| /* |
| * Based on shasum from http://www.netsw.org/crypto/hash/ |
| * Majorly hacked up to use Dr Brian Gladman's sha1 code |
| * |
| * Copyright (C) 2003 Glenn L. McGrath |
| * Copyright (C) 2003 Erik Andersen |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| #include <byteswap.h> |
| #include <endian.h> |
| #include <fcntl.h> |
| #include <limits.h> |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| |
| #include "busybox.h" |
| |
| |
| #ifdef CONFIG_SHA1SUM |
| /* |
| --------------------------------------------------------------------------- |
| Begin Dr. Gladman's sha1 code |
| --------------------------------------------------------------------------- |
| */ |
| |
| /* |
| --------------------------------------------------------------------------- |
| Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. |
| All rights reserved. |
| |
| LICENSE TERMS |
| |
| The free distribution and use of this software in both source and binary |
| form is allowed (with or without changes) provided that: |
| |
| 1. distributions of this source code include the above copyright |
| notice, this list of conditions and the following disclaimer; |
| |
| 2. distributions in binary form include the above copyright |
| notice, this list of conditions and the following disclaimer |
| in the documentation and/or other associated materials; |
| |
| 3. the copyright holder's name is not used to endorse products |
| built using this software without specific written permission. |
| |
| ALTERNATIVELY, provided that this notice is retained in full, this product |
| may be distributed under the terms of the GNU General Public License (GPL), |
| in which case the provisions of the GPL apply INSTEAD OF those given above. |
| |
| DISCLAIMER |
| |
| This software is provided 'as is' with no explicit or implied warranties |
| in respect of its properties, including, but not limited to, correctness |
| and/or fitness for purpose. |
| --------------------------------------------------------------------------- |
| Issue Date: 10/11/2002 |
| |
| This is a byte oriented version of SHA1 that operates on arrays of bytes |
| stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor |
| */ |
| |
| # define SHA1_BLOCK_SIZE 64 |
| # define SHA1_DIGEST_SIZE 20 |
| # define SHA1_HASH_SIZE SHA1_DIGEST_SIZE |
| # define SHA2_GOOD 0 |
| # define SHA2_BAD 1 |
| |
| # define rotl32(x,n) (((x) << n) | ((x) >> (32 - n))) |
| |
| # if __BYTE_ORDER == __BIG_ENDIAN |
| # define swap_b32(x) (x) |
| # elif defined(bswap_32) |
| # define swap_b32(x) bswap_32(x) |
| # else |
| # define swap_b32(x) ((rotl32((x), 8) & 0x00ff00ff) | (rotl32((x), 24) & 0xff00ff00)) |
| # endif /* __BYTE_ORDER */ |
| |
| # define SHA1_MASK (SHA1_BLOCK_SIZE - 1) |
| |
| /* reverse byte order in 32-bit words */ |
| # define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z))) |
| # define parity(x,y,z) ((x) ^ (y) ^ (z)) |
| # define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| |
| /* A normal version as set out in the FIPS. This version uses */ |
| /* partial loop unrolling and is optimised for the Pentium 4 */ |
| # define rnd(f,k) \ |
| t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \ |
| e = d; d = c; c = rotl32(b, 30); b = t |
| |
| /* type to hold the SHA1 context */ |
| typedef struct { |
| uint32_t count[2]; |
| uint32_t hash[5]; |
| uint32_t wbuf[16]; |
| } sha1_ctx; |
| |
| static void sha1_compile(sha1_ctx ctx[1]) |
| { |
| uint32_t w[80], i, a, b, c, d, e, t; |
| |
| /* note that words are compiled from the buffer into 32-bit */ |
| /* words in big-endian order so an order reversal is needed */ |
| /* here on little endian machines */ |
| for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i) |
| w[i] = swap_b32(ctx->wbuf[i]); |
| |
| for (i = SHA1_BLOCK_SIZE / 4; i < 80; ++i) |
| w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1); |
| |
| a = ctx->hash[0]; |
| b = ctx->hash[1]; |
| c = ctx->hash[2]; |
| d = ctx->hash[3]; |
| e = ctx->hash[4]; |
| |
| for (i = 0; i < 20; ++i) { |
| rnd(ch, 0x5a827999); |
| } |
| |
| for (i = 20; i < 40; ++i) { |
| rnd(parity, 0x6ed9eba1); |
| } |
| |
| for (i = 40; i < 60; ++i) { |
| rnd(maj, 0x8f1bbcdc); |
| } |
| |
| for (i = 60; i < 80; ++i) { |
| rnd(parity, 0xca62c1d6); |
| } |
| |
| ctx->hash[0] += a; |
| ctx->hash[1] += b; |
| ctx->hash[2] += c; |
| ctx->hash[3] += d; |
| ctx->hash[4] += e; |
| } |
| |
| static void sha1_begin(sha1_ctx ctx[1]) |
| { |
| ctx->count[0] = ctx->count[1] = 0; |
| ctx->hash[0] = 0x67452301; |
| ctx->hash[1] = 0xefcdab89; |
| ctx->hash[2] = 0x98badcfe; |
| ctx->hash[3] = 0x10325476; |
| ctx->hash[4] = 0xc3d2e1f0; |
| } |
| |
| /* SHA1 hash data in an array of bytes into hash buffer and call the */ |
| /* hash_compile function as required. */ |
| static void sha1_hash(const unsigned char data[], unsigned int len, sha1_ctx ctx[1]) |
| { |
| uint32_t pos = (uint32_t) (ctx->count[0] & SHA1_MASK), |
| freeb = SHA1_BLOCK_SIZE - pos; |
| const unsigned char *sp = data; |
| |
| if ((ctx->count[0] += len) < len) |
| ++(ctx->count[1]); |
| |
| while (len >= freeb) { /* tranfer whole blocks while possible */ |
| memcpy(((unsigned char *) ctx->wbuf) + pos, sp, freeb); |
| sp += freeb; |
| len -= freeb; |
| freeb = SHA1_BLOCK_SIZE; |
| pos = 0; |
| sha1_compile(ctx); |
| } |
| |
| memcpy(((unsigned char *) ctx->wbuf) + pos, sp, len); |
| } |
| |
| /* SHA1 Final padding and digest calculation */ |
| # if __BYTE_ORDER == __LITTLE_ENDIAN |
| static uint32_t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff }; |
| static uint32_t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 }; |
| # else |
| static uint32_t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 }; |
| static uint32_t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 }; |
| # endif /* __BYTE_ORDER */ |
| |
| void sha1_end(unsigned char hval[], sha1_ctx ctx[1]) |
| { |
| uint32_t i, cnt = (uint32_t) (ctx->count[0] & SHA1_MASK); |
| |
| /* mask out the rest of any partial 32-bit word and then set */ |
| /* the next byte to 0x80. On big-endian machines any bytes in */ |
| /* the buffer will be at the top end of 32 bit words, on little */ |
| /* endian machines they will be at the bottom. Hence the AND */ |
| /* and OR masks above are reversed for little endian systems */ |
| ctx->wbuf[cnt >> 2] = |
| (ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3]; |
| |
| /* we need 9 or more empty positions, one for the padding byte */ |
| /* (above) and eight for the length count. If there is not */ |
| /* enough space pad and empty the buffer */ |
| if (cnt > SHA1_BLOCK_SIZE - 9) { |
| if (cnt < 60) |
| ctx->wbuf[15] = 0; |
| sha1_compile(ctx); |
| cnt = 0; |
| } else /* compute a word index for the empty buffer positions */ |
| cnt = (cnt >> 2) + 1; |
| |
| while (cnt < 14) /* and zero pad all but last two positions */ |
| ctx->wbuf[cnt++] = 0; |
| |
| /* assemble the eight byte counter in the buffer in big-endian */ |
| /* format */ |
| |
| ctx->wbuf[14] = swap_b32((ctx->count[1] << 3) | (ctx->count[0] >> 29)); |
| ctx->wbuf[15] = swap_b32(ctx->count[0] << 3); |
| |
| sha1_compile(ctx); |
| |
| /* extract the hash value as bytes in case the hash buffer is */ |
| /* misaligned for 32-bit words */ |
| |
| for (i = 0; i < SHA1_DIGEST_SIZE; ++i) |
| hval[i] = (unsigned char) (ctx->hash[i >> 2] >> 8 * (~i & 3)); |
| } |
| |
| /* |
| --------------------------------------------------------------------------- |
| End of Dr. Gladman's sha1 code |
| --------------------------------------------------------------------------- |
| */ |
| #endif /* CONFIG_SHA1 */ |
| |
| |
| |
| |
| |
| #ifdef CONFIG_MD5SUM |
| /* |
| * md5sum.c - Compute MD5 checksum of files or strings according to the |
| * definition of MD5 in RFC 1321 from April 1992. |
| * |
| * Copyright (C) 1995-1999 Free Software Foundation, Inc. |
| * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. |
| * |
| * |
| * June 29, 2001 Manuel Novoa III |
| * |
| * Added MD5SUM_SIZE_VS_SPEED configuration option. |
| * |
| * Current valid values, with data from my system for comparison, are: |
| * (using uClibc and running on linux-2.4.4.tar.bz2) |
| * user times (sec) text size (386) |
| * 0 (fastest) 1.1 6144 |
| * 1 1.4 5392 |
| * 2 3.0 5088 |
| * 3 (smallest) 5.1 4912 |
| */ |
| |
| # define MD5SUM_SIZE_VS_SPEED 2 |
| |
| /* Handle endian-ness */ |
| # if __BYTE_ORDER == __LITTLE_ENDIAN |
| # define SWAP(n) (n) |
| # else |
| # define SWAP(n) ((n << 24) | ((n&65280)<<8) | ((n&16711680)>>8) | (n>>24)) |
| # endif |
| |
| # if MD5SUM_SIZE_VS_SPEED == 0 |
| /* This array contains the bytes used to pad the buffer to the next |
| 64-byte boundary. (RFC 1321, 3.1: Step 1) */ |
| static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; |
| # endif /* MD5SUM_SIZE_VS_SPEED == 0 */ |
| |
| typedef u_int32_t md5_uint32; |
| |
| /* Structure to save state of computation between the single steps. */ |
| struct md5_ctx { |
| md5_uint32 A; |
| md5_uint32 B; |
| md5_uint32 C; |
| md5_uint32 D; |
| |
| md5_uint32 total[2]; |
| md5_uint32 buflen; |
| char buffer[128]; |
| }; |
| |
| /* Initialize structure containing state of computation. |
| * (RFC 1321, 3.3: Step 3) |
| */ |
| static void md5_begin(struct md5_ctx *ctx) |
| { |
| ctx->A = 0x67452301; |
| ctx->B = 0xefcdab89; |
| ctx->C = 0x98badcfe; |
| ctx->D = 0x10325476; |
| |
| ctx->total[0] = ctx->total[1] = 0; |
| ctx->buflen = 0; |
| } |
| |
| /* These are the four functions used in the four steps of the MD5 algorithm |
| * and defined in the RFC 1321. The first function is a little bit optimized |
| * (as found in Colin Plumbs public domain implementation). |
| * #define FF(b, c, d) ((b & c) | (~b & d)) |
| */ |
| # define FF(b, c, d) (d ^ (b & (c ^ d))) |
| # define FG(b, c, d) FF (d, b, c) |
| # define FH(b, c, d) (b ^ c ^ d) |
| # define FI(b, c, d) (c ^ (b | ~d)) |
| |
| /* Starting with the result of former calls of this function (or the |
| * initialization function update the context for the next LEN bytes |
| * starting at BUFFER. |
| * It is necessary that LEN is a multiple of 64!!! |
| */ |
| static void md5_hash_block(const void *buffer, size_t len, |
| struct md5_ctx *ctx) |
| { |
| md5_uint32 correct_words[16]; |
| const md5_uint32 *words = buffer; |
| size_t nwords = len / sizeof(md5_uint32); |
| const md5_uint32 *endp = words + nwords; |
| |
| # if MD5SUM_SIZE_VS_SPEED > 0 |
| static const md5_uint32 C_array[] = { |
| /* round 1 */ |
| 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, |
| 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, |
| 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, |
| 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, |
| /* round 2 */ |
| 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, |
| 0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8, |
| 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, |
| 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, |
| /* round 3 */ |
| 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, |
| 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, |
| 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05, |
| 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, |
| /* round 4 */ |
| 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, |
| 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, |
| 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, |
| 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 |
| }; |
| |
| static const char P_array[] = { |
| # if MD5SUM_SIZE_VS_SPEED > 1 |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */ |
| # endif /* MD5SUM_SIZE_VS_SPEED > 1 */ |
| 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */ |
| 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */ |
| 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */ |
| }; |
| |
| # if MD5SUM_SIZE_VS_SPEED > 1 |
| static const char S_array[] = { |
| 7, 12, 17, 22, |
| 5, 9, 14, 20, |
| 4, 11, 16, 23, |
| 6, 10, 15, 21 |
| }; |
| # endif /* MD5SUM_SIZE_VS_SPEED > 1 */ |
| # endif |
| |
| md5_uint32 A = ctx->A; |
| md5_uint32 B = ctx->B; |
| md5_uint32 C = ctx->C; |
| md5_uint32 D = ctx->D; |
| |
| /* First increment the byte count. RFC 1321 specifies the possible |
| length of the file up to 2^64 bits. Here we only compute the |
| number of bytes. Do a double word increment. */ |
| ctx->total[0] += len; |
| if (ctx->total[0] < len) |
| ++ctx->total[1]; |
| |
| /* Process all bytes in the buffer with 64 bytes in each round of |
| the loop. */ |
| while (words < endp) { |
| md5_uint32 *cwp = correct_words; |
| md5_uint32 A_save = A; |
| md5_uint32 B_save = B; |
| md5_uint32 C_save = C; |
| md5_uint32 D_save = D; |
| |
| # if MD5SUM_SIZE_VS_SPEED > 1 |
| # define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s))) |
| |
| const md5_uint32 *pc; |
| const char *pp; |
| const char *ps; |
| int i; |
| md5_uint32 temp; |
| |
| for (i = 0; i < 16; i++) { |
| cwp[i] = SWAP(words[i]); |
| } |
| words += 16; |
| |
| # if MD5SUM_SIZE_VS_SPEED > 2 |
| pc = C_array; |
| pp = P_array; |
| ps = S_array - 4; |
| |
| for (i = 0; i < 64; i++) { |
| if ((i & 0x0f) == 0) |
| ps += 4; |
| temp = A; |
| switch (i >> 4) { |
| case 0: |
| temp += FF(B, C, D); |
| break; |
| case 1: |
| temp += FG(B, C, D); |
| break; |
| case 2: |
| temp += FH(B, C, D); |
| break; |
| case 3: |
| temp += FI(B, C, D); |
| } |
| temp += cwp[(int) (*pp++)] + *pc++; |
| CYCLIC(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| # else |
| pc = C_array; |
| pp = P_array; |
| ps = S_array; |
| |
| for (i = 0; i < 16; i++) { |
| temp = A + FF(B, C, D) + cwp[(int) (*pp++)] + *pc++; |
| CYCLIC(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| |
| ps += 4; |
| for (i = 0; i < 16; i++) { |
| temp = A + FG(B, C, D) + cwp[(int) (*pp++)] + *pc++; |
| CYCLIC(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| ps += 4; |
| for (i = 0; i < 16; i++) { |
| temp = A + FH(B, C, D) + cwp[(int) (*pp++)] + *pc++; |
| CYCLIC(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| ps += 4; |
| for (i = 0; i < 16; i++) { |
| temp = A + FI(B, C, D) + cwp[(int) (*pp++)] + *pc++; |
| CYCLIC(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| |
| # endif /* MD5SUM_SIZE_VS_SPEED > 2 */ |
| # else |
| /* First round: using the given function, the context and a constant |
| the next context is computed. Because the algorithms processing |
| unit is a 32-bit word and it is determined to work on words in |
| little endian byte order we perhaps have to change the byte order |
| before the computation. To reduce the work for the next steps |
| we store the swapped words in the array CORRECT_WORDS. */ |
| |
| # define OP(a, b, c, d, s, T) \ |
| do \ |
| { \ |
| a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \ |
| ++words; \ |
| CYCLIC (a, s); \ |
| a += b; \ |
| } \ |
| while (0) |
| |
| /* It is unfortunate that C does not provide an operator for |
| cyclic rotation. Hope the C compiler is smart enough. */ |
| /* gcc 2.95.4 seems to be --aaronl */ |
| # define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s))) |
| |
| /* Before we start, one word to the strange constants. |
| They are defined in RFC 1321 as |
| |
| T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64 |
| */ |
| |
| # if MD5SUM_SIZE_VS_SPEED == 1 |
| const md5_uint32 *pc; |
| const char *pp; |
| int i; |
| # endif /* MD5SUM_SIZE_VS_SPEED */ |
| |
| /* Round 1. */ |
| # if MD5SUM_SIZE_VS_SPEED == 1 |
| pc = C_array; |
| for (i = 0; i < 4; i++) { |
| OP(A, B, C, D, 7, *pc++); |
| OP(D, A, B, C, 12, *pc++); |
| OP(C, D, A, B, 17, *pc++); |
| OP(B, C, D, A, 22, *pc++); |
| } |
| # else |
| OP(A, B, C, D, 7, 0xd76aa478); |
| OP(D, A, B, C, 12, 0xe8c7b756); |
| OP(C, D, A, B, 17, 0x242070db); |
| OP(B, C, D, A, 22, 0xc1bdceee); |
| OP(A, B, C, D, 7, 0xf57c0faf); |
| OP(D, A, B, C, 12, 0x4787c62a); |
| OP(C, D, A, B, 17, 0xa8304613); |
| OP(B, C, D, A, 22, 0xfd469501); |
| OP(A, B, C, D, 7, 0x698098d8); |
| OP(D, A, B, C, 12, 0x8b44f7af); |
| OP(C, D, A, B, 17, 0xffff5bb1); |
| OP(B, C, D, A, 22, 0x895cd7be); |
| OP(A, B, C, D, 7, 0x6b901122); |
| OP(D, A, B, C, 12, 0xfd987193); |
| OP(C, D, A, B, 17, 0xa679438e); |
| OP(B, C, D, A, 22, 0x49b40821); |
| # endif /* MD5SUM_SIZE_VS_SPEED == 1 */ |
| |
| /* For the second to fourth round we have the possibly swapped words |
| in CORRECT_WORDS. Redefine the macro to take an additional first |
| argument specifying the function to use. */ |
| # undef OP |
| # define OP(f, a, b, c, d, k, s, T) \ |
| do \ |
| { \ |
| a += f (b, c, d) + correct_words[k] + T; \ |
| CYCLIC (a, s); \ |
| a += b; \ |
| } \ |
| while (0) |
| |
| /* Round 2. */ |
| # if MD5SUM_SIZE_VS_SPEED == 1 |
| pp = P_array; |
| for (i = 0; i < 4; i++) { |
| OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++); |
| OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++); |
| OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++); |
| OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++); |
| } |
| # else |
| OP(FG, A, B, C, D, 1, 5, 0xf61e2562); |
| OP(FG, D, A, B, C, 6, 9, 0xc040b340); |
| OP(FG, C, D, A, B, 11, 14, 0x265e5a51); |
| OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa); |
| OP(FG, A, B, C, D, 5, 5, 0xd62f105d); |
| OP(FG, D, A, B, C, 10, 9, 0x02441453); |
| OP(FG, C, D, A, B, 15, 14, 0xd8a1e681); |
| OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8); |
| OP(FG, A, B, C, D, 9, 5, 0x21e1cde6); |
| OP(FG, D, A, B, C, 14, 9, 0xc33707d6); |
| OP(FG, C, D, A, B, 3, 14, 0xf4d50d87); |
| OP(FG, B, C, D, A, 8, 20, 0x455a14ed); |
| OP(FG, A, B, C, D, 13, 5, 0xa9e3e905); |
| OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8); |
| OP(FG, C, D, A, B, 7, 14, 0x676f02d9); |
| OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a); |
| # endif /* MD5SUM_SIZE_VS_SPEED == 1 */ |
| |
| /* Round 3. */ |
| # if MD5SUM_SIZE_VS_SPEED == 1 |
| for (i = 0; i < 4; i++) { |
| OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++); |
| OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++); |
| OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++); |
| OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++); |
| } |
| # else |
| OP(FH, A, B, C, D, 5, 4, 0xfffa3942); |
| OP(FH, D, A, B, C, 8, 11, 0x8771f681); |
| OP(FH, C, D, A, B, 11, 16, 0x6d9d6122); |
| OP(FH, B, C, D, A, 14, 23, 0xfde5380c); |
| OP(FH, A, B, C, D, 1, 4, 0xa4beea44); |
| OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9); |
| OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60); |
| OP(FH, B, C, D, A, 10, 23, 0xbebfbc70); |
| OP(FH, A, B, C, D, 13, 4, 0x289b7ec6); |
| OP(FH, D, A, B, C, 0, 11, 0xeaa127fa); |
| OP(FH, C, D, A, B, 3, 16, 0xd4ef3085); |
| OP(FH, B, C, D, A, 6, 23, 0x04881d05); |
| OP(FH, A, B, C, D, 9, 4, 0xd9d4d039); |
| OP(FH, D, A, B, C, 12, 11, 0xe6db99e5); |
| OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8); |
| OP(FH, B, C, D, A, 2, 23, 0xc4ac5665); |
| # endif /* MD5SUM_SIZE_VS_SPEED == 1 */ |
| |
| /* Round 4. */ |
| # if MD5SUM_SIZE_VS_SPEED == 1 |
| for (i = 0; i < 4; i++) { |
| OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++); |
| OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++); |
| OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++); |
| OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++); |
| } |
| # else |
| OP(FI, A, B, C, D, 0, 6, 0xf4292244); |
| OP(FI, D, A, B, C, 7, 10, 0x432aff97); |
| OP(FI, C, D, A, B, 14, 15, 0xab9423a7); |
| OP(FI, B, C, D, A, 5, 21, 0xfc93a039); |
| OP(FI, A, B, C, D, 12, 6, 0x655b59c3); |
| OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92); |
| OP(FI, C, D, A, B, 10, 15, 0xffeff47d); |
| OP(FI, B, C, D, A, 1, 21, 0x85845dd1); |
| OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f); |
| OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0); |
| OP(FI, C, D, A, B, 6, 15, 0xa3014314); |
| OP(FI, B, C, D, A, 13, 21, 0x4e0811a1); |
| OP(FI, A, B, C, D, 4, 6, 0xf7537e82); |
| OP(FI, D, A, B, C, 11, 10, 0xbd3af235); |
| OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb); |
| OP(FI, B, C, D, A, 9, 21, 0xeb86d391); |
| # endif /* MD5SUM_SIZE_VS_SPEED == 1 */ |
| # endif /* MD5SUM_SIZE_VS_SPEED > 1 */ |
| |
| /* Add the starting values of the context. */ |
| A += A_save; |
| B += B_save; |
| C += C_save; |
| D += D_save; |
| } |
| |
| /* Put checksum in context given as argument. */ |
| ctx->A = A; |
| ctx->B = B; |
| ctx->C = C; |
| ctx->D = D; |
| } |
| |
| /* Starting with the result of former calls of this function (or the |
| * initialization function update the context for the next LEN bytes |
| * starting at BUFFER. |
| * It is NOT required that LEN is a multiple of 64. |
| */ |
| |
| static void md5_hash_bytes(const void *buffer, size_t len, |
| struct md5_ctx *ctx) |
| { |
| /* When we already have some bits in our internal buffer concatenate |
| both inputs first. */ |
| if (ctx->buflen != 0) { |
| size_t left_over = ctx->buflen; |
| size_t add = 128 - left_over > len ? len : 128 - left_over; |
| |
| memcpy(&ctx->buffer[left_over], buffer, add); |
| ctx->buflen += add; |
| |
| if (left_over + add > 64) { |
| md5_hash_block(ctx->buffer, (left_over + add) & ~63, ctx); |
| /* The regions in the following copy operation cannot overlap. */ |
| memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63], |
| (left_over + add) & 63); |
| ctx->buflen = (left_over + add) & 63; |
| } |
| |
| buffer = (const char *) buffer + add; |
| len -= add; |
| } |
| |
| /* Process available complete blocks. */ |
| if (len > 64) { |
| md5_hash_block(buffer, len & ~63, ctx); |
| buffer = (const char *) buffer + (len & ~63); |
| len &= 63; |
| } |
| |
| /* Move remaining bytes in internal buffer. */ |
| if (len > 0) { |
| memcpy(ctx->buffer, buffer, len); |
| ctx->buflen = len; |
| } |
| } |
| |
| /* Process the remaining bytes in the buffer and put result from CTX |
| * in first 16 bytes following RESBUF. The result is always in little |
| * endian byte order, so that a byte-wise output yields to the wanted |
| * ASCII representation of the message digest. |
| * |
| * IMPORTANT: On some systems it is required that RESBUF is correctly |
| * aligned for a 32 bits value. |
| */ |
| static void *md5_end(void *resbuf, struct md5_ctx *ctx) |
| { |
| /* Take yet unprocessed bytes into account. */ |
| md5_uint32 bytes = ctx->buflen; |
| size_t pad; |
| |
| /* Now count remaining bytes. */ |
| ctx->total[0] += bytes; |
| if (ctx->total[0] < bytes) |
| ++ctx->total[1]; |
| |
| pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; |
| # if MD5SUM_SIZE_VS_SPEED > 0 |
| memset(&ctx->buffer[bytes], 0, pad); |
| ctx->buffer[bytes] = 0x80; |
| # else |
| memcpy(&ctx->buffer[bytes], fillbuf, pad); |
| # endif /* MD5SUM_SIZE_VS_SPEED > 0 */ |
| |
| /* Put the 64-bit file length in *bits* at the end of the buffer. */ |
| *(md5_uint32 *) & ctx->buffer[bytes + pad] = SWAP(ctx->total[0] << 3); |
| *(md5_uint32 *) & ctx->buffer[bytes + pad + 4] = |
| SWAP(((ctx->total[1] << 3) | (ctx->total[0] >> 29))); |
| |
| /* Process last bytes. */ |
| md5_hash_block(ctx->buffer, bytes + pad + 8, ctx); |
| |
| /* Put result from CTX in first 16 bytes following RESBUF. The result is |
| * always in little endian byte order, so that a byte-wise output yields |
| * to the wanted ASCII representation of the message digest. |
| * |
| * IMPORTANT: On some systems it is required that RESBUF is correctly |
| * aligned for a 32 bits value. |
| */ |
| ((md5_uint32 *) resbuf)[0] = SWAP(ctx->A); |
| ((md5_uint32 *) resbuf)[1] = SWAP(ctx->B); |
| ((md5_uint32 *) resbuf)[2] = SWAP(ctx->C); |
| ((md5_uint32 *) resbuf)[3] = SWAP(ctx->D); |
| |
| return resbuf; |
| } |
| #endif /* CONFIG_MD5SUM */ |
| |
| |
| |
| |
| extern int hash_fd(int src_fd, const off_t size, const uint8_t hash_algo, |
| uint8_t * hashval) |
| { |
| int result = EXIT_SUCCESS; |
| off_t hashed_count = 0; |
| unsigned int blocksize = 0; |
| unsigned char *buffer = NULL; |
| #ifdef CONFIG_SHA1SUM |
| sha1_ctx sha1_cx[1]; |
| #endif |
| #ifdef CONFIG_MD5SUM |
| struct md5_ctx md5_cx; |
| #endif |
| |
| |
| #ifdef CONFIG_SHA1SUM |
| if (hash_algo == HASH_SHA1) { |
| /* Ensure that BLOCKSIZE is a multiple of 64. */ |
| blocksize = 65536; |
| buffer = malloc(blocksize); |
| } |
| #endif |
| #ifdef CONFIG_MD5SUM |
| if (hash_algo == HASH_MD5) { |
| blocksize = 4096; |
| buffer = malloc(blocksize + 72); |
| } |
| #endif |
| |
| /* Initialize the computation context. */ |
| #ifdef CONFIG_SHA1SUM |
| if (hash_algo == HASH_SHA1) { |
| sha1_begin(sha1_cx); |
| } |
| #endif |
| #ifdef CONFIG_MD5SUM |
| if (hash_algo == HASH_MD5) { |
| md5_begin(&md5_cx); |
| } |
| #endif |
| /* Iterate over full file contents. */ |
| do { |
| const ssize_t count = bb_full_read(src_fd, buffer, blocksize); |
| |
| if (count < 1) { |
| /* count == 0 means short read |
| * count == -1 means read error */ |
| result = count - 1; |
| break; |
| } |
| hashed_count += count; |
| |
| /* Process buffer */ |
| #ifdef CONFIG_SHA1SUM |
| if (hash_algo == HASH_SHA1) { |
| sha1_hash(buffer, count, sha1_cx); |
| } |
| #endif |
| #ifdef CONFIG_MD5SUM |
| if (hash_algo == HASH_MD5) { |
| if (count % 64 == 0) { |
| md5_hash_block(buffer, count, &md5_cx); |
| } else { |
| md5_hash_bytes(buffer, count, &md5_cx); |
| } |
| } |
| #endif |
| } while ((size == (off_t) - 1) || (hashed_count < size)); |
| |
| /* Finalize and write the hash into our buffer. */ |
| #ifdef CONFIG_SHA1SUM |
| if (hash_algo == HASH_SHA1) { |
| sha1_end(hashval, sha1_cx); |
| } |
| #endif |
| #ifdef CONFIG_MD5SUM |
| if (hash_algo == HASH_MD5) { |
| md5_end(hashval, &md5_cx); |
| } |
| #endif |
| |
| free(buffer); |
| return result; |
| } |