| /* vi: set sw=4 ts=4: */ |
| /* |
| * Small lzma deflate implementation. |
| * Copyright (C) 2006 Aurelien Jacobs <aurel@gnuage.org> |
| * |
| * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/) |
| * Copyright (C) 1999-2005 Igor Pavlov |
| * |
| * Licensed under GPLv2 or later, see file LICENSE in this tarball for details. |
| */ |
| |
| #include "libbb.h" |
| #include "unarchive.h" |
| |
| #if ENABLE_FEATURE_LZMA_FAST |
| # define speed_inline ALWAYS_INLINE |
| #else |
| # define speed_inline |
| #endif |
| |
| |
| typedef struct { |
| int fd; |
| uint8_t *ptr; |
| |
| /* Was keeping rc on stack in unlzma and separately allocating buffer, |
| * but with "buffer 'attached to' allocated rc" code is smaller: */ |
| /* uint8_t *buffer; */ |
| #define RC_BUFFER ((uint8_t*)(rc+1)) |
| |
| uint8_t *buffer_end; |
| |
| /* Had provisions for variable buffer, but we don't need it here */ |
| /* int buffer_size; */ |
| #define RC_BUFFER_SIZE 0x10000 |
| |
| uint32_t code; |
| uint32_t range; |
| uint32_t bound; |
| } rc_t; |
| |
| #define RC_TOP_BITS 24 |
| #define RC_MOVE_BITS 5 |
| #define RC_MODEL_TOTAL_BITS 11 |
| |
| |
| /* Called twice: once at startup and once in rc_normalize() */ |
| static void rc_read(rc_t * rc) |
| { |
| int buffer_size = safe_read(rc->fd, RC_BUFFER, RC_BUFFER_SIZE); |
| if (buffer_size <= 0) |
| bb_error_msg_and_die("unexpected EOF"); |
| rc->ptr = RC_BUFFER; |
| rc->buffer_end = RC_BUFFER + buffer_size; |
| } |
| |
| /* Called once */ |
| static rc_t* rc_init(int fd) /*, int buffer_size) */ |
| { |
| int i; |
| rc_t* rc; |
| |
| rc = xmalloc(sizeof(rc_t) + RC_BUFFER_SIZE); |
| |
| rc->fd = fd; |
| /* rc->buffer_size = buffer_size; */ |
| rc->buffer_end = RC_BUFFER + RC_BUFFER_SIZE; |
| rc->ptr = rc->buffer_end; |
| |
| rc->code = 0; |
| rc->range = 0xFFFFFFFF; |
| for (i = 0; i < 5; i++) { |
| if (rc->ptr >= rc->buffer_end) |
| rc_read(rc); |
| rc->code = (rc->code << 8) | *rc->ptr++; |
| } |
| return rc; |
| } |
| |
| /* Called once */ |
| static ALWAYS_INLINE void rc_free(rc_t * rc) |
| { |
| if (ENABLE_FEATURE_CLEAN_UP) |
| free(rc); |
| } |
| |
| /* Called twice, but one callsite is in speed_inline'd rc_is_bit_0_helper() */ |
| static void rc_do_normalize(rc_t * rc) |
| { |
| if (rc->ptr >= rc->buffer_end) |
| rc_read(rc); |
| rc->range <<= 8; |
| rc->code = (rc->code << 8) | *rc->ptr++; |
| } |
| static ALWAYS_INLINE void rc_normalize(rc_t * rc) |
| { |
| if (rc->range < (1 << RC_TOP_BITS)) { |
| rc_do_normalize(rc); |
| } |
| } |
| |
| /* rc_is_bit_0 is called 9 times */ |
| /* Why rc_is_bit_0_helper exists? |
| * Because we want to always expose (rc->code < rc->bound) to optimizer. |
| * Thus rc_is_bit_0 is always inlined, and rc_is_bit_0_helper is inlined |
| * only if we compile for speed. |
| */ |
| static speed_inline uint32_t rc_is_bit_0_helper(rc_t * rc, uint16_t * p) |
| { |
| rc_normalize(rc); |
| rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS); |
| return rc->bound; |
| } |
| static ALWAYS_INLINE int rc_is_bit_0(rc_t * rc, uint16_t * p) |
| { |
| uint32_t t = rc_is_bit_0_helper(rc, p); |
| return rc->code < t; |
| } |
| |
| /* Called ~10 times, but very small, thus inlined */ |
| static speed_inline void rc_update_bit_0(rc_t * rc, uint16_t * p) |
| { |
| rc->range = rc->bound; |
| *p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS; |
| } |
| static speed_inline void rc_update_bit_1(rc_t * rc, uint16_t * p) |
| { |
| rc->range -= rc->bound; |
| rc->code -= rc->bound; |
| *p -= *p >> RC_MOVE_BITS; |
| } |
| |
| /* Called 4 times in unlzma loop */ |
| static int rc_get_bit(rc_t * rc, uint16_t * p, int *symbol) |
| { |
| if (rc_is_bit_0(rc, p)) { |
| rc_update_bit_0(rc, p); |
| *symbol *= 2; |
| return 0; |
| } else { |
| rc_update_bit_1(rc, p); |
| *symbol = *symbol * 2 + 1; |
| return 1; |
| } |
| } |
| |
| /* Called once */ |
| static ALWAYS_INLINE int rc_direct_bit(rc_t * rc) |
| { |
| rc_normalize(rc); |
| rc->range >>= 1; |
| if (rc->code >= rc->range) { |
| rc->code -= rc->range; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Called twice */ |
| static speed_inline void |
| rc_bit_tree_decode(rc_t * rc, uint16_t * p, int num_levels, int *symbol) |
| { |
| int i = num_levels; |
| |
| *symbol = 1; |
| while (i--) |
| rc_get_bit(rc, p + *symbol, symbol); |
| *symbol -= 1 << num_levels; |
| } |
| |
| |
| typedef struct { |
| uint8_t pos; |
| uint32_t dict_size; |
| uint64_t dst_size; |
| } __attribute__ ((packed)) lzma_header_t; |
| |
| |
| /* #defines will force compiler to compute/optimize each one with each usage. |
| * Have heart and use enum instead. */ |
| enum { |
| LZMA_BASE_SIZE = 1846, |
| LZMA_LIT_SIZE = 768, |
| |
| LZMA_NUM_POS_BITS_MAX = 4, |
| |
| LZMA_LEN_NUM_LOW_BITS = 3, |
| LZMA_LEN_NUM_MID_BITS = 3, |
| LZMA_LEN_NUM_HIGH_BITS = 8, |
| |
| LZMA_LEN_CHOICE = 0, |
| LZMA_LEN_CHOICE_2 = (LZMA_LEN_CHOICE + 1), |
| LZMA_LEN_LOW = (LZMA_LEN_CHOICE_2 + 1), |
| LZMA_LEN_MID = (LZMA_LEN_LOW \ |
| + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS))), |
| LZMA_LEN_HIGH = (LZMA_LEN_MID \ |
| + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS))), |
| LZMA_NUM_LEN_PROBS = (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS)), |
| |
| LZMA_NUM_STATES = 12, |
| LZMA_NUM_LIT_STATES = 7, |
| |
| LZMA_START_POS_MODEL_INDEX = 4, |
| LZMA_END_POS_MODEL_INDEX = 14, |
| LZMA_NUM_FULL_DISTANCES = (1 << (LZMA_END_POS_MODEL_INDEX >> 1)), |
| |
| LZMA_NUM_POS_SLOT_BITS = 6, |
| LZMA_NUM_LEN_TO_POS_STATES = 4, |
| |
| LZMA_NUM_ALIGN_BITS = 4, |
| |
| LZMA_MATCH_MIN_LEN = 2, |
| |
| LZMA_IS_MATCH = 0, |
| LZMA_IS_REP = (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX)), |
| LZMA_IS_REP_G0 = (LZMA_IS_REP + LZMA_NUM_STATES), |
| LZMA_IS_REP_G1 = (LZMA_IS_REP_G0 + LZMA_NUM_STATES), |
| LZMA_IS_REP_G2 = (LZMA_IS_REP_G1 + LZMA_NUM_STATES), |
| LZMA_IS_REP_0_LONG = (LZMA_IS_REP_G2 + LZMA_NUM_STATES), |
| LZMA_POS_SLOT = (LZMA_IS_REP_0_LONG \ |
| + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX)), |
| LZMA_SPEC_POS = (LZMA_POS_SLOT \ |
| + (LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS)), |
| LZMA_ALIGN = (LZMA_SPEC_POS \ |
| + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX), |
| LZMA_LEN_CODER = (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS)), |
| LZMA_REP_LEN_CODER = (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS), |
| LZMA_LITERAL = (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS), |
| }; |
| |
| |
| USE_DESKTOP(long long) int |
| unpack_lzma_stream(int src_fd, int dst_fd) |
| { |
| USE_DESKTOP(long long total_written = 0;) |
| lzma_header_t header; |
| int lc, pb, lp; |
| uint32_t pos_state_mask; |
| uint32_t literal_pos_mask; |
| uint32_t pos; |
| uint16_t *p; |
| uint16_t *prob; |
| uint16_t *prob_lit; |
| int num_bits; |
| int num_probs; |
| rc_t *rc; |
| int i, mi; |
| uint8_t *buffer; |
| uint8_t previous_byte = 0; |
| size_t buffer_pos = 0, global_pos = 0; |
| int len = 0; |
| int state = 0; |
| uint32_t rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1; |
| |
| xread(src_fd, &header, sizeof(header)); |
| |
| if (header.pos >= (9 * 5 * 5)) |
| bb_error_msg_and_die("bad header"); |
| mi = header.pos / 9; |
| lc = header.pos % 9; |
| pb = mi / 5; |
| lp = mi % 5; |
| pos_state_mask = (1 << pb) - 1; |
| literal_pos_mask = (1 << lp) - 1; |
| |
| header.dict_size = SWAP_LE32(header.dict_size); |
| header.dst_size = SWAP_LE64(header.dst_size); |
| |
| if (header.dict_size == 0) |
| header.dict_size = 1; |
| |
| buffer = xmalloc(MIN(header.dst_size, header.dict_size)); |
| |
| num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp)); |
| p = xmalloc(num_probs * sizeof(*p)); |
| num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp)); |
| for (i = 0; i < num_probs; i++) |
| p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1; |
| |
| rc = rc_init(src_fd); /*, RC_BUFFER_SIZE); */ |
| |
| while (global_pos + buffer_pos < header.dst_size) { |
| int pos_state = (buffer_pos + global_pos) & pos_state_mask; |
| |
| prob = p + LZMA_IS_MATCH + (state << LZMA_NUM_POS_BITS_MAX) + pos_state; |
| if (rc_is_bit_0(rc, prob)) { |
| mi = 1; |
| rc_update_bit_0(rc, prob); |
| prob = (p + LZMA_LITERAL |
| + (LZMA_LIT_SIZE * ((((buffer_pos + global_pos) & literal_pos_mask) << lc) |
| + (previous_byte >> (8 - lc)) |
| ) |
| ) |
| ); |
| |
| if (state >= LZMA_NUM_LIT_STATES) { |
| int match_byte; |
| |
| pos = buffer_pos - rep0; |
| while (pos >= header.dict_size) |
| pos += header.dict_size; |
| match_byte = buffer[pos]; |
| do { |
| int bit; |
| |
| match_byte <<= 1; |
| bit = match_byte & 0x100; |
| prob_lit = prob + 0x100 + bit + mi; |
| bit ^= (rc_get_bit(rc, prob_lit, &mi) << 8); /* 0x100 or 0 */ |
| if (bit) |
| break; |
| } while (mi < 0x100); |
| } |
| while (mi < 0x100) { |
| prob_lit = prob + mi; |
| rc_get_bit(rc, prob_lit, &mi); |
| } |
| |
| state -= 3; |
| if (state < 4-3) |
| state = 0; |
| if (state >= 10-3) |
| state -= 6-3; |
| |
| previous_byte = (uint8_t) mi; |
| #if ENABLE_FEATURE_LZMA_FAST |
| one_byte1: |
| buffer[buffer_pos++] = previous_byte; |
| if (buffer_pos == header.dict_size) { |
| buffer_pos = 0; |
| global_pos += header.dict_size; |
| if (full_write(dst_fd, buffer, header.dict_size) != (ssize_t)header.dict_size) |
| goto bad; |
| USE_DESKTOP(total_written += header.dict_size;) |
| } |
| #else |
| len = 1; |
| goto one_byte2; |
| #endif |
| } else { |
| int offset; |
| uint16_t *prob_len; |
| |
| rc_update_bit_1(rc, prob); |
| prob = p + LZMA_IS_REP + state; |
| if (rc_is_bit_0(rc, prob)) { |
| rc_update_bit_0(rc, prob); |
| rep3 = rep2; |
| rep2 = rep1; |
| rep1 = rep0; |
| state = state < LZMA_NUM_LIT_STATES ? 0 : 3; |
| prob = p + LZMA_LEN_CODER; |
| } else { |
| rc_update_bit_1(rc, prob); |
| prob = p + LZMA_IS_REP_G0 + state; |
| if (rc_is_bit_0(rc, prob)) { |
| rc_update_bit_0(rc, prob); |
| prob = (p + LZMA_IS_REP_0_LONG |
| + (state << LZMA_NUM_POS_BITS_MAX) |
| + pos_state |
| ); |
| if (rc_is_bit_0(rc, prob)) { |
| rc_update_bit_0(rc, prob); |
| |
| state = state < LZMA_NUM_LIT_STATES ? 9 : 11; |
| #if ENABLE_FEATURE_LZMA_FAST |
| pos = buffer_pos - rep0; |
| while (pos >= header.dict_size) |
| pos += header.dict_size; |
| previous_byte = buffer[pos]; |
| goto one_byte1; |
| #else |
| len = 1; |
| goto string; |
| #endif |
| } else { |
| rc_update_bit_1(rc, prob); |
| } |
| } else { |
| uint32_t distance; |
| |
| rc_update_bit_1(rc, prob); |
| prob = p + LZMA_IS_REP_G1 + state; |
| if (rc_is_bit_0(rc, prob)) { |
| rc_update_bit_0(rc, prob); |
| distance = rep1; |
| } else { |
| rc_update_bit_1(rc, prob); |
| prob = p + LZMA_IS_REP_G2 + state; |
| if (rc_is_bit_0(rc, prob)) { |
| rc_update_bit_0(rc, prob); |
| distance = rep2; |
| } else { |
| rc_update_bit_1(rc, prob); |
| distance = rep3; |
| rep3 = rep2; |
| } |
| rep2 = rep1; |
| } |
| rep1 = rep0; |
| rep0 = distance; |
| } |
| state = state < LZMA_NUM_LIT_STATES ? 8 : 11; |
| prob = p + LZMA_REP_LEN_CODER; |
| } |
| |
| prob_len = prob + LZMA_LEN_CHOICE; |
| if (rc_is_bit_0(rc, prob_len)) { |
| rc_update_bit_0(rc, prob_len); |
| prob_len = (prob + LZMA_LEN_LOW |
| + (pos_state << LZMA_LEN_NUM_LOW_BITS)); |
| offset = 0; |
| num_bits = LZMA_LEN_NUM_LOW_BITS; |
| } else { |
| rc_update_bit_1(rc, prob_len); |
| prob_len = prob + LZMA_LEN_CHOICE_2; |
| if (rc_is_bit_0(rc, prob_len)) { |
| rc_update_bit_0(rc, prob_len); |
| prob_len = (prob + LZMA_LEN_MID |
| + (pos_state << LZMA_LEN_NUM_MID_BITS)); |
| offset = 1 << LZMA_LEN_NUM_LOW_BITS; |
| num_bits = LZMA_LEN_NUM_MID_BITS; |
| } else { |
| rc_update_bit_1(rc, prob_len); |
| prob_len = prob + LZMA_LEN_HIGH; |
| offset = ((1 << LZMA_LEN_NUM_LOW_BITS) |
| + (1 << LZMA_LEN_NUM_MID_BITS)); |
| num_bits = LZMA_LEN_NUM_HIGH_BITS; |
| } |
| } |
| rc_bit_tree_decode(rc, prob_len, num_bits, &len); |
| len += offset; |
| |
| if (state < 4) { |
| int pos_slot; |
| |
| state += LZMA_NUM_LIT_STATES; |
| prob = p + LZMA_POS_SLOT + |
| ((len < LZMA_NUM_LEN_TO_POS_STATES ? len : |
| LZMA_NUM_LEN_TO_POS_STATES - 1) |
| << LZMA_NUM_POS_SLOT_BITS); |
| rc_bit_tree_decode(rc, prob, LZMA_NUM_POS_SLOT_BITS, |
| &pos_slot); |
| if (pos_slot >= LZMA_START_POS_MODEL_INDEX) { |
| num_bits = (pos_slot >> 1) - 1; |
| rep0 = 2 | (pos_slot & 1); |
| if (pos_slot < LZMA_END_POS_MODEL_INDEX) { |
| rep0 <<= num_bits; |
| prob = p + LZMA_SPEC_POS + rep0 - pos_slot - 1; |
| } else { |
| num_bits -= LZMA_NUM_ALIGN_BITS; |
| while (num_bits--) |
| rep0 = (rep0 << 1) | rc_direct_bit(rc); |
| prob = p + LZMA_ALIGN; |
| rep0 <<= LZMA_NUM_ALIGN_BITS; |
| num_bits = LZMA_NUM_ALIGN_BITS; |
| } |
| i = 1; |
| mi = 1; |
| while (num_bits--) { |
| if (rc_get_bit(rc, prob + mi, &mi)) |
| rep0 |= i; |
| i <<= 1; |
| } |
| } else |
| rep0 = pos_slot; |
| if (++rep0 == 0) |
| break; |
| } |
| |
| len += LZMA_MATCH_MIN_LEN; |
| SKIP_FEATURE_LZMA_FAST(string:) |
| do { |
| pos = buffer_pos - rep0; |
| while (pos >= header.dict_size) |
| pos += header.dict_size; |
| previous_byte = buffer[pos]; |
| SKIP_FEATURE_LZMA_FAST(one_byte2:) |
| buffer[buffer_pos++] = previous_byte; |
| if (buffer_pos == header.dict_size) { |
| buffer_pos = 0; |
| global_pos += header.dict_size; |
| if (full_write(dst_fd, buffer, header.dict_size) != (ssize_t)header.dict_size) |
| goto bad; |
| USE_DESKTOP(total_written += header.dict_size;) |
| } |
| len--; |
| } while (len != 0 && buffer_pos < header.dst_size); |
| } |
| } |
| |
| if (full_write(dst_fd, buffer, buffer_pos) != (ssize_t)buffer_pos) { |
| bad: |
| rc_free(rc); |
| return -1; |
| } |
| rc_free(rc); |
| USE_DESKTOP(total_written += buffer_pos;) |
| return USE_DESKTOP(total_written) + 0; |
| } |