINT_STACK, DC_INST_CLEAR_STACK, // DC_LEX_PRINT_STACK DC_LEX_CLEAR_STACK
DC_INST_STACK_LEN, DC_INST_DUPLICATE, // DC_LEX_STACK_LEVEL DC_LEX_DUPLICATE
DC_INST_SWAP, XC_INST_POP, // DC_LEX_SWAP DC_LEX_POP
DC_INST_ASCIIFY, DC_INST_PRINT_STREAM, // DC_LEX_ASCIIFY DC_LEX_PRINT_STREAM
DC_INST_INVALID, DC_INST_INVALID, // DC_LEX_STORE_IBASE DC_LEX_STORE_OBASE
DC_INST_INVALID, DC_INST_INVALID, // DC_LEX_STORE_SCALE DC_LEX_LOAD
DC_INST_INVALID, DC_INST_INVALID, // DC_LEX_LOAD_POP DC_LEX_STORE_PUSH
XC_INST_PRINT, DC_INST_NQUIT, // DC_LEX_PRINT_POP DC_LEX_NQUIT
XC_INST_SCALE_FUNC, // DC_LEX_SCALE_FACTOR
// DC_INST_INVALID in this table either means that corresponding LEX
// is not possible for dc, or that it does not compile one-to-one
// to a single INST.
};
#endif // ENABLE_DC
typedef struct BcParse {
smallint lex; // was BcLexType // first member is most used
smallint lex_last; // was BcLexType
size_t lex_line;
const char *lex_inbuf;
const char *lex_next_at; // last lex_next() was called at this string
const char *lex_filename;
FILE *lex_input_fp;
BcVec lex_strnumbuf;
BcFunc *func;
size_t fidx;
IF_BC(size_t in_funcdef;)
IF_BC(BcVec exits;)
IF_BC(BcVec conds;)
IF_BC(BcVec ops;)
} BcParse;
typedef struct BcProgram {
size_t len;
size_t nchars;
size_t scale;
size_t ib_t;
size_t ob_t;
BcVec results;
BcVec exestack;
BcVec fns;
IF_BC(BcVec fn_map;)
BcVec vars;
BcVec var_map;
BcVec arrs;
BcVec arr_map;
IF_DC(BcVec strs;)
IF_DC(BcVec consts;)
BcNum zero;
IF_BC(BcNum one;)
IF_BC(BcNum last;)
} BcProgram;
struct globals {
BcParse prs; // first member is most used
// For error messages. Can be set to current parsed line,
// or [TODO] to current executing line (can be before last parsed one)
size_t err_line;
BcVec input_buffer;
IF_FEATURE_BC_INTERACTIVE(smallint ttyin;)
IF_FEATURE_CLEAN_UP(smallint exiting;)
BcProgram prog;
BcVec files;
char *env_args;
#if ENABLE_FEATURE_EDITING
line_input_t *line_input_state;
#endif
} FIX_ALIASING;
#define G (*ptr_to_globals)
#define INIT_G() do { \
SET_PTR_TO_GLOBALS(xzalloc(sizeof(G))); \
} while (0)
#define FREE_G() do { \
FREE_PTR_TO_GLOBALS(); \
} while (0)
#define G_posix (ENABLE_BC && (option_mask32 & BC_FLAG_S))
#define G_warn (ENABLE_BC && (option_mask32 & BC_FLAG_W))
#define G_exreg (ENABLE_DC && (option_mask32 & DC_FLAG_X))
#if ENABLE_FEATURE_BC_INTERACTIVE
# define G_interrupt bb_got_signal
# define G_ttyin G.ttyin
#else
# define G_interrupt 0
# define G_ttyin 0
#endif
#if ENABLE_FEATURE_CLEAN_UP
# define G_exiting G.exiting
#else
# define G_exiting 0
#endif
#define IS_BC (ENABLE_BC && (!ENABLE_DC || applet_name[0] == 'b'))
#define IS_DC (ENABLE_DC && (!ENABLE_BC || applet_name[0] != 'b'))
#if ENABLE_BC
# define BC_PARSE_REL (1 << 0)
# define BC_PARSE_PRINT (1 << 1)
# define BC_PARSE_ARRAY (1 << 2)
# define BC_PARSE_NOCALL (1 << 3)
#endif
#define BC_PROG_MAIN 0
#define BC_PROG_READ 1
#if ENABLE_DC
#define BC_PROG_REQ_FUNCS 2
#endif
#define BC_FLAG_W (1 << 0)
#define BC_FLAG_V (1 << 1)
#define BC_FLAG_S (1 << 2)
#define BC_FLAG_Q (1 << 3)
#define BC_FLAG_L (1 << 4)
#define BC_FLAG_I ((1 << 5) * ENABLE_DC)
#define DC_FLAG_X ((1 << 6) * ENABLE_DC)
#define BC_MAX_OBASE ((unsigned) 999)
#define BC_MAX_DIM ((unsigned) INT_MAX)
#define BC_MAX_SCALE ((unsigned) UINT_MAX)
#define BC_MAX_STRING ((unsigned) UINT_MAX - 1)
#define BC_MAX_NUM BC_MAX_STRING
// Unused apart from "limits" message. Just show a "biggish number" there.
//#define BC_MAX_EXP ((unsigned long) LONG_MAX)
//#define BC_MAX_VARS ((unsigned long) SIZE_MAX - 1)
#define BC_MAX_EXP_STR "999999999"
#define BC_MAX_VARS_STR "999999999"
#define BC_MAX_OBASE_STR "999"
#if INT_MAX == 2147483647
# define BC_MAX_DIM_STR "2147483647"
#elif INT_MAX == 9223372036854775807
# define BC_MAX_DIM_STR "9223372036854775807"
#else
# error Strange INT_MAX
#endif
#if UINT_MAX == 4294967295U
# define BC_MAX_SCALE_STR "4294967295"
# define BC_MAX_STRING_STR "4294967294"
#elif UINT_MAX == 18446744073709551615U
# define BC_MAX_SCALE_STR "18446744073709551615"
# define BC_MAX_STRING_STR "18446744073709551614"
#else
# error Strange UINT_MAX
#endif
#define BC_MAX_NUM_STR BC_MAX_STRING_STR
// In configurations where errors abort instead of propagating error
// return code up the call chain, functions returning BC_STATUS
// actually don't return anything, they always succeed and return "void".
// A macro wrapper is provided, which makes this statement work:
// s = zbc_func(...)
// and makes it visible to the compiler that s is always zero,
// allowing compiler to optimize dead code after the statement.
//
// To make code more readable, each such function has a "z"
// ("always returning zero") prefix, i.e. zbc_foo or zdc_foo.
//
#if ENABLE_FEATURE_BC_INTERACTIVE || ENABLE_FEATURE_CLEAN_UP
# define ERRORS_ARE_FATAL 0
# define ERRORFUNC /*nothing*/
# define IF_ERROR_RETURN_POSSIBLE(a) a
# define BC_STATUS BcStatus
# define RETURN_STATUS(v) return (v)
# define COMMA_SUCCESS /*nothing*/
#else
# define ERRORS_ARE_FATAL 1
# define ERRORFUNC NORETURN
# define IF_ERROR_RETURN_POSSIBLE(a) /*nothing*/
# define BC_STATUS void
# define RETURN_STATUS(v) do { ((void)(v)); return; } while (0)
# define COMMA_SUCCESS ,BC_STATUS_SUCCESS
#endif
//
// Utility routines
//
#define BC_MAX(a, b) ((a) > (b) ? (a) : (b))
#define BC_MIN(a, b) ((a) < (b) ? (a) : (b))
static void fflush_and_check(void)
{
fflush_all();
if (ferror(stdout) || ferror(stderr))
bb_simple_perror_msg_and_die("output error");
}
#if ENABLE_FEATURE_CLEAN_UP
#define QUIT_OR_RETURN_TO_MAIN \
do { \
IF_FEATURE_BC_INTERACTIVE(G_ttyin = 0;) /* do not loop in main loop anymore */ \
G_exiting = 1; \
return BC_STATUS_FAILURE; \
} while (0)
#else
static void quit(void) NORETURN;
static void quit(void)
{
if (ferror(stdin))
bb_simple_perror_msg_and_die("input error");
fflush_and_check();
dbg_exec("quit(): exiting with exitcode SUCCESS");
exit(0);
}
#define QUIT_OR_RETURN_TO_MAIN quit()
#endif
static void bc_verror_msg(const char *fmt, va_list p)
{
const char *sv = sv; // for compiler
if (G.prs.lex_filename) {
sv = applet_name;
applet_name = xasprintf("%s: %s:%lu", applet_name,
G.prs.lex_filename, (unsigned long)G.err_line
);
}
bb_verror_msg(fmt, p, NULL);
if (G.prs.lex_filename) {
free((char*)applet_name);
applet_name = sv;
}
}
static NOINLINE ERRORFUNC int bc_error_fmt(const char *fmt, ...)
{
va_list p;
va_start(p, fmt);
bc_verror_msg(fmt, p);
va_end(p);
if (ENABLE_FEATURE_CLEAN_UP || G_ttyin)
IF_ERROR_RETURN_POSSIBLE(return BC_STATUS_FAILURE);
exit(1);
}
#if ENABLE_BC
static NOINLINE BC_STATUS zbc_posix_error_fmt(const char *fmt, ...)
{
va_list p;
// Are non-POSIX constructs totally ok?
if (!(option_mask32 & (BC_FLAG_S|BC_FLAG_W)))
RETURN_STATUS(BC_STATUS_SUCCESS); // yes
va_start(p, fmt);
bc_verror_msg(fmt, p);
va_end(p);
// Do we treat non-POSIX constructs as errors?
if (!(option_mask32 & BC_FLAG_S))
RETURN_STATUS(BC_STATUS_SUCCESS); // no, it's a warning
if (ENABLE_FEATURE_CLEAN_UP || G_ttyin)
RETURN_STATUS(BC_STATUS_FAILURE);
exit(1);
}
#define zbc_posix_error_fmt(...) (zbc_posix_error_fmt(__VA_ARGS__) COMMA_SUCCESS)
#endif
// We use error functions with "return bc_error(FMT[, PARAMS])" idiom.
// This idiom begs for tail-call optimization, but for it to work,
// function must not have caller-cleaned parameters on stack.
// Unfortunately, vararg function API does exactly that on most arches.
// Thus, use these shims for the cases when we have no vararg PARAMS:
static ERRORFUNC int bc_error(const char *msg)
{
IF_ERROR_RETURN_POSSIBLE(return) bc_error_fmt("%s", msg);
}
static ERRORFUNC int bc_error_at(const char *msg)
{
const char *err_at = G.prs.lex_next_at;
if (err_at) {
IF_ERROR_RETURN_POSSIBLE(return) bc_error_fmt(
"%s at '%.*s'",
msg,
(int)(strchrnul(err_at, '\n') - err_at),
err_at
);
}
IF_ERROR_RETURN_POSSIBLE(return) bc_error_fmt("%s", msg);
}
static ERRORFUNC int bc_error_bad_character(char c)
{
if (!c)
IF_ERROR_RETURN_POSSIBLE(return) bc_error("NUL character");
IF_ERROR_RETURN_POSSIBLE(return) bc_error_fmt("bad character '%c'", c);
}
#if ENABLE_BC
static ERRORFUNC int bc_error_bad_function_definition(void)
{
IF_ERROR_RETURN_POSSIBLE(return) bc_error_at("bad function definition");
}
#endif
static ERRORFUNC int bc_error_bad_expression(void)
{
IF_ERROR_RETURN_POSSIBLE(return) bc_error_at("bad expression");
}
static ERRORFUNC int bc_error_bad_assignment(void)
{
IF_ERROR_RETURN_POSSIBLE(return) bc_error_at(
"bad assignment: left side must be variable or array element"
);
}
static ERRORFUNC int bc_error_bad_token(void)
{
IF_ERROR_RETURN_POSSIBLE(return) bc_error_at("bad token");
}
static ERRORFUNC int bc_error_stack_has_too_few_elements(void)
{
IF_ERROR_RETURN_POSSIBLE(return) bc_error("stack has too few elements");
}
static ERRORFUNC int bc_error_variable_is_wrong_type(void)
{
IF_ERROR_RETURN_POSSIBLE(return) bc_error("variable is wrong type");
}
#if ENABLE_BC
static BC_STATUS zbc_POSIX_requires(const char *msg)
{
RETURN_STATUS(zbc_posix_error_fmt("POSIX requires %s", msg));
}
#define zbc_POSIX_requires(...) (zbc_POSIX_requires(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_POSIX_does_not_allow(const char *msg)
{
RETURN_STATUS(zbc_posix_error_fmt("%s%s", "POSIX does not allow ", msg));
}
#define zbc_POSIX_does_not_allow(...) (zbc_POSIX_does_not_allow(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_POSIX_does_not_allow_bool_ops_this_is_bad(const char *msg)
{
RETURN_STATUS(zbc_posix_error_fmt("%s%s %s", "POSIX does not allow ", "boolean operators; this is bad:", msg));
}
#define zbc_POSIX_does_not_allow_bool_ops_this_is_bad(...) (zbc_POSIX_does_not_allow_bool_ops_this_is_bad(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_POSIX_does_not_allow_empty_X_expression_in_for(const char *msg)
{
RETURN_STATUS(zbc_posix_error_fmt("%san empty %s expression in 'for()'", "POSIX does not allow ", msg));
}
#define zbc_POSIX_does_not_allow_empty_X_expression_in_for(...) (zbc_POSIX_does_not_allow_empty_X_expression_in_for(__VA_ARGS__) COMMA_SUCCESS)
#endif
static void bc_vec_grow(BcVec *v, size_t n)
{
size_t cap = v->cap * 2;
while (cap < v->len + n) cap *= 2;
v->v = xrealloc(v->v, v->size * cap);
v->cap = cap;
}
static void bc_vec_init(BcVec *v, size_t esize, BcVecFree dtor)
{
v->size = esize;
v->cap = BC_VEC_START_CAP;
v->len = 0;
v->dtor = dtor;
v->v = xmalloc(esize * BC_VEC_START_CAP);
}
static void bc_char_vec_init(BcVec *v)
{
bc_vec_init(v, sizeof(char), NULL);
}
static void bc_vec_expand(BcVec *v, size_t req)
{
if (v->cap < req) {
v->v = xrealloc(v->v, v->size * req);
v->cap = req;
}
}
static void bc_vec_pop(BcVec *v)
{
v->len--;
if (v->dtor)
v->dtor(v->v + (v->size * v->len));
}
static void bc_vec_npop(BcVec *v, size_t n)
{
if (!v->dtor)
v->len -= n;
else {
size_t len = v->len - n;
while (v->len > len) v->dtor(v->v + (v->size * --v->len));
}
}
static void bc_vec_pop_all(BcVec *v)
{
bc_vec_npop(v, v->len);
}
static size_t bc_vec_npush(BcVec *v, size_t n, const void *data)
{
size_t len = v->len;
if (len + n > v->cap) bc_vec_grow(v, n);
memmove(v->v + (v->size * len), data, v->size * n);
v->len = len + n;
return len;
}
static size_t bc_vec_push(BcVec *v, const void *data)
{
return bc_vec_npush(v, 1, data);
//size_t len = v->len;
//if (len >= v->cap) bc_vec_grow(v, 1);
//memmove(v->v + (v->size * len), data, v->size);
//v->len = len + 1;
//return len;
}
// G.prog.results often needs "pop old operand, push result" idiom.
// Can do this without a few extra ops
static size_t bc_result_pop_and_push(const void *data)
{
BcVec *v = &G.prog.results;
char *last;
size_t len = v->len - 1;
last = v->v + (v->size * len);
if (v->dtor)
v->dtor(last);
memmove(last, data, v->size);
return len;
}
static size_t bc_vec_pushByte(BcVec *v, char data)
{
return bc_vec_push(v, &data);
}
static size_t bc_vec_pushZeroByte(BcVec *v)
{
//return bc_vec_pushByte(v, '\0');
// better:
return bc_vec_push(v, &const_int_0);
}
static void bc_vec_pushAt(BcVec *v, const void *data, size_t idx)
{
if (idx == v->len)
bc_vec_push(v, data);
else {
char *ptr;
if (v->len == v->cap) bc_vec_grow(v, 1);
ptr = v->v + v->size * idx;
memmove(ptr + v->size, ptr, v->size * (v->len++ - idx));
memmove(ptr, data, v->size);
}
}
static void bc_vec_string(BcVec *v, size_t len, const char *str)
{
bc_vec_pop_all(v);
bc_vec_expand(v, len + 1);
memcpy(v->v, str, len);
v->len = len;
bc_vec_pushZeroByte(v);
}
static void *bc_vec_item(const BcVec *v, size_t idx)
{
return v->v + v->size * idx;
}
static void *bc_vec_item_rev(const BcVec *v, size_t idx)
{
return v->v + v->size * (v->len - idx - 1);
}
static void *bc_vec_top(const BcVec *v)
{
return v->v + v->size * (v->len - 1);
}
static FAST_FUNC void bc_vec_free(void *vec)
{
BcVec *v = (BcVec *) vec;
bc_vec_pop_all(v);
free(v->v);
}
static BcFunc* xc_program_func(size_t idx)
{
return bc_vec_item(&G.prog.fns, idx);
}
// BC_PROG_MAIN is zeroth element, so:
#define xc_program_func_BC_PROG_MAIN() ((BcFunc*)(G.prog.fns.v))
#if ENABLE_BC
static BcFunc* bc_program_current_func(void)
{
BcInstPtr *ip = bc_vec_top(&G.prog.exestack);
BcFunc *func = xc_program_func(ip->func);
return func;
}
#endif
static char** xc_program_str(size_t idx)
{
#if ENABLE_BC
if (IS_BC) {
BcFunc *func = bc_program_current_func();
return bc_vec_item(&func->strs, idx);
}
#endif
IF_DC(return bc_vec_item(&G.prog.strs, idx);)
}
static char** xc_program_const(size_t idx)
{
#if ENABLE_BC
if (IS_BC) {
BcFunc *func = bc_program_current_func();
return bc_vec_item(&func->consts, idx);
}
#endif
IF_DC(return bc_vec_item(&G.prog.consts, idx);)
}
static int bc_id_cmp(const void *e1, const void *e2)
{
return strcmp(((const BcId *) e1)->name, ((const BcId *) e2)->name);
}
static FAST_FUNC void bc_id_free(void *id)
{
free(((BcId *) id)->name);
}
static size_t bc_map_find_ge(const BcVec *v, const void *ptr)
{
size_t low = 0, high = v->len;
while (low < high) {
size_t mid = (low + high) / 2;
BcId *id = bc_vec_item(v, mid);
int result = bc_id_cmp(ptr, id);
if (result == 0)
return mid;
if (result < 0)
high = mid;
else
low = mid + 1;
}
return low;
}
static int bc_map_insert(BcVec *v, const void *ptr, size_t *i)
{
size_t n = *i = bc_map_find_ge(v, ptr);
if (n == v->len)
bc_vec_push(v, ptr);
else if (!bc_id_cmp(ptr, bc_vec_item(v, n)))
return 0; // "was not inserted"
else
bc_vec_pushAt(v, ptr, n);
return 1; // "was inserted"
}
static size_t bc_map_find_exact(const BcVec *v, const void *ptr)
{
size_t i = bc_map_find_ge(v, ptr);
if (i >= v->len) return BC_VEC_INVALID_IDX;
return bc_id_cmp(ptr, bc_vec_item(v, i)) ? BC_VEC_INVALID_IDX : i;
}
static void bc_num_setToZero(BcNum *n, size_t scale)
{
n->len = 0;
n->neg = false;
n->rdx = scale;
}
static void bc_num_zero(BcNum *n)
{
bc_num_setToZero(n, 0);
}
static void bc_num_one(BcNum *n)
{
bc_num_setToZero(n, 0);
n->len = 1;
n->num[0] = 1;
}
// Note: this also sets BcNum to zero
static void bc_num_init(BcNum *n, size_t req)
{
req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
//memset(n, 0, sizeof(BcNum)); - cleared by assignments below
n->num = xmalloc(req);
n->cap = req;
n->rdx = 0;
n->len = 0;
n->neg = false;
}
static void bc_num_init_DEF_SIZE(BcNum *n)
{
bc_num_init(n, BC_NUM_DEF_SIZE);
}
static void bc_num_expand(BcNum *n, size_t req)
{
req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
if (req > n->cap) {
n->num = xrealloc(n->num, req);
n->cap = req;
}
}
static FAST_FUNC void bc_num_free(void *num)
{
free(((BcNum *) num)->num);
}
static void bc_num_copy(BcNum *d, BcNum *s)
{
if (d != s) {
bc_num_expand(d, s->cap);
d->len = s->len;
d->neg = s->neg;
d->rdx = s->rdx;
memcpy(d->num, s->num, sizeof(BcDig) * d->len);
}
}
static void bc_num_init_and_copy(BcNum *d, BcNum *s)
{
bc_num_init(d, s->len);
bc_num_copy(d, s);
}
static BC_STATUS zbc_num_ulong_abs(BcNum *n, unsigned long *result_p)
{
size_t i;
unsigned long result;
result = 0;
i = n->len;
while (i > n->rdx) {
unsigned long prev = result;
result = result * 10 + n->num[--i];
// Even overflowed N*10 can still satisfy N*10>=N. For example,
// 0x1ff00000 * 10 is 0x13f600000,
// or 0x3f600000 truncated to 32 bits. Which is larger.
// However, (N*10)/8 < N check is always correct.
if ((result / 8) < prev)
RETURN_STATUS(bc_error("overflow"));
}
*result_p = result;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zbc_num_ulong_abs(...) (zbc_num_ulong_abs(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_num_ulong(BcNum *n, unsigned long *result_p)
{
if (n->neg) RETURN_STATUS(bc_error("negative number"));
RETURN_STATUS(zbc_num_ulong_abs(n, result_p));
}
#define zbc_num_ulong(...) (zbc_num_ulong(__VA_ARGS__) COMMA_SUCCESS)
#if ULONG_MAX == 0xffffffffUL // 10 digits: 4294967295
# define ULONG_NUM_BUFSIZE (10 > BC_NUM_DEF_SIZE ? 10 : BC_NUM_DEF_SIZE)
#elif ULONG_MAX == 0xffffffffffffffffULL // 20 digits: 18446744073709551615
# define ULONG_NUM_BUFSIZE (20 > BC_NUM_DEF_SIZE ? 20 : BC_NUM_DEF_SIZE)
#endif
// minimum BC_NUM_DEF_SIZE, so that bc_num_expand() in bc_num_ulong2num()
// would not hit realloc() code path - not good if num[] is not malloced
static void bc_num_ulong2num(BcNum *n, unsigned long val)
{
BcDig *ptr;
bc_num_zero(n);
if (val == 0) return;
bc_num_expand(n, ULONG_NUM_BUFSIZE);
ptr = n->num;
for (;;) {
n->len++;
*ptr++ = val % 10;
val /= 10;
if (val == 0) break;
}
}
static void bc_num_subArrays(BcDig *restrict a, BcDig *restrict b, size_t len)
{
size_t i, j;
for (i = 0; i < len; ++i) {
a[i] -= b[i];
for (j = i; a[j] < 0;) {
a[j++] += 10;
a[j] -= 1;
}
}
}
static ssize_t bc_num_compare(BcDig *restrict a, BcDig *restrict b, size_t len)
{
size_t i = len;
for (;;) {
int c;
if (i == 0)
return 0;
i--;
c = a[i] - b[i];
if (c != 0) {
i++;
if (c < 0)
return -i;
return i;
}
}
}
#define BC_NUM_NEG(n, neg) ((((ssize_t)(n)) ^ -((ssize_t)(neg))) + (neg))
#define BC_NUM_ONE(n) ((n)->len == 1 && (n)->rdx == 0 && (n)->num[0] == 1)
#define BC_NUM_INT(n) ((n)->len - (n)->rdx)
//#define BC_NUM_AREQ(a, b) (BC_MAX((a)->rdx, (b)->rdx) + BC_MAX(BC_NUM_INT(a), BC_NUM_INT(b)) + 1)
static /*ALWAYS_INLINE*/ size_t BC_NUM_AREQ(BcNum *a, BcNum *b)
{
return BC_MAX(a->rdx, b->rdx) + BC_MAX(BC_NUM_INT(a), BC_NUM_INT(b)) + 1;
}
//#define BC_NUM_MREQ(a, b, scale) (BC_NUM_INT(a) + BC_NUM_INT(b) + BC_MAX((scale), (a)->rdx + (b)->rdx) + 1)
static /*ALWAYS_INLINE*/ size_t BC_NUM_MREQ(BcNum *a, BcNum *b, size_t scale)
{
return BC_NUM_INT(a) + BC_NUM_INT(b) + BC_MAX(scale, a->rdx + b->rdx) + 1;
}
static ssize_t bc_num_cmp(BcNum *a, BcNum *b)
{
size_t i, min, a_int, b_int, diff;
BcDig *max_num, *min_num;
bool a_max, neg;
ssize_t cmp;
if (a == b) return 0;
if (a->len == 0) return BC_NUM_NEG(!!b->len, !b->neg);
if (b->len == 0) return BC_NUM_NEG(1, a->neg);
if (a->neg != b->neg) // signs of a and b differ
// +a,-b = a>b = 1 or -a,+b = a<b = -1
return (int)b->neg - (int)a->neg;
neg = a->neg; // 1 if both negative, 0 if both positive
a_int = BC_NUM_INT(a);
b_int = BC_NUM_INT(b);
a_int -= b_int;
if (a_int != 0) {
if (neg) return - (ssize_t) a_int;
return (ssize_t) a_int;
}
a_max = (a->rdx > b->rdx);
if (a_max) {
min = b->rdx;
diff = a->rdx - b->rdx;
max_num = a->num + diff;
min_num = b->num;
// neg = (a_max == neg); - NOP (maps 1->1 and 0->0)
} else {
min = a->rdx;
diff = b->rdx - a->rdx;
max_num = b->num + diff;
min_num = a->num;
neg = !neg; // same as "neg = (a_max == neg)"
}
cmp = bc_num_compare(max_num, min_num, b_int + min);
if (cmp != 0) return BC_NUM_NEG(cmp, neg);
for (max_num -= diff, i = diff - 1; i < diff; --i) {
if (max_num[i]) return BC_NUM_NEG(1, neg);
}
return 0;
}
static void bc_num_truncate(BcNum *n, size_t places)
{
if (places == 0) return;
n->rdx -= places;
if (n->len != 0) {
n->len -= places;
memmove(n->num, n->num + places, n->len * sizeof(BcDig));
}
}
static void bc_num_extend(BcNum *n, size_t places)
{
size_t len = n->len + places;
if (places != 0) {
if (n->cap < len) bc_num_expand(n, len);
memmove(n->num + places, n->num, sizeof(BcDig) * n->len);
memset(n->num, 0, sizeof(BcDig) * places);
n->len += places;
n->rdx += places;
}
}
static void bc_num_clean(BcNum *n)
{
while (n->len > 0 && n->num[n->len - 1] == 0) --n->len;
if (n->len == 0)
n->neg = false;
else if (n->len < n->rdx)
n->len = n->rdx;
}
static void bc_num_retireMul(BcNum *n, size_t scale, bool neg1, bool neg2)
{
if (n->rdx < scale)
bc_num_extend(n, scale - n->rdx);
else
bc_num_truncate(n, n->rdx - scale);
bc_num_clean(n);
if (n->len != 0) n->neg = !neg1 != !neg2;
}
static void bc_num_split(BcNum *restrict n, size_t idx, BcNum *restrict a,
BcNum *restrict b)
{
if (idx < n->len) {
b->len = n->len - idx;
a->len = idx;
a->rdx = b->rdx = 0;
memcpy(b->num, n->num + idx, b->len * sizeof(BcDig));
memcpy(a->num, n->num, idx * sizeof(BcDig));
} else {
bc_num_zero(b);
bc_num_copy(a, n);
}
bc_num_clean(a);
bc_num_clean(b);
}
static BC_STATUS zbc_num_shift(BcNum *n, size_t places)
{
if (places == 0 || n->len == 0) RETURN_STATUS(BC_STATUS_SUCCESS);
// This check makes sense only if size_t is (much) larger than BC_MAX_NUM.
if (SIZE_MAX > (BC_MAX_NUM | 0xff)) {
if (places + n->len > BC_MAX_NUM)
RETURN_STATUS(bc_error("number too long: must be [1,"BC_MAX_NUM_STR"]"));
}
if (n->rdx >= places)
n->rdx -= places;
else {
bc_num_extend(n, places - n->rdx);
n->rdx = 0;
}
bc_num_clean(n);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zbc_num_shift(...) (zbc_num_shift(__VA_ARGS__) COMMA_SUCCESS)
typedef BC_STATUS (*BcNumBinaryOp)(BcNum *, BcNum *, BcNum *, size_t) FAST_FUNC;
static BC_STATUS zbc_num_binary(BcNum *a, BcNum *b, BcNum *c, size_t scale,
BcNumBinaryOp op, size_t req)
{
BcStatus s;
BcNum num2, *ptr_a, *ptr_b;
bool init = false;
if (c == a) {
ptr_a = &num2;
memcpy(ptr_a, c, sizeof(BcNum));
init = true;
} else
ptr_a = a;
if (c == b) {
ptr_b = &num2;
if (c != a) {
memcpy(ptr_b, c, sizeof(BcNum));
init = true;
}
} else
ptr_b = b;
if (init)
bc_num_init(c, req);
else
bc_num_expand(c, req);
s = BC_STATUS_SUCCESS;
IF_ERROR_RETURN_POSSIBLE(s =) op(ptr_a, ptr_b, c, scale);
if (init) bc_num_free(&num2);
RETURN_STATUS(s);
}
#define zbc_num_binary(...) (zbc_num_binary(__VA_ARGS__) COMMA_SUCCESS)
static FAST_FUNC BC_STATUS zbc_num_a(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static FAST_FUNC BC_STATUS zbc_num_s(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static FAST_FUNC BC_STATUS zbc_num_p(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static FAST_FUNC BC_STATUS zbc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static FAST_FUNC BC_STATUS zbc_num_d(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static FAST_FUNC BC_STATUS zbc_num_rem(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static FAST_FUNC BC_STATUS zbc_num_add(BcNum *a, BcNum *b, BcNum *c, size_t scale)
{
BcNumBinaryOp op = (!a->neg == !b->neg) ? zbc_num_a : zbc_num_s;
(void) scale;
RETURN_STATUS(zbc_num_binary(a, b, c, false, op, BC_NUM_AREQ(a, b)));
}
static FAST_FUNC BC_STATUS zbc_num_sub(BcNum *a, BcNum *b, BcNum *c, size_t scale)
{
BcNumBinaryOp op = (!a->neg == !b->neg) ? zbc_num_s : zbc_num_a;
(void) scale;
RETURN_STATUS(zbc_num_binary(a, b, c, true, op, BC_NUM_AREQ(a, b)));
}
static FAST_FUNC BC_STATUS zbc_num_mul(BcNum *a, BcNum *b, BcNum *c, size_t scale)
{
size_t req = BC_NUM_MREQ(a, b, scale);
RETURN_STATUS(zbc_num_binary(a, b, c, scale, zbc_num_m, req));
}
static FAST_FUNC BC_STATUS zbc_num_div(BcNum *a, BcNum *b, BcNum *c, size_t scale)
{
size_t req = BC_NUM_MREQ(a, b, scale);
RETURN_STATUS(zbc_num_binary(a, b, c, scale, zbc_num_d, req));
}
static FAST_FUNC BC_STATUS zbc_num_mod(BcNum *a, BcNum *b, BcNum *c, size_t scale)
{
size_t req = BC_NUM_MREQ(a, b, scale);
RETURN_STATUS(zbc_num_binary(a, b, c, scale, zbc_num_rem, req));
}
static FAST_FUNC BC_STATUS zbc_num_pow(BcNum *a, BcNum *b, BcNum *c, size_t scale)
{
RETURN_STATUS(zbc_num_binary(a, b, c, scale, zbc_num_p, a->len * b->len + 1));
}
static const BcNumBinaryOp zxc_program_ops[] = {
zbc_num_pow, zbc_num_mul, zbc_num_div, zbc_num_mod, zbc_num_add, zbc_num_sub,
};
#define zbc_num_add(...) (zbc_num_add(__VA_ARGS__) COMMA_SUCCESS)
#define zbc_num_sub(...) (zbc_num_sub(__VA_ARGS__) COMMA_SUCCESS)
#define zbc_num_mul(...) (zbc_num_mul(__VA_ARGS__) COMMA_SUCCESS)
#define zbc_num_div(...) (zbc_num_div(__VA_ARGS__) COMMA_SUCCESS)
#define zbc_num_mod(...) (zbc_num_mod(__VA_ARGS__) COMMA_SUCCESS)
#define zbc_num_pow(...) (zbc_num_pow(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_num_inv(BcNum *a, BcNum *b, size_t scale)
{
BcNum one;
BcDig num[2];
one.cap = 2;
one.num = num;
bc_num_one(&one);
RETURN_STATUS(zbc_num_div(&one, a, b, scale));
}
#define zbc_num_inv(...) (zbc_num_inv(__VA_ARGS__) COMMA_SUCCESS)
static FAST_FUNC BC_STATUS zbc_num_a(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub)
{
BcDig *ptr, *ptr_a, *ptr_b, *ptr_c;
size_t i, max, min_rdx, min_int, diff, a_int, b_int;
unsigned carry;
// Because this function doesn't need to use scale (per the bc spec),
// I am hijacking it to say whether it's doing an add or a subtract.
if (a->len == 0) {
bc_num_copy(c, b);
if (sub && c->len) c->neg = !c->neg;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (b->len == 0) {
bc_num_copy(c, a);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
c->neg = a->neg;
c->rdx = BC_MAX(a->rdx, b->rdx);
min_rdx = BC_MIN(a->rdx, b->rdx);
c->len = 0;
if (a->rdx > b->rdx) {
diff = a->rdx - b->rdx;
ptr = a->num;
ptr_a = a->num + diff;
ptr_b = b->num;
} else {
diff = b->rdx - a->rdx;
ptr = b->num;
ptr_a = a->num;
ptr_b = b->num + diff;
}
ptr_c = c->num;
for (i = 0; i < diff; ++i, ++c->len)
ptr_c[i] = ptr[i];
ptr_c += diff;
a_int = BC_NUM_INT(a);
b_int = BC_NUM_INT(b);
if (a_int > b_int) {
min_int = b_int;
max = a_int;
ptr = ptr_a;
} else {
min_int = a_int;
max = b_int;
ptr = ptr_b;
}
carry = 0;
for (i = 0; i < min_rdx + min_int; ++i) {
unsigned in = (unsigned)ptr_a[i] + (unsigned)ptr_b[i] + carry;
carry = in / 10;
ptr_c[i] = (BcDig)(in % 10);
}
for (; i < max + min_rdx; ++i) {
unsigned in = (unsigned)ptr[i] + carry;
carry = in / 10;
ptr_c[i] = (BcDig)(in % 10);
}
c->len += i;
if (carry != 0) c->num[c->len++] = (BcDig) carry;
RETURN_STATUS(BC_STATUS_SUCCESS); // can't make void, see zbc_num_binary()
}
static FAST_FUNC BC_STATUS zbc_num_s(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub)
{
ssize_t cmp;
BcNum *minuend, *subtrahend;
size_t start;
bool aneg, bneg, neg;
// Because this function doesn't need to use scale (per the bc spec),
// I am hijacking it to say whether it's doing an add or a subtract.
if (a->len == 0) {
bc_num_copy(c, b);
if (sub && c->len) c->neg = !c->neg;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (b->len == 0) {
bc_num_copy(c, a);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
aneg = a->neg;
bneg = b->neg;
a->neg = b->neg = false;
cmp = bc_num_cmp(a, b);
a->neg = aneg;
b->neg = bneg;
if (cmp == 0) {
bc_num_setToZero(c, BC_MAX(a->rdx, b->rdx));
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (cmp > 0) {
neg = a->neg;
minuend = a;
subtrahend = b;
} else {
neg = b->neg;
if (sub) neg = !neg;
minuend = b;
subtrahend = a;
}
bc_num_copy(c, minuend);
c->neg = neg;
if (c->rdx < subtrahend->rdx) {
bc_num_extend(c, subtrahend->rdx - c->rdx);
start = 0;
} else
start = c->rdx - subtrahend->rdx;
bc_num_subArrays(c->num + start, subtrahend->num, subtrahend->len);
bc_num_clean(c);
RETURN_STATUS(BC_STATUS_SUCCESS); // can't make void, see zbc_num_binary()
}
static FAST_FUNC BC_STATUS zbc_num_k(BcNum *restrict a, BcNum *restrict b,
BcNum *restrict c)
#define zbc_num_k(...) (zbc_num_k(__VA_ARGS__) COMMA_SUCCESS)
{
BcStatus s;
size_t max, max2;
BcNum l1, h1, l2, h2, m2, m1, z0, z1, z2, temp;
bool aone;
if (a->len == 0 || b->len == 0) {
bc_num_zero(c);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
aone = BC_NUM_ONE(a);
if (aone || BC_NUM_ONE(b)) {
bc_num_copy(c, aone ? b : a);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (a->len < BC_NUM_KARATSUBA_LEN
|| b->len < BC_NUM_KARATSUBA_LEN
/* || a->len + b->len < BC_NUM_KARATSUBA_LEN - redundant check */
) {
size_t i, j, len;
bc_num_expand(c, a->len + b->len + 1);
memset(c->num, 0, sizeof(BcDig) * c->cap);
c->len = len = 0;
for (i = 0; i < b->len; ++i) {
unsigned carry = 0;
for (j = 0; j < a->len; ++j) {
unsigned in = c->num[i + j];
in += (unsigned)a->num[j] * (unsigned)b->num[i] + carry;
// note: compilers prefer _unsigned_ div/const
carry = in / 10;
c->num[i + j] = (BcDig)(in % 10);
}
c->num[i + j] += (BcDig) carry;
len = BC_MAX(len, i + j + !!carry);
#if ENABLE_FEATURE_BC_INTERACTIVE
// a=2^1000000
// a*a <- without check below, this will not be interruptible
if (G_interrupt) return BC_STATUS_FAILURE;
#endif
}
c->len = len;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
max = BC_MAX(a->len, b->len);
bc_num_init(&l1, max);
bc_num_init(&h1, max);
bc_num_init(&l2, max);
bc_num_init(&h2, max);
bc_num_init(&m1, max);
bc_num_init(&m2, max);
bc_num_init(&z0, max);
bc_num_init(&z1, max);
bc_num_init(&z2, max);
bc_num_init(&temp, max + max);
max2 = (max + 1) / 2;
bc_num_split(a, max2, &l1, &h1);
bc_num_split(b, max2, &l2, &h2);
s = zbc_num_add(&h1, &l1, &m1, 0);
if (s) goto err;
s = zbc_num_add(&h2, &l2, &m2, 0);
if (s) goto err;
s = zbc_num_k(&h1, &h2, &z0);
if (s) goto err;
s = zbc_num_k(&m1, &m2, &z1);
if (s) goto err;
s = zbc_num_k(&l1, &l2, &z2);
if (s) goto err;
s = zbc_num_sub(&z1, &z0, &temp, 0);
if (s) goto err;
s = zbc_num_sub(&temp, &z2, &z1, 0);
if (s) goto err;
s = zbc_num_shift(&z0, max2 * 2);
if (s) goto err;
s = zbc_num_shift(&z1, max2);
if (s) goto err;
s = zbc_num_add(&z0, &z1, &temp, 0);
if (s) goto err;
s = zbc_num_add(&temp, &z2, c, 0);
err:
bc_num_free(&temp);
bc_num_free(&z2);
bc_num_free(&z1);
bc_num_free(&z0);
bc_num_free(&m2);
bc_num_free(&m1);
bc_num_free(&h2);
bc_num_free(&l2);
bc_num_free(&h1);
bc_num_free(&l1);
RETURN_STATUS(s);
}
static FAST_FUNC BC_STATUS zbc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale)
{
BcStatus s;
BcNum cpa, cpb;
size_t maxrdx = BC_MAX(a->rdx, b->rdx);
scale = BC_MAX(scale, a->rdx);
scale = BC_MAX(scale, b->rdx);
scale = BC_MIN(a->rdx + b->rdx, scale);
maxrdx = BC_MAX(maxrdx, scale);
bc_num_init_and_copy(&cpa, a);
bc_num_init_and_copy(&cpb, b);
cpa.neg = cpb.neg = false;
s = zbc_num_shift(&cpa, maxrdx);
if (s) goto err;
s = zbc_num_shift(&cpb, maxrdx);
if (s) goto err;
s = zbc_num_k(&cpa, &cpb, c);
if (s) goto err;
maxrdx += scale;
bc_num_expand(c, c->len + maxrdx);
if (c->len < maxrdx) {
memset(c->num + c->len, 0, (c->cap - c->len) * sizeof(BcDig));
c->len += maxrdx;
}
c->rdx = maxrdx;
bc_num_retireMul(c, scale, a->neg, b->neg);
err:
bc_num_free(&cpb);
bc_num_free(&cpa);
RETURN_STATUS(s);
}
#define zbc_num_m(...) (zbc_num_m(__VA_ARGS__) COMMA_SUCCESS)
static FAST_FUNC BC_STATUS zbc_num_d(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale)
{
BcStatus s;
size_t len, end, i;
BcNum cp;
if (b->len == 0)
RETURN_STATUS(bc_error("divide by zero"));
if (a->len == 0) {
bc_num_setToZero(c, scale);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (BC_NUM_ONE(b)) {
bc_num_copy(c, a);
bc_num_retireMul(c, scale, a->neg, b->neg);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
bc_num_init(&cp, BC_NUM_MREQ(a, b, scale));
bc_num_copy(&cp, a);
len = b->len;
if (len > cp.len) {
bc_num_expand(&cp, len + 2);
bc_num_extend(&cp, len - cp.len);
}
if (b->rdx > cp.rdx) bc_num_extend(&cp, b->rdx - cp.rdx);
cp.rdx -= b->rdx;
if (scale > cp.rdx) bc_num_extend(&cp, scale - cp.rdx);
if (b->rdx == b->len) {
for (;;) {
if (len == 0) break;
len--;
if (b->num[len] != 0)
break;
}
len++;
}
if (cp.cap == cp.len) bc_num_expand(&cp, cp.len + 1);
// We want an extra zero in front to make things simpler.
cp.num[cp.len++] = 0;
end = cp.len - len;
bc_num_expand(c, cp.len);
bc_num_zero(c);
memset(c->num + end, 0, (c->cap - end) * sizeof(BcDig));
c->rdx = cp.rdx;
c->len = cp.len;
s = BC_STATUS_SUCCESS;
for (i = end - 1; i < end; --i) {
BcDig *n, q;
n = cp.num + i;
for (q = 0; n[len] != 0 || bc_num_compare(n, b->num, len) >= 0; ++q)
bc_num_subArrays(n, b->num, len);
c->num[i] = q;
#if ENABLE_FEATURE_BC_INTERACTIVE
// a=2^100000
// scale=40000
// 1/a <- without check below, this will not be interruptible
if (G_interrupt) {
s = BC_STATUS_FAILURE;
break;
}
#endif
}
bc_num_retireMul(c, scale, a->neg, b->neg);
bc_num_free(&cp);
RETURN_STATUS(s);
}
#define zbc_num_d(...) (zbc_num_d(__VA_ARGS__) COMMA_SUCCESS)
static FAST_FUNC BC_STATUS zbc_num_r(BcNum *a, BcNum *b, BcNum *restrict c,
BcNum *restrict d, size_t scale, size_t ts)
{
BcStatus s;
BcNum temp;
bool neg;
if (b->len == 0)
RETURN_STATUS(bc_error("divide by zero"));
if (a->len == 0) {
bc_num_setToZero(d, ts);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
bc_num_init(&temp, d->cap);
s = zbc_num_d(a, b, c, scale);
if (s) goto err;
if (scale != 0) scale = ts;
s = zbc_num_m(c, b, &temp, scale);
if (s) goto err;
s = zbc_num_sub(a, &temp, d, scale);
if (s) goto err;
if (ts > d->rdx && d->len) bc_num_extend(d, ts - d->rdx);
neg = d->neg;
bc_num_retireMul(d, ts, a->neg, b->neg);
d->neg = neg;
err:
bc_num_free(&temp);
RETURN_STATUS(s);
}
#define zbc_num_r(...) (zbc_num_r(__VA_ARGS__) COMMA_SUCCESS)
static FAST_FUNC BC_STATUS zbc_num_rem(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale)
{
BcStatus s;
BcNum c1;
size_t ts = BC_MAX(scale + b->rdx, a->rdx), len = BC_NUM_MREQ(a, b, ts);
bc_num_init(&c1, len);
s = zbc_num_r(a, b, &c1, c, scale, ts);
bc_num_free(&c1);
RETURN_STATUS(s);
}
#define zbc_num_rem(...) (zbc_num_rem(__VA_ARGS__) COMMA_SUCCESS)
static FAST_FUNC BC_STATUS zbc_num_p(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale)
{
BcStatus s = BC_STATUS_SUCCESS;
BcNum copy;
unsigned long pow;
size_t i, powrdx, resrdx;
size_t a_rdx;
bool neg;
// GNU bc does not allow 2^2.0 - we do
for (i = 0; i < b->rdx; i++)
if (b->num[i] != 0)
RETURN_STATUS(bc_error("not an integer"));
// a^b for non-integer b (for a>0) can be implemented as exp(ln(a)*b).
// Possibly better precision would be given by a^int(b) * exp(ln(a)*frac(b)).
if (b->len == 0) {
bc_num_one(c);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (a->len == 0) {
bc_num_setToZero(c, scale);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (BC_NUM_ONE(b)) {
if (!b->neg)
bc_num_copy(c, a);
else
s = zbc_num_inv(a, c, scale);
RETURN_STATUS(s);
}
neg = b->neg;
s = zbc_num_ulong_abs(b, &pow);
if (s) RETURN_STATUS(s);
// b is not used beyond this point
bc_num_init_and_copy(&copy, a);
a_rdx = a->rdx; // pull it into a CPU register (hopefully)
// a is not used beyond this point
if (!neg) {
unsigned long new_scale;
if (a_rdx > scale)
scale = a_rdx;
new_scale = a_rdx * pow;
// Don't fall for multiplication overflow. Example:
// 0.01^2147483648 a_rdx:2 pow:0x80000000, 32bit mul is 0.
//not that it matters with current algorithm, it would OOM on such large powers,
//but it can be improved to detect zero results etc. Example: with scale=0,
//result of 0.01^N for any N>1 is 0: 0.01^2 = 0.0001 ~= 0.00 (trunc to scale)
//then this would matter:
// if a_rdx != 0 and new_scale < pow, we had overflow,
// correct "new_scale" value is larger than ULONG_MAX,
// thus larger than any possible current value of "scale",
// thus "scale = new_scale" should not be done:
if (a_rdx == 0 || new_scale >= pow)
if (new_scale < scale)
scale = new_scale;
}
for (powrdx = a_rdx; !(pow & 1); pow >>= 1) {
powrdx <<= 1;
s = zbc_num_mul(&copy, &copy, &copy, powrdx);
if (s) goto err;
// Not needed: zbc_num_mul() has a check for ^C:
//if (G_interrupt) {
// s = BC_STATUS_FAILURE;
// goto err;
//}
}
bc_num_copy(c, &copy);
for (resrdx = powrdx, pow >>= 1; pow != 0; pow >>= 1) {
powrdx <<= 1;
s = zbc_num_mul(&copy, &copy, &copy, powrdx);
if (s) goto err;
if (pow & 1) {
resrdx += powrdx;
s = zbc_num_mul(c, &copy, c, resrdx);
if (s) goto err;
}
// Not needed: zbc_num_mul() has a check for ^C:
//if (G_interrupt) {
// s = BC_STATUS_FAILURE;
// goto err;
//}
}
if (neg) {
s = zbc_num_inv(c, c, scale);
if (s) goto err;
}
if (c->rdx > scale) bc_num_truncate(c, c->rdx - scale);
// We can't use bc_num_clean() here.
for (i = 0; i < c->len; ++i)
if (c->num[i] != 0)
goto skip;
bc_num_setToZero(c, scale);
skip:
err:
bc_num_free(&copy);
RETURN_STATUS(s);
}
#define zbc_num_p(...) (zbc_num_p(__VA_ARGS__) COMMA_SUCCESS)
static NOINLINE BC_STATUS zbc_num_sqrt(BcNum *a, BcNum *restrict b, size_t scale)
{
BcStatus s;
BcNum num1, num2, half, f, fprime, *x0, *x1, *temp;
BcDig half_digs[1];
size_t pow, len, digs, digs1, resrdx, req, times;
ssize_t cmp, cmp1, cmp2;
req = BC_MAX(scale, a->rdx) + ((BC_NUM_INT(a) + 1) >> 1) + 1;
bc_num_expand(b, req);
if (a->len == 0) {
bc_num_setToZero(b, scale);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (a->neg) {
RETURN_STATUS(bc_error("negative number"));
}
if (BC_NUM_ONE(a)) {
bc_num_one(b);
bc_num_extend(b, scale);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
scale = BC_MAX(scale, a->rdx) + 1;
len = a->len + scale;
bc_num_init(&num1, len);
bc_num_init(&num2, len);
half.cap = ARRAY_SIZE(half_digs);
half.num = half_digs;
bc_num_one(&half);
half_digs[0] = 5;
half.rdx = 1;
bc_num_init(&f, len);
bc_num_init(&fprime, len);
x0 = &num1;
x1 = &num2;
bc_num_one(x0);
pow = BC_NUM_INT(a);
if (pow) {
if (pow & 1)
x0->num[0] = 2;
else
x0->num[0] = 6;
pow -= 2 - (pow & 1);
bc_num_extend(x0, pow);
// Make sure to move the radix back.
x0->rdx -= pow;
}
x0->rdx = digs = digs1 = times = 0;
resrdx = scale + 2;
len = x0->len + resrdx - 1;
cmp = 1;
cmp1 = cmp2 = SSIZE_MAX;
do {
s = zbc_num_div(a, x0, &f, resrdx);
if (s) goto err;
s = zbc_num_add(x0, &f, &fprime, resrdx);
if (s) goto err;
s = zbc_num_mul(&fprime, &half, x1, resrdx);
if (s) goto err;
cmp = bc_num_cmp(x1, x0);
digs = x1->len - (unsigned long long) llabs(cmp);
if (cmp == cmp2 && digs == digs1)
times += 1;
else
times = 0;
resrdx += times > 4;
cmp2 = cmp1;
cmp1 = cmp;
digs1 = digs;
temp = x0;
x0 = x1;
x1 = temp;
} while (cmp != 0 || digs < len);
bc_num_copy(b, x0);
scale -= 1;
if (b->rdx > scale)
bc_num_truncate(b, b->rdx - scale);
err:
bc_num_free(&fprime);
bc_num_free(&f);
bc_num_free(&num2);
bc_num_free(&num1);
RETURN_STATUS(s);
}
#define zbc_num_sqrt(...) (zbc_num_sqrt(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_num_divmod(BcNum *a, BcNum *b, BcNum *c, BcNum *d,
size_t scale)
{
BcStatus s;
BcNum num2, *ptr_a;
bool init = false;
size_t ts = BC_MAX(scale + b->rdx, a->rdx), len = BC_NUM_MREQ(a, b, ts);
if (c == a) {
memcpy(&num2, c, sizeof(BcNum));
ptr_a = &num2;
bc_num_init(c, len);
init = true;
} else {
ptr_a = a;
bc_num_expand(c, len);
}
s = zbc_num_r(ptr_a, b, c, d, scale, ts);
if (init) bc_num_free(&num2);
RETURN_STATUS(s);
}
#define zbc_num_divmod(...) (zbc_num_divmod(__VA_ARGS__) COMMA_SUCCESS)
#if ENABLE_DC
static BC_STATUS zdc_num_modexp(BcNum *a, BcNum *b, BcNum *c, BcNum *restrict d)
{
BcStatus s;
BcNum base, exp, two, temp;
BcDig two_digs[1];
if (c->len == 0)
RETURN_STATUS(bc_error("divide by zero"));
if (a->rdx || b->rdx || c->rdx)
RETURN_STATUS(bc_error("not an integer"));
if (b->neg)
RETURN_STATUS(bc_error("negative number"));
bc_num_expand(d, c->len);
bc_num_init(&base, c->len);
bc_num_init(&exp, b->len);
bc_num_init(&temp, b->len);
two.cap = ARRAY_SIZE(two_digs);
two.num = two_digs;
bc_num_one(&two);
two_digs[0] = 2;
bc_num_one(d);
s = zbc_num_rem(a, c, &base, 0);
if (s) goto err;
bc_num_copy(&exp, b);
while (exp.len != 0) {
s = zbc_num_divmod(&exp, &two, &exp, &temp, 0);
if (s) goto err;
if (BC_NUM_ONE(&temp)) {
s = zbc_num_mul(d, &base, &temp, 0);
if (s) goto err;
s = zbc_num_rem(&temp, c, d, 0);
if (s) goto err;
}
s = zbc_num_mul(&base, &base, &temp, 0);
if (s) goto err;
s = zbc_num_rem(&temp, c, &base, 0);
if (s) goto err;
}
err:
bc_num_free(&temp);
bc_num_free(&exp);
bc_num_free(&base);
RETURN_STATUS(s);
}
#define zdc_num_modexp(...) (zdc_num_modexp(__VA_ARGS__) COMMA_SUCCESS)
#endif // ENABLE_DC
static FAST_FUNC void bc_string_free(void *string)
{
free(*(char**)string);
}
static void bc_func_init(BcFunc *f)
{
bc_char_vec_init(&f->code);
IF_BC(bc_vec_init(&f->labels, sizeof(size_t), NULL);)
IF_BC(bc_vec_init(&f->autos, sizeof(BcId), bc_id_free);)
IF_BC(bc_vec_init(&f->strs, sizeof(char *), bc_string_free);)
IF_BC(bc_vec_init(&f->consts, sizeof(char *), bc_string_free);)
IF_BC(f->nparams = 0;)
}
static FAST_FUNC void bc_func_free(void *func)
{
BcFunc *f = (BcFunc *) func;
bc_vec_free(&f->code);
IF_BC(bc_vec_free(&f->labels);)
IF_BC(bc_vec_free(&f->autos);)
IF_BC(bc_vec_free(&f->strs);)
IF_BC(bc_vec_free(&f->consts);)
}
static void bc_array_expand(BcVec *a, size_t len);
static void bc_array_init(BcVec *a, bool nums)
{
if (nums)
bc_vec_init(a, sizeof(BcNum), bc_num_free);
else
bc_vec_init(a, sizeof(BcVec), bc_vec_free);
bc_array_expand(a, 1);
}
static void bc_array_expand(BcVec *a, size_t len)
{
if (a->dtor == bc_num_free
// && a->size == sizeof(BcNum) - always true
) {
BcNum n;
while (len > a->len) {
bc_num_init_DEF_SIZE(&n);
bc_vec_push(a, &n);
}
} else {
BcVec v;
while (len > a->len) {
bc_array_init(&v, true);
bc_vec_push(a, &v);
}
}
}
static void bc_array_copy(BcVec *d, const BcVec *s)
{
BcNum *dnum, *snum;
size_t i;
bc_vec_pop_all(d);
bc_vec_expand(d, s->cap);
d->len = s->len;
dnum = (void*)d->v;
snum = (void*)s->v;
for (i = 0; i < s->len; i++, dnum++, snum++) {
bc_num_init_and_copy(dnum, snum);
}
}
#if ENABLE_DC
static void dc_result_copy(BcResult *d, BcResult *src)
{
d->t = src->t;
switch (d->t) {
case XC_RESULT_TEMP:
case XC_RESULT_IBASE:
case XC_RESULT_SCALE:
case XC_RESULT_OBASE:
bc_num_init_and_copy(&d->d.n, &src->d.n);
break;
case XC_RESULT_VAR:
case XC_RESULT_ARRAY:
case XC_RESULT_ARRAY_ELEM:
d->d.id.name = xstrdup(src->d.id.name);
break;
case XC_RESULT_CONSTANT:
case XC_RESULT_STR:
memcpy(&d->d.n, &src->d.n, sizeof(BcNum));
break;
default: // placate compiler
// BC_RESULT_VOID, BC_RESULT_LAST, BC_RESULT_ONE - do not happen
break;
}
}
#endif // ENABLE_DC
static FAST_FUNC void bc_result_free(void *result)
{
BcResult *r = (BcResult *) result;
switch (r->t) {
case XC_RESULT_TEMP:
IF_BC(case BC_RESULT_VOID:)
case XC_RESULT_IBASE:
case XC_RESULT_SCALE:
case XC_RESULT_OBASE:
bc_num_free(&r->d.n);
break;
case XC_RESULT_VAR:
case XC_RESULT_ARRAY:
case XC_RESULT_ARRAY_ELEM:
free(r->d.id.name);
break;
default:
// Do nothing.
break;
}
}
static int bad_input_byte(char c)
{
if ((c < ' ' && c != '\t' && c != '\r' && c != '\n') // also allow '\v' '\f'?
|| c > 0x7e
) {
bc_error_fmt("illegal character 0x%02x", c);
return 1;
}
return 0;
}
static void xc_read_line(BcVec *vec, FILE *fp)
{
again:
bc_vec_pop_all(vec);
fflush_and_check();
#if ENABLE_FEATURE_BC_INTERACTIVE
if (G_interrupt) { // ^C was pressed
if (fp != stdin) {
// ^C while running a script (bc SCRIPT): die.
// We do not return to interactive prompt:
// user might be running us from a shell,
// and SCRIPT might be intended to terminate
// (e.g. contain a "halt" stmt).
// ^C dropping user into a bc prompt instead of
// the shell would be unexpected.
xfunc_die();
}
// There was ^C while running calculations
G_interrupt = 0;
// GNU bc says "interrupted execution." (to stdout, not stderr)
// GNU dc says "Interrupt!"
puts("\ninterrupted execution");
}
# if ENABLE_FEATURE_EDITING
if (G_ttyin && fp == stdin) {
int n, i;
if (!G.line_input_state)
G.line_input_state = new_line_input_t(DO_HISTORY);
# define line_buf bb_common_bufsiz1
n = read_line_input(G.line_input_state, "", line_buf, COMMON_BUFSIZE);
if (n <= 0) { // read errors or EOF, or ^D, or ^C
//GNU bc prints this on ^C:
//if (n == 0) // ^C
// puts("(interrupt) Exiting bc.");
bc_vec_pushZeroByte(vec);
return;
}
i = 0;
for (;;) {
char c = line_buf[i++];
if (c == '\0') break;
if (bad_input_byte(c)) goto again;
}
bc_vec_string(vec, n, line_buf);
# undef line_buf
} else
# endif
#endif
{
int c;
bool bad_chars = 0;
do {
get_char:
#if ENABLE_FEATURE_BC_INTERACTIVE
if (G_interrupt) {
// ^C was pressed: ignore entire line, get another one
goto again;
}
#endif
c = fgetc(fp);
if (c == '\0')
goto get_char;
if (c == EOF) {
if (ferror(fp))
bb_simple_perror_msg_and_die("input error");
// Note: EOF does not append '\n'
break;
}
bad_chars |= bad_input_byte(c);
bc_vec_pushByte(vec, (char)c);
} while (c != '\n');
if (bad_chars) {
// Bad chars on this line
if (!G.prs.lex_filename) { // stdin
// ignore entire line, get another one
goto again;
}
bb_perror_msg_and_die("file '%s' is not text", G.prs.lex_filename);
}
bc_vec_pushZeroByte(vec);
}
}
//
// Parsing routines
//
// "Input numbers may contain the characters 0-9 and A-Z.
// (Note: They must be capitals. Lower case letters are variable names.)
// Single digit numbers always have the value of the digit regardless of
// the value of ibase. (i.e. A = 10.) For multi-digit numbers, bc changes
// all input digits greater or equal to ibase to the value of ibase-1.
// This makes the number ZZZ always be the largest 3 digit number of the
// input base."
static bool xc_num_strValid(const char *val)
{
bool radix = false;
for (;;) {
BcDig c = *val++;
if (c == '\0')
break;
if (c == '.') {
if (radix) return false;
radix = true;
continue;
}
if ((c < '0' || c > '9') && (c < 'A' || c > 'Z'))
return false;
}
return true;
}
// Note: n is already "bc_num_zero()"ed,
// leading zeroes in "val" are removed
static void bc_num_parseDecimal(BcNum *n, const char *val)
{
size_t len, i;
const char *ptr;
len = strlen(val);
if (len == 0)
return;
bc_num_expand(n, len + 1); // +1 for e.g. "A" converting into 10
ptr = strchr(val, '.');
n->rdx = 0;
if (ptr != NULL)
n->rdx = (size_t)((val + len) - (ptr + 1));
for (i = 0; val[i]; ++i) {
if (val[i] != '0' && val[i] != '.') {
// Not entirely zero value - convert it, and exit
if (len == 1) {
unsigned c = val[0] - '0';
n->len = 1;
if (c > 9) { // A-Z => 10-36
n->len = 2;
c -= ('A' - '9' - 1);
n->num[1] = c/10;
c = c%10;
}
n->num[0] = c;
break;
}
i = len - 1;
for (;;) {
char c = val[i] - '0';
if (c > 9) // A-Z => 9
c = 9;
n->num[n->len] = c;
n->len++;
skip_dot:
if (i == 0) break;
if (val[--i] == '.') goto skip_dot;
}
break;
}
}
// if for() exits without hitting if(), the value is entirely zero
}
// Note: n is already "bc_num_zero()"ed,
// leading zeroes in "val" are removed
static void bc_num_parseBase(BcNum *n, const char *val, unsigned base_t)
{
BcStatus s;
BcNum mult, result;
BcNum temp;
BcNum base;
BcDig temp_digs[ULONG_NUM_BUFSIZE];
BcDig base_digs[ULONG_NUM_BUFSIZE];
size_t digits;
bc_num_init_DEF_SIZE(&mult);
temp.cap = ARRAY_SIZE(temp_digs);
temp.num = temp_digs;
base.cap = ARRAY_SIZE(base_digs);
base.num = base_digs;
bc_num_ulong2num(&base, base_t);
base_t--;
for (;;) {
unsigned v;
char c;
c = *val++;
if (c == '\0') goto int_err;
if (c == '.') break;
v = (unsigned)(c <= '9' ? c - '0' : c - 'A' + 10);
if (v > base_t) v = base_t;
s = zbc_num_mul(n, &base, &mult, 0);
if (s) goto int_err;
bc_num_ulong2num(&temp, v);
s = zbc_num_add(&mult, &temp, n, 0);
if (s) goto int_err;
}
bc_num_init(&result, base.len);
//bc_num_zero(&result); - already is
bc_num_one(&mult);
digits = 0;
for (;;) {
unsigned v;
char c;
c = *val++;
if (c == '\0') break;
digits++;
v = (unsigned)(c <= '9' ? c - '0' : c - 'A' + 10);
if (v > base_t) v = base_t;
s = zbc_num_mul(&result, &base, &result, 0);
if (s) goto err;
bc_num_ulong2num(&temp, v);
s = zbc_num_add(&result, &temp, &result, 0);
if (s) goto err;
s = zbc_num_mul(&mult, &base, &mult, 0);
if (s) goto err;
}
s = zbc_num_div(&result, &mult, &result, digits);
if (s) goto err;
s = zbc_num_add(n, &result, n, digits);
if (s) goto err;
if (n->len != 0) {
if (n->rdx < digits)
bc_num_extend(n, digits - n->rdx);
} else
bc_num_zero(n);
err:
bc_num_free(&result);
int_err:
bc_num_free(&mult);
}
static BC_STATUS zxc_num_parse(BcNum *n, const char *val, unsigned base_t)
{
size_t i;
if (!xc_num_strValid(val))
RETURN_STATUS(bc_error("bad number string"));
bc_num_zero(n);
while (*val == '0')
val++;
for (i = 0; ; ++i) {
if (val[i] == '\0')
RETURN_STATUS(BC_STATUS_SUCCESS);
if (val[i] != '.' && val[i] != '0')
break;
}
if (base_t == 10 || val[1] == '\0')
// Decimal, or single-digit number
bc_num_parseDecimal(n, val);
else
bc_num_parseBase(n, val, base_t);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zxc_num_parse(...) (zxc_num_parse(__VA_ARGS__) COMMA_SUCCESS)
// p->lex_inbuf points to the current string to be parsed.
// if p->lex_inbuf points to '\0', it's either EOF or it points after
// last processed line's terminating '\n' (and more reading needs to be done
// to get next character).
//
// If you are in a situation where that is a possibility, call peek_inbuf().
// If necessary, it performs more reading and changes p->lex_inbuf,
// then it returns *p->lex_inbuf (which will be '\0' only if it's EOF).
// After it, just referencing *p->lex_inbuf is valid, and if it wasn't '\0',
// it's ok to do p->lex_inbuf++ once without end-of-buffer checking.
//
// eat_inbuf() is equvalent to "peek_inbuf(); if (c) p->lex_inbuf++":
// it returns current char and advances the pointer (if not EOF).
// After eat_inbuf(), referencing p->lex_inbuf[-1] and *p->lex_inbuf is valid.
//
// In many cases, you can use fast *p->lex_inbuf instead of peek_inbuf():
// unless prev char might have been '\n', *p->lex_inbuf is '\0' ONLY
// on real EOF, not end-of-buffer.
//
// bc cases to test interactively:
// 1 #comment\ - prints "1<newline>" at once (comment is not continued)
// 1 #comment/* - prints "1<newline>" at once
// 1 #comment" - prints "1<newline>" at once
// 1\#comment - error at once (\ is not a line continuation)
// 1 + /*"*/2 - prints "3<newline>" at once
// 1 + /*#*/2 - prints "3<newline>" at once
// "str\" - prints "str\" at once
// "str#" - prints "str#" at once
// "str/*" - prints "str/*" at once
// "str#\ - waits for second line
// end" - ...prints "str#\<newline>end"
static char peek_inbuf(void)
{
if (*G.prs.lex_inbuf == '\0'
&& G.prs.lex_input_fp
) {
xc_read_line(&G.input_buffer, G.prs.lex_input_fp);
G.prs.lex_inbuf = G.input_buffer.v;
// lex_next_at may point to now-freed data, update it:
G.prs.lex_next_at = G.prs.lex_inbuf;
if (G.input_buffer.len <= 1) // on EOF, len is 1 (NUL byte)
G.prs.lex_input_fp = NULL;
}
return *G.prs.lex_inbuf;
}
static char eat_inbuf(void)
{
char c = peek_inbuf();
if (c) G.prs.lex_inbuf++;
return c;
}
static void xc_lex_lineComment(void)
{
BcParse *p = &G.prs;
char c;
// Try: echo -n '#foo' | bc
p->lex = XC_LEX_WHITESPACE;
// Not peek_inbuf(): we depend on input being done in whole lines:
// '\0' which isn't the EOF can only be seen after '\n'.
while ((c = *p->lex_inbuf) != '\n' && c != '\0')
p->lex_inbuf++;
}
static void xc_lex_whitespace(void)
{
BcParse *p = &G.prs;
p->lex = XC_LEX_WHITESPACE;
for (;;) {
// We depend here on input being done in whole lines:
// '\0' which isn't the EOF can only be seen after '\n'.
char c = *p->lex_inbuf;
if (c == '\n') // this is XC_LEX_NLINE, not XC_LEX_WHITESPACE
break;
if (!isspace(c))
break;
p->lex_inbuf++;
}
}
static BC_STATUS zxc_lex_number(char last)
{
BcParse *p = &G.prs;
bool pt;
char last_valid_ch;
bc_vec_pop_all(&p->lex_strnumbuf);
bc_vec_pushByte(&p->lex_strnumbuf, last);
// bc: "Input numbers may contain the characters 0-9 and A-Z.
// (Note: They must be capitals. Lower case letters are variable names.)
// Single digit numbers always have the value of the digit regardless of
// the value of ibase. (i.e. A = 10.) For multi-digit numbers, bc changes
// all input digits greater or equal to ibase to the value of ibase-1.
// This makes the number ZZZ always be the largest 3 digit number of the
// input base."
// dc only allows A-F, the rules about single-char and multi-char are the same.
last_valid_ch = (IS_BC ? 'Z' : 'F');
pt = (last == '.');
p->lex = XC_LEX_NUMBER;
for (;;) {
// We depend here on input being done in whole lines:
// '\0' which isn't the EOF can only be seen after '\n'.
char c = *p->lex_inbuf;
check_c:
if (c == '\0')
break;
if (c == '\\' && p->lex_inbuf[1] == '\n') {
p->lex_inbuf += 2;
p->lex_line++;
dbg_lex("++p->lex_line=%zd", p->lex_line);
c = peek_inbuf(); // force next line to be read
goto check_c;
}
if (!isdigit(c) && (c < 'A' || c > last_valid_ch)) {
if (c != '.') break;
// if '.' was already seen, stop on second one:
if (pt) break;
pt = true;
}
// c is one of "0-9A-Z."
last = c;
bc_vec_push(&p->lex_strnumbuf, p->lex_inbuf);
p->lex_inbuf++;
}
if (last == '.') // remove trailing '.' if any
bc_vec_pop(&p->lex_strnumbuf);
bc_vec_pushZeroByte(&p->lex_strnumbuf);
G.err_line = G.prs.lex_line;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zxc_lex_number(...) (zxc_lex_number(__VA_ARGS__) COMMA_SUCCESS)
static void xc_lex_name(void)
{
BcParse *p = &G.prs;
size_t i;
const char *buf;
p->lex = XC_LEX_NAME;
// Since names can't cross lines with \<newline>,
// we depend on the fact that whole line is in the buffer
i = 0;
buf = p->lex_inbuf - 1;
for (;;) {
char c = buf[i];
if ((c < 'a' || c > 'z') && !isdigit(c) && c != '_') break;
i++;
}
#if 0 // We do not protect against people with gigabyte-long names
// This check makes sense only if size_t is (much) larger than BC_MAX_STRING.
if (SIZE_MAX > (BC_MAX_STRING | 0xff)) {
if (i > BC_MAX_STRING)
return bc_error("name too long: must be [1,"BC_MAX_STRING_STR"]");
}
#endif
bc_vec_string(&p->lex_strnumbuf, i, buf);
// Increment the index. We minus 1 because it has already been incremented.
p->lex_inbuf += i - 1;
//return BC_STATUS_SUCCESS;
}
IF_BC(static BC_STATUS zbc_lex_token(void);)
IF_DC(static BC_STATUS zdc_lex_token(void);)
#define zbc_lex_token(...) (zbc_lex_token(__VA_ARGS__) COMMA_SUCCESS)
#define zdc_lex_token(...) (zdc_lex_token(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zxc_lex_next(void)
{
BcParse *p = &G.prs;
BcStatus s;
G.err_line = p->lex_line;
p->lex_last = p->lex;
//why?
// if (p->lex_last == XC_LEX_EOF)
// RETURN_STATUS(bc_error("end of file"));
// Loop until failure or we don't have whitespace. This
// is so the parser doesn't get inundated with whitespace.
// Comments are also XC_LEX_WHITESPACE tokens and eaten here.
s = BC_STATUS_SUCCESS;
do {
if (*p->lex_inbuf == '\0') {
p->lex = XC_LEX_EOF;
if (peek_inbuf() == '\0')
RETURN_STATUS(BC_STATUS_SUCCESS);
}
p->lex_next_at = p->lex_inbuf;
dbg_lex("next string to parse:'%.*s'",
(int)(strchrnul(p->lex_next_at, '\n') - p->lex_next_at),
p->lex_next_at
);
if (IS_BC) {
IF_BC(s = zbc_lex_token());
} else {
IF_DC(s = zdc_lex_token());
}
} while (!s && p->lex == XC_LEX_WHITESPACE);
dbg_lex("p->lex from string:%d", p->lex);
RETURN_STATUS(s);
}
#define zxc_lex_next(...) (zxc_lex_next(__VA_ARGS__) COMMA_SUCCESS)
#if ENABLE_BC
static BC_STATUS zbc_lex_skip_if_at_NLINE(void)
{
if (G.prs.lex == XC_LEX_NLINE)
RETURN_STATUS(zxc_lex_next());
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zbc_lex_skip_if_at_NLINE(...) (zbc_lex_skip_if_at_NLINE(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_lex_next_and_skip_NLINE(void)
{
BcStatus s;
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
// if(cond)<newline>stmt is accepted too (but not 2+ newlines)
s = zbc_lex_skip_if_at_NLINE();
RETURN_STATUS(s);
}
#define zbc_lex_next_and_skip_NLINE(...) (zbc_lex_next_and_skip_NLINE(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_lex_identifier(void)
{
BcParse *p = &G.prs;
BcStatus s;
unsigned i;
const char *buf = p->lex_inbuf - 1;
for (i = 0; i < ARRAY_SIZE(bc_lex_kws); ++i) {
const char *keyword8 = bc_lex_kws[i].name8;
unsigned j = 0;
while (buf[j] != '\0' && buf[j] == keyword8[j]) {
j++;
if (j == 8) goto match;
}
if (keyword8[j] != '\0')
continue;
match:
// buf starts with keyword bc_lex_kws[i]
if (isalnum(buf[j]) || buf[j] == '_')
continue; // "ifz" does not match "if" keyword, "if." does
p->lex = BC_LEX_KEY_1st_keyword + i;
if (!keyword_is_POSIX(i)) {
s = zbc_posix_error_fmt("%sthe '%.8s' keyword", "POSIX does not allow ", bc_lex_kws[i].name8);
if (s) RETURN_STATUS(s);
}
// We minus 1 because the index has already been incremented.
p->lex_inbuf += j - 1;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
xc_lex_name();
s = BC_STATUS_SUCCESS;
if (p->lex_strnumbuf.len > 2) {
// Prevent this:
// >>> qwe=1
// bc: POSIX only allows one character names; this is bad: 'qwe=1
// '
unsigned len = strchrnul(buf, '\n') - buf;
s = zbc_posix_error_fmt("POSIX only allows one character names; this is bad: '%.*s'", len, buf);
}
RETURN_STATUS(s);
}
#define zbc_lex_identifier(...) (zbc_lex_identifier(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_lex_string(void)
{
BcParse *p = &G.prs;
p->lex = XC_LEX_STR;
bc_vec_pop_all(&p->lex_strnumbuf);
for (;;) {
char c = peek_inbuf(); // strings can cross lines
if (c == '\0') {
RETURN_STATUS(bc_error("unterminated string"));
}
if (c == '"')
break;
if (c == '\n') {
p->lex_line++;
dbg_lex("++p->lex_line=%zd", p->lex_line);
}
bc_vec_push(&p->lex_strnumbuf, p->lex_inbuf);
p->lex_inbuf++;
}
bc_vec_pushZeroByte(&p->lex_strnumbuf);
p->lex_inbuf++;
G.err_line = p->lex_line;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zbc_lex_string(...) (zbc_lex_string(__VA_ARGS__) COMMA_SUCCESS)
static void parse_lex_by_checking_eq_sign(unsigned with_and_without)
{
BcParse *p = &G.prs;
if (*p->lex_inbuf == '=') {
// ^^^ not using peek_inbuf() since '==' etc can't be split across lines
p->lex_inbuf++;
with_and_without >>= 8; // store "with" value
} // else store "without" value
p->lex = (with_and_without & 0xff);
}
#define parse_lex_by_checking_eq_sign(with, without) \
parse_lex_by_checking_eq_sign(((with)<<8)|(without))
static BC_STATUS zbc_lex_comment(void)
{
BcParse *p = &G.prs;
p->lex = XC_LEX_WHITESPACE;
// here lex_inbuf is at '*' of opening comment delimiter
for (;;) {
char c;
p->lex_inbuf++;
c = peek_inbuf();
check_star:
if (c == '*') {
p->lex_inbuf++;
c = *p->lex_inbuf; // no need to peek_inbuf()
if (c == '/')
break;
goto check_star;
}
if (c == '\0') {
RETURN_STATUS(bc_error("unterminated comment"));
}
if (c == '\n') {
p->lex_line++;
dbg_lex("++p->lex_line=%zd", p->lex_line);
}
}
p->lex_inbuf++; // skip trailing '/'
G.err_line = p->lex_line;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zbc_lex_comment(...) (zbc_lex_comment(__VA_ARGS__) COMMA_SUCCESS)
#undef zbc_lex_token
static BC_STATUS zbc_lex_token(void)
{
BcParse *p = &G.prs;
BcStatus s = BC_STATUS_SUCCESS;
char c = eat_inbuf();
char c2;
// This is the workhorse of the lexer.
switch (c) {
// case '\0': // probably never reached
// p->lex_inbuf--;
// p->lex = XC_LEX_EOF;
// break;
case '\n':
p->lex_line++;
dbg_lex("++p->lex_line=%zd", p->lex_line);
p->lex = XC_LEX_NLINE;
break;
case '\t':
case '\v':
case '\f':
case '\r':
case ' ':
xc_lex_whitespace();
break;
case '!':
parse_lex_by_checking_eq_sign(XC_LEX_OP_REL_NE, BC_LEX_OP_BOOL_NOT);
if (p->lex == BC_LEX_OP_BOOL_NOT) {
s = zbc_POSIX_does_not_allow_bool_ops_this_is_bad("!");
if (s) RETURN_STATUS(s);
}
break;
case '"':
s = zbc_lex_string();
break;
case '#':
s = zbc_POSIX_does_not_allow("'#' script comments");
if (s) RETURN_STATUS(s);
xc_lex_lineComment();
break;
case '%':
parse_lex_by_checking_eq_sign(BC_LEX_OP_ASSIGN_MODULUS, XC_LEX_OP_MODULUS);
break;
case '&':
c2 = *p->lex_inbuf;
if (c2 == '&') {
s = zbc_POSIX_does_not_allow_bool_ops_this_is_bad("&&");
if (s) RETURN_STATUS(s);
p->lex_inbuf++;
p->lex = BC_LEX_OP_BOOL_AND;
} else {
p->lex = XC_LEX_INVALID;
s = bc_error_bad_character('&');
}
break;
case '(':
case ')':
p->lex = (BcLexType)(c - '(' + BC_LEX_LPAREN);
break;
case '*':
parse_lex_by_checking_eq_sign(BC_LEX_OP_ASSIGN_MULTIPLY, XC_LEX_OP_MULTIPLY);
break;
case '+':
c2 = *p->lex_inbuf;
if (c2 == '+') {
p->lex_inbuf++;
p->lex = BC_LEX_OP_INC;
} else
parse_lex_by_checking_eq_sign(BC_LEX_OP_ASSIGN_PLUS, XC_LEX_OP_PLUS);
break;
case ',':
p->lex = BC_LEX_COMMA;
break;
case '-':
c2 = *p->lex_inbuf;
if (c2 == '-') {
p->lex_inbuf++;
p->lex = BC_LEX_OP_DEC;
} else
parse_lex_by_checking_eq_sign(BC_LEX_OP_ASSIGN_MINUS, XC_LEX_OP_MINUS);
break;
case '.':
if (isdigit(*p->lex_inbuf))
s = zxc_lex_number(c);
else {
p->lex = BC_LEX_KEY_LAST;
s = zbc_POSIX_does_not_allow("'.' as 'last'");
}
break;
case '/':
c2 = *p->lex_inbuf;
if (c2 == '*')
s = zbc_lex_comment();
else
parse_lex_by_checking_eq_sign(BC_LEX_OP_ASSIGN_DIVIDE, XC_LEX_OP_DIVIDE);
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
case 'G':
case 'H':
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P':
case 'Q':
case 'R':
case 'S':
case 'T':
case 'U':
case 'V':
case 'W':
case 'X':
case 'Y':
case 'Z':
s = zxc_lex_number(c);
break;
case ';':
p->lex = BC_LEX_SCOLON;
break;
case '<':
parse_lex_by_checking_eq_sign(XC_LEX_OP_REL_LE, XC_LEX_OP_REL_LT);
break;
case '=':
parse_lex_by_checking_eq_sign(XC_LEX_OP_REL_EQ, BC_LEX_OP_ASSIGN);
break;
case '>':
parse_lex_by_checking_eq_sign(XC_LEX_OP_REL_GE, XC_LEX_OP_REL_GT);
break;
case '[':
case ']':
p->lex = (BcLexType)(c - '[' + BC_LEX_LBRACKET);
break;
case '\\':
if (*p->lex_inbuf == '\n') {
p->lex = XC_LEX_WHITESPACE;
p->lex_inbuf++;
} else
s = bc_error_bad_character(c);
break;
case '^':
parse_lex_by_checking_eq_sign(BC_LEX_OP_ASSIGN_POWER, XC_LEX_OP_POWER);
break;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
case 'g':
case 'h':
case 'i':
case 'j':
case 'k':
case 'l':
case 'm':
case 'n':
case 'o':
case 'p':
case 'q':
case 'r':
case 's':
case 't':
case 'u':
case 'v':
case 'w':
case 'x':
case 'y':
case 'z':
s = zbc_lex_identifier();
break;
case '{':
case '}':
p->lex = (BcLexType)(c - '{' + BC_LEX_LBRACE);
break;
case '|':
c2 = *p->lex_inbuf;
if (c2 == '|') {
s = zbc_POSIX_does_not_allow_bool_ops_this_is_bad("||");
if (s) RETURN_STATUS(s);
p->lex_inbuf++;
p->lex = BC_LEX_OP_BOOL_OR;
} else {
p->lex = XC_LEX_INVALID;
s = bc_error_bad_character(c);
}
break;
default:
p->lex = XC_LEX_INVALID;
s = bc_error_bad_character(c);
break;
}
RETURN_STATUS(s);
}
#define zbc_lex_token(...) (zbc_lex_token(__VA_ARGS__) COMMA_SUCCESS)
#endif // ENABLE_BC
#if ENABLE_DC
static BC_STATUS zdc_lex_register(void)
{
BcParse *p = &G.prs;
if (G_exreg && isspace(*p->lex_inbuf)) {
xc_lex_whitespace(); // eats whitespace (but not newline)
p->lex_inbuf++; // xc_lex_name() expects this
xc_lex_name();
} else {
bc_vec_pop_all(&p->lex_strnumbuf);
bc_vec_push(&p->lex_strnumbuf, p->lex_inbuf++);
bc_vec_pushZeroByte(&p->lex_strnumbuf);
p->lex = XC_LEX_NAME;
}
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zdc_lex_register(...) (zdc_lex_register(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zdc_lex_string(void)
{
BcParse *p = &G.prs;
size_t depth;
p->lex = XC_LEX_STR;
bc_vec_pop_all(&p->lex_strnumbuf);
depth = 1;
for (;;) {
char c = peek_inbuf();
if (c == '\0') {
RETURN_STATUS(bc_error("unterminated string"));
}
if (c == '[') depth++;
if (c == ']')
if (--depth == 0)
break;
if (c == '\n') {
p->lex_line++;
dbg_lex("++p->lex_line=%zd", p->lex_line);
}
bc_vec_push(&p->lex_strnumbuf, p->lex_inbuf);
p->lex_inbuf++;
}
bc_vec_pushZeroByte(&p->lex_strnumbuf);
p->lex_inbuf++; // skip trailing ']'
G.err_line = p->lex_line;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zdc_lex_string(...) (zdc_lex_string(__VA_ARGS__) COMMA_SUCCESS)
#undef zdc_lex_token
static BC_STATUS zdc_lex_token(void)
{
static const //BcLexType - should be this type, but narrower type saves size:
uint8_t
dc_lex_regs[] ALIGN1 = {
XC_LEX_OP_REL_EQ, XC_LEX_OP_REL_LE, XC_LEX_OP_REL_GE, XC_LEX_OP_REL_NE,
XC_LEX_OP_REL_LT, XC_LEX_OP_REL_GT, DC_LEX_SCOLON, DC_LEX_COLON,
DC_LEX_ELSE, DC_LEX_LOAD, DC_LEX_LOAD_POP, DC_LEX_OP_ASSIGN,
DC_LEX_STORE_PUSH,
};
BcParse *p = &G.prs;
BcStatus s;
char c, c2;
size_t i;
for (i = 0; i < ARRAY_SIZE(dc_lex_regs); ++i) {
if (p->lex_last == dc_lex_regs[i])
RETURN_STATUS(zdc_lex_register());
}
s = BC_STATUS_SUCCESS;
c = eat_inbuf();
if (c >= '%' && c <= '~'
&& (p->lex = dc_char_to_LEX[c - '%']) != XC_LEX_INVALID
) {
RETURN_STATUS(s);
}
// This is the workhorse of the lexer.
switch (c) {
// case '\0': // probably never reached
// p->lex = XC_LEX_EOF;
// break;
case '\n':
// '\n' is XC_LEX_NLINE, not XC_LEX_WHITESPACE
// (and "case '\n':" is not just empty here)
// only to allow interactive dc have a way to exit
// "parse" stage of "parse,execute" loop
// on <enter>, not on _next_ token (which would mean
// commands are not executed on pressing <enter>).
// IOW: typing "1p<enter>" should print "1" _at once_,
// not after some more input.
p->lex_line++;
dbg_lex("++p->lex_line=%zd", p->lex_line);
p->lex = XC_LEX_NLINE;
break;
case '\t':
case '\v':
case '\f':
case '\r':
case ' ':
xc_lex_whitespace();
break;
case '!':
c2 = *p->lex_inbuf;
if (c2 == '=')
p->lex = XC_LEX_OP_REL_NE;
else if (c2 == '<')
p->lex = XC_LEX_OP_REL_LE;
else if (c2 == '>')
p->lex = XC_LEX_OP_REL_GE;
else
RETURN_STATUS(bc_error_bad_character(c));
p->lex_inbuf++;
break;
case '#':
xc_lex_lineComment();
break;
case '.':
if (isdigit(*p->lex_inbuf))
s = zxc_lex_number(c);
else
s = bc_error_bad_character(c);
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
s = zxc_lex_number(c);
break;
case '[':
s = zdc_lex_string();
break;
default:
p->lex = XC_LEX_INVALID;
s = bc_error_bad_character(c);
break;
}
RETURN_STATUS(s);
}
#define zdc_lex_token(...) (zdc_lex_token(__VA_ARGS__) COMMA_SUCCESS)
#endif // ENABLE_DC
static void xc_parse_push(unsigned i)
{
BcVec *code = &G.prs.func->code;
dbg_compile("%s:%d pushing bytecode %zd:%d", __func__, __LINE__, code->len, i);
bc_vec_pushByte(code, (uint8_t)i);
}
static void xc_parse_pushName(char *name)
{
#if 1
BcVec *code = &G.prs.func->code;
size_t pos = code->len;
size_t len = strlen(name) + 1;
bc_vec_expand(code, pos + len);
strcpy(code->v + pos, name);
code->len = pos + len;
#else
// Smaller code, but way slow:
do {
xc_parse_push(*name);
} while (*name++);
#endif
}
// Indexes < 0xfc are encoded verbatim, else first byte is
// 0xfc, 0xfd, 0xfe or 0xff, encoding "1..4 bytes",
// followed by that many bytes, lsb first.
// (The above describes 32-bit case).
#define SMALL_INDEX_LIMIT (0x100 - sizeof(size_t))
static void bc_vec_pushIndex(BcVec *v, size_t idx)
{
size_t mask;
unsigned amt;
dbg_lex("%s:%d pushing index %zd", __func__, __LINE__, idx);
if (idx < SMALL_INDEX_LIMIT) {
bc_vec_pushByte(v, idx);
return;
}
mask = ((size_t)0xff) << (sizeof(idx) * 8 - 8);
amt = sizeof(idx);
for (;;) {
if (idx & mask) break;
mask >>= 8;
amt--;
}
// amt is at least 1 here - "one byte of length data follows"
bc_vec_pushByte(v, (SMALL_INDEX_LIMIT - 1) + amt);
do {
bc_vec_pushByte(v, (unsigned char)idx);
idx >>= 8;
} while (idx != 0);
}
static void xc_parse_pushIndex(size_t idx)
{
bc_vec_pushIndex(&G.prs.func->code, idx);
}
static void xc_parse_pushInst_and_Index(unsigned inst, size_t idx)
{
xc_parse_push(inst);
xc_parse_pushIndex(idx);
}
#if ENABLE_BC
static void bc_parse_pushJUMP(size_t idx)
{
xc_parse_pushInst_and_Index(BC_INST_JUMP, idx);
}
static void bc_parse_pushJUMP_ZERO(size_t idx)
{
xc_parse_pushInst_and_Index(BC_INST_JUMP_ZERO, idx);
}
static BC_STATUS zbc_parse_pushSTR(void)
{
BcParse *p = &G.prs;
char *str = xstrdup(p->lex_strnumbuf.v);
xc_parse_pushInst_and_Index(XC_INST_STR, p->func->strs.len);
bc_vec_push(&p->func->strs, &str);
RETURN_STATUS(zxc_lex_next());
}
#define zbc_parse_pushSTR(...) (zbc_parse_pushSTR(__VA_ARGS__) COMMA_SUCCESS)
#endif
static void xc_parse_pushNUM(void)
{
BcParse *p = &G.prs;
char *num = xstrdup(p->lex_strnumbuf.v);
#if ENABLE_BC && ENABLE_DC
size_t idx = bc_vec_push(IS_BC ? &p->func->consts : &G.prog.consts, &num);
#elif ENABLE_BC
size_t idx = bc_vec_push(&p->func->consts, &num);
#else // DC
size_t idx = bc_vec_push(&G.prog.consts, &num);
#endif
xc_parse_pushInst_and_Index(XC_INST_NUM, idx);
}
static BC_STATUS zxc_parse_text_init(const char *text)
{
G.prs.func = xc_program_func(G.prs.fidx);
G.prs.lex_inbuf = text;
G.prs.lex = G.prs.lex_last = XC_LEX_INVALID;
RETURN_STATUS(zxc_lex_next());
}
#define zxc_parse_text_init(...) (zxc_parse_text_init(__VA_ARGS__) COMMA_SUCCESS)
// Called when parsing or execution detects a failure,
// resets execution structures.
static void xc_program_reset(void)
{
BcFunc *f;
BcInstPtr *ip;
bc_vec_npop(&G.prog.exestack, G.prog.exestack.len - 1);
bc_vec_pop_all(&G.prog.results);
f = xc_program_func_BC_PROG_MAIN();
ip = bc_vec_top(&G.prog.exestack);
ip->inst_idx = f->code.len;
}
// Called when parsing code detects a failure,
// resets parsing structures.
static void xc_parse_reset(void)
{
BcParse *p = &G.prs;
if (p->fidx != BC_PROG_MAIN) {
bc_func_free(p->func);
bc_func_init(p->func);
p->fidx = BC_PROG_MAIN;
p->func = xc_program_func_BC_PROG_MAIN();
}
p->lex_inbuf += strlen(p->lex_inbuf);
p->lex = XC_LEX_EOF;
IF_BC(bc_vec_pop_all(&p->exits);)
IF_BC(bc_vec_pop_all(&p->conds);)
IF_BC(bc_vec_pop_all(&p->ops);)
xc_program_reset();
}
static void xc_parse_free(void)
{
IF_BC(bc_vec_free(&G.prs.exits);)
IF_BC(bc_vec_free(&G.prs.conds);)
IF_BC(bc_vec_free(&G.prs.ops);)
bc_vec_free(&G.prs.lex_strnumbuf);
}
static void xc_parse_create(size_t fidx)
{
BcParse *p = &G.prs;
memset(p, 0, sizeof(BcParse));
bc_char_vec_init(&p->lex_strnumbuf);
IF_BC(bc_vec_init(&p->exits, sizeof(size_t), NULL);)
IF_BC(bc_vec_init(&p->conds, sizeof(size_t), NULL);)
IF_BC(bc_vec_init(&p->ops, sizeof(BcLexType), NULL);)
p->fidx = fidx;
p->func = xc_program_func(fidx);
}
static void xc_program_add_fn(void)
{
//size_t idx;
BcFunc f;
bc_func_init(&f);
//idx =
bc_vec_push(&G.prog.fns, &f);
//return idx;
}
#if ENABLE_BC
// Note: takes ownership of 'name' (must be malloced)
static size_t bc_program_addFunc(char *name)
{
size_t idx;
BcId entry, *entry_ptr;
int inserted;
entry.name = name;
entry.idx = G.prog.fns.len;
inserted = bc_map_insert(&G.prog.fn_map, &entry, &idx);
if (!inserted) free(name);
entry_ptr = bc_vec_item(&G.prog.fn_map, idx);
idx = entry_ptr->idx;
if (!inserted) {
// There is already a function with this name.
// It'll be redefined now, clear old definition.
BcFunc *func = xc_program_func(entry_ptr->idx);
bc_func_free(func);
bc_func_init(func);
} else {
xc_program_add_fn();
}
return idx;
}
#define BC_PARSE_TOP_OP(p) (*(BcLexType*)bc_vec_top(&(p)->ops))
// We can calculate the conversion between tokens and exprs by subtracting the
// position of the first operator in the lex enum and adding the position of the
// first in the expr enum. Note: This only works for binary operators.
#define BC_TOKEN_2_INST(t) ((char) ((t) - XC_LEX_OP_POWER + XC_INST_POWER))
static BC_STATUS zbc_parse_expr(uint8_t flags);
#define zbc_parse_expr(...) (zbc_parse_expr(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_stmt_possibly_auto(bool auto_allowed);
#define zbc_parse_stmt_possibly_auto(...) (zbc_parse_stmt_possibly_auto(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_stmt(void)
{
RETURN_STATUS(zbc_parse_stmt_possibly_auto(false));
}
#define zbc_parse_stmt(...) (zbc_parse_stmt(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_stmt_allow_NLINE_before(const char *after_X)
{
BcParse *p = &G.prs;
// "if(cond)<newline>stmt" is accepted too, but not 2+ newlines.
// Same for "else", "while()", "for()".
BcStatus s = zbc_lex_next_and_skip_NLINE();
if (s) RETURN_STATUS(s);
if (p->lex == XC_LEX_NLINE)
RETURN_STATUS(bc_error_fmt("no statement after '%s'", after_X));
RETURN_STATUS(zbc_parse_stmt());
}
#define zbc_parse_stmt_allow_NLINE_before(...) (zbc_parse_stmt_allow_NLINE_before(__VA_ARGS__) COMMA_SUCCESS)
static void bc_parse_operator(BcLexType type, size_t start, size_t *nexprs)
{
BcParse *p = &G.prs;
char l, r = bc_operation_PREC(type - XC_LEX_1st_op);
bool left = bc_operation_LEFT(type - XC_LEX_1st_op);
while (p->ops.len > start) {
BcLexType t = BC_PARSE_TOP_OP(p);
if (t == BC_LEX_LPAREN) break;
l = bc_operation_PREC(t - XC_LEX_1st_op);
if (l >= r && (l != r || !left)) break;
xc_parse_push(BC_TOKEN_2_INST(t));
bc_vec_pop(&p->ops);
*nexprs -= (t != BC_LEX_OP_BOOL_NOT && t != XC_LEX_NEG);
}
bc_vec_push(&p->ops, &type);
}
static BC_STATUS zbc_parse_rightParen(size_t ops_bgn, size_t *nexs)
{
BcParse *p = &G.prs;
BcLexType top;
if (p->ops.len <= ops_bgn)
RETURN_STATUS(bc_error_bad_expression());
top = BC_PARSE_TOP_OP(p);
while (top != BC_LEX_LPAREN) {
xc_parse_push(BC_TOKEN_2_INST(top));
bc_vec_pop(&p->ops);
*nexs -= (top != BC_LEX_OP_BOOL_NOT && top != XC_LEX_NEG);
if (p->ops.len <= ops_bgn)
RETURN_STATUS(bc_error_bad_expression());
top = BC_PARSE_TOP_OP(p);
}
bc_vec_pop(&p->ops);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zbc_parse_rightParen(...) (zbc_parse_rightParen(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_params(uint8_t flags)
{
BcParse *p = &G.prs;
BcStatus s;
size_t nparams;
dbg_lex("%s:%d p->lex:%d", __func__, __LINE__, p->lex);
flags = (flags & ~(BC_PARSE_PRINT | BC_PARSE_REL)) | BC_PARSE_ARRAY;
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
nparams = 0;
if (p->lex != BC_LEX_RPAREN) {
for (;;) {
s = zbc_parse_expr(flags);
if (s) RETURN_STATUS(s);
nparams++;
if (p->lex != BC_LEX_COMMA) {
if (p->lex == BC_LEX_RPAREN)
break;
RETURN_STATUS(bc_error_bad_token());
}
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
}
}
xc_parse_pushInst_and_Index(BC_INST_CALL, nparams);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zbc_parse_params(...) (zbc_parse_params(__VA_ARGS__) COMMA_SUCCESS)
// Note: takes ownership of 'name' (must be malloced)
static BC_STATUS zbc_parse_call(char *name, uint8_t flags)
{
BcParse *p = &G.prs;
BcStatus s;
BcId entry, *entry_ptr;
size_t idx;
entry.name = name;
s = zbc_parse_params(flags);
if (s) goto err;
if (p->lex != BC_LEX_RPAREN) {
s = bc_error_bad_token();
goto err;
}
idx = bc_map_find_exact(&G.prog.fn_map, &entry);
if (idx == BC_VEC_INVALID_IDX) {
// No such function exists, create an empty one
bc_program_addFunc(name);
idx = bc_map_find_exact(&G.prog.fn_map, &entry);
} else
free(name);
entry_ptr = bc_vec_item(&G.prog.fn_map, idx);
xc_parse_pushIndex(entry_ptr->idx);
RETURN_STATUS(zxc_lex_next());
err:
free(name);
RETURN_STATUS(s);
}
#define zbc_parse_call(...) (zbc_parse_call(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_name(BcInst *type, uint8_t flags)
{
BcParse *p = &G.prs;
BcStatus s;
char *name;
name = xstrdup(p->lex_strnumbuf.v);
s = zxc_lex_next();
if (s) goto err;
if (p->lex == BC_LEX_LBRACKET) {
s = zxc_lex_next();
if (s) goto err;
if (p->lex == BC_LEX_RBRACKET) {
if (!(flags & BC_PARSE_ARRAY)) {
s = bc_error_bad_expression();
goto err;
}
*type = XC_INST_ARRAY;
} else {
*type = XC_INST_ARRAY_ELEM;
flags &= ~(BC_PARSE_PRINT | BC_PARSE_REL);
s = zbc_parse_expr(flags);
if (s) goto err;
}
s = zxc_lex_next();
if (s) goto err;
xc_parse_push(*type);
xc_parse_pushName(name);
free(name);
} else if (p->lex == BC_LEX_LPAREN) {
if (flags & BC_PARSE_NOCALL) {
s = bc_error_bad_token();
goto err;
}
*type = BC_INST_CALL;
s = zbc_parse_call(name, flags);
} else {
*type = XC_INST_VAR;
xc_parse_push(XC_INST_VAR);
xc_parse_pushName(name);
free(name);
}
RETURN_STATUS(s);
err:
free(name);
RETURN_STATUS(s);
}
#define zbc_parse_name(...) (zbc_parse_name(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_read(void)
{
BcParse *p = &G.prs;
BcStatus s;
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token());
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token());
xc_parse_push(XC_INST_READ);
RETURN_STATUS(s);
}
#define zbc_parse_read(...) (zbc_parse_read(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_builtin(BcLexType type, uint8_t flags, BcInst *prev)
{
BcParse *p = &G.prs;
BcStatus s;
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token());
flags = (flags & ~(BC_PARSE_PRINT | BC_PARSE_REL)) | BC_PARSE_ARRAY;
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
s = zbc_parse_expr(flags);
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token());
*prev = (type == BC_LEX_KEY_LENGTH) ? XC_INST_LENGTH : XC_INST_SQRT;
xc_parse_push(*prev);
RETURN_STATUS(s);
}
#define zbc_parse_builtin(...) (zbc_parse_builtin(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_scale(BcInst *type, uint8_t flags)
{
BcParse *p = &G.prs;
BcStatus s;
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_LPAREN) {
*type = XC_INST_SCALE;
xc_parse_push(XC_INST_SCALE);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
*type = XC_INST_SCALE_FUNC;
flags &= ~(BC_PARSE_PRINT | BC_PARSE_REL);
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
s = zbc_parse_expr(flags);
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_RPAREN)
RETURN_STATUS(bc_error_bad_token());
xc_parse_push(XC_INST_SCALE_FUNC);
RETURN_STATUS(zxc_lex_next());
}
#define zbc_parse_scale(...) (zbc_parse_scale(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_incdec(BcInst *prev, size_t *nexs, uint8_t flags)
{
BcParse *p = &G.prs;
BcStatus s;
BcLexType type;
char inst;
BcInst etype = *prev;
if (etype == XC_INST_VAR || etype == XC_INST_ARRAY_ELEM
|| etype == XC_INST_SCALE || etype == BC_INST_LAST
|| etype == XC_INST_IBASE || etype == XC_INST_OBASE
) {
*prev = inst = BC_INST_INC_POST + (p->lex != BC_LEX_OP_INC);
xc_parse_push(inst);
s = zxc_lex_next();
} else {
*prev = inst = BC_INST_INC_PRE + (p->lex != BC_LEX_OP_INC);
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
type = p->lex;
// Because we parse the next part of the expression
// right here, we need to increment this.
*nexs = *nexs + 1;
switch (type) {
case XC_LEX_NAME:
s = zbc_parse_name(prev, flags | BC_PARSE_NOCALL);
break;
case BC_LEX_KEY_IBASE:
case BC_LEX_KEY_LAST:
case BC_LEX_KEY_OBASE:
xc_parse_push(type - BC_LEX_KEY_IBASE + XC_INST_IBASE);
s = zxc_lex_next();
break;
case BC_LEX_KEY_SCALE:
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
if (p->lex == BC_LEX_LPAREN)
s = bc_error_bad_token();
else
xc_parse_push(XC_INST_SCALE);
break;
default:
s = bc_error_bad_token();
break;
}
if (!s) xc_parse_push(inst);
}
RETURN_STATUS(s);
}
#define zbc_parse_incdec(...) (zbc_parse_incdec(__VA_ARGS__) COMMA_SUCCESS)
static int bc_parse_inst_isLeaf(BcInst p)
{
return (p >= XC_INST_NUM && p <= XC_INST_SQRT)
|| p == BC_INST_INC_POST
|| p == BC_INST_DEC_POST
;
}
#define BC_PARSE_LEAF(prev, bin_last, rparen) \
(!(bin_last) && ((rparen) || bc_parse_inst_isLeaf(prev)))
static BC_STATUS zbc_parse_minus(BcInst *prev, size_t ops_bgn,
bool rparen, bool bin_last, size_t *nexprs)
{
BcParse *p = &G.prs;
BcStatus s;
BcLexType type;
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
type = BC_PARSE_LEAF(*prev, bin_last, rparen) ? XC_LEX_OP_MINUS : XC_LEX_NEG;
*prev = BC_TOKEN_2_INST(type);
// We can just push onto the op stack because this is the largest
// precedence operator that gets pushed. Inc/dec does not.
if (type != XC_LEX_OP_MINUS)
bc_vec_push(&p->ops, &type);
else
bc_parse_operator(type, ops_bgn, nexprs);
RETURN_STATUS(s);
}
#define zbc_parse_minus(...) (zbc_parse_minus(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_print(void)
{
BcParse *p = &G.prs;
BcStatus s;
BcLexType type;
for (;;) {
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
type = p->lex;
if (type == XC_LEX_STR) {
s = zbc_parse_pushSTR();
} else {
s = zbc_parse_expr(0);
}
if (s) RETURN_STATUS(s);
xc_parse_push(XC_INST_PRINT_POP);
if (p->lex != BC_LEX_COMMA)
break;
}
RETURN_STATUS(s);
}
#define zbc_parse_print(...) (zbc_parse_print(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_return(void)
{
BcParse *p = &G.prs;
BcStatus s;
BcLexType t;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
t = p->lex;
if (t == XC_LEX_NLINE || t == BC_LEX_SCOLON || t == BC_LEX_RBRACE)
xc_parse_push(BC_INST_RET0);
else {
//TODO: if (p->func->voidfunc) ERROR
s = zbc_parse_expr(0);
if (s) RETURN_STATUS(s);
if (t != BC_LEX_LPAREN // "return EXPR", no ()
|| p->lex_last != BC_LEX_RPAREN // example: "return (a) + b"
) {
s = zbc_POSIX_requires("parentheses around return expressions");
if (s) RETURN_STATUS(s);
}
xc_parse_push(XC_INST_RET);
}
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(s);
}
#define zbc_parse_return(...) (zbc_parse_return(__VA_ARGS__) COMMA_SUCCESS)
static void rewrite_label_to_current(size_t idx)
{
BcParse *p = &G.prs;
size_t *label = bc_vec_item(&p->func->labels, idx);
*label = p->func->code.len;
}
static BC_STATUS zbc_parse_if(void)
{
BcParse *p = &G.prs;
BcStatus s;
size_t ip_idx;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token());
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
s = zbc_parse_expr(BC_PARSE_REL);
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token());
// Encode "if zero, jump to ..."
// Pushed value (destination of the jump) is uninitialized,
// will be rewritten to be address of "end of if()" or of "else".
ip_idx = bc_vec_push(&p->func->labels, &ip_idx);
bc_parse_pushJUMP_ZERO(ip_idx);
s = zbc_parse_stmt_allow_NLINE_before(STRING_if);
if (s) RETURN_STATUS(s);
dbg_lex("%s:%d in if after stmt: p->lex:%d", __func__, __LINE__, p->lex);
if (p->lex == BC_LEX_KEY_ELSE) {
size_t ip2_idx;
// Encode "after then_stmt, jump to end of if()"
ip2_idx = bc_vec_push(&p->func->labels, &ip2_idx);
dbg_lex("%s:%d after if() then_stmt: BC_INST_JUMP to %zd", __func__, __LINE__, ip2_idx);
bc_parse_pushJUMP(ip2_idx);
dbg_lex("%s:%d rewriting 'if_zero' label to jump to 'else'-> %zd", __func__, __LINE__, p->func->code.len);
rewrite_label_to_current(ip_idx);
ip_idx = ip2_idx;
s = zbc_parse_stmt_allow_NLINE_before(STRING_else);
if (s) RETURN_STATUS(s);
}
dbg_lex("%s:%d rewriting label to jump after 'if' body-> %zd", __func__, __LINE__, p->func->code.len);
rewrite_label_to_current(ip_idx);
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(s);
}
#define zbc_parse_if(...) (zbc_parse_if(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_while(void)
{
BcParse *p = &G.prs;
BcStatus s;
size_t cond_idx;
size_t ip_idx;
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token());
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
cond_idx = bc_vec_push(&p->func->labels, &p->func->code.len);
ip_idx = cond_idx + 1;
bc_vec_push(&p->conds, &cond_idx);
bc_vec_push(&p->exits, &ip_idx);
bc_vec_push(&p->func->labels, &ip_idx);
s = zbc_parse_expr(BC_PARSE_REL);
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token());
bc_parse_pushJUMP_ZERO(ip_idx);
s = zbc_parse_stmt_allow_NLINE_before(STRING_while);
if (s) RETURN_STATUS(s);
dbg_lex("%s:%d BC_INST_JUMP to %zd", __func__, __LINE__, cond_idx);
bc_parse_pushJUMP(cond_idx);
dbg_lex("%s:%d rewriting label-> %zd", __func__, __LINE__, p->func->code.len);
rewrite_label_to_current(ip_idx);
bc_vec_pop(&p->exits);
bc_vec_pop(&p->conds);
RETURN_STATUS(s);
}
#define zbc_parse_while(...) (zbc_parse_while(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_for(void)
{
BcParse *p = &G.prs;
BcStatus s;
size_t cond_idx, exit_idx, body_idx, update_idx;
dbg_lex("%s:%d p->lex:%d", __func__, __LINE__, p->lex);
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token());
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_SCOLON) {
s = zbc_parse_expr(0);
xc_parse_push(XC_INST_POP);
if (s) RETURN_STATUS(s);
} else {
s = zbc_POSIX_does_not_allow_empty_X_expression_in_for("init");
if (s) RETURN_STATUS(s);
}
if (p->lex != BC_LEX_SCOLON) RETURN_STATUS(bc_error_bad_token());
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
cond_idx = bc_vec_push(&p->func->labels, &p->func->code.len);
update_idx = cond_idx + 1;
body_idx = update_idx + 1;
exit_idx = body_idx + 1;
if (p->lex != BC_LEX_SCOLON)
s = zbc_parse_expr(BC_PARSE_REL);
else {
// Set this for the next call to xc_parse_pushNUM().
// This is safe to set because the current token is a semicolon,
// which has no string requirement.
bc_vec_string(&p->lex_strnumbuf, 1, "1");
xc_parse_pushNUM();
s = zbc_POSIX_does_not_allow_empty_X_expression_in_for("condition");
}
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_SCOLON) RETURN_STATUS(bc_error_bad_token());
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
bc_parse_pushJUMP_ZERO(exit_idx);
bc_parse_pushJUMP(body_idx);
bc_vec_push(&p->conds, &update_idx);
bc_vec_push(&p->func->labels, &p->func->code.len);
if (p->lex != BC_LEX_RPAREN) {
s = zbc_parse_expr(0);
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token());
xc_parse_push(XC_INST_POP);
} else {
s = zbc_POSIX_does_not_allow_empty_X_expression_in_for("update");
if (s) RETURN_STATUS(s);
}
bc_parse_pushJUMP(cond_idx);
bc_vec_push(&p->func->labels, &p->func->code.len);
bc_vec_push(&p->exits, &exit_idx);
bc_vec_push(&p->func->labels, &exit_idx);
s = zbc_parse_stmt_allow_NLINE_before(STRING_for);
if (s) RETURN_STATUS(s);
dbg_lex("%s:%d BC_INST_JUMP to %zd", __func__, __LINE__, update_idx);
bc_parse_pushJUMP(update_idx);
dbg_lex("%s:%d rewriting label-> %zd", __func__, __LINE__, p->func->code.len);
rewrite_label_to_current(exit_idx);
bc_vec_pop(&p->exits);
bc_vec_pop(&p->conds);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zbc_parse_for(...) (zbc_parse_for(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_break_or_continue(BcLexType type)
{
BcParse *p = &G.prs;
size_t i;
if (type == BC_LEX_KEY_BREAK) {
if (p->exits.len == 0) // none of the enclosing blocks is a loop
RETURN_STATUS(bc_error_bad_token());
i = *(size_t*)bc_vec_top(&p->exits);
} else {
i = *(size_t*)bc_vec_top(&p->conds);
}
bc_parse_pushJUMP(i);
RETURN_STATUS(zxc_lex_next());
}
#define zbc_parse_break_or_continue(...) (zbc_parse_break_or_continue(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_func_insert(BcFunc *f, char *name, BcType type)
{
BcId *autoid;
BcId a;
size_t i;
autoid = (void*)f->autos.v;
for (i = 0; i < f->autos.len; i++, autoid++) {
if (strcmp(name, autoid->name) == 0
&& type == (BcType) autoid->idx
) {
RETURN_STATUS(bc_error("duplicate function parameter or auto name"));
}
}
a.idx = type;
a.name = name;
bc_vec_push(&f->autos, &a);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zbc_func_insert(...) (zbc_func_insert(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_funcdef(void)
{
BcParse *p = &G.prs;
BcStatus s;
bool comma, voidfunc;
char *name;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
if (p->lex != XC_LEX_NAME)
RETURN_STATUS(bc_error_bad_function_definition());
// To be maximally both POSIX and GNU-compatible,
// "void" is not treated as a normal keyword:
// you can have variable named "void", and even a function
// named "void": "define void() { return 6; }" is ok.
// _Only_ "define void f() ..." syntax treats "void"
// specially.
voidfunc = (strcmp(p->lex_strnumbuf.v, "void") == 0);
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
voidfunc = (voidfunc && p->lex == XC_LEX_NAME);
if (voidfunc) {
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
}
if (p->lex != BC_LEX_LPAREN)
RETURN_STATUS(bc_error_bad_function_definition());
p->fidx = bc_program_addFunc(xstrdup(p->lex_strnumbuf.v));
p->func = xc_program_func(p->fidx);
p->func->voidfunc = voidfunc;
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
comma = false;
while (p->lex != BC_LEX_RPAREN) {
BcType t = BC_TYPE_VAR;
if (p->lex == XC_LEX_OP_MULTIPLY) {
t = BC_TYPE_REF;
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
s = zbc_POSIX_does_not_allow("references");
if (s) RETURN_STATUS(s);
}
if (p->lex != XC_LEX_NAME)
RETURN_STATUS(bc_error_bad_function_definition());
++p->func->nparams;
name = xstrdup(p->lex_strnumbuf.v);
s = zxc_lex_next();
if (s) goto err;
if (p->lex == BC_LEX_LBRACKET) {
if (t == BC_TYPE_VAR) t = BC_TYPE_ARRAY;
s = zxc_lex_next();
if (s) goto err;
if (p->lex != BC_LEX_RBRACKET) {
s = bc_error_bad_function_definition();
goto err;
}
s = zxc_lex_next();
if (s) goto err;
}
else if (t == BC_TYPE_REF) {
s = bc_error_at("vars can't be references");
goto err;
}
comma = p->lex == BC_LEX_COMMA;
if (comma) {
s = zxc_lex_next();
if (s) goto err;
}
s = zbc_func_insert(p->func, name, t);
if (s) goto err;
}
if (comma) RETURN_STATUS(bc_error_bad_function_definition());
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
if (p->lex != BC_LEX_LBRACE) {
s = zbc_POSIX_requires("the left brace be on the same line as the function header");
if (s) RETURN_STATUS(s);
}
// Prevent "define z()<newline>" from being interpreted as function with empty stmt as body
s = zbc_lex_skip_if_at_NLINE();
if (s) RETURN_STATUS(s);
// GNU bc requires a {} block even if function body has single stmt, enforce this
if (p->lex != BC_LEX_LBRACE)
RETURN_STATUS(bc_error("function { body } expected"));
p->in_funcdef++; // to determine whether "return" stmt is allowed, and such
s = zbc_parse_stmt_possibly_auto(true);
p->in_funcdef--;
if (s) RETURN_STATUS(s);
xc_parse_push(BC_INST_RET0);
// Subsequent code generation is into main program
p->fidx = BC_PROG_MAIN;
p->func = xc_program_func_BC_PROG_MAIN();
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(s);
err:
dbg_lex_done("%s:%d done (error)", __func__, __LINE__);
free(name);
RETURN_STATUS(s);
}
#define zbc_parse_funcdef(...) (zbc_parse_funcdef(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_auto(void)
{
BcParse *p = &G.prs;
BcStatus s;
char *name;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
for (;;) {
BcType t;
if (p->lex != XC_LEX_NAME)
RETURN_STATUS(bc_error_at("bad 'auto' syntax"));
name = xstrdup(p->lex_strnumbuf.v);
s = zxc_lex_next();
if (s) goto err;
t = BC_TYPE_VAR;
if (p->lex == BC_LEX_LBRACKET) {
t = BC_TYPE_ARRAY;
s = zxc_lex_next();
if (s) goto err;
if (p->lex != BC_LEX_RBRACKET) {
s = bc_error_at("bad 'auto' syntax");
goto err;
}
s = zxc_lex_next();
if (s) goto err;
}
s = zbc_func_insert(p->func, name, t);
if (s) goto err;
if (p->lex == XC_LEX_NLINE
|| p->lex == BC_LEX_SCOLON
//|| p->lex == BC_LEX_RBRACE // allow "define f() {auto a}"
) {
break;
}
if (p->lex != BC_LEX_COMMA)
RETURN_STATUS(bc_error_at("bad 'auto' syntax"));
s = zxc_lex_next(); // skip comma
if (s) RETURN_STATUS(s);
}
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(BC_STATUS_SUCCESS);
err:
free(name);
dbg_lex_done("%s:%d done (ERROR)", __func__, __LINE__);
RETURN_STATUS(s);
}
#define zbc_parse_auto(...) (zbc_parse_auto(__VA_ARGS__) COMMA_SUCCESS)
#undef zbc_parse_stmt_possibly_auto
static BC_STATUS zbc_parse_stmt_possibly_auto(bool auto_allowed)
{
BcParse *p = &G.prs;
BcStatus s = BC_STATUS_SUCCESS;
dbg_lex_enter("%s:%d entered, p->lex:%d", __func__, __LINE__, p->lex);
if (p->lex == XC_LEX_NLINE) {
dbg_lex_done("%s:%d done (seen XC_LEX_NLINE)", __func__, __LINE__);
RETURN_STATUS(s);
}
if (p->lex == BC_LEX_SCOLON) {
dbg_lex_done("%s:%d done (seen BC_LEX_SCOLON)", __func__, __LINE__);
RETURN_STATUS(s);
}
if (p->lex == BC_LEX_LBRACE) {
dbg_lex("%s:%d BC_LEX_LBRACE: (auto_allowed:%d)", __func__, __LINE__, auto_allowed);
do {
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
} while (p->lex == XC_LEX_NLINE);
if (auto_allowed && p->lex == BC_LEX_KEY_AUTO) {
dbg_lex("%s:%d calling zbc_parse_auto()", __func__, __LINE__);
s = zbc_parse_auto();
if (s) RETURN_STATUS(s);
}
while (p->lex != BC_LEX_RBRACE) {
dbg_lex("%s:%d block parsing loop", __func__, __LINE__);
s = zbc_parse_stmt();
if (s) RETURN_STATUS(s);
// Check that next token is a correct stmt delimiter -
// disallows "print 1 print 2" and such.
if (p->lex == BC_LEX_RBRACE)
break;
if (p->lex != BC_LEX_SCOLON
&& p->lex != XC_LEX_NLINE
) {
RETURN_STATUS(bc_error_at("bad statement terminator"));
}
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
}
s = zxc_lex_next();
dbg_lex_done("%s:%d done (seen BC_LEX_RBRACE)", __func__, __LINE__);
RETURN_STATUS(s);
}
dbg_lex("%s:%d p->lex:%d", __func__, __LINE__, p->lex);
switch (p->lex) {
case XC_LEX_OP_MINUS:
case BC_LEX_OP_INC:
case BC_LEX_OP_DEC:
case BC_LEX_OP_BOOL_NOT:
case BC_LEX_LPAREN:
case XC_LEX_NAME:
case XC_LEX_NUMBER:
case BC_LEX_KEY_IBASE:
case BC_LEX_KEY_LAST:
case BC_LEX_KEY_LENGTH:
case BC_LEX_KEY_OBASE:
case BC_LEX_KEY_READ:
case BC_LEX_KEY_SCALE:
case BC_LEX_KEY_SQRT:
s = zbc_parse_expr(BC_PARSE_PRINT);
break;
case XC_LEX_STR:
s = zbc_parse_pushSTR();
xc_parse_push(XC_INST_PRINT_STR);
break;
case BC_LEX_KEY_BREAK:
case BC_LEX_KEY_CONTINUE:
s = zbc_parse_break_or_continue(p->lex);
break;
case BC_LEX_KEY_FOR:
s = zbc_parse_for();
break;
case BC_LEX_KEY_HALT:
xc_parse_push(BC_INST_HALT);
s = zxc_lex_next();
break;
case BC_LEX_KEY_IF:
s = zbc_parse_if();
break;
case BC_LEX_KEY_LIMITS:
// "limits" is a compile-time command,
// the output is produced at _parse time_.
printf(
"BC_BASE_MAX = "BC_MAX_OBASE_STR "\n"
"BC_DIM_MAX = "BC_MAX_DIM_STR "\n"
"BC_SCALE_MAX = "BC_MAX_SCALE_STR "\n"
"BC_STRING_MAX = "BC_MAX_STRING_STR"\n"
// "BC_NUM_MAX = "BC_MAX_NUM_STR "\n" - GNU bc does not show this
"MAX Exponent = "BC_MAX_EXP_STR "\n"
"Number of vars = "BC_MAX_VARS_STR "\n"
);
s = zxc_lex_next();
break;
case BC_LEX_KEY_PRINT:
s = zbc_parse_print();
break;
case BC_LEX_KEY_QUIT:
// "quit" is a compile-time command. For example,
// "if (0 == 1) quit" terminates when parsing the statement,
// not when it is executed
QUIT_OR_RETURN_TO_MAIN;
case BC_LEX_KEY_RETURN:
if (!p->in_funcdef)
RETURN_STATUS(bc_error("'return' not in a function"));
s = zbc_parse_return();
break;
case BC_LEX_KEY_WHILE:
s = zbc_parse_while();
break;
default:
s = bc_error_bad_token();
break;
}
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(s);
}
#define zbc_parse_stmt_possibly_auto(...) (zbc_parse_stmt_possibly_auto(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_parse_stmt_or_funcdef(void)
{
BcParse *p = &G.prs;
BcStatus s;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
//why?
// if (p->lex == XC_LEX_EOF)
// s = bc_error("end of file");
// else
if (p->lex == BC_LEX_KEY_DEFINE) {
dbg_lex("%s:%d p->lex:BC_LEX_KEY_DEFINE", __func__, __LINE__);
s = zbc_parse_funcdef();
} else {
dbg_lex("%s:%d p->lex:%d (not BC_LEX_KEY_DEFINE)", __func__, __LINE__, p->lex);
s = zbc_parse_stmt();
}
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(s);
}
#define zbc_parse_stmt_or_funcdef(...) (zbc_parse_stmt_or_funcdef(__VA_ARGS__) COMMA_SUCCESS)
#undef zbc_parse_expr
static BC_STATUS zbc_parse_expr(uint8_t flags)
{
BcParse *p = &G.prs;
BcInst prev = XC_INST_PRINT;
size_t nexprs = 0, ops_bgn = p->ops.len;
unsigned nparens, nrelops;
bool paren_first, rprn, assign, bin_last, incdec;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
paren_first = (p->lex == BC_LEX_LPAREN);
nparens = nrelops = 0;
rprn = assign = incdec = false;
bin_last = true;
for (;;) {
bool get_token;
BcStatus s;
BcLexType t = p->lex;
if (!lex_allowed_in_bc_expr(t))
break;
dbg_lex("%s:%d t:%d", __func__, __LINE__, t);
get_token = false;
s = BC_STATUS_SUCCESS;
switch (t) {
case BC_LEX_OP_INC:
case BC_LEX_OP_DEC:
dbg_lex("%s:%d LEX_OP_INC/DEC", __func__, __LINE__);
if (incdec) RETURN_STATUS(bc_error_bad_assignment());
s = zbc_parse_incdec(&prev, &nexprs, flags);
incdec = true;
rprn = bin_last = false;
//get_token = false; - already is
break;
case XC_LEX_OP_MINUS:
dbg_lex("%s:%d LEX_OP_MINUS", __func__, __LINE__);
s = zbc_parse_minus(&prev, ops_bgn, rprn, bin_last, &nexprs);
rprn = false;
//get_token = false; - already is
bin_last = (prev == XC_INST_MINUS);
if (bin_last) incdec = false;
break;
case BC_LEX_OP_ASSIGN_POWER:
case BC_LEX_OP_ASSIGN_MULTIPLY:
case BC_LEX_OP_ASSIGN_DIVIDE:
case BC_LEX_OP_ASSIGN_MODULUS:
case BC_LEX_OP_ASSIGN_PLUS:
case BC_LEX_OP_ASSIGN_MINUS:
case BC_LEX_OP_ASSIGN:
dbg_lex("%s:%d LEX_ASSIGNxyz", __func__, __LINE__);
if (prev != XC_INST_VAR && prev != XC_INST_ARRAY_ELEM
&& prev != XC_INST_SCALE && prev != XC_INST_IBASE
&& prev != XC_INST_OBASE && prev != BC_INST_LAST
) {
RETURN_STATUS(bc_error_bad_assignment());
}
// Fallthrough.
case XC_LEX_OP_POWER:
case XC_LEX_OP_MULTIPLY:
case XC_LEX_OP_DIVIDE:
case XC_LEX_OP_MODULUS:
case XC_LEX_OP_PLUS:
case XC_LEX_OP_REL_EQ:
case XC_LEX_OP_REL_LE:
case XC_LEX_OP_REL_GE:
case XC_LEX_OP_REL_NE:
case XC_LEX_OP_REL_LT:
case XC_LEX_OP_REL_GT:
case BC_LEX_OP_BOOL_NOT:
case BC_LEX_OP_BOOL_OR:
case BC_LEX_OP_BOOL_AND:
dbg_lex("%s:%d LEX_OP_xyz", __func__, __LINE__);
if (t == BC_LEX_OP_BOOL_NOT) {
if (!bin_last && p->lex_last != BC_LEX_OP_BOOL_NOT)
RETURN_STATUS(bc_error_bad_expression());
} else if (prev == XC_INST_BOOL_NOT) {
RETURN_STATUS(bc_error_bad_expression());
}
nrelops += (t >= XC_LEX_OP_REL_EQ && t <= XC_LEX_OP_REL_GT);
prev = BC_TOKEN_2_INST(t);
bc_parse_operator(t, ops_bgn, &nexprs);
rprn = incdec = false;
get_token = true;
bin_last = (t != BC_LEX_OP_BOOL_NOT);
break;
case BC_LEX_LPAREN:
dbg_lex("%s:%d LEX_LPAREN", __func__, __LINE__);
if (BC_PARSE_LEAF(prev, bin_last, rprn))
RETURN_STATUS(bc_error_bad_expression());
bc_vec_push(&p->ops, &t);
nparens++;
get_token = true;
rprn = incdec = false;
break;
case BC_LEX_RPAREN:
dbg_lex("%s:%d LEX_RPAREN", __func__, __LINE__);
//why?
// if (p->lex_last == BC_LEX_LPAREN) {
// RETURN_STATUS(bc_error_at("empty expression"));
// }
if (bin_last || prev == XC_INST_BOOL_NOT)
RETURN_STATUS(bc_error_bad_expression());
if (nparens == 0) {
goto exit_loop;
}
s = zbc_parse_rightParen(ops_bgn, &nexprs);
nparens--;
get_token = true;
rprn = true;
bin_last = incdec = false;
break;
case XC_LEX_NAME:
dbg_lex("%s:%d LEX_NAME", __func__, __LINE__);
if (BC_PARSE_LEAF(prev, bin_last, rprn))
RETURN_STATUS(bc_error_bad_expression());
s = zbc_parse_name(&prev, flags & ~BC_PARSE_NOCALL);
rprn = (prev == BC_INST_CALL);
bin_last = false;
//get_token = false; - already is
nexprs++;
break;
case XC_LEX_NUMBER:
dbg_lex("%s:%d LEX_NUMBER", __func__, __LINE__);
if (BC_PARSE_LEAF(prev, bin_last, rprn))
RETURN_STATUS(bc_error_bad_expression());
xc_parse_pushNUM();
prev = XC_INST_NUM;
get_token = true;
rprn = bin_last = false;
nexprs++;
break;
case BC_LEX_KEY_IBASE:
case BC_LEX_KEY_LAST:
case BC_LEX_KEY_OBASE:
dbg_lex("%s:%d LEX_IBASE/LAST/OBASE", __func__, __LINE__);
if (BC_PARSE_LEAF(prev, bin_last, rprn))
RETURN_STATUS(bc_error_bad_expression());
prev = (char) (t - BC_LEX_KEY_IBASE + XC_INST_IBASE);
xc_parse_push((char) prev);
get_token = true;
rprn = bin_last = false;
nexprs++;
break;
case BC_LEX_KEY_LENGTH:
case BC_LEX_KEY_SQRT:
dbg_lex("%s:%d LEX_LEN/SQRT", __func__, __LINE__);
if (BC_PARSE_LEAF(prev, bin_last, rprn))
RETURN_STATUS(bc_error_bad_expression());
s = zbc_parse_builtin(t, flags, &prev);
get_token = true;
rprn = bin_last = incdec = false;
nexprs++;
break;
case BC_LEX_KEY_READ:
dbg_lex("%s:%d LEX_READ", __func__, __LINE__);
if (BC_PARSE_LEAF(prev, bin_last, rprn))
RETURN_STATUS(bc_error_bad_expression());
s = zbc_parse_read();
prev = XC_INST_READ;
get_token = true;
rprn = bin_last = incdec = false;
nexprs++;
break;
case BC_LEX_KEY_SCALE:
dbg_lex("%s:%d LEX_SCALE", __func__, __LINE__);
if (BC_PARSE_LEAF(prev, bin_last, rprn))
RETURN_STATUS(bc_error_bad_expression());
s = zbc_parse_scale(&prev, flags);
//get_token = false; - already is
rprn = bin_last = false;
nexprs++;
break;
default:
RETURN_STATUS(bc_error_bad_token());
}
if (s || G_interrupt) // error, or ^C: stop parsing
RETURN_STATUS(BC_STATUS_FAILURE);
if (get_token) {
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
}
}
exit_loop:
while (p->ops.len > ops_bgn) {
BcLexType top = BC_PARSE_TOP_OP(p);
assign = (top >= BC_LEX_OP_ASSIGN_POWER && top <= BC_LEX_OP_ASSIGN);
if (top == BC_LEX_LPAREN || top == BC_LEX_RPAREN)
RETURN_STATUS(bc_error_bad_expression());
xc_parse_push(BC_TOKEN_2_INST(top));
nexprs -= (top != BC_LEX_OP_BOOL_NOT && top != XC_LEX_NEG);
bc_vec_pop(&p->ops);
}
if (prev == XC_INST_BOOL_NOT || nexprs != 1)
RETURN_STATUS(bc_error_bad_expression());
if (!(flags & BC_PARSE_REL) && nrelops) {
BcStatus s;
s = zbc_POSIX_does_not_allow("comparison operators outside if or loops");
if (s) RETURN_STATUS(s);
} else if ((flags & BC_PARSE_REL) && nrelops > 1) {
BcStatus s;
s = zbc_POSIX_requires("exactly one comparison operator per condition");
if (s) RETURN_STATUS(s);
}
if (flags & BC_PARSE_PRINT) {
if (paren_first || !assign)
xc_parse_push(XC_INST_PRINT);
xc_parse_push(XC_INST_POP);
}
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zbc_parse_expr(...) (zbc_parse_expr(__VA_ARGS__) COMMA_SUCCESS)
#endif // ENABLE_BC
#if ENABLE_DC
static BC_STATUS zdc_parse_register(void)
{
BcParse *p = &G.prs;
BcStatus s;
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
if (p->lex != XC_LEX_NAME) RETURN_STATUS(bc_error_bad_token());
xc_parse_pushName(p->lex_strnumbuf.v);
RETURN_STATUS(s);
}
#define zdc_parse_register(...) (zdc_parse_register(__VA_ARGS__) COMMA_SUCCESS)
static void dc_parse_string(void)
{
BcParse *p = &G.prs;
char *str;
size_t len = G.prog.strs.len;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
str = xstrdup(p->lex_strnumbuf.v);
xc_parse_pushInst_and_Index(XC_INST_STR, len);
bc_vec_push(&G.prog.strs, &str);
// Add an empty function so that if zdc_program_execStr ever needs to
// parse the string into code (from the 'x' command) there's somewhere
// to store the bytecode.
xc_program_add_fn();
p->func = xc_program_func(p->fidx);
dbg_lex_done("%s:%d done", __func__, __LINE__);
}
static BC_STATUS zdc_parse_mem(uint8_t inst, bool name, bool store)
{
BcStatus s;
xc_parse_push(inst);
if (name) {
s = zdc_parse_register();
if (s) RETURN_STATUS(s);
}
if (store) {
xc_parse_push(DC_INST_SWAP);
xc_parse_push(XC_INST_ASSIGN);
xc_parse_push(XC_INST_POP);
}
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zdc_parse_mem(...) (zdc_parse_mem(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zdc_parse_cond(uint8_t inst)
{
BcParse *p = &G.prs;
BcStatus s;
xc_parse_push(inst);
xc_parse_push(DC_INST_EXEC_COND);
s = zdc_parse_register();
if (s) RETURN_STATUS(s);
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
// Note that 'else' part can not be on the next line:
// echo -e '[1p]sa [2p]sb 2 1>a eb' | dc - OK, prints "2"
// echo -e '[1p]sa [2p]sb 2 1>a\neb' | dc - parse error
if (p->lex == DC_LEX_ELSE) {
s = zdc_parse_register();
if (s) RETURN_STATUS(s);
s = zxc_lex_next();
} else {
xc_parse_push('\0');
}
RETURN_STATUS(s);
}
#define zdc_parse_cond(...) (zdc_parse_cond(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zdc_parse_token(BcLexType t)
{
BcStatus s;
uint8_t inst;
bool assign, get_token;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
s = BC_STATUS_SUCCESS;
get_token = true;
switch (t) {
case XC_LEX_OP_REL_EQ:
case XC_LEX_OP_REL_LE:
case XC_LEX_OP_REL_GE:
case XC_LEX_OP_REL_NE:
case XC_LEX_OP_REL_LT:
case XC_LEX_OP_REL_GT:
dbg_lex("%s:%d LEX_OP_REL_xyz", __func__, __LINE__);
s = zdc_parse_cond(t - XC_LEX_OP_REL_EQ + XC_INST_REL_EQ);
get_token = false;
break;
case DC_LEX_SCOLON:
case DC_LEX_COLON:
dbg_lex("%s:%d LEX_[S]COLON", __func__, __LINE__);
s = zdc_parse_mem(XC_INST_ARRAY_ELEM, true, t == DC_LEX_COLON);
break;
case XC_LEX_STR:
dbg_lex("%s:%d LEX_STR", __func__, __LINE__);
dc_parse_string();
break;
case XC_LEX_NEG:
dbg_lex("%s:%d LEX_NEG", __func__, __LINE__);
s = zxc_lex_next();
if (s) RETURN_STATUS(s);
if (G.prs.lex != XC_LEX_NUMBER)
RETURN_STATUS(bc_error_bad_token());
xc_parse_pushNUM();
xc_parse_push(XC_INST_NEG);
break;
case XC_LEX_NUMBER:
dbg_lex("%s:%d LEX_NUMBER", __func__, __LINE__);
xc_parse_pushNUM();
break;
case DC_LEX_READ:
dbg_lex("%s:%d LEX_KEY_READ", __func__, __LINE__);
xc_parse_push(XC_INST_READ);
break;
case DC_LEX_OP_ASSIGN:
case DC_LEX_STORE_PUSH:
dbg_lex("%s:%d LEX_OP_ASSIGN/STORE_PUSH", __func__, __LINE__);
assign = (t == DC_LEX_OP_ASSIGN);
inst = assign ? XC_INST_VAR : DC_INST_PUSH_TO_VAR;
s = zdc_parse_mem(inst, true, assign);
break;
case DC_LEX_LOAD:
case DC_LEX_LOAD_POP:
dbg_lex("%s:%d LEX_OP_LOAD[_POP]", __func__, __LINE__);
inst = t == DC_LEX_LOAD_POP ? DC_INST_PUSH_VAR : DC_INST_LOAD;
s = zdc_parse_mem(inst, true, false);
break;
case DC_LEX_STORE_IBASE:
case DC_LEX_STORE_SCALE:
case DC_LEX_STORE_OBASE:
dbg_lex("%s:%d LEX_OP_STORE_I/OBASE/SCALE", __func__, __LINE__);
inst = t - DC_LEX_STORE_IBASE + XC_INST_IBASE;
s = zdc_parse_mem(inst, false, true);
break;
default:
dbg_lex_done("%s:%d done (bad token)", __func__, __LINE__);
RETURN_STATUS(bc_error_bad_token());
}
if (!s && get_token) s = zxc_lex_next();
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(s);
}
#define zdc_parse_token(...) (zdc_parse_token(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zdc_parse_expr(void)
{
BcParse *p = &G.prs;
int i;
if (p->lex == XC_LEX_NLINE)
RETURN_STATUS(zxc_lex_next());
i = (int)p->lex - (int)XC_LEX_OP_POWER;
if (i >= 0) {
BcInst inst = dc_LEX_to_INST[i];
if (inst != DC_INST_INVALID) {
xc_parse_push(inst);
RETURN_STATUS(zxc_lex_next());
}
}
RETURN_STATUS(zdc_parse_token(p->lex));
}
#define zdc_parse_expr(...) (zdc_parse_expr(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zdc_parse_exprs_until_eof(void)
{
BcParse *p = &G.prs;
dbg_lex_enter("%s:%d entered, p->lex:%d", __func__, __LINE__, p->lex);
while (p->lex != XC_LEX_EOF) {
BcStatus s = zdc_parse_expr();
if (s) RETURN_STATUS(s);
}
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zdc_parse_exprs_until_eof(...) (zdc_parse_exprs_until_eof(__VA_ARGS__) COMMA_SUCCESS)
#endif // ENABLE_DC
//
// Execution engine
//
#define BC_PROG_STR(n) (!(n)->num && !(n)->cap)
#define BC_PROG_NUM(r, n) \
((r)->t != XC_RESULT_ARRAY && (r)->t != XC_RESULT_STR && !BC_PROG_STR(n))
#define STACK_HAS_MORE_THAN(s, n) ((s)->len > ((size_t)(n)))
#define STACK_HAS_EQUAL_OR_MORE_THAN(s, n) ((s)->len >= ((size_t)(n)))
static size_t xc_program_index(char *code, size_t *bgn)
{
unsigned char *bytes = (void*)(code + *bgn);
unsigned amt;
unsigned i;
size_t res;
amt = *bytes++;
if (amt < SMALL_INDEX_LIMIT) {
*bgn += 1;
return amt;
}
amt -= (SMALL_INDEX_LIMIT - 1); // amt is 1 or more here
*bgn += amt + 1;
res = 0;
i = 0;
do {
res |= (size_t)(*bytes++) << i;
i += 8;
} while (--amt != 0);
return res;
}
static char *xc_program_name(char *code, size_t *bgn)
{
code += *bgn;
*bgn += strlen(code) + 1;
return xstrdup(code);
}
static BcVec* xc_program_dereference(BcVec *vec)
{
BcVec *v;
size_t vidx, nidx, i = 0;
//assert(vec->size == sizeof(uint8_t));
vidx = xc_program_index(vec->v, &i);
nidx = xc_program_index(vec->v, &i);
v = bc_vec_item(&G.prog.arrs, vidx);
v = bc_vec_item(v, nidx);
//assert(v->size != sizeof(uint8_t));
return v;
}
static BcVec* xc_program_search(char *id, BcType type)
{
BcId e, *ptr;
BcVec *v, *map;
size_t i;
int new;
bool var = (type == BC_TYPE_VAR);
v = var ? &G.prog.vars : &G.prog.arrs;
map = var ? &G.prog.var_map : &G.prog.arr_map;
e.name = id;
e.idx = v->len;
new = bc_map_insert(map, &e, &i); // 1 if insertion was successful
if (new) {
BcVec v2;
bc_array_init(&v2, var);
bc_vec_push(v, &v2);
}
ptr = bc_vec_item(map, i);
if (new) ptr->name = xstrdup(e.name);
return bc_vec_item(v, ptr->idx);
}
// 'num' need not be initialized on entry
static BC_STATUS zxc_program_num(BcResult *r, BcNum **num)
{
switch (r->t) {
case XC_RESULT_STR:
case XC_RESULT_TEMP:
IF_BC(case BC_RESULT_VOID:)
case XC_RESULT_IBASE:
case XC_RESULT_SCALE:
case XC_RESULT_OBASE:
*num = &r->d.n;
break;
case XC_RESULT_CONSTANT: {
BcStatus s;
char *str;
size_t len;
str = *xc_program_const(r->d.id.idx);
len = strlen(str);
bc_num_init(&r->d.n, len);
s = zxc_num_parse(&r->d.n, str, G.prog.ib_t);
if (s) {
bc_num_free(&r->d.n);
RETURN_STATUS(s);
}
*num = &r->d.n;
r->t = XC_RESULT_TEMP;
break;
}
case XC_RESULT_VAR:
case XC_RESULT_ARRAY:
case XC_RESULT_ARRAY_ELEM: {
BcType type = (r->t == XC_RESULT_VAR) ? BC_TYPE_VAR : BC_TYPE_ARRAY;
BcVec *v = xc_program_search(r->d.id.name, type);
void *p = bc_vec_top(v);
if (r->t == XC_RESULT_ARRAY_ELEM) {
size_t idx = r->d.id.idx;
v = p;
if (v->size == sizeof(uint8_t))
v = xc_program_dereference(v);
//assert(v->size == sizeof(BcNum));
if (v->len <= idx)
bc_array_expand(v, idx + 1);
*num = bc_vec_item(v, idx);
} else {
*num = p;
}
break;
}
#if ENABLE_BC
case BC_RESULT_LAST:
*num = &G.prog.last;
break;
case BC_RESULT_ONE:
*num = &G.prog.one;
break;
#endif
#if SANITY_CHECKS
default:
// Testing the theory that dc does not reach LAST/ONE
bb_error_msg_and_die("BUG:%d", r->t);
#endif
}
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zxc_program_num(...) (zxc_program_num(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zxc_program_binOpPrep(BcResult **l, BcNum **ln,
BcResult **r, BcNum **rn, bool assign)
{
BcStatus s;
BcResultType lt, rt;
if (!STACK_HAS_MORE_THAN(&G.prog.results, 1))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
*r = bc_vec_item_rev(&G.prog.results, 0);
*l = bc_vec_item_rev(&G.prog.results, 1);
s = zxc_program_num(*l, ln);
if (s) RETURN_STATUS(s);
s = zxc_program_num(*r, rn);
if (s) RETURN_STATUS(s);
lt = (*l)->t;
rt = (*r)->t;
// We run this again under these conditions in case any vector has been
// reallocated out from under the BcNums or arrays we had.
if (lt == rt && (lt == XC_RESULT_VAR || lt == XC_RESULT_ARRAY_ELEM)) {
s = zxc_program_num(*l, ln);
if (s) RETURN_STATUS(s);
}
if (!BC_PROG_NUM((*l), (*ln)) && (!assign || (*l)->t != XC_RESULT_VAR))
RETURN_STATUS(bc_error_variable_is_wrong_type());
if (!assign && !BC_PROG_NUM((*r), (*ln)))
RETURN_STATUS(bc_error_variable_is_wrong_type());
RETURN_STATUS(s);
}
#define zxc_program_binOpPrep(...) (zxc_program_binOpPrep(__VA_ARGS__) COMMA_SUCCESS)
static void xc_program_binOpRetire(BcResult *r)
{
r->t = XC_RESULT_TEMP;
bc_vec_pop(&G.prog.results);
bc_result_pop_and_push(r);
}
// Note: *r and *n need not be initialized by caller
static BC_STATUS zxc_program_prep(BcResult **r, BcNum **n)
{
BcStatus s;
if (!STACK_HAS_MORE_THAN(&G.prog.results, 0))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
*r = bc_vec_top(&G.prog.results);
s = zxc_program_num(*r, n);
if (s) RETURN_STATUS(s);
if (!BC_PROG_NUM((*r), (*n)))
RETURN_STATUS(bc_error_variable_is_wrong_type());
RETURN_STATUS(s);
}
#define zxc_program_prep(...) (zxc_program_prep(__VA_ARGS__) COMMA_SUCCESS)
static void xc_program_retire(BcResult *r, BcResultType t)
{
r->t = t;
bc_result_pop_and_push(r);
}
static BC_STATUS zxc_program_op(char inst)
{
BcStatus s;
BcResult *opd1, *opd2, res;
BcNum *n1, *n2;
s = zxc_program_binOpPrep(&opd1, &n1, &opd2, &n2, false);
if (s) RETURN_STATUS(s);
bc_num_init_DEF_SIZE(&res.d.n);
s = BC_STATUS_SUCCESS;
IF_ERROR_RETURN_POSSIBLE(s =) zxc_program_ops[inst - XC_INST_POWER](n1, n2, &res.d.n, G.prog.scale);
if (s) goto err;
xc_program_binOpRetire(&res);
RETURN_STATUS(s);
err:
bc_num_free(&res.d.n);
RETURN_STATUS(s);
}
#define zxc_program_op(...) (zxc_program_op(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zxc_program_read(void)
{
BcStatus s;
BcParse sv_parse;
BcVec buf;
BcInstPtr ip;
BcFunc *f;
bc_char_vec_init(&buf);
xc_read_line(&buf, stdin);
f = xc_program_func(BC_PROG_READ);
bc_vec_pop_all(&f->code);
sv_parse = G.prs; // struct copy
xc_parse_create(BC_PROG_READ);
//G.err_line = G.prs.lex_line = 1; - not needed, error line info is not printed for read()
s = zxc_parse_text_init(buf.v);
if (s) goto exec_err;
if (IS_BC) {
IF_BC(s = zbc_parse_expr(0));
} else {
IF_DC(s = zdc_parse_exprs_until_eof());
}
if (s) goto exec_err;
if (G.prs.lex != XC_LEX_NLINE && G.prs.lex != XC_LEX_EOF) {
s = bc_error_at("bad read() expression");
goto exec_err;
}
xc_parse_push(XC_INST_RET);
ip.func = BC_PROG_READ;
ip.inst_idx = 0;
bc_vec_push(&G.prog.exestack, &ip);
exec_err:
xc_parse_free();
G.prs = sv_parse; // struct copy
bc_vec_free(&buf);
RETURN_STATUS(s);
}
#define zxc_program_read(...) (zxc_program_read(__VA_ARGS__) COMMA_SUCCESS)
static void xc_program_printString(const char *str)
{
#if ENABLE_DC
if (!str[0] && IS_DC) {
// Example: echo '[]ap' | dc
// should print two bytes: 0x00, 0x0A
bb_putchar('\0');
return;
}
#endif
while (*str) {
char c = *str++;
if (c == '\\') {
static const char esc[] ALIGN1 = "nabfrt""e\\";
char *n;
c = *str++;
n = strchr(esc, c); // note: if c is NUL, n = \0 at end of esc
if (!n || !c) {
// Just print the backslash and following character
bb_putchar('\\');
++G.prog.nchars;
// But if we're at the end of the string, stop
if (!c) break;
} else {
if (n - esc == 0) // "\n" ?
G.prog.nchars = SIZE_MAX;
c = "\n\a\b\f\r\t""\\\\""\\"[n - esc];
// n a b f r t e \ \<end of line>
}
}
putchar(c);
++G.prog.nchars;
}
}
static void bc_num_printNewline(void)
{
if (G.prog.nchars == G.prog.len - 1) {
bb_putchar('\\');
bb_putchar('\n');
G.prog.nchars = 0;
}
}
#if ENABLE_DC
static FAST_FUNC void dc_num_printChar(size_t num, size_t width, bool radix)
{
(void) radix;
bb_putchar((char) num);
G.prog.nchars += width;
}
#endif
static FAST_FUNC void bc_num_printDigits(size_t num, size_t width, bool radix)
{
size_t exp, pow;
bc_num_printNewline();
bb_putchar(radix ? '.' : ' ');
++G.prog.nchars;
bc_num_printNewline();
for (exp = 0, pow = 1; exp < width - 1; ++exp, pow *= 10)
continue;
for (exp = 0; exp < width; pow /= 10, ++G.prog.nchars, ++exp) {
size_t dig;
bc_num_printNewline();
dig = num / pow;
num -= dig * pow;
bb_putchar(((char) dig) + '0');
}
}
static FAST_FUNC void bc_num_printHex(size_t num, size_t width, bool radix)
{
if (radix) {
bc_num_printNewline();
bb_putchar('.');
G.prog.nchars++;
}
bc_num_printNewline();
bb_putchar(bb_hexdigits_upcase[num]);
G.prog.nchars += width;
}
static void bc_num_printDecimal(BcNum *n)
{
size_t i, rdx = n->rdx - 1;
if (n->neg) {
bb_putchar('-');
G.prog.nchars++;
}
for (i = n->len - 1; i < n->len; --i)
bc_num_printHex((size_t) n->num[i], 1, i == rdx);
}
typedef void (*BcNumDigitOp)(size_t, size_t, bool) FAST_FUNC;
static BC_STATUS zxc_num_printNum(BcNum *n, unsigned base_t, size_t width, BcNumDigitOp print)
{
BcStatus s;
BcVec stack;
BcNum base;
BcDig base_digs[ULONG_NUM_BUFSIZE];
BcNum intp, fracp, digit, frac_len;
unsigned long dig, *ptr;
size_t i;
bool radix;
if (n->len == 0) {
print(0, width, false);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
bc_vec_init(&stack, sizeof(long), NULL);
bc_num_init_and_copy(&intp, n);
bc_num_init(&fracp, n->rdx);
bc_num_init(&digit, width);
bc_num_init(&frac_len, BC_NUM_INT(n));
bc_num_one(&frac_len);
base.cap = ARRAY_SIZE(base_digs);
base.num = base_digs;
bc_num_ulong2num(&base, base_t);
bc_num_truncate(&intp, intp.rdx);
s = zbc_num_sub(n, &intp, &fracp, 0);
if (s) goto err;
while (intp.len != 0) {
s = zbc_num_divmod(&intp, &base, &intp, &digit, 0);
if (s) goto err;
s = zbc_num_ulong(&digit, &dig);
if (s) goto err;
bc_vec_push(&stack, &dig);
}
for (i = 0; i < stack.len; ++i) {
ptr = bc_vec_item_rev(&stack, i);
print(*ptr, width, false);
}
if (!n->rdx) goto err;
for (radix = true; frac_len.len <= n->rdx; radix = false) {
s = zbc_num_mul(&fracp, &base, &fracp, n->rdx);
if (s) goto err;
s = zbc_num_ulong(&fracp, &dig);
if (s) goto err;
bc_num_ulong2num(&intp, dig);
s = zbc_num_sub(&fracp, &intp, &fracp, 0);
if (s) goto err;
print(dig, width, radix);
s = zbc_num_mul(&frac_len, &base, &frac_len, 0);
if (s) goto err;
}
err:
bc_num_free(&frac_len);
bc_num_free(&digit);
bc_num_free(&fracp);
bc_num_free(&intp);
bc_vec_free(&stack);
RETURN_STATUS(s);
}
#define zxc_num_printNum(...) (zxc_num_printNum(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zxc_num_printBase(BcNum *n)
{
BcStatus s;
size_t width;
BcNumDigitOp print;
bool neg = n->neg;
if (neg) {
bb_putchar('-');
G.prog.nchars++;
}
n->neg = false;
if (G.prog.ob_t <= 16) {
width = 1;
print = bc_num_printHex;
} else {
unsigned i = G.prog.ob_t - 1;
width = 0;
for (;;) {
width++;
i /= 10;
if (i == 0)
break;
}
print = bc_num_printDigits;
}
s = zxc_num_printNum(n, G.prog.ob_t, width, print);
n->neg = neg;
RETURN_STATUS(s);
}
#define zxc_num_printBase(...) (zxc_num_printBase(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zxc_num_print(BcNum *n, bool newline)
{
BcStatus s = BC_STATUS_SUCCESS;
bc_num_printNewline();
if (n->len == 0) {
bb_putchar('0');
++G.prog.nchars;
} else if (G.prog.ob_t == 10)
bc_num_printDecimal(n);
else
s = zxc_num_printBase(n);
if (newline) {
bb_putchar('\n');
G.prog.nchars = 0;
}
RETURN_STATUS(s);
}
#define zxc_num_print(...) (zxc_num_print(__VA_ARGS__) COMMA_SUCCESS)
#if !ENABLE_DC
// for bc, idx is always 0
#define xc_program_print(inst, idx) \
xc_program_print(inst)
#endif
static BC_STATUS xc_program_print(char inst, size_t idx)
{
BcStatus s;
BcResult *r;
BcNum *num;
IF_NOT_DC(size_t idx = 0);
if (!STACK_HAS_MORE_THAN(&G.prog.results, idx))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
r = bc_vec_item_rev(&G.prog.results, idx);
#if ENABLE_BC
if (inst == XC_INST_PRINT && r->t == BC_RESULT_VOID)
// void function's result on stack, ignore
RETURN_STATUS(BC_STATUS_SUCCESS);
#endif
s = zxc_program_num(r, &num);
if (s) RETURN_STATUS(s);
if (BC_PROG_NUM(r, num)) {
s = zxc_num_print(num, /*newline:*/ inst == XC_INST_PRINT);
#if ENABLE_BC
if (!s && IS_BC) bc_num_copy(&G.prog.last, num);
#endif
} else {
char *str;
idx = (r->t == XC_RESULT_STR) ? r->d.id.idx : num->rdx;
str = *xc_program_str(idx);
if (inst == XC_INST_PRINT_STR) {
char *nl;
G.prog.nchars += printf("%s", str);
nl = strrchr(str, '\n');
if (nl)
G.prog.nchars = strlen(nl + 1);
} else {
xc_program_printString(str);
if (inst == XC_INST_PRINT)
bb_putchar('\n');
}
}
if (!s && inst != XC_INST_PRINT) bc_vec_pop(&G.prog.results);
RETURN_STATUS(s);
}
#define zxc_program_print(...) (xc_program_print(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zxc_program_negate(void)
{
BcStatus s;
BcResult res, *ptr;
BcNum *num;
s = zxc_program_prep(&ptr, &num);
if (s) RETURN_STATUS(s);
bc_num_init_and_copy(&res.d.n, num);
if (res.d.n.len) res.d.n.neg = !res.d.n.neg;
xc_program_retire(&res, XC_RESULT_TEMP);
RETURN_STATUS(s);
}
#define zxc_program_negate(...) (zxc_program_negate(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zxc_program_logical(char inst)
{
BcStatus s;
BcResult *opd1, *opd2, res;
BcNum *n1, *n2;
ssize_t cond;
s = zxc_program_binOpPrep(&opd1, &n1, &opd2, &n2, false);
if (s) RETURN_STATUS(s);
bc_num_init_DEF_SIZE(&res.d.n);
if (inst == XC_INST_BOOL_AND)
cond = bc_num_cmp(n1, &G.prog.zero) && bc_num_cmp(n2, &G.prog.zero);
else if (inst == XC_INST_BOOL_OR)
cond = bc_num_cmp(n1, &G.prog.zero) || bc_num_cmp(n2, &G.prog.zero);
else {
cond = bc_num_cmp(n1, n2);
switch (inst) {
case XC_INST_REL_EQ:
cond = (cond == 0);
break;
case XC_INST_REL_LE:
cond = (cond <= 0);
break;
case XC_INST_REL_GE:
cond = (cond >= 0);
break;
case XC_INST_REL_LT:
cond = (cond < 0);
break;
case XC_INST_REL_GT:
cond = (cond > 0);
break;
default: // = case XC_INST_REL_NE:
//cond = (cond != 0); - not needed
break;
}
}
if (cond) bc_num_one(&res.d.n);
//else bc_num_zero(&res.d.n); - already is
xc_program_binOpRetire(&res);
RETURN_STATUS(s);
}
#define zxc_program_logical(...) (zxc_program_logical(__VA_ARGS__) COMMA_SUCCESS)
#if ENABLE_DC
static BC_STATUS zdc_program_assignStr(BcResult *r, BcVec *v, bool push)
{
BcNum n2;
BcResult res;
memset(&n2, 0, sizeof(BcNum));
n2.rdx = res.d.id.idx = r->d.id.idx;
res.t = XC_RESULT_STR;
if (!push) {
if (!STACK_HAS_MORE_THAN(&G.prog.results, 1))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
bc_vec_pop(v);
bc_vec_pop(&G.prog.results);
}
bc_result_pop_and_push(&res);
bc_vec_push(v, &n2);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zdc_program_assignStr(...) (zdc_program_assignStr(__VA_ARGS__) COMMA_SUCCESS)
#endif // ENABLE_DC
static BC_STATUS zxc_program_popResultAndCopyToVar(char *name, BcType t)
{
BcStatus s;
BcResult *ptr, r;
BcVec *vec;
BcNum *n;
bool var = (t == BC_TYPE_VAR);
if (!STACK_HAS_MORE_THAN(&G.prog.results, 0))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
ptr = bc_vec_top(&G.prog.results);
if ((ptr->t == XC_RESULT_ARRAY) == var)
RETURN_STATUS(bc_error_variable_is_wrong_type());
vec = xc_program_search(name, t);
#if ENABLE_DC
if (ptr->t == XC_RESULT_STR) {
if (!var)
RETURN_STATUS(bc_error_variable_is_wrong_type());
RETURN_STATUS(zdc_program_assignStr(ptr, vec, true));
}
#endif
s = zxc_program_num(ptr, &n);
if (s) RETURN_STATUS(s);
// Do this once more to make sure that pointers were not invalidated.
vec = xc_program_search(name, t);
if (var) {
bc_num_init_DEF_SIZE(&r.d.n);
bc_num_copy(&r.d.n, n);
} else {
BcVec *v = (BcVec*) n;
bool ref, ref_size;
ref = (v->size == sizeof(BcVec) && t != BC_TYPE_ARRAY);
ref_size = (v->size == sizeof(uint8_t));
if (ref || (ref_size && t == BC_TYPE_REF)) {
bc_vec_init(&r.d.v, sizeof(uint8_t), NULL);
if (ref) {
size_t vidx, idx;
BcId id;
id.name = ptr->d.id.name;
v = xc_program_search(ptr->d.id.name, BC_TYPE_REF);
// Make sure the pointer was not invalidated.
vec = xc_program_search(name, t);
vidx = bc_map_find_exact(&G.prog.arr_map, &id);
//assert(vidx != BC_VEC_INVALID_IDX);
vidx = ((BcId*) bc_vec_item(&G.prog.arr_map, vidx))->idx;
idx = v->len - 1;
bc_vec_pushIndex(&r.d.v, vidx);
bc_vec_pushIndex(&r.d.v, idx);
}
// If we get here, we are copying a ref to a ref.
else bc_vec_npush(&r.d.v, v->len, v->v);
// We need to return early.
goto ret;
}
if (ref_size && t != BC_TYPE_REF)
v = xc_program_dereference(v);
bc_array_init(&r.d.v, true);
bc_array_copy(&r.d.v, v);
}
ret:
bc_vec_push(vec, &r.d);
bc_vec_pop(&G.prog.results);
RETURN_STATUS(s);
}
#define zxc_program_popResultAndCopyToVar(...) (zxc_program_popResultAndCopyToVar(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zxc_program_assign(char inst)
{
BcStatus s;
BcResult *left, *right, res;
BcNum *l, *r;
bool assign = (inst == XC_INST_ASSIGN);
bool ib, sc;
s = zxc_program_binOpPrep(&left, &l, &right, &r, assign);
if (s) RETURN_STATUS(s);
ib = left->t == XC_RESULT_IBASE;
sc = left->t == XC_RESULT_SCALE;
#if ENABLE_DC
if (right->t == XC_RESULT_STR) {
BcVec *v;
if (left->t != XC_RESULT_VAR)
RETURN_STATUS(bc_error_variable_is_wrong_type());
v = xc_program_search(left->d.id.name, BC_TYPE_VAR);
RETURN_STATUS(zdc_program_assignStr(right, v, false));
}
#endif
if (left->t == XC_RESULT_CONSTANT
|| left->t == XC_RESULT_TEMP
IF_BC(|| left->t == BC_RESULT_VOID)
) {
RETURN_STATUS(bc_error_bad_assignment());
}
#if ENABLE_BC
if (assign)
bc_num_copy(l, r);
else {
s = BC_STATUS_SUCCESS;
IF_ERROR_RETURN_POSSIBLE(s =) zxc_program_ops[inst - BC_INST_ASSIGN_POWER](l, r, l, G.prog.scale);
}
if (s) RETURN_STATUS(s);
#else
bc_num_copy(l, r);
#endif
if (ib || sc || left->t == XC_RESULT_OBASE) {
static const char *const msg[] ALIGN_PTR = {
"bad ibase; must be [2,16]", //XC_RESULT_IBASE
"bad obase; must be [2,"BC_MAX_OBASE_STR"]", //XC_RESULT_OBASE
"bad scale; must be [0,"BC_MAX_SCALE_STR"]", //XC_RESULT_SCALE
};
size_t *ptr;
size_t max;
unsigned long val;
s = zbc_num_ulong(l, &val);
if (s) RETURN_STATUS(s);
s = left->t - XC_RESULT_IBASE;
if (sc) {
max = BC_MAX_SCALE;
ptr = &G.prog.scale;
} else {
if (val < 2)
RETURN_STATUS(bc_error(msg[s]));
max = ib ? BC_NUM_MAX_IBASE : BC_MAX_OBASE;
ptr = ib ? &G.prog.ib_t : &G.prog.ob_t;
}
if (val > max)
RETURN_STATUS(bc_error(msg[s]));
*ptr = (size_t) val;
s = BC_STATUS_SUCCESS;
}
bc_num_init_and_copy(&res.d.n, l);
xc_program_binOpRetire(&res);
RETURN_STATUS(s);
}
#define zxc_program_assign(...) (zxc_program_assign(__VA_ARGS__) COMMA_SUCCESS)
#if !ENABLE_DC
#define xc_program_pushVar(code, bgn, pop, copy) \
xc_program_pushVar(code, bgn)
// for bc, 'pop' and 'copy' are always false
#endif
static BC_STATUS xc_program_pushVar(char *code, size_t *bgn,
bool pop, bool copy)
{
BcResult r;
char *name = xc_program_name(code, bgn);
r.t = XC_RESULT_VAR;
r.d.id.name = name;
#if ENABLE_DC
if (pop || copy) {
BcVec *v = xc_program_search(name, BC_TYPE_VAR);
BcNum *num = bc_vec_top(v);
free(name);
if (!STACK_HAS_MORE_THAN(v, 1 - copy)) {
RETURN_STATUS(bc_error_stack_has_too_few_elements());
}
if (!BC_PROG_STR(num)) {
r.t = XC_RESULT_TEMP;
bc_num_init_DEF_SIZE(&r.d.n);
bc_num_copy(&r.d.n, num);
} else {
r.t = XC_RESULT_STR;
r.d.id.idx = num->rdx;
}
if (!copy) bc_vec_pop(v);
}
#endif // ENABLE_DC
bc_vec_push(&G.prog.results, &r);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zxc_program_pushVar(...) (xc_program_pushVar(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_program_pushArray(char *code, size_t *bgn, char inst)
{
BcStatus s = BC_STATUS_SUCCESS;
BcResult r;
BcNum *num;
r.d.id.name = xc_program_name(code, bgn);
if (inst == XC_INST_ARRAY) {
r.t = XC_RESULT_ARRAY;
bc_vec_push(&G.prog.results, &r);
} else {
BcResult *operand;
unsigned long temp;
s = zxc_program_prep(&operand, &num);
if (s) goto err;
s = zbc_num_ulong(num, &temp);
if (s) goto err;
if (temp > BC_MAX_DIM) {
s = bc_error("array too long; must be [1,"BC_MAX_DIM_STR"]");
goto err;
}
r.d.id.idx = (size_t) temp;
xc_program_retire(&r, XC_RESULT_ARRAY_ELEM);
}
err:
if (s) free(r.d.id.name);
RETURN_STATUS(s);
}
#define zbc_program_pushArray(...) (zbc_program_pushArray(__VA_ARGS__) COMMA_SUCCESS)
#if ENABLE_BC
static BC_STATUS zbc_program_incdec(char inst)
{
BcStatus s;
BcResult *ptr, res, copy;
BcNum *num;
char inst2 = inst;
s = zxc_program_prep(&ptr, &num);
if (s) RETURN_STATUS(s);
if (inst == BC_INST_INC_POST || inst == BC_INST_DEC_POST) {
copy.t = XC_RESULT_TEMP;
bc_num_init_and_copy(&copy.d.n, num);
}
res.t = BC_RESULT_ONE;
inst = (inst == BC_INST_INC_PRE || inst == BC_INST_INC_POST)
? BC_INST_ASSIGN_PLUS
: BC_INST_ASSIGN_MINUS;
bc_vec_push(&G.prog.results, &res);
s = zxc_program_assign(inst);
if (s) RETURN_STATUS(s);
if (inst2 == BC_INST_INC_POST || inst2 == BC_INST_DEC_POST) {
bc_result_pop_and_push(&copy);
}
RETURN_STATUS(s);
}
#define zbc_program_incdec(...) (zbc_program_incdec(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_program_call(char *code, size_t *idx)
{
BcInstPtr ip;
size_t i, nparams;
BcId *a;
BcFunc *func;
nparams = xc_program_index(code, idx);
ip.func = xc_program_index(code, idx);
func = xc_program_func(ip.func);
if (func->code.len == 0) {
RETURN_STATUS(bc_error("undefined function"));
}
if (nparams != func->nparams) {
RETURN_STATUS(bc_error_fmt("function has %u parameters, but called with %u", func->nparams, nparams));
}
ip.inst_idx = 0;
for (i = 0; i < nparams; ++i) {
BcResult *arg;
BcStatus s;
bool arr;
a = bc_vec_item(&func->autos, nparams - 1 - i);
arg = bc_vec_top(&G.prog.results);
arr = (a->idx == BC_TYPE_ARRAY || a->idx == BC_TYPE_REF);
if (arr != (arg->t == XC_RESULT_ARRAY) // array/variable mismatch
// || arg->t == XC_RESULT_STR - impossible, f("str") is not a legal syntax (strings are not bc expressions)
) {
RETURN_STATUS(bc_error_variable_is_wrong_type());
}
s = zxc_program_popResultAndCopyToVar(a->name, (BcType) a->idx);
if (s) RETURN_STATUS(s);
}
a = bc_vec_item(&func->autos, i);
for (; i < func->autos.len; i++, a++) {
BcVec *v;
v = xc_program_search(a->name, (BcType) a->idx);
if (a->idx == BC_TYPE_VAR) {
BcNum n2;
bc_num_init_DEF_SIZE(&n2);
bc_vec_push(v, &n2);
} else {
//assert(a->idx == BC_TYPE_ARRAY);
BcVec v2;
bc_array_init(&v2, true);
bc_vec_push(v, &v2);
}
}
bc_vec_push(&G.prog.exestack, &ip);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zbc_program_call(...) (zbc_program_call(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zbc_program_return(char inst)
{
BcResult res;
BcFunc *f;
BcId *a;
size_t i;
BcInstPtr *ip = bc_vec_top(&G.prog.exestack);
f = xc_program_func(ip->func);
res.t = XC_RESULT_TEMP;
if (inst == XC_INST_RET) {
// bc needs this for e.g. RESULT_CONSTANT ("return 5")
// because bc constants are per-function.
// TODO: maybe avoid if value is already RESULT_TEMP?
BcStatus s;
BcNum *num;
BcResult *operand = bc_vec_top(&G.prog.results);
s = zxc_program_num(operand, &num);
if (s) RETURN_STATUS(s);
bc_num_init_and_copy(&res.d.n, num);
bc_vec_pop(&G.prog.results);
} else {
if (f->voidfunc)
res.t = BC_RESULT_VOID;
bc_num_init_DEF_SIZE(&res.d.n);
//bc_num_zero(&res.d.n); - already is
}
bc_vec_push(&G.prog.results, &res);
bc_vec_pop(&G.prog.exestack);
// We need to pop arguments as well, so this takes that into account.
a = (void*)f->autos.v;
for (i = 0; i < f->autos.len; i++, a++) {
BcVec *v;
v = xc_program_search(a->name, (BcType) a->idx);
bc_vec_pop(v);
}
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zbc_program_return(...) (zbc_program_return(__VA_ARGS__) COMMA_SUCCESS)
#endif // ENABLE_BC
static unsigned long xc_program_scale(BcNum *n)
{
return (unsigned long) n->rdx;
}
static unsigned long xc_program_len(BcNum *n)
{
size_t len = n->len;
if (n->rdx != len)
// length(100): rdx 0 len 3, return 3
// length(0.01-0.01): rdx 2 len 0, return 2
// dc: 0.01 0.01 - Zp: rdx 2 len 0, return 1
return len != 0 ? len : (IS_BC ? n->rdx : 1);
// length(0): return 1
// length(0.000nnn): count nnn
for (;;) {
if (len == 0) break;
len--;
if (n->num[len] != 0) break;
}
return len + 1;
}
static BC_STATUS zxc_program_builtin(char inst)
{
BcStatus s;
BcResult *opnd;
BcNum *num;
BcResult res;
bool len = (inst == XC_INST_LENGTH);
if (!STACK_HAS_MORE_THAN(&G.prog.results, 0))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
opnd = bc_vec_top(&G.prog.results);
s = zxc_program_num(opnd, &num);
if (s) RETURN_STATUS(s);
#if ENABLE_DC
if (!BC_PROG_NUM(opnd, num) && !len)
RETURN_STATUS(bc_error_variable_is_wrong_type());
#endif
bc_num_init_DEF_SIZE(&res.d.n);
if (inst == XC_INST_SQRT)
s = zbc_num_sqrt(num, &res.d.n, G.prog.scale);
#if ENABLE_BC
else if (len && opnd->t == XC_RESULT_ARRAY) {
bc_num_ulong2num(&res.d.n, (unsigned long) ((BcVec *) num)->len);
}
#endif
#if ENABLE_DC
else if (len && !BC_PROG_NUM(opnd, num)) {
char **str;
size_t idx = opnd->t == XC_RESULT_STR ? opnd->d.id.idx : num->rdx;
str = xc_program_str(idx);
bc_num_ulong2num(&res.d.n, strlen(*str));
}
#endif
else {
//TODO: length(.00) and scale(.00) should return 2, they return 1 and 0 now
//(don't forget to check that dc Z and X commands do not break)
bc_num_ulong2num(&res.d.n, len ? xc_program_len(num) : xc_program_scale(num));
}
xc_program_retire(&res, XC_RESULT_TEMP);
RETURN_STATUS(s);
}
#define zxc_program_builtin(...) (zxc_program_builtin(__VA_ARGS__) COMMA_SUCCESS)
#if ENABLE_DC
static BC_STATUS zdc_program_divmod(void)
{
BcStatus s;
BcResult *opd1, *opd2, res, res2;
BcNum *n1, *n2;
s = zxc_program_binOpPrep(&opd1, &n1, &opd2, &n2, false);
if (s) RETURN_STATUS(s);
bc_num_init_DEF_SIZE(&res.d.n);
bc_num_init(&res2.d.n, n2->len);
s = zbc_num_divmod(n1, n2, &res2.d.n, &res.d.n, G.prog.scale);
if (s) goto err;
xc_program_binOpRetire(&res2);
res.t = XC_RESULT_TEMP;
bc_vec_push(&G.prog.results, &res);
RETURN_STATUS(s);
err:
bc_num_free(&res2.d.n);
bc_num_free(&res.d.n);
RETURN_STATUS(s);
}
#define zdc_program_divmod(...) (zdc_program_divmod(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zdc_program_modexp(void)
{
BcStatus s;
BcResult *r1, *r2, *r3, res;
BcNum *n1, *n2, *n3;
if (!STACK_HAS_MORE_THAN(&G.prog.results, 2))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
s = zxc_program_binOpPrep(&r2, &n2, &r3, &n3, false);
if (s) RETURN_STATUS(s);
r1 = bc_vec_item_rev(&G.prog.results, 2);
s = zxc_program_num(r1, &n1);
if (s) RETURN_STATUS(s);
if (!BC_PROG_NUM(r1, n1))
RETURN_STATUS(bc_error_variable_is_wrong_type());
// Make sure that the values have their pointers updated, if necessary.
if (r1->t == XC_RESULT_VAR || r1->t == XC_RESULT_ARRAY_ELEM) {
if (r1->t == r2->t) {
s = zxc_program_num(r2, &n2);
if (s) RETURN_STATUS(s);
}
if (r1->t == r3->t) {
s = zxc_program_num(r3, &n3);
if (s) RETURN_STATUS(s);
}
}
bc_num_init(&res.d.n, n3->len);
s = zdc_num_modexp(n1, n2, n3, &res.d.n);
if (s) goto err;
bc_vec_pop(&G.prog.results);
xc_program_binOpRetire(&res);
RETURN_STATUS(s);
err:
bc_num_free(&res.d.n);
RETURN_STATUS(s);
}
#define zdc_program_modexp(...) (zdc_program_modexp(__VA_ARGS__) COMMA_SUCCESS)
static void dc_program_stackLen(void)
{
BcResult res;
size_t len = G.prog.results.len;
res.t = XC_RESULT_TEMP;
bc_num_init_DEF_SIZE(&res.d.n);
bc_num_ulong2num(&res.d.n, len);
bc_vec_push(&G.prog.results, &res);
}
static BC_STATUS zdc_program_asciify(void)
{
BcStatus s;
BcResult *r, res;
BcNum *num, n;
char **strs;
char *str;
char c;
size_t idx;
if (!STACK_HAS_MORE_THAN(&G.prog.results, 0))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
r = bc_vec_top(&G.prog.results);
s = zxc_program_num(r, &num);
if (s) RETURN_STATUS(s);
if (BC_PROG_NUM(r, num)) {
unsigned long val;
BcNum strmb;
BcDig strmb_digs[ULONG_NUM_BUFSIZE];
bc_num_init_DEF_SIZE(&n);
bc_num_copy(&n, num);
bc_num_truncate(&n, n.rdx);
strmb.cap = ARRAY_SIZE(strmb_digs);
strmb.num = strmb_digs;
bc_num_ulong2num(&strmb, 0x100);
s = zbc_num_mod(&n, &strmb, &n, 0);
if (s) goto num_err;
s = zbc_num_ulong(&n, &val);
if (s) goto num_err;
c = (char) val;
bc_num_free(&n);
} else {
char *sp;
idx = (r->t == XC_RESULT_STR) ? r->d.id.idx : num->rdx;
sp = *xc_program_str(idx);
c = sp[0];
}
strs = (void*)G.prog.strs.v;
for (idx = 0; idx < G.prog.strs.len; idx++) {
if (strs[idx][0] == c && strs[idx][1] == '\0') {
goto dup;
}
}
str = xzalloc(2);
str[0] = c;
//str[1] = '\0'; - already is
idx = bc_vec_push(&G.prog.strs, &str);
// Add an empty function so that if zdc_program_execStr ever needs to
// parse the string into code (from the 'x' command) there's somewhere
// to store the bytecode.
xc_program_add_fn();
dup:
res.t = XC_RESULT_STR;
res.d.id.idx = idx;
bc_result_pop_and_push(&res);
RETURN_STATUS(BC_STATUS_SUCCESS);
num_err:
bc_num_free(&n);
RETURN_STATUS(s);
}
#define zdc_program_asciify(...) (zdc_program_asciify(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zdc_program_printStream(void)
{
BcStatus s;
BcResult *r;
BcNum *n;
size_t idx;
if (!STACK_HAS_MORE_THAN(&G.prog.results, 0))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
r = bc_vec_top(&G.prog.results);
s = zxc_program_num(r, &n);
if (s) RETURN_STATUS(s);
if (BC_PROG_NUM(r, n)) {
s = zxc_num_printNum(n, 0x100, 1, dc_num_printChar);
} else {
char *str;
idx = (r->t == XC_RESULT_STR) ? r->d.id.idx : n->rdx;
str = *xc_program_str(idx);
fputs_stdout(str);
}
RETURN_STATUS(s);
}
#define zdc_program_printStream(...) (zdc_program_printStream(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zdc_program_nquit(void)
{
BcStatus s;
BcResult *opnd;
BcNum *num;
unsigned long val;
s = zxc_program_prep(&opnd, &num);
if (s) RETURN_STATUS(s);
s = zbc_num_ulong(num, &val);
if (s) RETURN_STATUS(s);
bc_vec_pop(&G.prog.results);
if (G.prog.exestack.len < val)
RETURN_STATUS(bc_error_stack_has_too_few_elements());
if (G.prog.exestack.len == val) {
QUIT_OR_RETURN_TO_MAIN;
}
bc_vec_npop(&G.prog.exestack, val);
RETURN_STATUS(s);
}
#define zdc_program_nquit(...) (zdc_program_nquit(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zdc_program_execStr(char *code, size_t *bgn, bool cond)
{
BcStatus s = BC_STATUS_SUCCESS;
BcResult *r;
BcFunc *f;
BcInstPtr ip;
size_t fidx, sidx;
if (!STACK_HAS_MORE_THAN(&G.prog.results, 0))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
r = bc_vec_top(&G.prog.results);
if (cond) {
BcNum *n = n; // for compiler
bool exec;
char *name;
char *then_name = xc_program_name(code, bgn);
char *else_name = NULL;
if (code[*bgn] == '\0')
(*bgn) += 1;
else
else_name = xc_program_name(code, bgn);
exec = r->d.n.len != 0;
name = then_name;
if (!exec && else_name != NULL) {
exec = true;
name = else_name;
}
if (exec) {
BcVec *v;
v = xc_program_search(name, BC_TYPE_VAR);
n = bc_vec_top(v);
}
free(then_name);
free(else_name);
if (!exec) goto exit;
if (!BC_PROG_STR(n)) {
s = bc_error_variable_is_wrong_type();
goto exit;
}
sidx = n->rdx;
} else {
if (r->t == XC_RESULT_STR) {
sidx = r->d.id.idx;
} else if (r->t == XC_RESULT_VAR) {
BcNum *n;
s = zxc_program_num(r, &n);
if (s || !BC_PROG_STR(n)) goto exit;
sidx = n->rdx;
} else
goto exit_nopop;
}
fidx = sidx + BC_PROG_REQ_FUNCS;
f = xc_program_func(fidx);
if (f->code.len == 0) {
BcParse sv_parse;
char *str;
sv_parse = G.prs; // struct copy
xc_parse_create(fidx);
str = *xc_program_str(sidx);
s = zxc_parse_text_init(str);
if (s) goto err;
s = zdc_parse_exprs_until_eof();
if (s) goto err;
xc_parse_push(DC_INST_POP_EXEC);
if (G.prs.lex != XC_LEX_EOF)
s = bc_error_bad_expression();
xc_parse_free();
G.prs = sv_parse; // struct copy
if (s) {
err:
bc_vec_pop_all(&f->code);
goto exit;
}
}
ip.inst_idx = 0;
ip.func = fidx;
bc_vec_pop(&G.prog.results);
bc_vec_push(&G.prog.exestack, &ip);
RETURN_STATUS(BC_STATUS_SUCCESS);
exit:
bc_vec_pop(&G.prog.results);
exit_nopop:
RETURN_STATUS(s);
}
#define zdc_program_execStr(...) (zdc_program_execStr(__VA_ARGS__) COMMA_SUCCESS)
#endif // ENABLE_DC
static void xc_program_pushGlobal(char inst)
{
BcResult res;
unsigned long val;
res.t = inst - XC_INST_IBASE + XC_RESULT_IBASE;
if (inst == XC_INST_IBASE)
val = (unsigned long) G.prog.ib_t;
else if (inst == XC_INST_SCALE)
val = (unsigned long) G.prog.scale;
else
val = (unsigned long) G.prog.ob_t;
bc_num_init_DEF_SIZE(&res.d.n);
bc_num_ulong2num(&res.d.n, val);
bc_vec_push(&G.prog.results, &res);
}
static BC_STATUS zxc_program_exec(void)
{
BcResult r, *ptr;
BcInstPtr *ip = bc_vec_top(&G.prog.exestack);
BcFunc *func = xc_program_func(ip->func);
char *code = func->code.v;
dbg_exec("func:%zd bytes:%zd ip:%zd results.len:%d",
ip->func, func->code.len, ip->inst_idx, G.prog.results.len);
while (ip->inst_idx < func->code.len) {
BcStatus s = BC_STATUS_SUCCESS;
char inst = code[ip->inst_idx++];
dbg_exec("inst at %zd:%d results.len:%d", ip->inst_idx - 1, inst, G.prog.results.len);
switch (inst) {
case XC_INST_RET:
if (IS_DC) { // end of '?' reached
bc_vec_pop(&G.prog.exestack);
goto read_updated_ip;
}
// bc: fall through
#if ENABLE_BC
case BC_INST_RET0:
dbg_exec("BC_INST_RET[0]:");
s = zbc_program_return(inst);
goto read_updated_ip;
case BC_INST_JUMP_ZERO: {
BcNum *num;
bool zero;
dbg_exec("BC_INST_JUMP_ZERO:");
s = zxc_program_prep(&ptr, &num);
if (s) RETURN_STATUS(s);
zero = (bc_num_cmp(num, &G.prog.zero) == 0);
bc_vec_pop(&G.prog.results);
if (!zero) {
xc_program_index(code, &ip->inst_idx);
break;
}
// else: fall through
}
case BC_INST_JUMP: {
size_t idx = xc_program_index(code, &ip->inst_idx);
size_t *addr = bc_vec_item(&func->labels, idx);
dbg_exec("BC_INST_JUMP: to %ld", (long)*addr);
ip->inst_idx = *addr;
break;
}
case BC_INST_CALL:
dbg_exec("BC_INST_CALL:");
s = zbc_program_call(code, &ip->inst_idx);
goto read_updated_ip;
case BC_INST_INC_PRE:
case BC_INST_DEC_PRE:
case BC_INST_INC_POST:
case BC_INST_DEC_POST:
dbg_exec("BC_INST_INCDEC:");
s = zbc_program_incdec(inst);
break;
case BC_INST_HALT:
dbg_exec("BC_INST_HALT:");
QUIT_OR_RETURN_TO_MAIN;
break;
case XC_INST_BOOL_OR:
case XC_INST_BOOL_AND:
#endif // ENABLE_BC
case XC_INST_REL_EQ:
case XC_INST_REL_LE:
case XC_INST_REL_GE:
case XC_INST_REL_NE:
case XC_INST_REL_LT:
case XC_INST_REL_GT:
dbg_exec("BC_INST_BOOL:");
s = zxc_program_logical(inst);
break;
case XC_INST_READ:
dbg_exec("XC_INST_READ:");
s = zxc_program_read();
goto read_updated_ip;
case XC_INST_VAR:
dbg_exec("XC_INST_VAR:");
s = zxc_program_pushVar(code, &ip->inst_idx, false, false);
break;
case XC_INST_ARRAY_ELEM:
case XC_INST_ARRAY:
dbg_exec("XC_INST_ARRAY[_ELEM]:");
s = zbc_program_pushArray(code, &ip->inst_idx, inst);
break;
#if ENABLE_BC
case BC_INST_LAST:
dbg_exec("BC_INST_LAST:");
r.t = BC_RESULT_LAST;
bc_vec_push(&G.prog.results, &r);
break;
#endif
case XC_INST_IBASE:
case XC_INST_OBASE:
case XC_INST_SCALE:
dbg_exec("XC_INST_internalvar(%d):", inst - XC_INST_IBASE);
xc_program_pushGlobal(inst);
break;
case XC_INST_SCALE_FUNC:
case XC_INST_LENGTH:
case XC_INST_SQRT:
dbg_exec("BC_INST_builtin:");
s = zxc_program_builtin(inst);
break;
case XC_INST_NUM:
dbg_exec("XC_INST_NUM:");
r.t = XC_RESULT_CONSTANT;
r.d.id.idx = xc_program_index(code, &ip->inst_idx);
bc_vec_push(&G.prog.results, &r);
break;
case XC_INST_POP:
dbg_exec("XC_INST_POP:");
if (!STACK_HAS_MORE_THAN(&G.prog.results, 0))
s = bc_error_stack_has_too_few_elements();
else
bc_vec_pop(&G.prog.results);
break;
case XC_INST_PRINT:
case XC_INST_PRINT_POP:
case XC_INST_PRINT_STR:
dbg_exec("XC_INST_PRINTxyz(%d):", inst - XC_INST_PRINT);
s = zxc_program_print(inst, 0);
break;
case XC_INST_STR:
dbg_exec("XC_INST_STR:");
r.t = XC_RESULT_STR;
r.d.id.idx = xc_program_index(code, &ip->inst_idx);
bc_vec_push(&G.prog.results, &r);
break;
case XC_INST_POWER:
case XC_INST_MULTIPLY:
case XC_INST_DIVIDE:
case XC_INST_MODULUS:
case XC_INST_PLUS:
case XC_INST_MINUS:
dbg_exec("BC_INST_binaryop:");
s = zxc_program_op(inst);
break;
case XC_INST_BOOL_NOT: {
BcNum *num;
dbg_exec("XC_INST_BOOL_NOT:");
s = zxc_program_prep(&ptr, &num);
if (s) RETURN_STATUS(s);
bc_num_init_DEF_SIZE(&r.d.n);
if (bc_num_cmp(num, &G.prog.zero) == 0)
bc_num_one(&r.d.n);
//else bc_num_zero(&r.d.n); - already is
xc_program_retire(&r, XC_RESULT_TEMP);
break;
}
case XC_INST_NEG:
dbg_exec("XC_INST_NEG:");
s = zxc_program_negate();
break;
#if ENABLE_BC
case BC_INST_ASSIGN_POWER:
case BC_INST_ASSIGN_MULTIPLY:
case BC_INST_ASSIGN_DIVIDE:
case BC_INST_ASSIGN_MODULUS:
case BC_INST_ASSIGN_PLUS:
case BC_INST_ASSIGN_MINUS:
#endif
case XC_INST_ASSIGN:
dbg_exec("BC_INST_ASSIGNxyz:");
s = zxc_program_assign(inst);
break;
#if ENABLE_DC
case DC_INST_POP_EXEC:
dbg_exec("DC_INST_POP_EXEC:");
bc_vec_pop(&G.prog.exestack);
goto read_updated_ip;
case DC_INST_MODEXP:
dbg_exec("DC_INST_MODEXP:");
s = zdc_program_modexp();
break;
case DC_INST_DIVMOD:
dbg_exec("DC_INST_DIVMOD:");
s = zdc_program_divmod();
break;
case DC_INST_EXECUTE:
case DC_INST_EXEC_COND:
dbg_exec("DC_INST_EXEC[_COND]:");
s = zdc_program_execStr(code, &ip->inst_idx, inst == DC_INST_EXEC_COND);
goto read_updated_ip;
case DC_INST_PRINT_STACK: {
size_t idx;
dbg_exec("DC_INST_PRINT_STACK:");
for (idx = 0; idx < G.prog.results.len; ++idx) {
s = zxc_program_print(XC_INST_PRINT, idx);
if (s) break;
}
break;
}
case DC_INST_CLEAR_STACK:
dbg_exec("DC_INST_CLEAR_STACK:");
bc_vec_pop_all(&G.prog.results);
break;
case DC_INST_STACK_LEN:
dbg_exec("DC_INST_STACK_LEN:");
dc_program_stackLen();
break;
case DC_INST_DUPLICATE:
dbg_exec("DC_INST_DUPLICATE:");
if (!STACK_HAS_MORE_THAN(&G.prog.results, 0))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
ptr = bc_vec_top(&G.prog.results);
dc_result_copy(&r, ptr);
bc_vec_push(&G.prog.results, &r);
break;
case DC_INST_SWAP: {
BcResult *ptr2;
dbg_exec("DC_INST_SWAP:");
if (!STACK_HAS_MORE_THAN(&G.prog.results, 1))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
ptr = bc_vec_item_rev(&G.prog.results, 0);
ptr2 = bc_vec_item_rev(&G.prog.results, 1);
memcpy(&r, ptr, sizeof(BcResult));
memcpy(ptr, ptr2, sizeof(BcResult));
memcpy(ptr2, &r, sizeof(BcResult));
break;
}
case DC_INST_ASCIIFY:
dbg_exec("DC_INST_ASCIIFY:");
s = zdc_program_asciify();
break;
case DC_INST_PRINT_STREAM:
dbg_exec("DC_INST_PRINT_STREAM:");
s = zdc_program_printStream();
break;
case DC_INST_LOAD:
case DC_INST_PUSH_VAR: {
bool copy = inst == DC_INST_LOAD;
s = zxc_program_pushVar(code, &ip->inst_idx, true, copy);
break;
}
case DC_INST_PUSH_TO_VAR: {
char *name = xc_program_name(code, &ip->inst_idx);
s = zxc_program_popResultAndCopyToVar(name, BC_TYPE_VAR);
free(name);
break;
}
case DC_INST_QUIT:
dbg_exec("DC_INST_QUIT:");
if (G.prog.exestack.len <= 2)
QUIT_OR_RETURN_TO_MAIN;
bc_vec_npop(&G.prog.exestack, 2);
goto read_updated_ip;
case DC_INST_NQUIT:
dbg_exec("DC_INST_NQUIT:");
s = zdc_program_nquit();
//goto read_updated_ip; - just fall through to it
#endif // ENABLE_DC
read_updated_ip:
// Instruction stack has changed, read new pointers
ip = bc_vec_top(&G.prog.exestack);
func = xc_program_func(ip->func);
code = func->code.v;
dbg_exec("func:%zd bytes:%zd ip:%zd", ip->func, func->code.len, ip->inst_idx);
}
if (s || G_interrupt) {
xc_program_reset();
RETURN_STATUS(s);
}
fflush_and_check();
}
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#define zxc_program_exec(...) (zxc_program_exec(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zxc_vm_process(const char *text)
{
BcStatus s;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
s = zxc_parse_text_init(text); // does the first zxc_lex_next()
if (s) RETURN_STATUS(s);
while (G.prs.lex != XC_LEX_EOF) {
BcInstPtr *ip;
BcFunc *f;
dbg_lex("%s:%d G.prs.lex:%d, parsing...", __func__, __LINE__, G.prs.lex);
if (IS_BC) {
#if ENABLE_BC
s = zbc_parse_stmt_or_funcdef();
if (s) goto err;
// Check that next token is a correct stmt delimiter -
// disallows "print 1 print 2" and such.
if (G.prs.lex != BC_LEX_SCOLON
&& G.prs.lex != XC_LEX_NLINE
&& G.prs.lex != XC_LEX_EOF
) {
bc_error_at("bad statement terminator");
goto err;
}
// The above logic is fragile. Check these examples:
// - interactive read() still works
#endif
} else {
#if ENABLE_DC
s = zdc_parse_expr();
#endif
}
if (s || G_interrupt) {
err:
xc_parse_reset(); // includes xc_program_reset()
RETURN_STATUS(BC_STATUS_FAILURE);
}
dbg_lex("%s:%d executing...", __func__, __LINE__);
s = zxc_program_exec();
if (s) {
xc_program_reset();
break;
}
ip = (void*)G.prog.exestack.v;
#if SANITY_CHECKS
if (G.prog.exestack.len != 1) // should have only main's IP
bb_simple_error_msg_and_die("BUG:call stack");
if (ip->func != BC_PROG_MAIN)
bb_simple_error_msg_and_die("BUG:not MAIN");
#endif
f = xc_program_func_BC_PROG_MAIN();
// bc discards strings, constants and code after each
// top-level statement in the "main program".
// This prevents "yes 1 | bc" from growing its memory
// without bound. This can be done because data stack
// is empty and thus can't hold any references to
// strings or constants, there is no generated code
// which can hold references (after we discard one
// we just executed). Code of functions can have references,
// but bc stores function strings/constants in per-function
// storage.
if (IS_BC) {
#if SANITY_CHECKS
if (G.prog.results.len != 0) // should be empty
bb_simple_error_msg_and_die("BUG:data stack");
#endif
IF_BC(bc_vec_pop_all(&f->strs);)
IF_BC(bc_vec_pop_all(&f->consts);)
// We are at SCOLON/NLINE, skip it:
s = zxc_lex_next();
if (s) goto err;
} else {
if (G.prog.results.len == 0
&& G.prog.vars.len == 0
) {
// If stack is empty and no registers exist (TODO: or they are all empty),
// we can get rid of accumulated strings and constants.
// In this example dc process should not grow
// its memory consumption with time:
// yes 1pc | dc
IF_DC(bc_vec_pop_all(&G.prog.strs);)
IF_DC(bc_vec_pop_all(&G.prog.consts);)
}
// The code is discarded always (below), thus this example
// should also not grow its memory consumption with time,
// even though its data stack is not empty:
// { echo 1; yes dk; } | dc
}
// We drop generated and executed code for both bc and dc:
bc_vec_pop_all(&f->code);
ip->inst_idx = 0;
}
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(s);
}
#define zxc_vm_process(...) (zxc_vm_process(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zxc_vm_execute_FILE(FILE *fp, const char *filename)
{
// So far bc/dc have no way to include a file from another file,
// therefore we know G.prs.lex_filename == NULL on entry
//const char *sv_file;
BcStatus s;
G.prs.lex_filename = filename;
G.prs.lex_input_fp = fp;
G.err_line = G.prs.lex_line = 1;
dbg_lex("p->lex_line reset to 1");
do {
s = zxc_vm_process("");
// We do not stop looping on errors here if reading stdin.
// Example: start interactive bc and enter "return".
// It should say "'return' not in a function"
// but should not exit.
} while (G.prs.lex_input_fp == stdin);
G.prs.lex_filename = NULL;
RETURN_STATUS(s);
}
#define zxc_vm_execute_FILE(...) (zxc_vm_execute_FILE(__VA_ARGS__) COMMA_SUCCESS)
static BC_STATUS zxc_vm_file(const char *file)
{
BcStatus s;
FILE *fp;
fp = xfopen_for_read(file);
s = zxc_vm_execute_FILE(fp, file);
fclose(fp);
RETURN_STATUS(s);
}
#define zxc_vm_file(...) (zxc_vm_file(__VA_ARGS__) COMMA_SUCCESS)
#if ENABLE_BC
static void bc_vm_info(void)
{
printf("%s "BB_VER"\n"
"Adapted from https://github.com/gavinhoward/bc\n"
"Original code (c) 2018 Gavin D. Howard and contributors\n"
, applet_name);
}
static void bc_args(char **argv)
{
unsigned opts;
int i;
GETOPT_RESET();
#if ENABLE_FEATURE_BC_LONG_OPTIONS
opts = option_mask32 |= getopt32long(argv, "wvsqli",
"warn\0" No_argument "w"
"version\0" No_argument "v"
"standard\0" No_argument "s"
"quiet\0" No_argument "q"
"mathlib\0" No_argument "l"
"interactive\0" No_argument "i"
);
#else
opts = option_mask32 |= getopt32(argv, "wvsqli");
#endif
if (getenv("POSIXLY_CORRECT"))
option_mask32 |= BC_FLAG_S;
if (opts & BC_FLAG_V) {
bc_vm_info();
exit(0);
}
for (i = optind; argv[i]; ++i)
bc_vec_push(&G.files, argv + i);
}
static void bc_vm_envArgs(void)
{
BcVec v;
char *buf;
char *env_args = getenv("BC_ENV_ARGS");
if (!env_args) return;
G.env_args = xstrdup(env_args);
buf = G.env_args;
bc_vec_init(&v, sizeof(char *), NULL);
while (*(buf = skip_whitespace(buf)) != '\0') {
bc_vec_push(&v, &buf);
buf = skip_non_whitespace(buf);
if (!*buf)
break;
*buf++ = '\0';
}
// NULL terminate, and pass argv[] so that first arg is argv[1]
if (sizeof(int) == sizeof(char*)) {
bc_vec_push(&v, &const_int_0);
} else {
static char *const nullptr = NULL;
bc_vec_push(&v, &nullptr);
}
bc_args(((char **)v.v) - 1);
bc_vec_free(&v);
}
static const char bc_lib[] ALIGN1 = {
"scale=20"
"\n" "define e(x){"
"\n" "auto b,s,n,r,d,i,p,f,v"
////////////////"if(x<0)return(1/e(-x))" // and drop 'n' and x<0 logic below
//^^^^^^^^^^^^^^^^ this would work, and is even more precise than GNU bc:
//e(-.998896): GNU:.36828580434569428695
// above code:.36828580434569428696
// actual value:.3682858043456942869594...
// but for now let's be "GNU compatible"
"\n" "b=ibase"
"\n" "ibase=A"
"\n" "if(x<0){"
"\n" "n=1"
"\n" "x=-x"
"\n" "}"
"\n" "s=scale"
"\n" "r=6+s+.44*x"
"\n" "scale=scale(x)+1"
"\n" "while(x>1){"
"\n" "d+=1"
"\n" "x/=2"
"\n" "scale+=1"
"\n" "}"
"\n" "scale=r"
"\n" "r=x+1"
"\n" "p=x"
"\n" "f=v=1"
"\n" "for(i=2;v;++i){"
"\n" "p*=x"
"\n" "f*=i"
"\n" "v=p/f"
"\n" "r+=v"
"\n" "}"
"\n" "while(d--)r*=r"
"\n" "scale=s"
"\n" "ibase=b"
"\n" "if(n)return(1/r)"
"\n" "return(r/1)"
"\n" "}"
"\n" "define l(x){"
"\n" "auto b,s,r,p,a,q,i,v"
"\n" "b=ibase"
"\n" "ibase=A"
"\n" "if(x<=0){"
"\n" "r=(1-10^scale)/1"
"\n" "ibase=b"
"\n" "return(r)"
"\n" "}"
"\n" "s=scale"
"\n" "scale+=6"
"\n" "p=2"
"\n" "while(x>=2){"
"\n" "p*=2"
"\n" "x=sqrt(x)"
"\n" "}"
"\n" "while(x<=.5){"
"\n" "p*=2"
"\n" "x=sqrt(x)"
"\n" "}"
"\n" "r=a=(x-1)/(x+1)"
"\n" "q=a*a"
"\n" "v=1"
"\n" "for(i=3;v;i+=2){"
"\n" "a*=q"
"\n" "v=a/i"
"\n" "r+=v"
"\n" "}"
"\n" "r*=p"
"\n" "scale=s"
"\n" "ibase=b"
"\n" "return(r/1)"
"\n" "}"
"\n" "define s(x){"
"\n" "auto b,s,r,a,q,i"
"\n" "if(x<0)return(-s(-x))"
"\n" "b=ibase"
"\n" "ibase=A"
"\n" "s=scale"
"\n" "scale=1.1*s+2"
"\n" "a=a(1)"
"\n" "scale=0"
"\n" "q=(x/a+2)/4"
"\n" "x-=4*q*a"
"\n" "if(q%2)x=-x"
"\n" "scale=s+2"
"\n" "r=a=x"
"\n" "q=-x*x"
"\n" "for(i=3;a;i+=2){"
"\n" "a*=q/(i*(i-1))"
"\n" "r+=a"
"\n" "}"
"\n" "scale=s"
"\n" "ibase=b"
"\n" "return(r/1)"
"\n" "}"
"\n" "define c(x){"
"\n" "auto b,s"
"\n" "b=ibase"
"\n" "ibase=A"
"\n" "s=scale"
"\n" "scale*=1.2"
"\n" "x=s(2*a(1)+x)"
"\n" "scale=s"
"\n" "ibase=b"
"\n" "return(x/1)"
"\n" "}"
"\n" "define a(x){"
"\n" "auto b,s,r,n,a,m,t,f,i,u"
"\n" "b=ibase"
"\n" "ibase=A"
"\n" "n=1"
"\n" "if(x<0){"
"\n" "n=-1"
"\n" "x=-x"
"\n" "}"
"\n" "if(scale<65){"
"\n" "if(x==1)return(.7853981633974483096156608458198757210492923498437764552437361480/n)"
"\n" "if(x==.2)return(.1973955598498807583700497651947902934475851037878521015176889402/n)"
"\n" "}"
"\n" "s=scale"
"\n" "if(x>.2){"
"\n" "scale+=5"
"\n" "a=a(.2)"
"\n" "}"
"\n" "scale=s+3"
"\n" "while(x>.2){"
"\n" "m+=1"
"\n" "x=(x-.2)/(1+.2*x)"
"\n" "}"
"\n" "r=u=x"
"\n" "f=-x*x"
"\n" "t=1"
"\n" "for(i=3;t;i+=2){"
"\n" "u*=f"
"\n" "t=u/i"
"\n" "r+=t"
"\n" "}"
"\n" "scale=s"
"\n" "ibase=b"
"\n" "return((m*a+r)/n)"
"\n" "}"
"\n" "define j(n,x){"
"\n" "auto b,s,o,a,i,v,f"
"\n" "b=ibase"
"\n" "ibase=A"
"\n" "s=scale"
"\n" "scale=0"
"\n" "n/=1"
"\n" "if(n<0){"
"\n" "n=-n"
"\n" "o=n%2"
"\n" "}"
"\n" "a=1"
"\n" "for(i=2;i<=n;++i)a*=i"
"\n" "scale=1.5*s"
"\n" "a=(x^n)/2^n/a"
"\n" "r=v=1"
"\n" "f=-x*x/4"
"\n" "scale+=length(a)-scale(a)"
"\n" "for(i=1;v;++i){"
"\n" "v=v*f/i/(n+i)"
"\n" "r+=v"
"\n" "}"
"\n" "scale=s"
"\n" "ibase=b"
"\n" "if(o)a=-a"
"\n" "return(a*r/1)"
"\n" "}"
};
#endif // ENABLE_BC
static BC_STATUS zxc_vm_exec(void)
{
char **fname;
BcStatus s;
size_t i;
#if ENABLE_BC
if (option_mask32 & BC_FLAG_L) {
// We know that internal library is not buggy,
// thus error checking is normally disabled.
# define DEBUG_LIB 0
s = zxc_vm_process(bc_lib);
if (DEBUG_LIB && s) RETURN_STATUS(s);
}
#endif
s = BC_STATUS_SUCCESS;
fname = (void*)G.files.v;
for (i = 0; i < G.files.len; i++) {
s = zxc_vm_file(*fname++);
if (ENABLE_FEATURE_CLEAN_UP && !G_ttyin && s) {
// Debug config, non-interactive mode:
// return all the way back to main.
// Non-debug builds do not come here
// in non-interactive mode, they exit.
RETURN_STATUS(s);
}
}
if (IS_BC || (option_mask32 & BC_FLAG_I))
s = zxc_vm_execute_FILE(stdin, /*filename:*/ NULL);
RETURN_STATUS(s);
}
#define zxc_vm_exec(...) (zxc_vm_exec(__VA_ARGS__) COMMA_SUCCESS)
#if ENABLE_FEATURE_CLEAN_UP
static void xc_program_free(void)
{
bc_vec_free(&G.prog.fns);
IF_BC(bc_vec_free(&G.prog.fn_map);)
bc_vec_free(&G.prog.vars);
bc_vec_free(&G.prog.var_map);
bc_vec_free(&G.prog.arrs);
bc_vec_free(&G.prog.arr_map);
IF_DC(bc_vec_free(&G.prog.strs);)
IF_DC(bc_vec_free(&G.prog.consts);)
bc_vec_free(&G.prog.results);
bc_vec_free(&G.prog.exestack);
IF_BC(bc_num_free(&G.prog.last);)
//IF_BC(bc_num_free(&G.prog.zero);)
IF_BC(bc_num_free(&G.prog.one);)
bc_vec_free(&G.input_buffer);
}
#endif
static void xc_program_init(void)
{
BcInstPtr ip;
// memset(&G.prog, 0, sizeof(G.prog)); - already is
memset(&ip, 0, sizeof(BcInstPtr));
// G.prog.nchars = G.prog.scale = 0; - already is
G.prog.ib_t = 10;
G.prog.ob_t = 10;
IF_BC(bc_num_init_DEF_SIZE(&G.prog.last);)
//IF_BC(bc_num_zero(&G.prog.last);) - already is
//bc_num_init_DEF_SIZE(&G.prog.zero); - not needed
//bc_num_zero(&G.prog.zero); - already is
IF_BC(bc_num_init_DEF_SIZE(&G.prog.one);)
IF_BC(bc_num_one(&G.prog.one);)
bc_vec_init(&G.prog.fns, sizeof(BcFunc), bc_func_free);
IF_BC(bc_vec_init(&G.prog.fn_map, sizeof(BcId), bc_id_free);)
if (IS_BC) {
// Names are chosen simply to be distinct and never match
// a valid function name (and be short)
IF_BC(bc_program_addFunc(xstrdup(""))); // func #0: main
IF_BC(bc_program_addFunc(xstrdup("1"))); // func #1: for read()
} else {
// in dc, functions have no names
xc_program_add_fn();
xc_program_add_fn();
}
bc_vec_init(&G.prog.vars, sizeof(BcVec), bc_vec_free);
bc_vec_init(&G.prog.var_map, sizeof(BcId), bc_id_free);
bc_vec_init(&G.prog.arrs, sizeof(BcVec), bc_vec_free);
bc_vec_init(&G.prog.arr_map, sizeof(BcId), bc_id_free);
IF_DC(bc_vec_init(&G.prog.strs, sizeof(char *), bc_string_free);)
IF_DC(bc_vec_init(&G.prog.consts, sizeof(char *), bc_string_free);)
bc_vec_init(&G.prog.results, sizeof(BcResult), bc_result_free);
bc_vec_init(&G.prog.exestack, sizeof(BcInstPtr), NULL);
bc_vec_push(&G.prog.exestack, &ip);
bc_char_vec_init(&G.input_buffer);
}
static unsigned xc_vm_envLen(const char *var)
{
char *lenv;
unsigned len;
lenv = getenv(var);
len = BC_NUM_PRINT_WIDTH;
if (lenv) {
len = bb_strtou(lenv, NULL, 10);
if (len == 0 || len > INT_MAX)
len = INT_MAX;
if (errno)
len = BC_NUM_PRINT_WIDTH;
}
// dc (GNU bc 1.07.1) 1.4.1 seems to use width
// 1 char wider than bc from the same package.
// Both default width, and xC_LINE_LENGTH=N are wider:
// "DC_LINE_LENGTH=5 dc -e'123456 p'" prints:
// |1234\ |
// |56 |
// "echo '123456' | BC_LINE_LENGTH=5 bc" prints:
// |123\ |
// |456 |
// Do the same, but it might be a bug in GNU package
if (IS_BC)
len--;
if (len < 2)
len = IS_BC ? BC_NUM_PRINT_WIDTH - 1 : BC_NUM_PRINT_WIDTH;
return len;
}
static int xc_vm_init(const char *env_len)
{
G.prog.len = xc_vm_envLen(env_len);
bc_vec_init(&G.files, sizeof(char *), NULL);
xc_program_init();
IF_BC(if (IS_BC) bc_vm_envArgs();)
xc_parse_create(BC_PROG_MAIN);
//TODO: in GNU bc, the check is (isatty(0) && isatty(1)),
//-i option unconditionally enables this regardless of isatty():
if (isatty(0)) {
#if ENABLE_FEATURE_BC_INTERACTIVE
G_ttyin = 1;
// With SA_RESTART, most system calls will restart
// (IOW: they won't fail with EINTR).
// In particular, this means ^C won't cause
// stdout to get into "error state" if SIGINT hits
// within write() syscall.
//
// The downside is that ^C while tty input is taken
// will only be handled after [Enter] since read()
// from stdin is not interrupted by ^C either,
// it restarts, thus fgetc() does not return on ^C.
// (This problem manifests only if line editing is disabled)
signal_SA_RESTART_empty_mask(SIGINT, record_signo);
// Without SA_RESTART, this exhibits a bug:
// "while (1) print 1" and try ^C-ing it.
// Intermittently, instead of returning to input line,
// you'll get "output error: Interrupted system call"
// and exit.
//signal_no_SA_RESTART_empty_mask(SIGINT, record_signo);
#endif
return 1; // "tty"
}
return 0; // "not a tty"
}
static BcStatus xc_vm_run(void)
{
BcStatus st = zxc_vm_exec();
#if ENABLE_FEATURE_CLEAN_UP
if (G_exiting) // it was actually "halt" or "quit"
st = EXIT_SUCCESS;
bc_vec_free(&G.files);
xc_program_free();
xc_parse_free();
free(G.env_args);
# if ENABLE_FEATURE_EDITING
free_line_input_t(G.line_input_state);
# endif
FREE_G();
#endif
dbg_exec("exiting with exitcode %d", st);
return st;
}
#if ENABLE_BC
int bc_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
int bc_main(int argc UNUSED_PARAM, char **argv)
{
int is_tty;
INIT_G();
is_tty = xc_vm_init("BC_LINE_LENGTH");
bc_args(argv);
if (is_tty && !(option_mask32 & BC_FLAG_Q))
bc_vm_info();
return xc_vm_run();
}
#endif
#if ENABLE_DC
int dc_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
int dc_main(int argc UNUSED_PARAM, char **argv)
{
int noscript;
INIT_G();
xc_vm_init("DC_LINE_LENGTH");
// Run -e'SCRIPT' and -fFILE in order of appearance, then handle FILEs
noscript = BC_FLAG_I;
for (;;) {
int n = getopt(argc, argv, "e:f:x");
if (n <= 0)
break;
switch (n) {
case 'e':
noscript = 0;
n = zxc_vm_process(optarg);
if (n) return n;
break;
case 'f':
noscript = 0;
n = zxc_vm_file(optarg);
if (n) return n;
break;
case 'x':
option_mask32 |= DC_FLAG_X;
break;
default:
bb_show_usage();
}
}
argv += optind;
while (*argv) {
noscript = 0;
bc_vec_push(&G.files, argv++);
}
option_mask32 |= noscript; // set BC_FLAG_I if we need to interpret stdin
return xc_vm_run();
}
#endif
#endif // DC_BIG