| /* |
| * Small lzma deflate implementation. |
| * Copyright (C) 2006 Aurelien Jacobs <aurel@gnuage.org> |
| * |
| * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/) |
| * Copyright (C) 1999-2005 Igor Pavlov |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include <stdint.h> |
| #include <unistd.h> |
| #include <stdio.h> |
| #include <byteswap.h> |
| |
| #include "libbb.h" |
| |
| #include "rangecoder.h" |
| |
| |
| typedef struct { |
| uint8_t pos; |
| uint32_t dict_size; |
| uint64_t dst_size; |
| } __attribute__ ((packed)) lzma_header_t; |
| |
| |
| #define LZMA_BASE_SIZE 1846 |
| #define LZMA_LIT_SIZE 768 |
| |
| #define LZMA_NUM_POS_BITS_MAX 4 |
| |
| #define LZMA_LEN_NUM_LOW_BITS 3 |
| #define LZMA_LEN_NUM_MID_BITS 3 |
| #define LZMA_LEN_NUM_HIGH_BITS 8 |
| |
| #define LZMA_LEN_CHOICE 0 |
| #define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1) |
| #define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1) |
| #define LZMA_LEN_MID (LZMA_LEN_LOW \ |
| + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS))) |
| #define LZMA_LEN_HIGH (LZMA_LEN_MID \ |
| +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS))) |
| #define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS)) |
| |
| #define LZMA_NUM_STATES 12 |
| #define LZMA_NUM_LIT_STATES 7 |
| |
| #define LZMA_START_POS_MODEL_INDEX 4 |
| #define LZMA_END_POS_MODEL_INDEX 14 |
| #define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1)) |
| |
| #define LZMA_NUM_POS_SLOT_BITS 6 |
| #define LZMA_NUM_LEN_TO_POS_STATES 4 |
| |
| #define LZMA_NUM_ALIGN_BITS 4 |
| |
| #define LZMA_MATCH_MIN_LEN 2 |
| |
| #define LZMA_IS_MATCH 0 |
| #define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES <<LZMA_NUM_POS_BITS_MAX)) |
| #define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES) |
| #define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES) |
| #define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES) |
| #define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES) |
| #define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \ |
| + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX)) |
| #define LZMA_SPEC_POS (LZMA_POS_SLOT \ |
| +(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS)) |
| #define LZMA_ALIGN (LZMA_SPEC_POS \ |
| + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX) |
| #define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS)) |
| #define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS) |
| #define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS) |
| |
| |
| int unlzma(int src_fd, int dst_fd) |
| { |
| lzma_header_t header; |
| int lc, pb, lp; |
| uint32_t pos_state_mask; |
| uint32_t literal_pos_mask; |
| uint32_t pos; |
| uint16_t *p; |
| uint16_t *prob; |
| uint16_t *prob_lit; |
| int num_bits; |
| int num_probs; |
| rc_t rc; |
| int i, mi; |
| uint8_t *buffer; |
| uint8_t previous_byte = 0; |
| size_t buffer_pos = 0, global_pos = 0; |
| int len = 0; |
| int state = 0; |
| uint32_t rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1; |
| |
| if (read(src_fd, &header, sizeof(header)) != sizeof(header)) |
| bb_error_msg_and_die("can't read header"); |
| |
| if (header.pos >= (9 * 5 * 5)) |
| bb_error_msg_and_die("bad header"); |
| mi = header.pos / 9; |
| lc = header.pos % 9; |
| pb = mi / 5; |
| lp = mi % 5; |
| pos_state_mask = (1 << pb) - 1; |
| literal_pos_mask = (1 << lp) - 1; |
| |
| #if BB_BIG_ENDIAN |
| header.dict_size = bswap_32(header.dict_size); |
| header.dst_size = bswap_64(header.dst_size); |
| #endif |
| |
| if (header.dict_size == 0) |
| header.dict_size = 1; |
| |
| buffer = xmalloc(MIN(header.dst_size, header.dict_size)); |
| |
| num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp)); |
| p = xmalloc(num_probs * sizeof(*p)); |
| num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp)); |
| for (i = 0; i < num_probs; i++) |
| p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1; |
| |
| rc_init(&rc, src_fd, 0x10000); |
| |
| while (global_pos + buffer_pos < header.dst_size) { |
| int pos_state = (buffer_pos + global_pos) & pos_state_mask; |
| |
| prob = |
| p + LZMA_IS_MATCH + (state << LZMA_NUM_POS_BITS_MAX) + pos_state; |
| if (rc_is_bit_0(&rc, prob)) { |
| mi = 1; |
| rc_update_bit_0(&rc, prob); |
| prob = (p + LZMA_LITERAL + (LZMA_LIT_SIZE |
| * ((((buffer_pos + global_pos) & literal_pos_mask) << lc) |
| + (previous_byte >> (8 - lc))))); |
| |
| if (state >= LZMA_NUM_LIT_STATES) { |
| int match_byte; |
| |
| pos = buffer_pos - rep0; |
| while (pos >= header.dict_size) |
| pos += header.dict_size; |
| match_byte = buffer[pos]; |
| do { |
| int bit; |
| |
| match_byte <<= 1; |
| bit = match_byte & 0x100; |
| prob_lit = prob + 0x100 + bit + mi; |
| if (rc_get_bit(&rc, prob_lit, &mi)) { |
| if (!bit) |
| break; |
| } else { |
| if (bit) |
| break; |
| } |
| } while (mi < 0x100); |
| } |
| while (mi < 0x100) { |
| prob_lit = prob + mi; |
| rc_get_bit(&rc, prob_lit, &mi); |
| } |
| previous_byte = (uint8_t) mi; |
| |
| buffer[buffer_pos++] = previous_byte; |
| if (buffer_pos == header.dict_size) { |
| buffer_pos = 0; |
| global_pos += header.dict_size; |
| write(dst_fd, buffer, header.dict_size); |
| } |
| if (state < 4) |
| state = 0; |
| else if (state < 10) |
| state -= 3; |
| else |
| state -= 6; |
| } else { |
| int offset; |
| uint16_t *prob_len; |
| |
| rc_update_bit_1(&rc, prob); |
| prob = p + LZMA_IS_REP + state; |
| if (rc_is_bit_0(&rc, prob)) { |
| rc_update_bit_0(&rc, prob); |
| rep3 = rep2; |
| rep2 = rep1; |
| rep1 = rep0; |
| state = state < LZMA_NUM_LIT_STATES ? 0 : 3; |
| prob = p + LZMA_LEN_CODER; |
| } else { |
| rc_update_bit_1(&rc, prob); |
| prob = p + LZMA_IS_REP_G0 + state; |
| if (rc_is_bit_0(&rc, prob)) { |
| rc_update_bit_0(&rc, prob); |
| prob = (p + LZMA_IS_REP_0_LONG |
| + (state << LZMA_NUM_POS_BITS_MAX) + pos_state); |
| if (rc_is_bit_0(&rc, prob)) { |
| rc_update_bit_0(&rc, prob); |
| |
| state = state < LZMA_NUM_LIT_STATES ? 9 : 11; |
| pos = buffer_pos - rep0; |
| while (pos >= header.dict_size) |
| pos += header.dict_size; |
| previous_byte = buffer[pos]; |
| buffer[buffer_pos++] = previous_byte; |
| if (buffer_pos == header.dict_size) { |
| buffer_pos = 0; |
| global_pos += header.dict_size; |
| write(dst_fd, buffer, header.dict_size); |
| } |
| continue; |
| } else { |
| rc_update_bit_1(&rc, prob); |
| } |
| } else { |
| uint32_t distance; |
| |
| rc_update_bit_1(&rc, prob); |
| prob = p + LZMA_IS_REP_G1 + state; |
| if (rc_is_bit_0(&rc, prob)) { |
| rc_update_bit_0(&rc, prob); |
| distance = rep1; |
| } else { |
| rc_update_bit_1(&rc, prob); |
| prob = p + LZMA_IS_REP_G2 + state; |
| if (rc_is_bit_0(&rc, prob)) { |
| rc_update_bit_0(&rc, prob); |
| distance = rep2; |
| } else { |
| rc_update_bit_1(&rc, prob); |
| distance = rep3; |
| rep3 = rep2; |
| } |
| rep2 = rep1; |
| } |
| rep1 = rep0; |
| rep0 = distance; |
| } |
| state = state < LZMA_NUM_LIT_STATES ? 8 : 11; |
| prob = p + LZMA_REP_LEN_CODER; |
| } |
| |
| prob_len = prob + LZMA_LEN_CHOICE; |
| if (rc_is_bit_0(&rc, prob_len)) { |
| rc_update_bit_0(&rc, prob_len); |
| prob_len = (prob + LZMA_LEN_LOW |
| + (pos_state << LZMA_LEN_NUM_LOW_BITS)); |
| offset = 0; |
| num_bits = LZMA_LEN_NUM_LOW_BITS; |
| } else { |
| rc_update_bit_1(&rc, prob_len); |
| prob_len = prob + LZMA_LEN_CHOICE_2; |
| if (rc_is_bit_0(&rc, prob_len)) { |
| rc_update_bit_0(&rc, prob_len); |
| prob_len = (prob + LZMA_LEN_MID |
| + (pos_state << LZMA_LEN_NUM_MID_BITS)); |
| offset = 1 << LZMA_LEN_NUM_LOW_BITS; |
| num_bits = LZMA_LEN_NUM_MID_BITS; |
| } else { |
| rc_update_bit_1(&rc, prob_len); |
| prob_len = prob + LZMA_LEN_HIGH; |
| offset = ((1 << LZMA_LEN_NUM_LOW_BITS) |
| + (1 << LZMA_LEN_NUM_MID_BITS)); |
| num_bits = LZMA_LEN_NUM_HIGH_BITS; |
| } |
| } |
| rc_bit_tree_decode(&rc, prob_len, num_bits, &len); |
| len += offset; |
| |
| if (state < 4) { |
| int pos_slot; |
| |
| state += LZMA_NUM_LIT_STATES; |
| prob = |
| p + LZMA_POS_SLOT + |
| ((len < |
| LZMA_NUM_LEN_TO_POS_STATES ? len : |
| LZMA_NUM_LEN_TO_POS_STATES - 1) |
| << LZMA_NUM_POS_SLOT_BITS); |
| rc_bit_tree_decode(&rc, prob, LZMA_NUM_POS_SLOT_BITS, |
| &pos_slot); |
| if (pos_slot >= LZMA_START_POS_MODEL_INDEX) { |
| num_bits = (pos_slot >> 1) - 1; |
| rep0 = 2 | (pos_slot & 1); |
| if (pos_slot < LZMA_END_POS_MODEL_INDEX) { |
| rep0 <<= num_bits; |
| prob = p + LZMA_SPEC_POS + rep0 - pos_slot - 1; |
| } else { |
| num_bits -= LZMA_NUM_ALIGN_BITS; |
| while (num_bits--) |
| rep0 = (rep0 << 1) | rc_direct_bit(&rc); |
| prob = p + LZMA_ALIGN; |
| rep0 <<= LZMA_NUM_ALIGN_BITS; |
| num_bits = LZMA_NUM_ALIGN_BITS; |
| } |
| i = 1; |
| mi = 1; |
| while (num_bits--) { |
| if (rc_get_bit(&rc, prob + mi, &mi)) |
| rep0 |= i; |
| i <<= 1; |
| } |
| } else |
| rep0 = pos_slot; |
| if (++rep0 == 0) |
| break; |
| } |
| |
| len += LZMA_MATCH_MIN_LEN; |
| |
| do { |
| pos = buffer_pos - rep0; |
| while (pos >= header.dict_size) |
| pos += header.dict_size; |
| previous_byte = buffer[pos]; |
| buffer[buffer_pos++] = previous_byte; |
| if (buffer_pos == header.dict_size) { |
| buffer_pos = 0; |
| global_pos += header.dict_size; |
| write(dst_fd, buffer, header.dict_size); |
| } |
| len--; |
| } while (len != 0 && buffer_pos < header.dst_size); |
| } |
| } |
| |
| write(dst_fd, buffer, buffer_pos); |
| rc_free(&rc); |
| return 0; |
| } |
| |
| /* vi:set ts=4: */ |