| /* |
| * Copyright (C) 2017 Denys Vlasenko |
| * |
| * Licensed under GPLv2, see file LICENSE in this source tree. |
| */ |
| //config:config TLS |
| //config: bool #No description makes it a hidden option |
| //config: default n |
| |
| //kbuild:lib-$(CONFIG_TLS) += tls.o |
| //kbuild:lib-$(CONFIG_TLS) += tls_pstm.o |
| //kbuild:lib-$(CONFIG_TLS) += tls_pstm_montgomery_reduce.o |
| //kbuild:lib-$(CONFIG_TLS) += tls_pstm_mul_comba.o |
| //kbuild:lib-$(CONFIG_TLS) += tls_pstm_sqr_comba.o |
| //kbuild:lib-$(CONFIG_TLS) += tls_aes.o |
| //kbuild:lib-$(CONFIG_TLS) += tls_aesgcm.o |
| //kbuild:lib-$(CONFIG_TLS) += tls_rsa.o |
| //kbuild:lib-$(CONFIG_TLS) += tls_fe.o |
| |
| #include "tls.h" |
| |
| //Tested against kernel.org: |
| //#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA // ok, recvs SERVER_KEY_EXCHANGE *** matrixssl uses this on my box |
| //#define CIPHER_ID TLS_RSA_WITH_AES_256_CBC_SHA256 // ok, no SERVER_KEY_EXCHANGE |
| //#define CIPHER_ID TLS_DH_anon_WITH_AES_256_CBC_SHA // SSL_ALERT_HANDSHAKE_FAILURE |
| //^^^^^^^^^^^^^^^^^^^^^^^ (tested b/c this one doesn't req server certs... no luck, server refuses it) |
| //#define CIPHER_ID TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 // SSL_ALERT_HANDSHAKE_FAILURE |
| //#define CIPHER_ID TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE |
| //#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 // ok, recvs SERVER_KEY_EXCHANGE |
| //#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 |
| //#define CIPHER_ID TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 |
| //#define CIPHER_ID TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE |
| //#define CIPHER_ID TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 |
| //#define CIPHER_ID TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE |
| //#define CIPHER_ID TLS_RSA_WITH_AES_256_GCM_SHA384 // ok, no SERVER_KEY_EXCHANGE |
| //#define CIPHER_ID TLS_RSA_WITH_AES_128_GCM_SHA256 // ok, no SERVER_KEY_EXCHANGE |
| |
| // works against "openssl s_server -cipher NULL" |
| // and against wolfssl-3.9.10-stable/examples/server/server.c: |
| //#define CIPHER_ID1 TLS_RSA_WITH_NULL_SHA256 // for testing (does everything except encrypting) |
| |
| // works against wolfssl-3.9.10-stable/examples/server/server.c |
| // works for kernel.org |
| // does not work for cdn.kernel.org (e.g. downloading an actual tarball, not a web page) |
| // getting alert 40 "handshake failure" at once |
| // with GNU Wget 1.18, they agree on TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xC02F) cipher |
| // fail: openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES256-SHA256 |
| // fail: openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES256-GCM-SHA384 |
| // fail: openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES128-SHA256 |
| // ok: openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES128-GCM-SHA256 |
| // ok: openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES128-SHA |
| // (TLS_RSA_WITH_AES_128_CBC_SHA - in TLS 1.2 it's mandated to be always supported) |
| #define CIPHER_ID1 TLS_RSA_WITH_AES_256_CBC_SHA256 //0x003D |
| // Works with "wget https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.5.tar.xz" |
| #define CIPHER_ID2 TLS_RSA_WITH_AES_128_CBC_SHA //0x002F |
| |
| // bug #11456: |
| // ftp.openbsd.org only supports ECDHE-RSA-AESnnn-GCM-SHAnnn or ECDHE-RSA-CHACHA20-POLY1305 |
| #define CIPHER_ID3 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 //0xC02F |
| // host is.gd accepts only ECDHE-ECDSA-foo (the simplest which works: ECDHE-ECDSA-AES128-SHA 0xC009) |
| #define CIPHER_ID4 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA //0xC009 |
| |
| #define NUM_CIPHERS 4 |
| //TODO: we can support all these: |
| // TLS_RSA_WITH_AES_128_CBC_SHA 0x002F |
| // TLS_RSA_WITH_AES_256_CBC_SHA 0x0035 |
| // TLS_RSA_WITH_AES_128_CBC_SHA256 0x003C |
| // TLS_RSA_WITH_AES_256_CBC_SHA256 0x003D |
| // TLS_RSA_WITH_AES_128_GCM_SHA256 0x009C |
| // TLS_RSA_WITH_AES_256_GCM_SHA384 0x009D |
| // TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0xC009 |
| // TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0xC00A |
| // TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0xC013 |
| // TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0xC014 |
| // TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0xC023 |
| ////TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0xC024 - can't do SHA384 yet |
| // TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0xC027 |
| ////TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0xC028 - can't do SHA384 yet |
| // TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0xC02B |
| // TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0xC02C |
| // TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0xC02F |
| // TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0xC030 |
| //possibly these too: |
| // TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA 0xC035 |
| // TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA 0xC036 |
| // TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 0xC037 |
| ////TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 0xC038 - can't do SHA384 yet |
| |
| |
| #define TLS_DEBUG 0 |
| #define TLS_DEBUG_HASH 0 |
| #define TLS_DEBUG_DER 0 |
| #define TLS_DEBUG_FIXED_SECRETS 0 |
| #if 0 |
| # define dump_raw_out(...) dump_hex(__VA_ARGS__) |
| #else |
| # define dump_raw_out(...) ((void)0) |
| #endif |
| #if 0 |
| # define dump_raw_in(...) dump_hex(__VA_ARGS__) |
| #else |
| # define dump_raw_in(...) ((void)0) |
| #endif |
| |
| #if TLS_DEBUG |
| # define dbg(...) fprintf(stderr, __VA_ARGS__) |
| #else |
| # define dbg(...) ((void)0) |
| #endif |
| |
| #if TLS_DEBUG_DER |
| # define dbg_der(...) fprintf(stderr, __VA_ARGS__) |
| #else |
| # define dbg_der(...) ((void)0) |
| #endif |
| |
| |
| //TLS 1.2 |
| #define TLS_MAJ 3 |
| #define TLS_MIN 3 |
| |
| #define RECORD_TYPE_CHANGE_CIPHER_SPEC 20 /* 0x14 */ |
| #define RECORD_TYPE_ALERT 21 /* 0x15 */ |
| #define RECORD_TYPE_HANDSHAKE 22 /* 0x16 */ |
| #define RECORD_TYPE_APPLICATION_DATA 23 /* 0x17 */ |
| |
| #define HANDSHAKE_HELLO_REQUEST 0 /* 0x00 */ |
| #define HANDSHAKE_CLIENT_HELLO 1 /* 0x01 */ |
| #define HANDSHAKE_SERVER_HELLO 2 /* 0x02 */ |
| #define HANDSHAKE_HELLO_VERIFY_REQUEST 3 /* 0x03 */ |
| #define HANDSHAKE_NEW_SESSION_TICKET 4 /* 0x04 */ |
| #define HANDSHAKE_CERTIFICATE 11 /* 0x0b */ |
| #define HANDSHAKE_SERVER_KEY_EXCHANGE 12 /* 0x0c */ |
| #define HANDSHAKE_CERTIFICATE_REQUEST 13 /* 0x0d */ |
| #define HANDSHAKE_SERVER_HELLO_DONE 14 /* 0x0e */ |
| #define HANDSHAKE_CERTIFICATE_VERIFY 15 /* 0x0f */ |
| #define HANDSHAKE_CLIENT_KEY_EXCHANGE 16 /* 0x10 */ |
| #define HANDSHAKE_FINISHED 20 /* 0x14 */ |
| |
| #define TLS_EMPTY_RENEGOTIATION_INFO_SCSV 0x00FF /* not a real cipher id... */ |
| |
| #define SSL_NULL_WITH_NULL_NULL 0x0000 |
| #define SSL_RSA_WITH_NULL_MD5 0x0001 |
| #define SSL_RSA_WITH_NULL_SHA 0x0002 |
| #define SSL_RSA_WITH_RC4_128_MD5 0x0004 |
| #define SSL_RSA_WITH_RC4_128_SHA 0x0005 |
| #define TLS_RSA_WITH_IDEA_CBC_SHA 0x0007 /* 7 */ |
| #define SSL_RSA_WITH_3DES_EDE_CBC_SHA 0x000A /* 10 */ |
| |
| #define SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA 0x0016 /* 22 */ |
| #define SSL_DH_anon_WITH_RC4_128_MD5 0x0018 /* 24 */ |
| #define SSL_DH_anon_WITH_3DES_EDE_CBC_SHA 0x001B /* 27 */ |
| #define TLS_RSA_WITH_AES_128_CBC_SHA 0x002F /*SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1 */ |
| #define TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0x0033 /* 51 */ |
| #define TLS_DH_anon_WITH_AES_128_CBC_SHA 0x0034 /* 52 */ |
| #define TLS_RSA_WITH_AES_256_CBC_SHA 0x0035 /* 53 */ |
| #define TLS_DHE_RSA_WITH_AES_256_CBC_SHA 0x0039 /* 57 */ |
| #define TLS_DH_anon_WITH_AES_256_CBC_SHA 0x003A /* 58 */ |
| #define TLS_RSA_WITH_NULL_SHA256 0x003B /* 59 */ |
| #define TLS_RSA_WITH_AES_128_CBC_SHA256 0x003C /* 60 */ |
| #define TLS_RSA_WITH_AES_256_CBC_SHA256 0x003D /* 61 */ |
| #define TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 0x0067 /* 103 */ |
| #define TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 0x006B /* 107 */ |
| #define TLS_PSK_WITH_AES_128_CBC_SHA 0x008C /* 140 */ |
| #define TLS_PSK_WITH_AES_256_CBC_SHA 0x008D /* 141 */ |
| #define TLS_DHE_PSK_WITH_AES_128_CBC_SHA 0x0090 /* 144 */ |
| #define TLS_DHE_PSK_WITH_AES_256_CBC_SHA 0x0091 /* 145 */ |
| #define TLS_RSA_WITH_SEED_CBC_SHA 0x0096 /* 150 */ |
| #define TLS_RSA_WITH_AES_128_GCM_SHA256 0x009C /*TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(128) Mac=AEAD */ |
| #define TLS_RSA_WITH_AES_256_GCM_SHA384 0x009D /*TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD */ |
| #define TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 0x009E /*TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(128) Mac=AEAD */ |
| #define TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 0x009F /*TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(256) Mac=AEAD */ |
| #define TLS_PSK_WITH_AES_128_CBC_SHA256 0x00AE /* 174 */ |
| #define TLS_PSK_WITH_AES_256_CBC_SHA384 0x00AF /* 175 */ |
| #define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA 0xC004 /* 49156 */ |
| #define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 0xC005 /* 49157 */ |
| #define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0xC009 /*TLSv1 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA1 */ |
| #define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0xC00A /*TLSv1 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1 */ |
| #define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA 0xC00E /* 49166 */ |
| #define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA 0xC00F /* 49167 */ |
| #define TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 0xC012 /* 49170 */ |
| #define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0xC013 /*TLSv1 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA1 */ |
| #define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0xC014 /*TLSv1 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1 */ |
| #define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0xC023 /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA256 */ |
| #define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0xC024 /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384 */ |
| #define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 0xC025 /* 49189 */ |
| #define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 0xC026 /* 49190 */ |
| #define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0xC027 /*TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA256 */ |
| #define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0xC028 /*TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384 */ |
| #define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 0xC029 /* 49193 */ |
| #define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 0xC02A /* 49194 */ |
| /* RFC 5288 "AES Galois Counter Mode (GCM) Cipher Suites for TLS" */ |
| #define TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0xC02B /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD */ |
| #define TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0xC02C /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD */ |
| #define TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 0xC02D /* 49197 */ |
| #define TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 0xC02E /* 49198 */ |
| #define TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0xC02F /*TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD */ |
| #define TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0xC030 /*TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD */ |
| #define TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 0xC031 /* 49201 */ |
| #define TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 0xC032 /* 49202 */ |
| |
| /* From http://wiki.mozilla.org/Security/Server_Side_TLS */ |
| /* and 'openssl ciphers -V -stdname' */ |
| #define TLS_RSA_WITH_ARIA_128_GCM_SHA256 0xC050 /*TLSv1.2 Kx=RSA Au=RSA Enc=ARIAGCM(128) Mac=AEAD */ |
| #define TLS_RSA_WITH_ARIA_256_GCM_SHA384 0xC051 /*TLSv1.2 Kx=RSA Au=RSA Enc=ARIAGCM(256) Mac=AEAD */ |
| #define TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256 0xC052 /*TLSv1.2 Kx=DH Au=RSA Enc=ARIAGCM(128) Mac=AEAD */ |
| #define TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384 0xC053 /*TLSv1.2 Kx=DH Au=RSA Enc=ARIAGCM(256) Mac=AEAD */ |
| #define TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256 0xC05C /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=ARIAGCM(128) Mac=AEAD */ |
| #define TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384 0xC05D /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=ARIAGCM(256) Mac=AEAD */ |
| #define TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256 0xC060 /*TLSv1.2 Kx=ECDH Au=RSA Enc=ARIAGCM(128) Mac=AEAD */ |
| #define TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384 0xC061 /*TLSv1.2 Kx=ECDH Au=RSA Enc=ARIAGCM(256) Mac=AEAD */ |
| #define TLS_RSA_WITH_AES_128_CCM 0xC09C /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM(128) Mac=AEAD */ |
| #define TLS_RSA_WITH_AES_256_CCM 0xC09D /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM(256) Mac=AEAD */ |
| #define TLS_DHE_RSA_WITH_AES_128_CCM 0xC09E /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM(128) Mac=AEAD */ |
| #define TLS_DHE_RSA_WITH_AES_256_CCM 0xC09F /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM(256) Mac=AEAD */ |
| #define TLS_RSA_WITH_AES_128_CCM_8 0xC0A0 /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM8(128) Mac=AEAD */ |
| #define TLS_RSA_WITH_AES_256_CCM_8 0xC0A1 /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM8(256) Mac=AEAD */ |
| #define TLS_DHE_RSA_WITH_AES_128_CCM_8 0xC0A2 /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM8(128) Mac=AEAD */ |
| #define TLS_DHE_RSA_WITH_AES_256_CCM_8 0xC0A3 /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM8(256) Mac=AEAD */ |
| #define TLS_ECDHE_ECDSA_WITH_AES_128_CCM 0xC0AC /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM(128) Mac=AEAD */ |
| #define TLS_ECDHE_ECDSA_WITH_AES_256_CCM 0xC0AD /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM(256) Mac=AEAD */ |
| #define TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 0xC0AE /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM8(128) Mac=AEAD */ |
| #define TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 0xC0AF /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM8(256) Mac=AEAD */ |
| #define TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0xCCA8 /*TLSv1.2 Kx=ECDH Au=RSA Enc=CHACHA20/POLY1305(256) Mac=AEAD */ |
| #define TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 0xCCA9 /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=CHACHA20/POLY1305(256) Mac=AEAD */ |
| #define TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0xCCAA /*TLSv1.2 Kx=DH Au=RSA Enc=CHACHA20/POLY1305(256) Mac=AEAD */ |
| |
| #define TLS_AES_128_GCM_SHA256 0x1301 /*TLSv1.3 Kx=any Au=any Enc=AESGCM(128) Mac=AEAD */ |
| #define TLS_AES_256_GCM_SHA384 0x1302 /*TLSv1.3 Kx=any Au=any Enc=AESGCM(256) Mac=AEAD */ |
| #define TLS_CHACHA20_POLY1305_SHA256 0x1303 /*TLSv1.3 Kx=any Au=any Enc=CHACHA20/POLY1305(256) Mac=AEAD */ |
| #define TLS_AES_128_CCM_SHA256 0x1304 /*TLSv1.3 Kx=any Au=any Enc=AESCCM(128) Mac=AEAD */ |
| |
| /* Might go to libbb.h */ |
| #define TLS_MAX_CRYPTBLOCK_SIZE 16 |
| #define TLS_MAX_OUTBUF (1 << 14) |
| |
| enum { |
| SHA_INSIZE = 64, |
| SHA1_OUTSIZE = 20, |
| SHA256_OUTSIZE = 32, |
| |
| AES128_KEYSIZE = 16, |
| AES256_KEYSIZE = 32, |
| |
| RSA_PREMASTER_SIZE = 48, |
| |
| RECHDR_LEN = 5, |
| |
| /* 8 = 3+5. 3 extra bytes result in record data being 32-bit aligned */ |
| OUTBUF_PFX = 8 + AES_BLOCK_SIZE, /* header + IV */ |
| OUTBUF_SFX = TLS_MAX_MAC_SIZE + TLS_MAX_CRYPTBLOCK_SIZE, /* MAC + padding */ |
| |
| // RFC 5246 |
| // | 6.2.1. Fragmentation |
| // | The record layer fragments information blocks into TLSPlaintext |
| // | records carrying data in chunks of 2^14 bytes or less. Client |
| // | message boundaries are not preserved in the record layer (i.e., |
| // | multiple client messages of the same ContentType MAY be coalesced |
| // | into a single TLSPlaintext record, or a single message MAY be |
| // | fragmented across several records) |
| // |... |
| // | length |
| // | The length (in bytes) of the following TLSPlaintext.fragment. |
| // | The length MUST NOT exceed 2^14. |
| // |... |
| // | 6.2.2. Record Compression and Decompression |
| // |... |
| // | Compression must be lossless and may not increase the content length |
| // | by more than 1024 bytes. If the decompression function encounters a |
| // | TLSCompressed.fragment that would decompress to a length in excess of |
| // | 2^14 bytes, it MUST report a fatal decompression failure error. |
| // |... |
| // | length |
| // | The length (in bytes) of the following TLSCompressed.fragment. |
| // | The length MUST NOT exceed 2^14 + 1024. |
| // |... |
| // | 6.2.3. Record Payload Protection |
| // | The encryption and MAC functions translate a TLSCompressed |
| // | structure into a TLSCiphertext. The decryption functions reverse |
| // | the process. The MAC of the record also includes a sequence |
| // | number so that missing, extra, or repeated messages are |
| // | detectable. |
| // |... |
| // | length |
| // | The length (in bytes) of the following TLSCiphertext.fragment. |
| // | The length MUST NOT exceed 2^14 + 2048. |
| MAX_INBUF = RECHDR_LEN + (1 << 14) + 2048, |
| |
| /* Bits for tls->flags */ |
| NEED_EC_KEY = 1 << 0, |
| GOT_CERT_RSA_KEY_ALG = 1 << 1, |
| GOT_CERT_ECDSA_KEY_ALG = 1 << 2, // so far unused |
| GOT_EC_KEY = 1 << 3, |
| ENCRYPTION_AESGCM = 1 << 4, // else AES-SHA (or NULL-SHA if CIPHER_ID1 set to allow one) |
| ENCRYPT_ON_WRITE = 1 << 5, |
| }; |
| |
| struct record_hdr { |
| uint8_t type; |
| uint8_t proto_maj, proto_min; |
| uint8_t len16_hi, len16_lo; |
| }; |
| |
| struct tls_handshake_data { |
| /* In bbox, md5/sha1/sha256 ctx's are the same structure */ |
| md5sha_ctx_t handshake_hash_ctx; |
| |
| uint8_t client_and_server_rand32[2 * 32]; |
| uint8_t master_secret[48]; |
| |
| //TODO: store just the DER key here, parse/use/delete it when sending client key |
| //this way it will stay key type agnostic here. |
| psRsaKey_t server_rsa_pub_key; |
| uint8_t ecc_pub_key32[32]; |
| |
| /* HANDSHAKE HASH: */ |
| //unsigned saved_client_hello_size; |
| //uint8_t saved_client_hello[1]; |
| }; |
| |
| |
| static unsigned get24be(const uint8_t *p) |
| { |
| return 0x100*(0x100*p[0] + p[1]) + p[2]; |
| } |
| |
| #if TLS_DEBUG |
| /* Nondestructively see the current hash value */ |
| # if TLS_DEBUG_HASH |
| static unsigned sha_peek(md5sha_ctx_t *ctx, void *buffer) |
| { |
| md5sha_ctx_t ctx_copy = *ctx; /* struct copy */ |
| return sha_end(&ctx_copy, buffer); |
| } |
| # endif |
| |
| static void dump_hex(const char *fmt, const void *vp, int len) |
| { |
| char hexbuf[32 * 1024 + 4]; |
| const uint8_t *p = vp; |
| |
| bin2hex(hexbuf, (void*)p, len)[0] = '\0'; |
| dbg(fmt, hexbuf); |
| } |
| |
| static void dump_tls_record(const void *vp, int len) |
| { |
| const uint8_t *p = vp; |
| |
| while (len > 0) { |
| unsigned xhdr_len; |
| if (len < RECHDR_LEN) { |
| dump_hex("< |%s|\n", p, len); |
| return; |
| } |
| xhdr_len = 0x100*p[3] + p[4]; |
| dbg("< hdr_type:%u ver:%u.%u len:%u", p[0], p[1], p[2], xhdr_len); |
| p += RECHDR_LEN; |
| len -= RECHDR_LEN; |
| if (len >= 4 && p[-RECHDR_LEN] == RECORD_TYPE_HANDSHAKE) { |
| unsigned len24 = get24be(p + 1); |
| dbg(" type:%u len24:%u", p[0], len24); |
| } |
| if (xhdr_len > len) |
| xhdr_len = len; |
| dump_hex(" |%s|\n", p, xhdr_len); |
| p += xhdr_len; |
| len -= xhdr_len; |
| } |
| } |
| #else |
| # define dump_hex(...) ((void)0) |
| # define dump_tls_record(...) ((void)0) |
| #endif |
| |
| void FAST_FUNC tls_get_random(void *buf, unsigned len) |
| { |
| if (len != open_read_close("/dev/urandom", buf, len)) |
| xfunc_die(); |
| } |
| |
| static void xorbuf3(void *dst, const void *src1, const void *src2, unsigned count) |
| { |
| uint8_t *d = dst; |
| const uint8_t *s1 = src1; |
| const uint8_t* s2 = src2; |
| while (count--) |
| *d++ = *s1++ ^ *s2++; |
| } |
| |
| void FAST_FUNC xorbuf(void *dst, const void *src, unsigned count) |
| { |
| xorbuf3(dst, dst, src, count); |
| } |
| |
| void FAST_FUNC xorbuf_aligned_AES_BLOCK_SIZE(void *dst, const void *src) |
| { |
| unsigned long *d = dst; |
| const unsigned long *s = src; |
| d[0] ^= s[0]; |
| #if ULONG_MAX <= 0xffffffffffffffff |
| d[1] ^= s[1]; |
| #if ULONG_MAX == 0xffffffff |
| d[2] ^= s[2]; |
| d[3] ^= s[3]; |
| #endif |
| #endif |
| } |
| |
| #if !TLS_DEBUG_HASH |
| # define hash_handshake(tls, fmt, buffer, len) \ |
| hash_handshake(tls, buffer, len) |
| #endif |
| static void hash_handshake(tls_state_t *tls, const char *fmt, const void *buffer, unsigned len) |
| { |
| md5sha_hash(&tls->hsd->handshake_hash_ctx, buffer, len); |
| #if TLS_DEBUG_HASH |
| { |
| uint8_t h[TLS_MAX_MAC_SIZE]; |
| dump_hex(fmt, buffer, len); |
| dbg(" (%u bytes) ", (int)len); |
| len = sha_peek(&tls->hsd->handshake_hash_ctx, h); |
| if (len == SHA1_OUTSIZE) |
| dump_hex("sha1:%s\n", h, len); |
| else |
| if (len == SHA256_OUTSIZE) |
| dump_hex("sha256:%s\n", h, len); |
| else |
| dump_hex("sha???:%s\n", h, len); |
| } |
| #endif |
| } |
| |
| // RFC 2104 |
| // HMAC(key, text) based on a hash H (say, sha256) is: |
| // ipad = [0x36 x INSIZE] |
| // opad = [0x5c x INSIZE] |
| // HMAC(key, text) = H((key XOR opad) + H((key XOR ipad) + text)) |
| // |
| // H(key XOR opad) and H(key XOR ipad) can be precomputed |
| // if we often need HMAC hmac with the same key. |
| // |
| // text is often given in disjoint pieces. |
| typedef struct hmac_precomputed { |
| md5sha_ctx_t hashed_key_xor_ipad; |
| md5sha_ctx_t hashed_key_xor_opad; |
| } hmac_precomputed_t; |
| |
| static unsigned hmac_sha_precomputed_v( |
| hmac_precomputed_t *pre, |
| uint8_t *out, |
| va_list va) |
| { |
| uint8_t *text; |
| unsigned len; |
| |
| /* pre->hashed_key_xor_ipad contains unclosed "H((key XOR ipad) +" state */ |
| /* pre->hashed_key_xor_opad contains unclosed "H((key XOR opad) +" state */ |
| |
| /* calculate out = H((key XOR ipad) + text) */ |
| while ((text = va_arg(va, uint8_t*)) != NULL) { |
| unsigned text_size = va_arg(va, unsigned); |
| md5sha_hash(&pre->hashed_key_xor_ipad, text, text_size); |
| } |
| len = sha_end(&pre->hashed_key_xor_ipad, out); |
| |
| /* out = H((key XOR opad) + out) */ |
| md5sha_hash(&pre->hashed_key_xor_opad, out, len); |
| return sha_end(&pre->hashed_key_xor_opad, out); |
| } |
| |
| typedef void md5sha_begin_func(md5sha_ctx_t *ctx) FAST_FUNC; |
| static void hmac_begin(hmac_precomputed_t *pre, uint8_t *key, unsigned key_size, md5sha_begin_func *begin) |
| { |
| uint8_t key_xor_ipad[SHA_INSIZE]; |
| uint8_t key_xor_opad[SHA_INSIZE]; |
| uint8_t tempkey[SHA1_OUTSIZE < SHA256_OUTSIZE ? SHA256_OUTSIZE : SHA1_OUTSIZE]; |
| unsigned i; |
| |
| // "The authentication key can be of any length up to INSIZE, the |
| // block length of the hash function. Applications that use keys longer |
| // than INSIZE bytes will first hash the key using H and then use the |
| // resultant OUTSIZE byte string as the actual key to HMAC." |
| if (key_size > SHA_INSIZE) { |
| md5sha_ctx_t ctx; |
| begin(&ctx); |
| md5sha_hash(&ctx, key, key_size); |
| key_size = sha_end(&ctx, tempkey); |
| } |
| |
| for (i = 0; i < key_size; i++) { |
| key_xor_ipad[i] = key[i] ^ 0x36; |
| key_xor_opad[i] = key[i] ^ 0x5c; |
| } |
| for (; i < SHA_INSIZE; i++) { |
| key_xor_ipad[i] = 0x36; |
| key_xor_opad[i] = 0x5c; |
| } |
| |
| begin(&pre->hashed_key_xor_ipad); |
| begin(&pre->hashed_key_xor_opad); |
| md5sha_hash(&pre->hashed_key_xor_ipad, key_xor_ipad, SHA_INSIZE); |
| md5sha_hash(&pre->hashed_key_xor_opad, key_xor_opad, SHA_INSIZE); |
| } |
| |
| static unsigned hmac(tls_state_t *tls, uint8_t *out, uint8_t *key, unsigned key_size, ...) |
| { |
| hmac_precomputed_t pre; |
| va_list va; |
| unsigned len; |
| |
| va_start(va, key_size); |
| |
| hmac_begin(&pre, key, key_size, |
| (tls->MAC_size == SHA256_OUTSIZE) |
| ? sha256_begin |
| : sha1_begin |
| ); |
| len = hmac_sha_precomputed_v(&pre, out, va); |
| |
| va_end(va); |
| return len; |
| } |
| |
| static unsigned hmac_sha256(/*tls_state_t *tls,*/ uint8_t *out, uint8_t *key, unsigned key_size, ...) |
| { |
| hmac_precomputed_t pre; |
| va_list va; |
| unsigned len; |
| |
| va_start(va, key_size); |
| |
| hmac_begin(&pre, key, key_size, sha256_begin); |
| len = hmac_sha_precomputed_v(&pre, out, va); |
| |
| va_end(va); |
| return len; |
| } |
| |
| // RFC 5246: |
| // 5. HMAC and the Pseudorandom Function |
| //... |
| // In this section, we define one PRF, based on HMAC. This PRF with the |
| // SHA-256 hash function is used for all cipher suites defined in this |
| // document and in TLS documents published prior to this document when |
| // TLS 1.2 is negotiated. |
| // ^^^^^^^^^^^^^ IMPORTANT! |
| // PRF uses sha256 regardless of cipher (at least for all ciphers |
| // defined by RFC5246). It's not sha1 for AES_128_CBC_SHA! |
| //... |
| // P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) + |
| // HMAC_hash(secret, A(2) + seed) + |
| // HMAC_hash(secret, A(3) + seed) + ... |
| // where + indicates concatenation. |
| // A() is defined as: |
| // A(0) = seed |
| // A(1) = HMAC_hash(secret, A(0)) = HMAC_hash(secret, seed) |
| // A(i) = HMAC_hash(secret, A(i-1)) |
| // P_hash can be iterated as many times as necessary to produce the |
| // required quantity of data. For example, if P_SHA256 is being used to |
| // create 80 bytes of data, it will have to be iterated three times |
| // (through A(3)), creating 96 bytes of output data; the last 16 bytes |
| // of the final iteration will then be discarded, leaving 80 bytes of |
| // output data. |
| // |
| // TLS's PRF is created by applying P_hash to the secret as: |
| // |
| // PRF(secret, label, seed) = P_<hash>(secret, label + seed) |
| // |
| // The label is an ASCII string. |
| static void prf_hmac_sha256(/*tls_state_t *tls,*/ |
| uint8_t *outbuf, unsigned outbuf_size, |
| uint8_t *secret, unsigned secret_size, |
| const char *label, |
| uint8_t *seed, unsigned seed_size) |
| { |
| uint8_t a[TLS_MAX_MAC_SIZE]; |
| uint8_t *out_p = outbuf; |
| unsigned label_size = strlen(label); |
| unsigned MAC_size = SHA256_OUTSIZE; |
| |
| /* In P_hash() calculation, "seed" is "label + seed": */ |
| #define SEED label, label_size, seed, seed_size |
| #define SECRET secret, secret_size |
| #define A a, MAC_size |
| |
| /* A(1) = HMAC_hash(secret, seed) */ |
| hmac_sha256(/*tls,*/ a, SECRET, SEED, NULL); |
| //TODO: convert hmac to precomputed |
| |
| for (;;) { |
| /* HMAC_hash(secret, A(1) + seed) */ |
| if (outbuf_size <= MAC_size) { |
| /* Last, possibly incomplete, block */ |
| /* (use a[] as temp buffer) */ |
| hmac_sha256(/*tls,*/ a, SECRET, A, SEED, NULL); |
| memcpy(out_p, a, outbuf_size); |
| return; |
| } |
| /* Not last block. Store directly to result buffer */ |
| hmac_sha256(/*tls,*/ out_p, SECRET, A, SEED, NULL); |
| out_p += MAC_size; |
| outbuf_size -= MAC_size; |
| /* A(2) = HMAC_hash(secret, A(1)) */ |
| hmac_sha256(/*tls,*/ a, SECRET, A, NULL); |
| } |
| #undef A |
| #undef SECRET |
| #undef SEED |
| } |
| |
| static void bad_record_die(tls_state_t *tls, const char *expected, int len) |
| { |
| bb_error_msg("got bad TLS record (len:%d) while expecting %s", len, expected); |
| if (len > 0) { |
| uint8_t *p = tls->inbuf; |
| if (len > 99) |
| len = 99; /* don't flood, a few lines should be enough */ |
| do { |
| fprintf(stderr, " %02x", *p++); |
| len--; |
| } while (len != 0); |
| fputc('\n', stderr); |
| } |
| xfunc_die(); |
| } |
| |
| static void tls_error_die(tls_state_t *tls, int line) |
| { |
| dump_tls_record(tls->inbuf, tls->ofs_to_buffered + tls->buffered_size); |
| bb_error_msg_and_die("tls error at line %d cipher:%04x", line, tls->cipher_id); |
| } |
| #define tls_error_die(tls) tls_error_die(tls, __LINE__) |
| |
| #if 0 //UNUSED |
| static void tls_free_inbuf(tls_state_t *tls) |
| { |
| if (tls->buffered_size == 0) { |
| free(tls->inbuf); |
| tls->inbuf_size = 0; |
| tls->inbuf = NULL; |
| } |
| } |
| #endif |
| |
| static void tls_free_outbuf(tls_state_t *tls) |
| { |
| free(tls->outbuf); |
| tls->outbuf_size = 0; |
| tls->outbuf = NULL; |
| } |
| |
| static void *tls_get_outbuf(tls_state_t *tls, int len) |
| { |
| if (len > TLS_MAX_OUTBUF) |
| xfunc_die(); |
| len += OUTBUF_PFX + OUTBUF_SFX; |
| if (tls->outbuf_size < len) { |
| tls->outbuf_size = len; |
| tls->outbuf = xrealloc(tls->outbuf, len); |
| } |
| return tls->outbuf + OUTBUF_PFX; |
| } |
| |
| static void *tls_get_zeroed_outbuf(tls_state_t *tls, int len) |
| { |
| void *record = tls_get_outbuf(tls, len); |
| memset(record, 0, len); |
| return record; |
| } |
| |
| static void xwrite_encrypted_and_hmac_signed(tls_state_t *tls, unsigned size, unsigned type) |
| { |
| uint8_t *buf = tls->outbuf + OUTBUF_PFX; |
| struct record_hdr *xhdr; |
| uint8_t padding_length; |
| |
| xhdr = (void*)(buf - RECHDR_LEN); |
| if (CIPHER_ID1 != TLS_RSA_WITH_NULL_SHA256 /* if "no encryption" can't be selected */ |
| || tls->cipher_id != TLS_RSA_WITH_NULL_SHA256 /* or if it wasn't selected */ |
| ) { |
| xhdr = (void*)(buf - RECHDR_LEN - AES_BLOCK_SIZE); /* place for IV */ |
| } |
| |
| xhdr->type = type; |
| xhdr->proto_maj = TLS_MAJ; |
| xhdr->proto_min = TLS_MIN; |
| /* fake unencrypted record len for MAC calculation */ |
| xhdr->len16_hi = size >> 8; |
| xhdr->len16_lo = size & 0xff; |
| |
| /* Calculate MAC signature */ |
| hmac(tls, buf + size, /* result */ |
| tls->client_write_MAC_key, tls->MAC_size, |
| &tls->write_seq64_be, sizeof(tls->write_seq64_be), |
| xhdr, RECHDR_LEN, |
| buf, size, |
| NULL |
| ); |
| tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(tls->write_seq64_be)); |
| |
| size += tls->MAC_size; |
| |
| // RFC 5246 |
| // 6.2.3.1. Null or Standard Stream Cipher |
| // |
| // Stream ciphers (including BulkCipherAlgorithm.null; see Appendix A.6) |
| // convert TLSCompressed.fragment structures to and from stream |
| // TLSCiphertext.fragment structures. |
| // |
| // stream-ciphered struct { |
| // opaque content[TLSCompressed.length]; |
| // opaque MAC[SecurityParameters.mac_length]; |
| // } GenericStreamCipher; |
| // |
| // The MAC is generated as: |
| // MAC(MAC_write_key, seq_num + |
| // TLSCompressed.type + |
| // TLSCompressed.version + |
| // TLSCompressed.length + |
| // TLSCompressed.fragment); |
| // where "+" denotes concatenation. |
| // seq_num |
| // The sequence number for this record. |
| // MAC |
| // The MAC algorithm specified by SecurityParameters.mac_algorithm. |
| // |
| // Note that the MAC is computed before encryption. The stream cipher |
| // encrypts the entire block, including the MAC. |
| //... |
| // Appendix C. Cipher Suite Definitions |
| //... |
| // MAC Algorithm mac_length mac_key_length |
| // -------- ----------- ---------- -------------- |
| // SHA HMAC-SHA1 20 20 |
| // SHA256 HMAC-SHA256 32 32 |
| if (CIPHER_ID1 == TLS_RSA_WITH_NULL_SHA256 |
| && tls->cipher_id == TLS_RSA_WITH_NULL_SHA256 |
| ) { |
| /* No encryption, only signing */ |
| xhdr->len16_hi = size >> 8; |
| xhdr->len16_lo = size & 0xff; |
| dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size); |
| xwrite(tls->ofd, xhdr, RECHDR_LEN + size); |
| dbg("wrote %u bytes (NULL crypt, SHA256 hash)\n", size); |
| return; |
| } |
| |
| // 6.2.3.2. CBC Block Cipher |
| // For block ciphers (such as 3DES or AES), the encryption and MAC |
| // functions convert TLSCompressed.fragment structures to and from block |
| // TLSCiphertext.fragment structures. |
| // struct { |
| // opaque IV[SecurityParameters.record_iv_length]; |
| // block-ciphered struct { |
| // opaque content[TLSCompressed.length]; |
| // opaque MAC[SecurityParameters.mac_length]; |
| // uint8 padding[GenericBlockCipher.padding_length]; |
| // uint8 padding_length; |
| // }; |
| // } GenericBlockCipher; |
| //... |
| // IV |
| // The Initialization Vector (IV) SHOULD be chosen at random, and |
| // MUST be unpredictable. Note that in versions of TLS prior to 1.1, |
| // there was no IV field (...). For block ciphers, the IV length is |
| // of length SecurityParameters.record_iv_length, which is equal to the |
| // SecurityParameters.block_size. |
| // padding |
| // Padding that is added to force the length of the plaintext to be |
| // an integral multiple of the block cipher's block length. |
| // padding_length |
| // The padding length MUST be such that the total size of the |
| // GenericBlockCipher structure is a multiple of the cipher's block |
| // length. Legal values range from zero to 255, inclusive. |
| //... |
| // Appendix C. Cipher Suite Definitions |
| //... |
| // Key IV Block |
| // Cipher Type Material Size Size |
| // ------------ ------ -------- ---- ----- |
| // AES_128_CBC Block 16 16 16 |
| // AES_256_CBC Block 32 16 16 |
| |
| tls_get_random(buf - AES_BLOCK_SIZE, AES_BLOCK_SIZE); /* IV */ |
| dbg("before crypt: 5 hdr + %u data + %u hash bytes\n", |
| size - tls->MAC_size, tls->MAC_size); |
| |
| /* Fill IV and padding in outbuf */ |
| // RFC is talking nonsense: |
| // "Padding that is added to force the length of the plaintext to be |
| // an integral multiple of the block cipher's block length." |
| // WRONG. _padding+padding_length_, not just _padding_, |
| // pads the data. |
| // IOW: padding_length is the last byte of padding[] array, |
| // contrary to what RFC depicts. |
| // |
| // What actually happens is that there is always padding. |
| // If you need one byte to reach BLOCKSIZE, this byte is 0x00. |
| // If you need two bytes, they are both 0x01. |
| // If you need three, they are 0x02,0x02,0x02. And so on. |
| // If you need no bytes to reach BLOCKSIZE, you have to pad a full |
| // BLOCKSIZE with bytes of value (BLOCKSIZE-1). |
| // It's ok to have more than minimum padding, but we do minimum. |
| padding_length = (~size) & (AES_BLOCK_SIZE - 1); |
| do { |
| buf[size++] = padding_length; /* padding */ |
| } while ((size & (AES_BLOCK_SIZE - 1)) != 0); |
| |
| /* Encrypt content+MAC+padding in place */ |
| aes_cbc_encrypt( |
| &tls->aes_encrypt, /* selects 128/256 */ |
| buf - AES_BLOCK_SIZE, /* IV */ |
| buf, size, /* plaintext */ |
| buf /* ciphertext */ |
| ); |
| |
| /* Write out */ |
| dbg("writing 5 + %u IV + %u encrypted bytes, padding_length:0x%02x\n", |
| AES_BLOCK_SIZE, size, padding_length); |
| size += AES_BLOCK_SIZE; /* + IV */ |
| xhdr->len16_hi = size >> 8; |
| xhdr->len16_lo = size & 0xff; |
| dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size); |
| xwrite(tls->ofd, xhdr, RECHDR_LEN + size); |
| dbg("wrote %u bytes\n", (int)RECHDR_LEN + size); |
| } |
| |
| /* Example how GCM encryption combines nonce, aad, input and generates |
| * "header | exp_nonce | encrypted output | tag": |
| * nonce:0d 6a 26 31 00 00 00 00 00 00 00 01 (implicit 4 bytes (derived from master secret), then explicit 8 bytes) |
| * aad: 00 00 00 00 00 00 00 01 17 03 03 00 1c |
| * in: 47 45 54 20 2f 69 6e 64 65 78 2e 68 74 6d 6c 20 48 54 54 50 2f 31 2e 30 0d 0a 0d 0a "GET /index.html HTTP/1.0\r\n\r\n" (0x1c bytes) |
| * out: f7 8a b2 8f 78 0e f6 d5 76 17 2e b5 6d 46 59 56 8b 46 9f 0b d9 2c 35 28 13 66 19 be |
| * tag: c2 86 ce 4a 50 4a d0 aa 50 b3 76 5c 49 2a 3f 33 |
| * sent: 17 03 03 00 34|00 00 00 00 00 00 00 01|f7 8a b2 8f 78 0e f6 d5 76 17 2e b5 6d 46 59 56 8b 46 9f 0b d9 2c 35 28 13 66 19 be|c2 86 ce 4a 50 4a d0 aa 50 b3 76 5c 49 2a 3f 33 |
| * .............................................^^ buf points here |
| */ |
| static void xwrite_encrypted_aesgcm(tls_state_t *tls, unsigned size, unsigned type) |
| { |
| #define COUNTER(v) (*(uint32_t*)(v + 12)) |
| |
| uint8_t aad[13 + 3] ALIGNED_long; /* +3 creates [16] buffer, simplifying GHASH() */ |
| uint8_t nonce[12 + 4] ALIGNED_long; /* +4 creates space for AES block counter */ |
| uint8_t scratch[AES_BLOCK_SIZE] ALIGNED_long; //[16] |
| uint8_t authtag[AES_BLOCK_SIZE] ALIGNED_long; //[16] |
| uint8_t *buf; |
| struct record_hdr *xhdr; |
| unsigned remaining; |
| unsigned cnt; |
| uint64_t t64; |
| |
| buf = tls->outbuf + OUTBUF_PFX; /* see above for the byte it points to */ |
| dump_hex("xwrite_encrypted_aesgcm plaintext:%s\n", buf, size); |
| |
| xhdr = (void*)(buf - 8 - RECHDR_LEN); |
| xhdr->type = type; /* do it here so that "type" param no longer used */ |
| |
| aad[8] = type; |
| aad[9] = TLS_MAJ; |
| aad[10] = TLS_MIN; |
| aad[11] = size >> 8; |
| /* set aad[12], and clear aad[13..15] */ |
| COUNTER(aad) = SWAP_LE32(size & 0xff); |
| |
| memcpy(nonce, tls->client_write_IV, 4); |
| t64 = tls->write_seq64_be; |
| move_to_unaligned64(nonce + 4, t64); |
| move_to_unaligned64(aad, t64); |
| move_to_unaligned64(buf - 8, t64); |
| /* seq64 is not used later in this func, can increment here */ |
| tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(t64)); |
| |
| cnt = 1; |
| remaining = size; |
| while (remaining != 0) { |
| unsigned n; |
| |
| cnt++; |
| COUNTER(nonce) = htonl(cnt); /* yes, first cnt here is 2 (!) */ |
| aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch); |
| n = remaining > AES_BLOCK_SIZE ? AES_BLOCK_SIZE : remaining; |
| xorbuf(buf, scratch, n); |
| buf += n; |
| remaining -= n; |
| } |
| |
| aesgcm_GHASH(tls->H, aad, /*sizeof(aad),*/ tls->outbuf + OUTBUF_PFX, size, authtag /*, sizeof(authtag)*/); |
| COUNTER(nonce) = htonl(1); |
| aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch); |
| xorbuf_aligned_AES_BLOCK_SIZE(authtag, scratch); |
| |
| memcpy(buf, authtag, sizeof(authtag)); |
| |
| /* Write out */ |
| xhdr = (void*)(tls->outbuf + OUTBUF_PFX - 8 - RECHDR_LEN); |
| size += 8 + sizeof(authtag); |
| /*xhdr->type = type; - already is */ |
| xhdr->proto_maj = TLS_MAJ; |
| xhdr->proto_min = TLS_MIN; |
| xhdr->len16_hi = size >> 8; |
| xhdr->len16_lo = size & 0xff; |
| size += RECHDR_LEN; |
| dump_raw_out(">> %s\n", xhdr, size); |
| xwrite(tls->ofd, xhdr, size); |
| dbg("wrote %u bytes\n", size); |
| #undef COUNTER |
| } |
| |
| static void xwrite_encrypted(tls_state_t *tls, unsigned size, unsigned type) |
| { |
| if (!(tls->flags & ENCRYPTION_AESGCM)) { |
| xwrite_encrypted_and_hmac_signed(tls, size, type); |
| return; |
| } |
| xwrite_encrypted_aesgcm(tls, size, type); |
| } |
| |
| static void xwrite_handshake_record(tls_state_t *tls, unsigned size) |
| { |
| uint8_t *buf = tls->outbuf + OUTBUF_PFX; |
| struct record_hdr *xhdr = (void*)(buf - RECHDR_LEN); |
| |
| xhdr->type = RECORD_TYPE_HANDSHAKE; |
| xhdr->proto_maj = TLS_MAJ; |
| xhdr->proto_min = TLS_MIN; |
| xhdr->len16_hi = size >> 8; |
| xhdr->len16_lo = size & 0xff; |
| dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size); |
| xwrite(tls->ofd, xhdr, RECHDR_LEN + size); |
| dbg("wrote %u bytes\n", (int)RECHDR_LEN + size); |
| } |
| |
| static void xwrite_and_update_handshake_hash(tls_state_t *tls, unsigned size) |
| { |
| if (!(tls->flags & ENCRYPT_ON_WRITE)) { |
| uint8_t *buf; |
| |
| xwrite_handshake_record(tls, size); |
| /* Handshake hash does not include record headers */ |
| buf = tls->outbuf + OUTBUF_PFX; |
| hash_handshake(tls, ">> hash:%s", buf, size); |
| return; |
| } |
| xwrite_encrypted(tls, size, RECORD_TYPE_HANDSHAKE); |
| } |
| |
| static int tls_has_buffered_record(tls_state_t *tls) |
| { |
| int buffered = tls->buffered_size; |
| struct record_hdr *xhdr; |
| int rec_size; |
| |
| if (buffered < RECHDR_LEN) |
| return 0; |
| xhdr = (void*)(tls->inbuf + tls->ofs_to_buffered); |
| rec_size = RECHDR_LEN + (0x100 * xhdr->len16_hi + xhdr->len16_lo); |
| if (buffered < rec_size) |
| return 0; |
| return rec_size; |
| } |
| |
| static const char *alert_text(int code) |
| { |
| switch (code) { |
| case 20: return "bad MAC"; |
| case 50: return "decode error"; |
| case 51: return "decrypt error"; |
| case 40: return "handshake failure"; |
| case 112: return "unrecognized name"; |
| } |
| return itoa(code); |
| } |
| |
| static void tls_aesgcm_decrypt(tls_state_t *tls, uint8_t *buf, int size) |
| { |
| #define COUNTER(v) (*(uint32_t*)(v + 12)) |
| |
| //uint8_t aad[13 + 3] ALIGNED_long; /* +3 creates [16] buffer, simplifying GHASH() */ |
| uint8_t nonce[12 + 4] ALIGNED_long; /* +4 creates space for AES block counter */ |
| uint8_t scratch[AES_BLOCK_SIZE] ALIGNED_long; //[16] |
| //uint8_t authtag[AES_BLOCK_SIZE] ALIGNED_long; //[16] |
| unsigned remaining; |
| unsigned cnt; |
| |
| //memcpy(aad, buf, 8); |
| //aad[8] = type; |
| //aad[9] = TLS_MAJ; |
| //aad[10] = TLS_MIN; |
| //aad[11] = size >> 8; |
| ///* set aad[12], and clear aad[13..15] */ |
| //COUNTER(aad) = SWAP_LE32(size & 0xff); |
| |
| memcpy(nonce, tls->server_write_IV, 4); |
| memcpy(nonce + 4, buf, 8); |
| |
| cnt = 1; |
| remaining = size; |
| while (remaining != 0) { |
| unsigned n; |
| |
| cnt++; |
| COUNTER(nonce) = htonl(cnt); /* yes, first cnt here is 2 (!) */ |
| aes_encrypt_one_block(&tls->aes_decrypt, nonce, scratch); |
| n = remaining > AES_BLOCK_SIZE ? AES_BLOCK_SIZE : remaining; |
| xorbuf3(buf, scratch, buf + 8, n); |
| buf += n; |
| remaining -= n; |
| } |
| |
| //aesgcm_GHASH(tls->H, aad, tls->inbuf + RECHDR_LEN, size, authtag); |
| //COUNTER(nonce) = htonl(1); |
| //aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch); |
| //xorbuf_aligned_AES_BLOCK_SIZE(authtag, scratch); |
| |
| //memcmp(buf, authtag, sizeof(authtag)) || DIE("HASH DOES NOT MATCH!"); |
| #undef COUNTER |
| } |
| |
| static int tls_xread_record(tls_state_t *tls, const char *expected) |
| { |
| struct record_hdr *xhdr; |
| int sz; |
| int total; |
| int target; |
| |
| again: |
| dbg("ofs_to_buffered:%u buffered_size:%u\n", tls->ofs_to_buffered, tls->buffered_size); |
| total = tls->buffered_size; |
| if (total != 0) { |
| memmove(tls->inbuf, tls->inbuf + tls->ofs_to_buffered, total); |
| //dbg("<< remaining at %d [%d] ", tls->ofs_to_buffered, total); |
| //dump_raw_in("<< %s\n", tls->inbuf, total); |
| } |
| errno = 0; |
| target = MAX_INBUF; |
| for (;;) { |
| int rem; |
| |
| if (total >= RECHDR_LEN && target == MAX_INBUF) { |
| xhdr = (void*)tls->inbuf; |
| target = RECHDR_LEN + (0x100 * xhdr->len16_hi + xhdr->len16_lo); |
| |
| if (target > MAX_INBUF /* malformed input (too long) */ |
| || xhdr->proto_maj != TLS_MAJ |
| || xhdr->proto_min != TLS_MIN |
| ) { |
| sz = total < target ? total : target; |
| bad_record_die(tls, expected, sz); |
| } |
| dbg("xhdr type:%d ver:%d.%d len:%d\n", |
| xhdr->type, xhdr->proto_maj, xhdr->proto_min, |
| 0x100 * xhdr->len16_hi + xhdr->len16_lo |
| ); |
| } |
| /* if total >= target, we have a full packet (and possibly more)... */ |
| if (total - target >= 0) |
| break; |
| /* input buffer is grown only as needed */ |
| rem = tls->inbuf_size - total; |
| if (rem == 0) { |
| tls->inbuf_size += MAX_INBUF / 8; |
| if (tls->inbuf_size > MAX_INBUF) |
| tls->inbuf_size = MAX_INBUF; |
| dbg("inbuf_size:%d\n", tls->inbuf_size); |
| rem = tls->inbuf_size - total; |
| tls->inbuf = xrealloc(tls->inbuf, tls->inbuf_size); |
| } |
| sz = safe_read(tls->ifd, tls->inbuf + total, rem); |
| if (sz <= 0) { |
| if (sz == 0 && total == 0) { |
| /* "Abrupt" EOF, no TLS shutdown (seen from kernel.org) */ |
| dbg("EOF (without TLS shutdown) from peer\n"); |
| tls->buffered_size = 0; |
| goto end; |
| } |
| bb_perror_msg_and_die("short read, have only %d", total); |
| } |
| dump_raw_in("<< %s\n", tls->inbuf + total, sz); |
| total += sz; |
| } |
| tls->buffered_size = total - target; |
| tls->ofs_to_buffered = target; |
| //dbg("<< stashing at %d [%d] ", tls->ofs_to_buffered, tls->buffered_size); |
| //dump_hex("<< %s\n", tls->inbuf + tls->ofs_to_buffered, tls->buffered_size); |
| |
| sz = target - RECHDR_LEN; |
| |
| /* Needs to be decrypted? */ |
| if (tls->min_encrypted_len_on_read != 0) { |
| if (sz < (int)tls->min_encrypted_len_on_read) |
| bb_error_msg_and_die("bad encrypted len:%u", sz); |
| |
| if (tls->flags & ENCRYPTION_AESGCM) { |
| /* AESGCM */ |
| uint8_t *p = tls->inbuf + RECHDR_LEN; |
| |
| sz -= 8 + AES_BLOCK_SIZE; /* we will overwrite nonce, drop hash */ |
| tls_aesgcm_decrypt(tls, p, sz); |
| dbg("encrypted size:%u\n", sz); |
| } else |
| if (tls->min_encrypted_len_on_read > tls->MAC_size) { |
| /* AES+SHA */ |
| uint8_t *p = tls->inbuf + RECHDR_LEN; |
| int padding_len; |
| |
| if (sz & (AES_BLOCK_SIZE-1)) |
| bb_error_msg_and_die("bad encrypted len:%u", sz); |
| |
| /* Decrypt content+MAC+padding, moving it over IV in the process */ |
| sz -= AES_BLOCK_SIZE; /* we will overwrite IV now */ |
| aes_cbc_decrypt( |
| &tls->aes_decrypt, /* selects 128/256 */ |
| p, /* IV */ |
| p + AES_BLOCK_SIZE, sz, /* ciphertext */ |
| p /* plaintext */ |
| ); |
| padding_len = p[sz - 1]; |
| dbg("encrypted size:%u type:0x%02x padding_length:0x%02x\n", sz, p[0], padding_len); |
| padding_len++; |
| sz -= tls->MAC_size + padding_len; /* drop MAC and padding */ |
| } else { |
| /* if nonzero, then it's TLS_RSA_WITH_NULL_SHA256: drop MAC */ |
| /* else: no encryption yet on input, subtract zero = NOP */ |
| sz -= tls->min_encrypted_len_on_read; |
| } |
| } |
| if (sz < 0) |
| bb_error_msg_and_die("encrypted data too short"); |
| |
| //dump_hex("<< %s\n", tls->inbuf, RECHDR_LEN + sz); |
| |
| xhdr = (void*)tls->inbuf; |
| if (xhdr->type == RECORD_TYPE_ALERT && sz >= 2) { |
| uint8_t *p = tls->inbuf + RECHDR_LEN; |
| dbg("ALERT size:%d level:%d description:%d\n", sz, p[0], p[1]); |
| if (p[0] == 2) { /* fatal */ |
| bb_error_msg_and_die("TLS %s from peer (alert code %d): %s", |
| "error", |
| p[1], alert_text(p[1]) |
| ); |
| } |
| if (p[0] == 1) { /* warning */ |
| if (p[1] == 0) { /* "close_notify" warning: it's EOF */ |
| dbg("EOF (TLS encoded) from peer\n"); |
| sz = 0; |
| goto end; |
| } |
| //This possibly needs to be cached and shown only if |
| //a fatal alert follows |
| // bb_error_msg("TLS %s from peer (alert code %d): %s", |
| // "warning", |
| // p[1], alert_text(p[1]) |
| // ); |
| /* discard it, get next record */ |
| goto again; |
| } |
| /* p[0] not 1 or 2: not defined in protocol */ |
| sz = 0; |
| goto end; |
| } |
| |
| /* RFC 5246 is not saying it explicitly, but sha256 hash |
| * in our FINISHED record must include data of incoming packets too! |
| */ |
| if (tls->inbuf[0] == RECORD_TYPE_HANDSHAKE |
| /* HANDSHAKE HASH: */ |
| // && do_we_know_which_hash_to_use /* server_hello() might not know it in the future! */ |
| ) { |
| hash_handshake(tls, "<< hash:%s", tls->inbuf + RECHDR_LEN, sz); |
| } |
| end: |
| dbg("got block len:%u\n", sz); |
| return sz; |
| } |
| |
| static void binary_to_pstm(pstm_int *pstm_n, uint8_t *bin_ptr, unsigned len) |
| { |
| pstm_init_for_read_unsigned_bin(/*pool:*/ NULL, pstm_n, len); |
| pstm_read_unsigned_bin(pstm_n, bin_ptr, len); |
| //return bin_ptr + len; |
| } |
| |
| /* |
| * DER parsing routines |
| */ |
| static unsigned get_der_len(uint8_t **bodyp, uint8_t *der, uint8_t *end) |
| { |
| unsigned len, len1; |
| |
| if (end - der < 2) |
| xfunc_die(); |
| // if ((der[0] & 0x1f) == 0x1f) /* not single-byte item code? */ |
| // xfunc_die(); |
| |
| len = der[1]; /* maybe it's short len */ |
| if (len >= 0x80) { |
| /* no, it's long */ |
| |
| if (len == 0x80 || end - der < (int)(len - 0x7e)) { |
| /* 0x80 is "0 bytes of len", invalid DER: must use short len if can */ |
| /* need 3 or 4 bytes for 81, 82 */ |
| xfunc_die(); |
| } |
| |
| len1 = der[2]; /* if (len == 0x81) it's "ii 81 xx", fetch xx */ |
| if (len > 0x82) { |
| /* >0x82 is "3+ bytes of len", should not happen realistically */ |
| xfunc_die(); |
| } |
| if (len == 0x82) { /* it's "ii 82 xx yy" */ |
| len1 = 0x100*len1 + der[3]; |
| der += 1; /* skip [yy] */ |
| } |
| der += 1; /* skip [xx] */ |
| len = len1; |
| // if (len < 0x80) |
| // xfunc_die(); /* invalid DER: must use short len if can */ |
| } |
| der += 2; /* skip [code]+[1byte] */ |
| |
| if (end - der < (int)len) |
| xfunc_die(); |
| *bodyp = der; |
| |
| return len; |
| } |
| |
| static uint8_t *enter_der_item(uint8_t *der, uint8_t **endp) |
| { |
| uint8_t *new_der; |
| unsigned len = get_der_len(&new_der, der, *endp); |
| dbg_der("entered der @%p:0x%02x len:%u inner_byte @%p:0x%02x\n", der, der[0], len, new_der, new_der[0]); |
| /* Move "end" position to cover only this item */ |
| *endp = new_der + len; |
| return new_der; |
| } |
| |
| static uint8_t *skip_der_item(uint8_t *der, uint8_t *end) |
| { |
| uint8_t *new_der; |
| unsigned len = get_der_len(&new_der, der, end); |
| /* Skip body */ |
| new_der += len; |
| dbg_der("skipped der 0x%02x, next byte 0x%02x\n", der[0], new_der[0]); |
| return new_der; |
| } |
| |
| static void der_binary_to_pstm(pstm_int *pstm_n, uint8_t *der, uint8_t *end) |
| { |
| uint8_t *bin_ptr; |
| unsigned len = get_der_len(&bin_ptr, der, end); |
| |
| dbg_der("binary bytes:%u, first:0x%02x\n", len, bin_ptr[0]); |
| binary_to_pstm(pstm_n, bin_ptr, len); |
| } |
| |
| static void find_key_in_der_cert(tls_state_t *tls, uint8_t *der, int len) |
| { |
| /* Certificate is a DER-encoded data structure. Each DER element has a length, |
| * which makes it easy to skip over large compound elements of any complexity |
| * without parsing them. Example: partial decode of kernel.org certificate: |
| * SEQ 0x05ac/1452 bytes (Certificate): 308205ac |
| * SEQ 0x0494/1172 bytes (tbsCertificate): 30820494 |
| * [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0] 3 bytes: a003 |
| * INTEGER (version): 0201 02 |
| * INTEGER 0x11 bytes (serialNumber): 0211 00 9f85bf664b0cddafca508679501b2be4 |
| * //^^^^^^note: matrixSSL also allows [ASN_CONTEXT_SPECIFIC | ASN_PRIMITIVE | 2] = 0x82 type |
| * SEQ 0x0d bytes (signatureAlgo): 300d |
| * OID 9 bytes: 0609 2a864886f70d01010b (OID_SHA256_RSA_SIG 42.134.72.134.247.13.1.1.11) |
| * NULL: 0500 |
| * SEQ 0x5f bytes (issuer): 305f |
| * SET 11 bytes: 310b |
| * SEQ 9 bytes: 3009 |
| * OID 3 bytes: 0603 550406 |
| * Printable string "FR": 1302 4652 |
| * SET 14 bytes: 310e |
| * SEQ 12 bytes: 300c |
| * OID 3 bytes: 0603 550408 |
| * Printable string "Paris": 1305 5061726973 |
| * SET 14 bytes: 310e |
| * SEQ 12 bytes: 300c |
| * OID 3 bytes: 0603 550407 |
| * Printable string "Paris": 1305 5061726973 |
| * SET 14 bytes: 310e |
| * SEQ 12 bytes: 300c |
| * OID 3 bytes: 0603 55040a |
| * Printable string "Gandi": 1305 47616e6469 |
| * SET 32 bytes: 3120 |
| * SEQ 30 bytes: 301e |
| * OID 3 bytes: 0603 550403 |
| * Printable string "Gandi Standard SSL CA 2": 1317 47616e6469205374616e646172642053534c2043412032 |
| * SEQ 30 bytes (validity): 301e |
| * TIME "161011000000Z": 170d 3136313031313030303030305a |
| * TIME "191011235959Z": 170d 3139313031313233353935395a |
| * SEQ 0x5b/91 bytes (subject): 305b //I did not decode this |
| * 3121301f060355040b1318446f6d61696e20436f |
| * 6e74726f6c2056616c6964617465643121301f06 |
| * 0355040b1318506f73697469766553534c204d75 |
| * 6c74692d446f6d61696e31133011060355040313 |
| * 0a6b65726e656c2e6f7267 |
| * SEQ 0x01a2/418 bytes (subjectPublicKeyInfo): 308201a2 |
| * SEQ 13 bytes (algorithm): 300d |
| * OID 9 bytes: 0609 2a864886f70d010101 (OID_RSA_KEY_ALG 42.134.72.134.247.13.1.1.1) |
| * NULL: 0500 |
| * BITSTRING 0x018f/399 bytes (publicKey): 0382018f |
| * ????: 00 |
| * //after the zero byte, it appears key itself uses DER encoding: |
| * SEQ 0x018a/394 bytes: 3082018a |
| * INTEGER 0x0181/385 bytes (modulus): 02820181 |
| * 00b1ab2fc727a3bef76780c9349bf3 |
| * ...24 more blocks of 15 bytes each... |
| * 90e895291c6bc8693b65 |
| * INTEGER 3 bytes (exponent): 0203 010001 |
| * [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0x3] 0x01e5 bytes (X509v3 extensions): a38201e5 |
| * SEQ 0x01e1 bytes: 308201e1 |
| * ... |
| * Certificate is a sequence of three elements: |
| * tbsCertificate (SEQ) |
| * signatureAlgorithm (AlgorithmIdentifier) |
| * signatureValue (BIT STRING) |
| * |
| * In turn, tbsCertificate is a sequence of: |
| * version |
| * serialNumber |
| * signatureAlgo (AlgorithmIdentifier) |
| * issuer (Name, has complex structure) |
| * validity (Validity, SEQ of two Times) |
| * subject (Name) |
| * subjectPublicKeyInfo (SEQ) |
| * ... |
| * |
| * subjectPublicKeyInfo is a sequence of: |
| * algorithm (AlgorithmIdentifier) |
| * publicKey (BIT STRING) |
| * |
| * We need Certificate.tbsCertificate.subjectPublicKeyInfo.publicKey |
| * |
| * Example of an ECDSA key: |
| * SEQ 0x59 bytes (subjectPublicKeyInfo): 3059 |
| * SEQ 0x13 bytes (algorithm): 3013 |
| * OID 7 bytes: 0607 2a8648ce3d0201 (OID_ECDSA_KEY_ALG 42.134.72.206.61.2.1) |
| * OID 8 bytes: 0608 2a8648ce3d030107 (OID_EC_prime256v1 42.134.72.206.61.3.1.7) |
| * BITSTRING 0x42 bytes (publicKey): 0342 |
| * 0004 53af f65e 50cc 7959 7e29 0171 c75c |
| * 7335 e07d f45b 9750 b797 3a38 aebb 2ac6 |
| * 8329 2748 e77e 41cb d482 2ce6 05ec a058 |
| * f3ab d561 2f4c d845 9ad3 7252 e3de bd3b |
| * 9012 |
| */ |
| uint8_t *end = der + len; |
| |
| /* enter "Certificate" item: [der, end) will be only Cert */ |
| der = enter_der_item(der, &end); |
| |
| /* enter "tbsCertificate" item: [der, end) will be only tbsCert */ |
| der = enter_der_item(der, &end); |
| |
| /* |
| * Skip version field only if it is present. For a v1 certificate, the |
| * version field won't be present since v1 is the default value for the |
| * version field and fields with default values should be omitted (see |
| * RFC 5280 sections 4.1 and 4.1.2.1). If the version field is present |
| * it will have a tag class of 2 (context-specific), bit 6 as 1 |
| * (constructed), and a tag number of 0 (see ITU-T X.690 sections 8.1.2 |
| * and 8.14). |
| */ |
| /* bits 7-6: 10 */ |
| /* bit 5: 1 */ |
| /* bits 4-0: 00000 */ |
| if (der[0] == 0xa0) |
| der = skip_der_item(der, end); /* version */ |
| |
| /* skip up to subjectPublicKeyInfo */ |
| der = skip_der_item(der, end); /* serialNumber */ |
| der = skip_der_item(der, end); /* signatureAlgo */ |
| der = skip_der_item(der, end); /* issuer */ |
| der = skip_der_item(der, end); /* validity */ |
| der = skip_der_item(der, end); /* subject */ |
| |
| /* enter subjectPublicKeyInfo */ |
| der = enter_der_item(der, &end); |
| { /* check subjectPublicKeyInfo.algorithm */ |
| static const uint8_t OID_RSA_KEY_ALG[] = { |
| 0x30,0x0d, // SEQ 13 bytes |
| 0x06,0x09, 0x2a,0x86,0x48,0x86,0xf7,0x0d,0x01,0x01,0x01, //OID_RSA_KEY_ALG 42.134.72.134.247.13.1.1.1 |
| //0x05,0x00, // NULL |
| }; |
| static const uint8_t OID_ECDSA_KEY_ALG[] = { |
| 0x30,0x13, // SEQ 0x13 bytes |
| 0x06,0x07, 0x2a,0x86,0x48,0xce,0x3d,0x02,0x01, //OID_ECDSA_KEY_ALG 42.134.72.206.61.2.1 |
| //allow any curve code for now... |
| // 0x06,0x08, 0x2a,0x86,0x48,0xce,0x3d,0x03,0x01,0x07, //OID_EC_prime256v1 42.134.72.206.61.3.1.7 |
| //RFC 3279: |
| //42.134.72.206.61.3 is ellipticCurve |
| //42.134.72.206.61.3.0 is c-TwoCurve |
| //42.134.72.206.61.3.1 is primeCurve |
| //42.134.72.206.61.3.1.7 is curve_secp256r1 |
| }; |
| if (memcmp(der, OID_RSA_KEY_ALG, sizeof(OID_RSA_KEY_ALG)) == 0) { |
| dbg("RSA key\n"); |
| tls->flags |= GOT_CERT_RSA_KEY_ALG; |
| } else |
| if (memcmp(der, OID_ECDSA_KEY_ALG, sizeof(OID_ECDSA_KEY_ALG)) == 0) { |
| dbg("ECDSA key\n"); |
| //UNUSED: tls->flags |= GOT_CERT_ECDSA_KEY_ALG; |
| } else |
| bb_error_msg_and_die("not RSA or ECDSA cert"); |
| } |
| |
| if (tls->flags & GOT_CERT_RSA_KEY_ALG) { |
| /* parse RSA key: */ |
| //based on getAsnRsaPubKey(), pkcs1ParsePrivBin() is also of note |
| /* skip subjectPublicKeyInfo.algorithm */ |
| der = skip_der_item(der, end); |
| /* enter subjectPublicKeyInfo.publicKey */ |
| //die_if_not_this_der_type(der, end, 0x03); /* must be BITSTRING */ |
| der = enter_der_item(der, &end); |
| |
| dbg("key bytes:%u, first:0x%02x\n", (int)(end - der), der[0]); |
| if (end - der < 14) |
| xfunc_die(); |
| /* example format: |
| * ignore bits: 00 |
| * SEQ 0x018a/394 bytes: 3082018a |
| * INTEGER 0x0181/385 bytes (modulus): 02820181 XX...XXX |
| * INTEGER 3 bytes (exponent): 0203 010001 |
| */ |
| if (*der != 0) /* "ignore bits", should be 0 */ |
| xfunc_die(); |
| der++; |
| der = enter_der_item(der, &end); /* enter SEQ */ |
| /* memset(tls->hsd->server_rsa_pub_key, 0, sizeof(tls->hsd->server_rsa_pub_key)); - already is */ |
| der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.N, der, end); /* modulus */ |
| der = skip_der_item(der, end); |
| der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.e, der, end); /* exponent */ |
| tls->hsd->server_rsa_pub_key.size = pstm_unsigned_bin_size(&tls->hsd->server_rsa_pub_key.N); |
| dbg("server_rsa_pub_key.size:%d\n", tls->hsd->server_rsa_pub_key.size); |
| } |
| /* else: ECDSA key. It is not used for generating encryption keys, |
| * it is used only to sign the EC public key (which comes in ServerKey message). |
| * Since we do not verify cert validity, verifying signature on EC public key |
| * wouldn't add any security. Thus, we do nothing here. |
| */ |
| } |
| |
| /* |
| * TLS Handshake routines |
| */ |
| static int tls_xread_handshake_block(tls_state_t *tls, int min_len) |
| { |
| struct record_hdr *xhdr; |
| int len = tls_xread_record(tls, "handshake record"); |
| |
| xhdr = (void*)tls->inbuf; |
| if (len < min_len |
| || xhdr->type != RECORD_TYPE_HANDSHAKE |
| ) { |
| bad_record_die(tls, "handshake record", len); |
| } |
| dbg("got HANDSHAKE\n"); |
| return len; |
| } |
| |
| static ALWAYS_INLINE void fill_handshake_record_hdr(void *buf, unsigned type, unsigned len) |
| { |
| struct handshake_hdr { |
| uint8_t type; |
| uint8_t len24_hi, len24_mid, len24_lo; |
| } *h = buf; |
| |
| len -= 4; |
| h->type = type; |
| h->len24_hi = len >> 16; |
| h->len24_mid = len >> 8; |
| h->len24_lo = len & 0xff; |
| } |
| |
| static void send_client_hello_and_alloc_hsd(tls_state_t *tls, const char *sni) |
| { |
| static const uint8_t supported_groups[] = { |
| 0x00,0x0a, //extension_type: "supported_groups" |
| 0x00,0x04, //ext len |
| 0x00,0x02, //list len |
| 0x00,0x1d, //curve_x25519 (rfc7748) |
| //0x00,0x17, //curve_secp256r1 |
| //0x00,0x18, //curve_secp384r1 |
| //0x00,0x19, //curve_secp521r1 |
| }; |
| //static const uint8_t signature_algorithms[] = { |
| // 000d |
| // 0020 |
| // 001e |
| // 0601 0602 0603 0501 0502 0503 0401 0402 0403 0301 0302 0303 0201 0202 0203 |
| //}; |
| |
| struct client_hello { |
| uint8_t type; |
| uint8_t len24_hi, len24_mid, len24_lo; |
| uint8_t proto_maj, proto_min; |
| uint8_t rand32[32]; |
| uint8_t session_id_len; |
| /* uint8_t session_id[]; */ |
| uint8_t cipherid_len16_hi, cipherid_len16_lo; |
| uint8_t cipherid[2 * (1 + NUM_CIPHERS)]; /* actually variable */ |
| uint8_t comprtypes_len; |
| uint8_t comprtypes[1]; /* actually variable */ |
| /* Extensions (SNI shown): |
| * hi,lo // len of all extensions |
| * 00,00 // extension_type: "Server Name" |
| * 00,0e // list len (there can be more than one SNI) |
| * 00,0c // len of 1st Server Name Indication |
| * 00 // name type: host_name |
| * 00,09 // name len |
| * "localhost" // name |
| */ |
| // GNU Wget 1.18 to cdn.kernel.org sends these extensions: |
| // 0055 |
| // 0005 0005 0100000000 - status_request |
| // 0000 0013 0011 00 000e 63646e 2e 6b65726e656c 2e 6f7267 - server_name |
| // ff01 0001 00 - renegotiation_info |
| // 0023 0000 - session_ticket |
| // 000a 0008 0006001700180019 - supported_groups |
| // 000b 0002 0100 - ec_point_formats |
| // 000d 0016 0014 0401 0403 0501 0503 0601 0603 0301 0303 0201 0203 - signature_algorithms |
| // wolfssl library sends this option, RFC 7627 (closes a security weakness, some servers may require it. TODO?): |
| // 0017 0000 - extended master secret |
| }; |
| struct client_hello *record; |
| uint8_t *ptr; |
| int len; |
| int ext_len; |
| int sni_len = sni ? strnlen(sni, 127 - 5) : 0; |
| |
| ext_len = 0; |
| /* is.gd responds with "handshake failure" to our hello if there's no supported_groups element */ |
| ext_len += sizeof(supported_groups); |
| if (sni_len) |
| ext_len += 9 + sni_len; |
| |
| /* +2 is for "len of all extensions" 2-byte field */ |
| len = sizeof(*record) + 2 + ext_len; |
| record = tls_get_zeroed_outbuf(tls, len); |
| |
| fill_handshake_record_hdr(record, HANDSHAKE_CLIENT_HELLO, len); |
| record->proto_maj = TLS_MAJ; /* the "requested" version of the protocol, */ |
| record->proto_min = TLS_MIN; /* can be higher than one in record headers */ |
| tls_get_random(record->rand32, sizeof(record->rand32)); |
| if (TLS_DEBUG_FIXED_SECRETS) |
| memset(record->rand32, 0x11, sizeof(record->rand32)); |
| /* record->session_id_len = 0; - already is */ |
| |
| /* record->cipherid_len16_hi = 0; */ |
| record->cipherid_len16_lo = sizeof(record->cipherid); |
| /* RFC 5746 Renegotiation Indication Extension - some servers will refuse to work with us otherwise */ |
| /*record->cipherid[0] = TLS_EMPTY_RENEGOTIATION_INFO_SCSV >> 8; - zero */ |
| record->cipherid[1] = TLS_EMPTY_RENEGOTIATION_INFO_SCSV & 0xff; |
| if ((CIPHER_ID1 >> 8) != 0) record->cipherid[2] = CIPHER_ID1 >> 8; |
| /*************************/ record->cipherid[3] = CIPHER_ID1 & 0xff; |
| #if CIPHER_ID2 |
| if ((CIPHER_ID2 >> 8) != 0) record->cipherid[4] = CIPHER_ID2 >> 8; |
| /*************************/ record->cipherid[5] = CIPHER_ID2 & 0xff; |
| #endif |
| #if CIPHER_ID3 |
| if ((CIPHER_ID3 >> 8) != 0) record->cipherid[6] = CIPHER_ID3 >> 8; |
| /*************************/ record->cipherid[7] = CIPHER_ID3 & 0xff; |
| #endif |
| #if CIPHER_ID4 |
| if ((CIPHER_ID4 >> 8) != 0) record->cipherid[8] = CIPHER_ID4 >> 8; |
| /*************************/ record->cipherid[9] = CIPHER_ID4 & 0xff; |
| #endif |
| |
| record->comprtypes_len = 1; |
| /* record->comprtypes[0] = 0; */ |
| |
| ptr = (void*)(record + 1); |
| *ptr++ = ext_len >> 8; |
| *ptr++ = ext_len; |
| if (sni_len) { |
| //ptr[0] = 0; // |
| //ptr[1] = 0; //extension_type |
| //ptr[2] = 0; // |
| ptr[3] = sni_len + 5; //list len |
| //ptr[4] = 0; // |
| ptr[5] = sni_len + 3; //len of 1st SNI |
| //ptr[6] = 0; //name type |
| //ptr[7] = 0; // |
| ptr[8] = sni_len; //name len |
| ptr = mempcpy(&ptr[9], sni, sni_len); |
| } |
| memcpy(ptr, supported_groups, sizeof(supported_groups)); |
| |
| tls->hsd = xzalloc(sizeof(*tls->hsd)); |
| /* HANDSHAKE HASH: ^^^ + len if need to save saved_client_hello */ |
| memcpy(tls->hsd->client_and_server_rand32, record->rand32, sizeof(record->rand32)); |
| /* HANDSHAKE HASH: |
| tls->hsd->saved_client_hello_size = len; |
| memcpy(tls->hsd->saved_client_hello, record, len); |
| */ |
| dbg(">> CLIENT_HELLO\n"); |
| /* Can hash immediately only if we know which MAC hash to use. |
| * So far we do know: it's sha256: |
| */ |
| sha256_begin(&tls->hsd->handshake_hash_ctx); |
| xwrite_and_update_handshake_hash(tls, len); |
| /* if this would become infeasible: save tls->hsd->saved_client_hello, |
| * use "xwrite_handshake_record(tls, len)" here, |
| * and hash saved_client_hello later. |
| */ |
| } |
| |
| static void get_server_hello(tls_state_t *tls) |
| { |
| struct server_hello { |
| struct record_hdr xhdr; |
| uint8_t type; |
| uint8_t len24_hi, len24_mid, len24_lo; |
| uint8_t proto_maj, proto_min; |
| uint8_t rand32[32]; /* first 4 bytes are unix time in BE format */ |
| uint8_t session_id_len; |
| uint8_t session_id[32]; |
| uint8_t cipherid_hi, cipherid_lo; |
| uint8_t comprtype; |
| /* extensions may follow, but only those which client offered in its Hello */ |
| }; |
| |
| struct server_hello *hp; |
| uint8_t *cipherid; |
| unsigned cipher; |
| int len, len24; |
| |
| len = tls_xread_handshake_block(tls, 74 - 32); |
| |
| hp = (void*)tls->inbuf; |
| // 74 bytes: |
| // 02 000046 03|03 58|78|cf|c1 50|a5|49|ee|7e|29|48|71|fe|97|fa|e8|2d|19|87|72|90|84|9d|37|a3|f0|cb|6f|5f|e3|3c|2f |20 |d8|1a|78|96|52|d6|91|01|24|b3|d6|5b|b7|d0|6c|b3|e1|78|4e|3c|95|de|74|a0|ba|eb|a7|3a|ff|bd|a2|bf |00|9c |00| |
| //SvHl len=70 maj.min unixtime^^^ 28randbytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^ slen sid32bytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ cipSel comprSel |
| if (hp->type != HANDSHAKE_SERVER_HELLO |
| || hp->len24_hi != 0 |
| || hp->len24_mid != 0 |
| /* hp->len24_lo checked later */ |
| || hp->proto_maj != TLS_MAJ |
| || hp->proto_min != TLS_MIN |
| ) { |
| bad_record_die(tls, "'server hello'", len); |
| } |
| |
| cipherid = &hp->cipherid_hi; |
| len24 = hp->len24_lo; |
| if (hp->session_id_len != 32) { |
| if (hp->session_id_len != 0) |
| bad_record_die(tls, "'server hello'", len); |
| |
| // session_id_len == 0: no session id |
| // "The server |
| // may return an empty session_id to indicate that the session will |
| // not be cached and therefore cannot be resumed." |
| cipherid -= 32; |
| len24 += 32; /* what len would be if session id would be present */ |
| } |
| |
| if (len24 < 70 |
| // || cipherid[0] != (CIPHER_ID >> 8) |
| // || cipherid[1] != (CIPHER_ID & 0xff) |
| // || cipherid[2] != 0 /* comprtype */ |
| ) { |
| bad_record_die(tls, "'server hello'", len); |
| } |
| dbg("<< SERVER_HELLO\n"); |
| |
| memcpy(tls->hsd->client_and_server_rand32 + 32, hp->rand32, sizeof(hp->rand32)); |
| |
| tls->cipher_id = cipher = 0x100 * cipherid[0] + cipherid[1]; |
| dbg("server chose cipher %04x\n", cipher); |
| |
| if (cipher == TLS_RSA_WITH_AES_128_CBC_SHA |
| || cipher == TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA |
| ) { |
| if (cipher == TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA) |
| tls->flags |= NEED_EC_KEY; |
| tls->key_size = AES128_KEYSIZE; |
| tls->MAC_size = SHA1_OUTSIZE; |
| } |
| else |
| if (cipher == TLS_RSA_WITH_AES_256_CBC_SHA256) { |
| tls->key_size = AES256_KEYSIZE; |
| tls->MAC_size = SHA256_OUTSIZE; |
| } |
| else { /* TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 */ |
| tls->flags |= NEED_EC_KEY | ENCRYPTION_AESGCM; |
| tls->key_size = AES128_KEYSIZE; |
| /* tls->MAC_size = 0; */ |
| tls->IV_size = 4; |
| } |
| /* Handshake hash eventually destined to FINISHED record |
| * is sha256 regardless of cipher |
| * (at least for all ciphers defined by RFC5246). |
| * It's not sha1 for AES_128_CBC_SHA - only MAC is sha1, not this hash. |
| */ |
| /* HANDSHAKE HASH: |
| sha256_begin(&tls->hsd->handshake_hash_ctx); |
| hash_handshake(tls, ">> client hello hash:%s", |
| tls->hsd->saved_client_hello, tls->hsd->saved_client_hello_size |
| ); |
| hash_handshake(tls, "<< server hello hash:%s", |
| tls->inbuf + RECHDR_LEN, len |
| ); |
| */ |
| } |
| |
| static void get_server_cert(tls_state_t *tls) |
| { |
| struct record_hdr *xhdr; |
| uint8_t *certbuf; |
| int len, len1; |
| |
| len = tls_xread_handshake_block(tls, 10); |
| |
| xhdr = (void*)tls->inbuf; |
| certbuf = (void*)(xhdr + 1); |
| if (certbuf[0] != HANDSHAKE_CERTIFICATE) |
| bad_record_die(tls, "certificate", len); |
| dbg("<< CERTIFICATE\n"); |
| // 4392 bytes: |
| // 0b 00|11|24 00|11|21 00|05|b0 30|82|05|ac|30|82|04|94|a0|03|02|01|02|02|11|00|9f|85|bf|66|4b|0c|dd|af|ca|50|86|79|50|1b|2b|e4|30|0d... |
| //Cert len=4388 ChainLen CertLen^ DER encoded X509 starts here. openssl x509 -in FILE -inform DER -noout -text |
| len1 = get24be(certbuf + 1); |
| if (len1 > len - 4) tls_error_die(tls); |
| len = len1; |
| len1 = get24be(certbuf + 4); |
| if (len1 > len - 3) tls_error_die(tls); |
| len = len1; |
| len1 = get24be(certbuf + 7); |
| if (len1 > len - 3) tls_error_die(tls); |
| len = len1; |
| |
| if (len) |
| find_key_in_der_cert(tls, certbuf + 10, len); |
| } |
| |
| /* On input, len is known to be >= 4. |
| * The record is known to be SERVER_KEY_EXCHANGE. |
| */ |
| static void process_server_key(tls_state_t *tls, int len) |
| { |
| struct record_hdr *xhdr; |
| uint8_t *keybuf; |
| int len1; |
| uint32_t t32; |
| |
| xhdr = (void*)tls->inbuf; |
| keybuf = (void*)(xhdr + 1); |
| //seen from is.gd: it selects curve_x25519: |
| // 0c 00006e //SERVER_KEY_EXCHANGE, len |
| // 03 //curve_type: named curve |
| // 001d //curve_x25519 |
| //server-chosen EC point, and then signed_params |
| // (RFC 8422: "A hash of the params, with the signature |
| // appropriate to that hash applied. The private key corresponding |
| // to the certified public key in the server's Certificate message is |
| // used for signing.") |
| //follow. Format unclear/guessed: |
| // 20 //eccPubKeyLen |
| // 25511923d73b70dd2f60e66ba2f3fda31a9c25170963c7a3a972e481dbb2835d //eccPubKey (32bytes) |
| // 0203 //hashSigAlg: 2:SHA1 (4:SHA256 5:SHA384 6:SHA512), 3:ECDSA (1:RSA) |
| // 0046 //len (16bit) |
| // 30 44 //SEQ, len |
| // 02 20 //INTEGER, len |
| // 2e18e7c2a9badd0a70cd3059a6ab114539b9f5163568911147386cd77ed7c412 //32bytes |
| //this item ^^^^^ is sometimes 33 bytes (with all container sizes also +1) |
| // 02 20 //INTEGER, len |
| // 64523d6216cb94c43c9b20e377d8c52c55be6703fd6730a155930c705eaf3af6 //32bytes |
| //same about this item ^^^^^ |
| |
| //seen from ftp.openbsd.org |
| //(which only accepts ECDHE-RSA-AESnnn-GCM-SHAnnn and ECDHE-RSA-CHACHA20-POLY1305 ciphers): |
| // 0c 000228 //SERVER_KEY_EXCHANGE, len |
| // 03 //curve_type: named curve |
| // 001d //curve_x25519 |
| // 20 //eccPubKeyLen |
| // eef7a15c43b71a4c7eaa48a39369399cc4332e569ec90a83274cc92596705c1a //eccPubKey |
| // 0401 //hashSigAlg: 4:SHA256, 1:RSA |
| // 0200 //len |
| // //0x200 bytes follow |
| |
| /* Get and verify length */ |
| len1 = get24be(keybuf + 1); |
| if (len1 > len - 4) tls_error_die(tls); |
| len = len1; |
| if (len < (1+2+1+32)) tls_error_die(tls); |
| keybuf += 4; |
| |
| /* So far we only support curve_x25519 */ |
| move_from_unaligned32(t32, keybuf); |
| if (t32 != htonl(0x03001d20)) |
| bb_error_msg_and_die("elliptic curve is not x25519"); |
| |
| memcpy(tls->hsd->ecc_pub_key32, keybuf + 4, 32); |
| tls->flags |= GOT_EC_KEY; |
| dbg("got eccPubKey\n"); |
| } |
| |
| static void send_empty_client_cert(tls_state_t *tls) |
| { |
| struct client_empty_cert { |
| uint8_t type; |
| uint8_t len24_hi, len24_mid, len24_lo; |
| uint8_t cert_chain_len24_hi, cert_chain_len24_mid, cert_chain_len24_lo; |
| }; |
| struct client_empty_cert *record; |
| |
| record = tls_get_zeroed_outbuf(tls, sizeof(*record)); |
| //fill_handshake_record_hdr(record, HANDSHAKE_CERTIFICATE, sizeof(*record)); |
| //record->cert_chain_len24_hi = 0; |
| //record->cert_chain_len24_mid = 0; |
| //record->cert_chain_len24_lo = 0; |
| // same as above: |
| record->type = HANDSHAKE_CERTIFICATE; |
| record->len24_lo = 3; |
| |
| dbg(">> CERTIFICATE\n"); |
| xwrite_and_update_handshake_hash(tls, sizeof(*record)); |
| } |
| |
| static void send_client_key_exchange(tls_state_t *tls) |
| { |
| struct client_key_exchange { |
| uint8_t type; |
| uint8_t len24_hi, len24_mid, len24_lo; |
| uint8_t key[2 + 4 * 1024]; // size?? |
| }; |
| //FIXME: better size estimate |
| struct client_key_exchange *record = tls_get_zeroed_outbuf(tls, sizeof(*record)); |
| uint8_t rsa_premaster[RSA_PREMASTER_SIZE]; |
| uint8_t x25519_premaster[CURVE25519_KEYSIZE]; |
| uint8_t *premaster; |
| int premaster_size; |
| int len; |
| |
| if (!(tls->flags & NEED_EC_KEY)) { |
| /* RSA */ |
| if (!(tls->flags & GOT_CERT_RSA_KEY_ALG)) |
| bb_error_msg("server cert is not RSA"); |
| |
| tls_get_random(rsa_premaster, sizeof(rsa_premaster)); |
| if (TLS_DEBUG_FIXED_SECRETS) |
| memset(rsa_premaster, 0x44, sizeof(rsa_premaster)); |
| // RFC 5246 |
| // "Note: The version number in the PreMasterSecret is the version |
| // offered by the client in the ClientHello.client_version, not the |
| // version negotiated for the connection." |
| rsa_premaster[0] = TLS_MAJ; |
| rsa_premaster[1] = TLS_MIN; |
| dump_hex("premaster:%s\n", rsa_premaster, sizeof(rsa_premaster)); |
| len = psRsaEncryptPub(/*pool:*/ NULL, |
| /* psRsaKey_t* */ &tls->hsd->server_rsa_pub_key, |
| rsa_premaster, /*inlen:*/ sizeof(rsa_premaster), |
| record->key + 2, sizeof(record->key) - 2, |
| data_param_ignored |
| ); |
| /* keylen16 exists for RSA (in TLS, not in SSL), but not for some other key types */ |
| record->key[0] = len >> 8; |
| record->key[1] = len & 0xff; |
| len += 2; |
| premaster = rsa_premaster; |
| premaster_size = sizeof(rsa_premaster); |
| } else { |
| /* ECDHE */ |
| static const uint8_t basepoint9[CURVE25519_KEYSIZE] = {9}; |
| uint8_t privkey[CURVE25519_KEYSIZE]; //[32] |
| |
| if (!(tls->flags & GOT_EC_KEY)) |
| bb_error_msg("server did not provide EC key"); |
| |
| /* Generate random private key, see RFC 7748 */ |
| tls_get_random(privkey, sizeof(privkey)); |
| privkey[0] &= 0xf8; |
| privkey[CURVE25519_KEYSIZE-1] = ((privkey[CURVE25519_KEYSIZE-1] & 0x7f) | 0x40); |
| |
| /* Compute public key */ |
| curve25519(record->key + 1, privkey, basepoint9); |
| |
| /* Compute premaster using peer's public key */ |
| dbg("computing x25519_premaster\n"); |
| curve25519(x25519_premaster, privkey, tls->hsd->ecc_pub_key32); |
| |
| len = CURVE25519_KEYSIZE; |
| record->key[0] = len; |
| len++; |
| premaster = x25519_premaster; |
| premaster_size = sizeof(x25519_premaster); |
| } |
| |
| record->type = HANDSHAKE_CLIENT_KEY_EXCHANGE; |
| /* record->len24_hi = 0; - already is */ |
| record->len24_mid = len >> 8; |
| record->len24_lo = len & 0xff; |
| len += 4; |
| |
| dbg(">> CLIENT_KEY_EXCHANGE\n"); |
| xwrite_and_update_handshake_hash(tls, len); |
| |
| // RFC 5246 |
| // For all key exchange methods, the same algorithm is used to convert |
| // the pre_master_secret into the master_secret. The pre_master_secret |
| // should be deleted from memory once the master_secret has been |
| // computed. |
| // master_secret = PRF(pre_master_secret, "master secret", |
| // ClientHello.random + ServerHello.random) |
| // [0..47]; |
| // The master secret is always exactly 48 bytes in length. The length |
| // of the premaster secret will vary depending on key exchange method. |
| prf_hmac_sha256(/*tls,*/ |
| tls->hsd->master_secret, sizeof(tls->hsd->master_secret), |
| premaster, premaster_size, |
| "master secret", |
| tls->hsd->client_and_server_rand32, sizeof(tls->hsd->client_and_server_rand32) |
| ); |
| dump_hex("master secret:%s\n", tls->hsd->master_secret, sizeof(tls->hsd->master_secret)); |
| |
| // RFC 5246 |
| // 6.3. Key Calculation |
| // |
| // The Record Protocol requires an algorithm to generate keys required |
| // by the current connection state (see Appendix A.6) from the security |
| // parameters provided by the handshake protocol. |
| // |
| // The master secret is expanded into a sequence of secure bytes, which |
| // is then split to a client write MAC key, a server write MAC key, a |
| // client write encryption key, and a server write encryption key. Each |
| // of these is generated from the byte sequence in that order. Unused |
| // values are empty. Some AEAD ciphers may additionally require a |
| // client write IV and a server write IV (see Section 6.2.3.3). |
| // |
| // When keys and MAC keys are generated, the master secret is used as an |
| // entropy source. |
| // |
| // To generate the key material, compute |
| // |
| // key_block = PRF(SecurityParameters.master_secret, |
| // "key expansion", |
| // SecurityParameters.server_random + |
| // SecurityParameters.client_random); |
| // |
| // until enough output has been generated. Then, the key_block is |
| // partitioned as follows: |
| // |
| // client_write_MAC_key[SecurityParameters.mac_key_length] |
| // server_write_MAC_key[SecurityParameters.mac_key_length] |
| // client_write_key[SecurityParameters.enc_key_length] |
| // server_write_key[SecurityParameters.enc_key_length] |
| // client_write_IV[SecurityParameters.fixed_iv_length] |
| // server_write_IV[SecurityParameters.fixed_iv_length] |
| { |
| uint8_t tmp64[64]; |
| |
| /* make "server_rand32 + client_rand32" */ |
| memcpy(&tmp64[0] , &tls->hsd->client_and_server_rand32[32], 32); |
| memcpy(&tmp64[32], &tls->hsd->client_and_server_rand32[0] , 32); |
| |
| prf_hmac_sha256(/*tls,*/ |
| tls->client_write_MAC_key, 2 * (tls->MAC_size + tls->key_size + tls->IV_size), |
| // also fills: |
| // server_write_MAC_key[] |
| // client_write_key[] |
| // server_write_key[] |
| // client_write_IV[] |
| // server_write_IV[] |
| tls->hsd->master_secret, sizeof(tls->hsd->master_secret), |
| "key expansion", |
| tmp64, 64 |
| ); |
| tls->client_write_key = tls->client_write_MAC_key + (2 * tls->MAC_size); |
| tls->server_write_key = tls->client_write_key + tls->key_size; |
| tls->client_write_IV = tls->server_write_key + tls->key_size; |
| tls->server_write_IV = tls->client_write_IV + tls->IV_size; |
| dump_hex("client_write_MAC_key:%s\n", |
| tls->client_write_MAC_key, tls->MAC_size |
| ); |
| dump_hex("client_write_key:%s\n", |
| tls->client_write_key, tls->key_size |
| ); |
| dump_hex("client_write_IV:%s\n", |
| tls->client_write_IV, tls->IV_size |
| ); |
| |
| aes_setkey(&tls->aes_decrypt, tls->server_write_key, tls->key_size); |
| aes_setkey(&tls->aes_encrypt, tls->client_write_key, tls->key_size); |
| { |
| uint8_t iv[AES_BLOCK_SIZE]; |
| memset(iv, 0, AES_BLOCK_SIZE); |
| aes_encrypt_one_block(&tls->aes_encrypt, iv, tls->H); |
| } |
| } |
| } |
| |
| static const uint8_t rec_CHANGE_CIPHER_SPEC[] = { |
| RECORD_TYPE_CHANGE_CIPHER_SPEC, TLS_MAJ, TLS_MIN, 00, 01, |
| 01 |
| }; |
| |
| static void send_change_cipher_spec(tls_state_t *tls) |
| { |
| dbg(">> CHANGE_CIPHER_SPEC\n"); |
| xwrite(tls->ofd, rec_CHANGE_CIPHER_SPEC, sizeof(rec_CHANGE_CIPHER_SPEC)); |
| } |
| |
| // 7.4.9. Finished |
| // A Finished message is always sent immediately after a change |
| // cipher spec message to verify that the key exchange and |
| // authentication processes were successful. It is essential that a |
| // change cipher spec message be received between the other handshake |
| // messages and the Finished message. |
| //... |
| // The Finished message is the first one protected with the just |
| // negotiated algorithms, keys, and secrets. Recipients of Finished |
| // messages MUST verify that the contents are correct. Once a side |
| // has sent its Finished message and received and validated the |
| // Finished message from its peer, it may begin to send and receive |
| // application data over the connection. |
| //... |
| // struct { |
| // opaque verify_data[verify_data_length]; |
| // } Finished; |
| // |
| // verify_data |
| // PRF(master_secret, finished_label, Hash(handshake_messages)) |
| // [0..verify_data_length-1]; |
| // |
| // finished_label |
| // For Finished messages sent by the client, the string |
| // "client finished". For Finished messages sent by the server, |
| // the string "server finished". |
| // |
| // Hash denotes a Hash of the handshake messages. For the PRF |
| // defined in Section 5, the Hash MUST be the Hash used as the basis |
| // for the PRF. Any cipher suite which defines a different PRF MUST |
| // also define the Hash to use in the Finished computation. |
| // |
| // In previous versions of TLS, the verify_data was always 12 octets |
| // long. In the current version of TLS, it depends on the cipher |
| // suite. Any cipher suite which does not explicitly specify |
| // verify_data_length has a verify_data_length equal to 12. This |
| // includes all existing cipher suites. |
| static void send_client_finished(tls_state_t *tls) |
| { |
| struct finished { |
| uint8_t type; |
| uint8_t len24_hi, len24_mid, len24_lo; |
| uint8_t prf_result[12]; |
| }; |
| struct finished *record = tls_get_outbuf(tls, sizeof(*record)); |
| uint8_t handshake_hash[TLS_MAX_MAC_SIZE]; |
| unsigned len; |
| |
| fill_handshake_record_hdr(record, HANDSHAKE_FINISHED, sizeof(*record)); |
| |
| len = sha_end(&tls->hsd->handshake_hash_ctx, handshake_hash); |
| |
| prf_hmac_sha256(/*tls,*/ |
| record->prf_result, sizeof(record->prf_result), |
| tls->hsd->master_secret, sizeof(tls->hsd->master_secret), |
| "client finished", |
| handshake_hash, len |
| ); |
| dump_hex("from secret: %s\n", tls->hsd->master_secret, sizeof(tls->hsd->master_secret)); |
| dump_hex("from labelSeed: %s", "client finished", sizeof("client finished")-1); |
| dump_hex("%s\n", handshake_hash, sizeof(handshake_hash)); |
| dump_hex("=> digest: %s\n", record->prf_result, sizeof(record->prf_result)); |
| |
| dbg(">> FINISHED\n"); |
| xwrite_encrypted(tls, sizeof(*record), RECORD_TYPE_HANDSHAKE); |
| } |
| |
| void FAST_FUNC tls_handshake(tls_state_t *tls, const char *sni) |
| { |
| // Client RFC 5246 Server |
| // (*) - optional messages, not always sent |
| // |
| // ClientHello -------> |
| // ServerHello |
| // Certificate* |
| // ServerKeyExchange* |
| // CertificateRequest* |
| // <------- ServerHelloDone |
| // Certificate* |
| // ClientKeyExchange |
| // CertificateVerify* |
| // [ChangeCipherSpec] |
| // Finished -------> |
| // [ChangeCipherSpec] |
| // <------- Finished |
| // Application Data <------> Application Data |
| int len; |
| int got_cert_req; |
| |
| send_client_hello_and_alloc_hsd(tls, sni); |
| get_server_hello(tls); |
| |
| // RFC 5246 |
| // The server MUST send a Certificate message whenever the agreed- |
| // upon key exchange method uses certificates for authentication |
| // (this includes all key exchange methods defined in this document |
| // except DH_anon). This message will always immediately follow the |
| // ServerHello message. |
| // |
| // IOW: in practice, Certificate *always* follows. |
| // (for example, kernel.org does not even accept DH_anon cipher id) |
| get_server_cert(tls); |
| |
| len = tls_xread_handshake_block(tls, 4); |
| if (tls->inbuf[RECHDR_LEN] == HANDSHAKE_SERVER_KEY_EXCHANGE) { |
| // 459 bytes: |
| // 0c 00|01|c7 03|00|17|41|04|87|94|2e|2f|68|d0|c9|f4|97|a8|2d|ef|ed|67|ea|c6|f3|b3|56|47|5d|27|b6|bd|ee|70|25|30|5e|b0|8e|f6|21|5a... |
| //SvKey len=455^ |
| // with TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: 461 bytes: |
| // 0c 00|01|c9 03|00|17|41|04|cd|9b|b4|29|1f|f6|b0|c2|84|82|7f|29|6a|47|4e|ec|87|0b|c1|9c|69|e1|f8|c6|d0|53|e9|27|90|a5|c8|02|15|75... |
| // |
| // RFC 8422 5.4. Server Key Exchange |
| // This message is sent when using the ECDHE_ECDSA, ECDHE_RSA, and |
| // ECDH_anon key exchange algorithms. |
| // This message is used to convey the server's ephemeral ECDH public key |
| // (and the corresponding elliptic curve domain parameters) to the |
| // client. |
| dbg("<< SERVER_KEY_EXCHANGE len:%u\n", len); |
| dump_raw_in("<< %s\n", tls->inbuf, RECHDR_LEN + len); |
| if (tls->flags & NEED_EC_KEY) |
| process_server_key(tls, len); |
| |
| // read next handshake block |
| len = tls_xread_handshake_block(tls, 4); |
| } |
| |
| got_cert_req = (tls->inbuf[RECHDR_LEN] == HANDSHAKE_CERTIFICATE_REQUEST); |
| if (got_cert_req) { |
| dbg("<< CERTIFICATE_REQUEST\n"); |
| // RFC 5246: "If no suitable certificate is available, |
| // the client MUST send a certificate message containing no |
| // certificates. That is, the certificate_list structure has a |
| // length of zero. ... |
| // Client certificates are sent using the Certificate structure |
| // defined in Section 7.4.2." |
| // (i.e. the same format as server certs) |
| |
| /*send_empty_client_cert(tls); - WRONG (breaks handshake hash calc) */ |
| /* need to hash _all_ server replies first, up to ServerHelloDone */ |
| len = tls_xread_handshake_block(tls, 4); |
| } |
| |
| if (tls->inbuf[RECHDR_LEN] != HANDSHAKE_SERVER_HELLO_DONE) { |
| bad_record_die(tls, "'server hello done'", len); |
| } |
| // 0e 000000 (len:0) |
| dbg("<< SERVER_HELLO_DONE\n"); |
| |
| if (got_cert_req) |
| send_empty_client_cert(tls); |
| |
| send_client_key_exchange(tls); |
| |
| send_change_cipher_spec(tls); |
| /* from now on we should send encrypted */ |
| /* tls->write_seq64_be = 0; - already is */ |
| tls->flags |= ENCRYPT_ON_WRITE; |
| |
| send_client_finished(tls); |
| |
| /* Get CHANGE_CIPHER_SPEC */ |
| len = tls_xread_record(tls, "switch to encrypted traffic"); |
| if (len != 1 || memcmp(tls->inbuf, rec_CHANGE_CIPHER_SPEC, 6) != 0) |
| bad_record_die(tls, "switch to encrypted traffic", len); |
| dbg("<< CHANGE_CIPHER_SPEC\n"); |
| |
| if (CIPHER_ID1 == TLS_RSA_WITH_NULL_SHA256 |
| && tls->cipher_id == TLS_RSA_WITH_NULL_SHA256 |
| ) { |
| tls->min_encrypted_len_on_read = tls->MAC_size; |
| } else |
| if (!(tls->flags & ENCRYPTION_AESGCM)) { |
| unsigned mac_blocks = (unsigned)(tls->MAC_size + AES_BLOCK_SIZE-1) / AES_BLOCK_SIZE; |
| /* all incoming packets now should be encrypted and have |
| * at least IV + (MAC padded to blocksize): |
| */ |
| tls->min_encrypted_len_on_read = AES_BLOCK_SIZE + (mac_blocks * AES_BLOCK_SIZE); |
| } else { |
| tls->min_encrypted_len_on_read = 8 + AES_BLOCK_SIZE; |
| } |
| dbg("min_encrypted_len_on_read: %u\n", tls->min_encrypted_len_on_read); |
| |
| /* Get (encrypted) FINISHED from the server */ |
| len = tls_xread_record(tls, "'server finished'"); |
| if (len < 4 || tls->inbuf[RECHDR_LEN] != HANDSHAKE_FINISHED) |
| bad_record_die(tls, "'server finished'", len); |
| dbg("<< FINISHED\n"); |
| /* application data can be sent/received */ |
| |
| /* free handshake data */ |
| psRsaKey_clear(&tls->hsd->server_rsa_pub_key); |
| // if (PARANOIA) |
| // memset(tls->hsd, 0, tls->hsd->hsd_size); |
| free(tls->hsd); |
| tls->hsd = NULL; |
| } |
| |
| static void tls_xwrite(tls_state_t *tls, int len) |
| { |
| dbg(">> DATA\n"); |
| xwrite_encrypted(tls, len, RECORD_TYPE_APPLICATION_DATA); |
| } |
| |
| // To run a test server using openssl: |
| // openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost' |
| // openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -no_tls1 -no_tls1_1 |
| // |
| // Unencryped SHA256 example: |
| // openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost' |
| // openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher NULL |
| // openssl s_client -connect 127.0.0.1:4433 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher NULL-SHA256 |
| |
| void FAST_FUNC tls_run_copy_loop(tls_state_t *tls, unsigned flags) |
| { |
| int inbuf_size; |
| const int INBUF_STEP = 4 * 1024; |
| struct pollfd pfds[2]; |
| |
| pfds[0].fd = STDIN_FILENO; |
| pfds[0].events = POLLIN; |
| pfds[1].fd = tls->ifd; |
| pfds[1].events = POLLIN; |
| |
| inbuf_size = INBUF_STEP; |
| for (;;) { |
| int nread; |
| |
| if (safe_poll(pfds, 2, -1) < 0) |
| bb_perror_msg_and_die("poll"); |
| |
| if (pfds[0].revents) { |
| void *buf; |
| |
| dbg("STDIN HAS DATA\n"); |
| buf = tls_get_outbuf(tls, inbuf_size); |
| nread = safe_read(STDIN_FILENO, buf, inbuf_size); |
| if (nread < 1) { |
| /* We'd want to do this: */ |
| /* Close outgoing half-connection so they get EOF, |
| * but leave incoming alone so we can see response |
| */ |
| //shutdown(tls->ofd, SHUT_WR); |
| /* But TLS has no way to encode this, |
| * doubt it's ok to do it "raw" |
| */ |
| pfds[0].fd = -1; |
| tls_free_outbuf(tls); /* mem usage optimization */ |
| if (flags & TLSLOOP_EXIT_ON_LOCAL_EOF) |
| break; |
| } else { |
| if (nread == inbuf_size) { |
| /* TLS has per record overhead, if input comes fast, |
| * read, encrypt and send bigger chunks |
| */ |
| inbuf_size += INBUF_STEP; |
| if (inbuf_size > TLS_MAX_OUTBUF) |
| inbuf_size = TLS_MAX_OUTBUF; |
| } |
| tls_xwrite(tls, nread); |
| } |
| } |
| if (pfds[1].revents) { |
| dbg("NETWORK HAS DATA\n"); |
| read_record: |
| nread = tls_xread_record(tls, "encrypted data"); |
| if (nread < 1) { |
| /* TLS protocol has no real concept of one-sided shutdowns: |
| * if we get "TLS EOF" from the peer, writes will fail too |
| */ |
| //pfds[1].fd = -1; |
| //close(STDOUT_FILENO); |
| //tls_free_inbuf(tls); /* mem usage optimization */ |
| //continue; |
| break; |
| } |
| if (tls->inbuf[0] != RECORD_TYPE_APPLICATION_DATA) |
| bad_record_die(tls, "encrypted data", nread); |
| xwrite(STDOUT_FILENO, tls->inbuf + RECHDR_LEN, nread); |
| /* We may already have a complete next record buffered, |
| * can process it without network reads (and possible blocking) |
| */ |
| if (tls_has_buffered_record(tls)) |
| goto read_record; |
| } |
| } |
| } |