| /* |
| * Copyright (C) 2017 Denys Vlasenko <vda.linux@googlemail.com> |
| * |
| * Licensed under GPLv2, see file LICENSE in this source tree. |
| */ |
| //config:config FACTOR |
| //config: bool "factor (2.7 kb)" |
| //config: default y |
| //config: help |
| //config: factor factorizes integers |
| |
| //applet:IF_FACTOR(APPLET(factor, BB_DIR_USR_BIN, BB_SUID_DROP)) |
| |
| //kbuild:lib-$(CONFIG_FACTOR) += factor.o |
| |
| //usage:#define factor_trivial_usage |
| //usage: "[NUMBER]..." |
| //usage:#define factor_full_usage "\n\n" |
| //usage: "Print prime factors" |
| |
| #include "libbb.h" |
| #include "common_bufsiz.h" |
| |
| #if 0 |
| # define dbg(...) bb_error_msg(__VA_ARGS__) |
| #else |
| # define dbg(...) ((void)0) |
| #endif |
| |
| typedef unsigned long long wide_t; |
| |
| #if ULLONG_MAX == (UINT_MAX * UINT_MAX + 2 * UINT_MAX) |
| /* "unsigned" is half as wide as ullong */ |
| typedef unsigned half_t; |
| #define HALF_MAX UINT_MAX |
| #define HALF_FMT "" |
| #elif ULLONG_MAX == (ULONG_MAX * ULONG_MAX + 2 * ULONG_MAX) |
| /* long is half as wide as ullong */ |
| typedef unsigned long half_t; |
| #define HALF_MAX ULONG_MAX |
| #define HALF_FMT "l" |
| #else |
| #error Cant find an integer type which is half as wide as ullong |
| #endif |
| |
| /* The trial divisor increment wheel. Use it to skip over divisors that |
| * are composites of 2, 3, 5, 7, or 11. |
| * Larger wheels improve sieving only slightly, but quickly grow in size |
| * (adding just one prime, 13, results in 5766 element sieve). |
| */ |
| #define R(a,b,c,d,e,f,g,h,i,j,A,B,C,D,E,F,G,H,I,J) \ |
| (((uint64_t)(a<<0) | (b<<3) | (c<<6) | (d<<9) | (e<<12) | (f<<15) | (g<<18) | (h<<21) | (i<<24) | (j<<27)) << 1) | \ |
| (((uint64_t)(A<<0) | (B<<3) | (C<<6) | (D<<9) | (E<<12) | (F<<15) | (G<<18) | (H<<21) | (I<<24) | (J<<27)) << 31) |
| #define P(a,b,c,d,e,f,g,h,i,j,A,B,C,D,E,F,G,H,I,J) \ |
| R( (a/2),(b/2),(c/2),(d/2),(e/2),(f/2),(g/2),(h/2),(i/2),(j/2), \ |
| (A/2),(B/2),(C/2),(D/2),(E/2),(F/2),(G/2),(H/2),(I/2),(J/2) ) |
| static const uint64_t packed_wheel[] = { |
| /*1, 2, 2, 4, 2,*/ |
| P( 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4), //01 |
| P( 2, 4, 2, 4,14, 4, 6, 2,10, 2, 6, 6, 4, 2, 4, 6, 2,10, 2, 4), //02 |
| P( 2,12,10, 2, 4, 2, 4, 6, 2, 6, 4, 6, 6, 6, 2, 6, 4, 2, 6, 4), //03 |
| P( 6, 8, 4, 2, 4, 6, 8, 6,10, 2, 4, 6, 2, 6, 6, 4, 2, 4, 6, 2), //04 |
| P( 6, 4, 2, 6,10, 2,10, 2, 4, 2, 4, 6, 8, 4, 2, 4,12, 2, 6, 4), //05 |
| P( 2, 6, 4, 6,12, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6,10, 2), //06 |
| P( 4, 6, 2, 6, 4, 2, 4, 2,10, 2,10, 2, 4, 6, 6, 2, 6, 6, 4, 6), //07 |
| P( 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 6, 4, 8, 6, 4, 6, 2, 4, 6), //08 |
| P( 8, 6, 4, 2,10, 2, 6, 4, 2, 4, 2,10, 2,10, 2, 4, 2, 4, 8, 6), //09 |
| P( 4, 2, 4, 6, 6, 2, 6, 4, 8, 4, 6, 8, 4, 2, 4, 2, 4, 8, 6, 4), //10 |
| P( 6, 6, 6, 2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2,10, 2), //11 |
| P( 6, 4, 6, 2, 6, 4, 2, 4, 6, 6, 8, 4, 2, 6,10, 8, 4, 2, 4, 2), //12 |
| P( 4, 8,10, 6, 2, 4, 8, 6, 6, 4, 2, 4, 6, 2, 6, 4, 6, 2,10, 2), //13 |
| P(10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 6, 6, 4, 6, 8), //14 |
| P( 4, 2, 4, 2, 4, 8, 6, 4, 8, 4, 6, 2, 6, 6, 4, 2, 4, 6, 8, 4), //15 |
| P( 2, 4, 2,10, 2,10, 2, 4, 2, 4, 6, 2,10, 2, 4, 6, 8, 6, 4, 2), //16 |
| P( 6, 4, 6, 8, 4, 6, 2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6, 4, 6), //17 |
| P( 6, 2, 6, 6, 4, 2,10, 2,10, 2, 4, 2, 4, 6, 2, 6, 4, 2,10, 6), //18 |
| P( 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2,12, 6, 4, 6, 2, 4, 6, 2), //19 |
| P(12, 4, 2, 4, 8, 6, 4, 2, 4, 2,10, 2,10, 6, 2, 4, 6, 2, 6, 4), //20 |
| P( 2, 4, 6, 6, 2, 6, 4, 2,10, 6, 8, 6, 4, 2, 4, 8, 6, 4, 6, 2), //21 |
| P( 4, 6, 2, 6, 6, 6, 4, 6, 2, 6, 4, 2, 4, 2,10,12, 2, 4, 2,10), //22 |
| P( 2, 6, 4, 2, 4, 6, 6, 2,10, 2, 6, 4,14, 4, 2, 4, 2, 4, 8, 6), //23 |
| P( 4, 6, 2, 4, 6, 2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4,12, 2,12), //24 |
| }; |
| #undef P |
| #undef R |
| #define WHEEL_START 5 |
| #define WHEEL_SIZE (5 + 24 * 20) |
| #define square_count (((uint8_t*)&bb_common_bufsiz1)[0]) |
| #define wheel_tab (((uint8_t*)&bb_common_bufsiz1) + 1) |
| /* |
| * Why, you ask? |
| * plain byte array: |
| * function old new delta |
| * wheel_tab - 485 +485 |
| * 3-bit-packed insanity: |
| * packed_wheel - 192 +192 |
| * factor_main 108 171 +63 |
| */ |
| static void unpack_wheel(void) |
| { |
| int i; |
| uint8_t *p; |
| |
| setup_common_bufsiz(); |
| wheel_tab[0] = 1; |
| wheel_tab[1] = 2; |
| wheel_tab[2] = 2; |
| wheel_tab[3] = 4; |
| wheel_tab[4] = 2; |
| p = &wheel_tab[5]; |
| for (i = 0; i < ARRAY_SIZE(packed_wheel); i++) { |
| uint64_t v = packed_wheel[i]; |
| while ((v & 0xe) != 0) { |
| *p = v & 0xe; |
| //printf("%2u,", *p); |
| p++; |
| v >>= 3; |
| } |
| //printf("\n"); |
| } |
| } |
| |
| /* Prevent inlining, factorize() needs all help it can get with reducing register pressure */ |
| static NOINLINE void print_w(wide_t n) |
| { |
| unsigned rep = square_count; |
| do |
| printf(" %llu", n); |
| while (--rep != 0); |
| } |
| static NOINLINE void print_h(half_t n) |
| { |
| print_w(n); |
| } |
| |
| static void factorize(wide_t N); |
| |
| static half_t isqrt_odd(wide_t N) |
| { |
| half_t s = isqrt(N); |
| /* s^2 is <= N, (s+1)^2 > N */ |
| |
| /* If s^2 in fact is EQUAL to N, it's very lucky. |
| * Examples: |
| * factor 18446743988964486098 = 2 * 3037000493 * 3037000493 |
| * factor 18446743902517389507 = 3 * 2479700513 * 2479700513 |
| */ |
| if ((wide_t)s * s == N) { |
| /* factorize sqrt(N), printing each factor twice */ |
| square_count *= 2; |
| factorize(s); |
| /* Let caller know we recursed */ |
| return 0; |
| } |
| |
| /* Subtract 1 from even s, odd s won't change: */ |
| /* (doesnt work for zero, but we know that s != 0 here) */ |
| s = (s - 1) | 1; |
| return s; |
| } |
| |
| static NOINLINE void factorize(wide_t N) |
| { |
| unsigned w; |
| half_t factor; |
| half_t max_factor; |
| |
| if (N < 4) |
| goto end; |
| |
| /* The code needs to be optimized for the case where |
| * there are large prime factors. For example, |
| * this is not hard: |
| * 8262075252869367027 = 3 7 17 23 47 101 113 127 131 137 823 |
| * (the largest divisor to test for largest factor 823 |
| * is only ~sqrt(823) = 28, the entire factorization needs |
| * only ~33 trial divisions) |
| * but this is: |
| * 18446744073709551601 = 53 348051774975651917 |
| * the last factor requires testing up to |
| * 589959129 - about 100 million iterations. |
| * The slowest case (largest prime) for N < 2^64 is |
| * factor 18446744073709551557 (0xffffffffffffffc5). |
| */ |
| max_factor = isqrt_odd(N); |
| if (!max_factor) |
| return; /* square was detected and recursively factored */ |
| factor = 2; |
| w = 0; |
| for (;;) { |
| half_t fw; |
| |
| /* The division is the most costly part of the loop. |
| * On 64bit CPUs, takes at best 12 cycles, often ~20. |
| */ |
| while ((N % factor) == 0) { /* not likely */ |
| N = N / factor; |
| print_h(factor); |
| max_factor = isqrt_odd(N); |
| if (!max_factor) |
| return; /* square was detected */ |
| } |
| if (factor >= max_factor) |
| break; |
| fw = factor + wheel_tab[w]; |
| if (fw < factor) |
| break; /* overflow */ |
| factor = fw; |
| w++; |
| if (w < WHEEL_SIZE) |
| continue; |
| w = WHEEL_START; |
| } |
| end: |
| if (N > 1) |
| print_w(N); |
| bb_putchar('\n'); |
| } |
| |
| static void factorize_numstr(const char *numstr) |
| { |
| wide_t N; |
| |
| /* Leading + is ok (coreutils compat) */ |
| if (*numstr == '+') |
| numstr++; |
| N = bb_strtoull(numstr, NULL, 10); |
| if (errno) |
| bb_show_usage(); |
| printf("%llu:", N); |
| square_count = 1; |
| factorize(N); |
| } |
| |
| int factor_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE; |
| int factor_main(int argc UNUSED_PARAM, char **argv) |
| { |
| unpack_wheel(); |
| |
| //// coreutils has undocumented option ---debug (three dashes) |
| //getopt32(argv, ""); |
| //argv += optind; |
| argv++; |
| |
| if (!*argv) { |
| /* Read from stdin, several numbers per line are accepted */ |
| for (;;) { |
| char *numstr, *line; |
| line = xmalloc_fgetline(stdin); |
| if (!line) |
| return EXIT_SUCCESS; |
| numstr = line; |
| for (;;) { |
| char *end; |
| numstr = skip_whitespace(numstr); |
| if (!numstr[0]) |
| break; |
| end = skip_non_whitespace(numstr); |
| if (*end != '\0') |
| *end++ = '\0'; |
| factorize_numstr(numstr); |
| numstr = end; |
| } |
| free(line); |
| } |
| } |
| |
| do { |
| /* Leading spaces are ok (coreutils compat) */ |
| factorize_numstr(skip_whitespace(*argv)); |
| } while (*++argv); |
| |
| return EXIT_SUCCESS; |
| } |