| /* vi: set sw=4 ts=4: */ |
| /* |
| * Based on shasum from http://www.netsw.org/crypto/hash/ |
| * Majorly hacked up to use Dr Brian Gladman's sha1 code |
| * |
| * Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. |
| * Copyright (C) 2003 Glenn L. McGrath |
| * Copyright (C) 2003 Erik Andersen |
| * |
| * Licensed under GPLv2 or later, see file LICENSE in this tarball for details. |
| * |
| * --------------------------------------------------------------------------- |
| * Issue Date: 10/11/2002 |
| * |
| * This is a byte oriented version of SHA1 that operates on arrays of bytes |
| * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor |
| * |
| * --------------------------------------------------------------------------- |
| * |
| * SHA256 and SHA512 parts are: |
| * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. |
| * TODO: shrink them. |
| */ |
| |
| #include "libbb.h" |
| |
| #define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n)))) |
| #define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n)))) |
| /* for sha512: */ |
| #define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n)))) |
| #if BB_LITTLE_ENDIAN |
| static inline uint64_t hton64(uint64_t v) |
| { |
| return (((uint64_t)htonl(v)) << 32) | htonl(v >> 32); |
| } |
| #else |
| #define hton64(v) (v) |
| #endif |
| #define ntoh64(v) hton64(v) |
| |
| /* To check alignment gcc has an appropriate operator. Other |
| compilers don't. */ |
| #if defined(__GNUC__) && __GNUC__ >= 2 |
| # define UNALIGNED_P(p,type) (((uintptr_t) p) % __alignof__(type) != 0) |
| #else |
| # define UNALIGNED_P(p,type) (((uintptr_t) p) % sizeof(type) != 0) |
| #endif |
| |
| |
| #define SHA1_BLOCK_SIZE 64 |
| #define SHA1_DIGEST_SIZE 20 |
| #define SHA1_HASH_SIZE SHA1_DIGEST_SIZE |
| #define SHA1_MASK (SHA1_BLOCK_SIZE - 1) |
| |
| static void sha1_compile(sha1_ctx_t *ctx) |
| { |
| uint32_t w[80], i, a, b, c, d, e, t; |
| |
| /* note that words are compiled from the buffer into 32-bit */ |
| /* words in big-endian order so an order reversal is needed */ |
| /* here on little endian machines */ |
| for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i) |
| w[i] = ntohl(ctx->wbuf[i]); |
| |
| for (/*i = SHA1_BLOCK_SIZE / 4*/; i < 80; ++i) { |
| t = w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]; |
| w[i] = rotl32(t, 1); |
| } |
| |
| a = ctx->hash[0]; |
| b = ctx->hash[1]; |
| c = ctx->hash[2]; |
| d = ctx->hash[3]; |
| e = ctx->hash[4]; |
| |
| /* Reverse byte order in 32-bit words */ |
| #define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) |
| #define parity(x,y,z) ((x) ^ (y) ^ (z)) |
| #define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y)))) |
| /* A normal version as set out in the FIPS. This version uses */ |
| /* partial loop unrolling and is optimised for the Pentium 4 */ |
| #define rnd(f,k) \ |
| do { \ |
| t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \ |
| e = d; d = c; c = rotl32(b, 30); b = t; \ |
| } while (0) |
| |
| for (i = 0; i < 20; ++i) |
| rnd(ch, 0x5a827999); |
| |
| for (i = 20; i < 40; ++i) |
| rnd(parity, 0x6ed9eba1); |
| |
| for (i = 40; i < 60; ++i) |
| rnd(maj, 0x8f1bbcdc); |
| |
| for (i = 60; i < 80; ++i) |
| rnd(parity, 0xca62c1d6); |
| #undef ch |
| #undef parity |
| #undef maj |
| #undef rnd |
| |
| ctx->hash[0] += a; |
| ctx->hash[1] += b; |
| ctx->hash[2] += c; |
| ctx->hash[3] += d; |
| ctx->hash[4] += e; |
| } |
| |
| /* Process LEN bytes of BUFFER, accumulating context into CTX. |
| It is assumed that LEN % 64 == 0. */ |
| static void sha256_process_block(const void *buffer, size_t len, sha256_ctx_t *ctx) |
| { |
| /* Constants for SHA256 from FIPS 180-2:4.2.2. */ |
| static const uint32_t K[64] = { |
| 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
| 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
| 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
| 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
| 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
| 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
| 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
| 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
| 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
| 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
| 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
| 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
| 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
| 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
| 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
| 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
| }; |
| const uint32_t *words = buffer; |
| size_t nwords = len / sizeof(uint32_t); |
| uint32_t a = ctx->H[0]; |
| uint32_t b = ctx->H[1]; |
| uint32_t c = ctx->H[2]; |
| uint32_t d = ctx->H[3]; |
| uint32_t e = ctx->H[4]; |
| uint32_t f = ctx->H[5]; |
| uint32_t g = ctx->H[6]; |
| uint32_t h = ctx->H[7]; |
| |
| /* First increment the byte count. FIPS 180-2 specifies the possible |
| length of the file up to 2^64 bits. Here we only compute the |
| number of bytes. Do a double word increment. */ |
| ctx->total[0] += len; |
| if (ctx->total[0] < len) |
| ctx->total[1]++; |
| |
| /* Process all bytes in the buffer with 64 bytes in each round of |
| the loop. */ |
| while (nwords > 0) { |
| uint32_t W[64]; |
| uint32_t a_save = a; |
| uint32_t b_save = b; |
| uint32_t c_save = c; |
| uint32_t d_save = d; |
| uint32_t e_save = e; |
| uint32_t f_save = f; |
| uint32_t g_save = g; |
| uint32_t h_save = h; |
| |
| /* Operators defined in FIPS 180-2:4.1.2. */ |
| #define Ch(x, y, z) ((x & y) ^ (~x & z)) |
| #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) |
| #define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22)) |
| #define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25)) |
| #define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3)) |
| #define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10)) |
| |
| /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ |
| for (unsigned t = 0; t < 16; ++t) { |
| W[t] = ntohl(*words); |
| ++words; |
| } |
| for (unsigned t = 16; t < 64; ++t) |
| W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; |
| |
| /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ |
| for (unsigned t = 0; t < 64; ++t) { |
| uint32_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t]; |
| uint32_t T2 = S0(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| } |
| #undef Ch |
| #undef Maj |
| #undef S0 |
| #undef S1 |
| #undef R0 |
| #undef R1 |
| /* Add the starting values of the context according to FIPS 180-2:6.2.2 |
| step 4. */ |
| a += a_save; |
| b += b_save; |
| c += c_save; |
| d += d_save; |
| e += e_save; |
| f += f_save; |
| g += g_save; |
| h += h_save; |
| |
| /* Prepare for the next round. */ |
| nwords -= 16; |
| } |
| |
| /* Put checksum in context given as argument. */ |
| ctx->H[0] = a; |
| ctx->H[1] = b; |
| ctx->H[2] = c; |
| ctx->H[3] = d; |
| ctx->H[4] = e; |
| ctx->H[5] = f; |
| ctx->H[6] = g; |
| ctx->H[7] = h; |
| } |
| |
| /* Process LEN bytes of BUFFER, accumulating context into CTX. |
| It is assumed that LEN % 128 == 0. */ |
| static void sha512_process_block(const void *buffer, size_t len, sha512_ctx_t *ctx) |
| { |
| /* Constants for SHA512 from FIPS 180-2:4.2.3. */ |
| static const uint64_t K[80] = { |
| 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, |
| 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, |
| 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, |
| 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, |
| 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, |
| 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, |
| 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, |
| 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, |
| 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, |
| 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, |
| 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, |
| 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, |
| 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, |
| 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, |
| 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, |
| 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, |
| 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, |
| 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, |
| 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, |
| 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, |
| 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, |
| 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, |
| 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, |
| 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, |
| 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, |
| 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, |
| 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, |
| 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, |
| 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, |
| 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, |
| 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, |
| 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, |
| 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, |
| 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, |
| 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, |
| 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, |
| 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, |
| 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, |
| 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, |
| 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL, |
| }; |
| const uint64_t *words = buffer; |
| size_t nwords = len / sizeof(uint64_t); |
| uint64_t a = ctx->H[0]; |
| uint64_t b = ctx->H[1]; |
| uint64_t c = ctx->H[2]; |
| uint64_t d = ctx->H[3]; |
| uint64_t e = ctx->H[4]; |
| uint64_t f = ctx->H[5]; |
| uint64_t g = ctx->H[6]; |
| uint64_t h = ctx->H[7]; |
| |
| /* First increment the byte count. FIPS 180-2 specifies the possible |
| length of the file up to 2^128 bits. Here we only compute the |
| number of bytes. Do a double word increment. */ |
| ctx->total[0] += len; |
| if (ctx->total[0] < len) |
| ctx->total[1]++; |
| |
| /* Process all bytes in the buffer with 128 bytes in each round of |
| the loop. */ |
| while (nwords > 0) { |
| uint64_t W[80]; |
| uint64_t a_save = a; |
| uint64_t b_save = b; |
| uint64_t c_save = c; |
| uint64_t d_save = d; |
| uint64_t e_save = e; |
| uint64_t f_save = f; |
| uint64_t g_save = g; |
| uint64_t h_save = h; |
| |
| /* Operators defined in FIPS 180-2:4.1.2. */ |
| #define Ch(x, y, z) ((x & y) ^ (~x & z)) |
| #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) |
| #define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39)) |
| #define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41)) |
| #define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7)) |
| #define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6)) |
| |
| /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */ |
| for (unsigned t = 0; t < 16; ++t) { |
| W[t] = ntoh64(*words); |
| ++words; |
| } |
| for (unsigned t = 16; t < 80; ++t) |
| W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; |
| |
| /* The actual computation according to FIPS 180-2:6.3.2 step 3. */ |
| for (unsigned t = 0; t < 80; ++t) { |
| uint64_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t]; |
| uint64_t T2 = S0(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| } |
| #undef Ch |
| #undef Maj |
| #undef S0 |
| #undef S1 |
| #undef R0 |
| #undef R1 |
| /* Add the starting values of the context according to FIPS 180-2:6.3.2 |
| step 4. */ |
| a += a_save; |
| b += b_save; |
| c += c_save; |
| d += d_save; |
| e += e_save; |
| f += f_save; |
| g += g_save; |
| h += h_save; |
| |
| /* Prepare for the next round. */ |
| nwords -= 16; |
| } |
| |
| /* Put checksum in context given as argument. */ |
| ctx->H[0] = a; |
| ctx->H[1] = b; |
| ctx->H[2] = c; |
| ctx->H[3] = d; |
| ctx->H[4] = e; |
| ctx->H[5] = f; |
| ctx->H[6] = g; |
| ctx->H[7] = h; |
| } |
| |
| |
| void FAST_FUNC sha1_begin(sha1_ctx_t *ctx) |
| { |
| ctx->count[0] = ctx->count[1] = 0; |
| ctx->hash[0] = 0x67452301; |
| ctx->hash[1] = 0xefcdab89; |
| ctx->hash[2] = 0x98badcfe; |
| ctx->hash[3] = 0x10325476; |
| ctx->hash[4] = 0xc3d2e1f0; |
| } |
| |
| /* Initialize structure containing state of computation. |
| (FIPS 180-2:5.3.2) */ |
| void FAST_FUNC sha256_begin(sha256_ctx_t *ctx) |
| { |
| ctx->H[0] = 0x6a09e667; |
| ctx->H[1] = 0xbb67ae85; |
| ctx->H[2] = 0x3c6ef372; |
| ctx->H[3] = 0xa54ff53a; |
| ctx->H[4] = 0x510e527f; |
| ctx->H[5] = 0x9b05688c; |
| ctx->H[6] = 0x1f83d9ab; |
| ctx->H[7] = 0x5be0cd19; |
| ctx->total[0] = ctx->total[1] = 0; |
| ctx->buflen = 0; |
| } |
| |
| /* Initialize structure containing state of computation. |
| (FIPS 180-2:5.3.3) */ |
| void FAST_FUNC sha512_begin(sha512_ctx_t *ctx) |
| { |
| ctx->H[0] = 0x6a09e667f3bcc908ULL; |
| ctx->H[1] = 0xbb67ae8584caa73bULL; |
| ctx->H[2] = 0x3c6ef372fe94f82bULL; |
| ctx->H[3] = 0xa54ff53a5f1d36f1ULL; |
| ctx->H[4] = 0x510e527fade682d1ULL; |
| ctx->H[5] = 0x9b05688c2b3e6c1fULL; |
| ctx->H[6] = 0x1f83d9abfb41bd6bULL; |
| ctx->H[7] = 0x5be0cd19137e2179ULL; |
| ctx->total[0] = ctx->total[1] = 0; |
| ctx->buflen = 0; |
| } |
| |
| |
| /* SHA1 hash data in an array of bytes into hash buffer and call the */ |
| /* hash_compile function as required. */ |
| void FAST_FUNC sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx) |
| { |
| uint32_t pos = (uint32_t) (ctx->count[0] & SHA1_MASK); |
| uint32_t freeb = SHA1_BLOCK_SIZE - pos; |
| const unsigned char *sp = data; |
| |
| ctx->count[0] += length; |
| if (ctx->count[0] < length) |
| ctx->count[1]++; |
| |
| while (length >= freeb) { /* transfer whole blocks while possible */ |
| memcpy(((unsigned char *) ctx->wbuf) + pos, sp, freeb); |
| sp += freeb; |
| length -= freeb; |
| freeb = SHA1_BLOCK_SIZE; |
| pos = 0; |
| sha1_compile(ctx); |
| } |
| |
| memcpy(((unsigned char *) ctx->wbuf) + pos, sp, length); |
| } |
| |
| void FAST_FUNC sha256_hash(const void *buffer, size_t len, sha256_ctx_t *ctx) |
| { |
| /* When we already have some bits in our internal buffer concatenate |
| both inputs first. */ |
| if (ctx->buflen != 0) { |
| size_t left_over = ctx->buflen; |
| size_t add = 128 - left_over > len ? len : 128 - left_over; |
| |
| memcpy(&ctx->buffer[left_over], buffer, add); |
| ctx->buflen += add; |
| |
| if (ctx->buflen > 64) { |
| sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx); |
| |
| ctx->buflen &= 63; |
| /* The regions in the following copy operation cannot overlap. */ |
| memcpy(ctx->buffer, |
| &ctx->buffer[(left_over + add) & ~63], |
| ctx->buflen); |
| } |
| |
| buffer = (const char *)buffer + add; |
| len -= add; |
| } |
| |
| /* Process available complete blocks. */ |
| if (len >= 64) { |
| if (UNALIGNED_P(buffer, uint32_t)) { |
| while (len > 64) { |
| sha256_process_block(memcpy(ctx->buffer, buffer, 64), |
| 64, ctx); |
| buffer = (const char *)buffer + 64; |
| len -= 64; |
| } |
| } else { |
| sha256_process_block(buffer, len & ~63, ctx); |
| buffer = (const char *)buffer + (len & ~63); |
| len &= 63; |
| } |
| } |
| |
| /* Move remaining bytes into internal buffer. */ |
| if (len > 0) { |
| size_t left_over = ctx->buflen; |
| |
| memcpy(&ctx->buffer[left_over], buffer, len); |
| left_over += len; |
| if (left_over >= 64) { |
| sha256_process_block(ctx->buffer, 64, ctx); |
| left_over -= 64; |
| memcpy(ctx->buffer, &ctx->buffer[64], left_over); |
| } |
| ctx->buflen = left_over; |
| } |
| } |
| |
| void FAST_FUNC sha512_hash(const void *buffer, size_t len, sha512_ctx_t *ctx) |
| { |
| /* When we already have some bits in our internal buffer concatenate |
| both inputs first. */ |
| if (ctx->buflen != 0) { |
| size_t left_over = ctx->buflen; |
| size_t add = 256 - left_over > len ? len : 256 - left_over; |
| |
| memcpy(&ctx->buffer[left_over], buffer, add); |
| ctx->buflen += add; |
| |
| if (ctx->buflen > 128) { |
| sha512_process_block(ctx->buffer, ctx->buflen & ~127, ctx); |
| |
| ctx->buflen &= 127; |
| /* The regions in the following copy operation cannot overlap. */ |
| memcpy(ctx->buffer, |
| &ctx->buffer[(left_over + add) & ~127], |
| ctx->buflen); |
| } |
| |
| buffer = (const char *)buffer + add; |
| len -= add; |
| } |
| |
| /* Process available complete blocks. */ |
| if (len >= 128) { |
| // #if BB_ARCH_REQUIRES_ALIGNMENT |
| if (UNALIGNED_P(buffer, uint64_t)) { |
| while (len > 128) { |
| sha512_process_block(memcpy(ctx->buffer, buffer, 128), |
| 128, ctx); |
| buffer = (const char *)buffer + 128; |
| len -= 128; |
| } |
| } else |
| // #endif |
| { |
| sha512_process_block(buffer, len & ~127, ctx); |
| buffer = (const char *)buffer + (len & ~127); |
| len &= 127; |
| } |
| } |
| |
| /* Move remaining bytes into internal buffer. */ |
| if (len > 0) { |
| size_t left_over = ctx->buflen; |
| |
| memcpy(&ctx->buffer[left_over], buffer, len); |
| left_over += len; |
| if (left_over >= 128) { |
| sha512_process_block(ctx->buffer, 128, ctx); |
| left_over -= 128; |
| memcpy(ctx->buffer, &ctx->buffer[128], left_over); |
| } |
| ctx->buflen = left_over; |
| } |
| } |
| |
| |
| void FAST_FUNC sha1_end(void *resbuf, sha1_ctx_t *ctx) |
| { |
| /* SHA1 Final padding and digest calculation */ |
| #if BB_BIG_ENDIAN |
| static const uint32_t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 }; |
| static const uint32_t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 }; |
| #else |
| static const uint32_t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff }; |
| static const uint32_t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 }; |
| #endif |
| |
| uint8_t *hval = resbuf; |
| uint32_t i, cnt = (uint32_t) (ctx->count[0] & SHA1_MASK); |
| |
| /* mask out the rest of any partial 32-bit word and then set */ |
| /* the next byte to 0x80. On big-endian machines any bytes in */ |
| /* the buffer will be at the top end of 32 bit words, on little */ |
| /* endian machines they will be at the bottom. Hence the AND */ |
| /* and OR masks above are reversed for little endian systems */ |
| ctx->wbuf[cnt >> 2] = |
| (ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3]; |
| |
| /* we need 9 or more empty positions, one for the padding byte */ |
| /* (above) and eight for the length count. If there is not */ |
| /* enough space pad and empty the buffer */ |
| if (cnt > SHA1_BLOCK_SIZE - 9) { |
| if (cnt < 60) |
| ctx->wbuf[15] = 0; |
| sha1_compile(ctx); |
| cnt = 0; |
| } else /* compute a word index for the empty buffer positions */ |
| cnt = (cnt >> 2) + 1; |
| |
| while (cnt < 14) /* and zero pad all but last two positions */ |
| ctx->wbuf[cnt++] = 0; |
| |
| /* assemble the eight byte counter in the buffer in big-endian */ |
| /* format */ |
| ctx->wbuf[14] = htonl((ctx->count[1] << 3) | (ctx->count[0] >> 29)); |
| ctx->wbuf[15] = htonl(ctx->count[0] << 3); |
| |
| sha1_compile(ctx); |
| |
| /* extract the hash value as bytes in case the hash buffer is */ |
| /* misaligned for 32-bit words */ |
| for (i = 0; i < SHA1_DIGEST_SIZE; ++i) |
| hval[i] = (unsigned char) (ctx->hash[i >> 2] >> 8 * (~i & 3)); |
| } |
| |
| |
| /* Process the remaining bytes in the internal buffer and the usual |
| prolog according to the standard and write the result to RESBUF. |
| |
| IMPORTANT: On some systems it is required that RESBUF is correctly |
| aligned for a 32 bits value. */ |
| void FAST_FUNC sha256_end(void *resbuf, sha256_ctx_t *ctx) |
| { |
| /* Take yet unprocessed bytes into account. */ |
| uint32_t bytes = ctx->buflen; |
| size_t pad; |
| |
| /* Now count remaining bytes. */ |
| ctx->total[0] += bytes; |
| if (ctx->total[0] < bytes) |
| ctx->total[1]++; |
| |
| /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... |
| (FIPS 180-2:5.1.1) */ |
| pad = (bytes >= 56 ? 64 + 56 - bytes : 56 - bytes); |
| memset(&ctx->buffer[bytes], 0, pad); |
| ctx->buffer[bytes] = 0x80; |
| |
| /* Put the 64-bit file length in *bits* at the end of the buffer. */ |
| *(uint32_t *) &ctx->buffer[bytes + pad + 4] = ntohl(ctx->total[0] << 3); |
| *(uint32_t *) &ctx->buffer[bytes + pad] = ntohl((ctx->total[1] << 3) | (ctx->total[0] >> 29)); |
| |
| /* Process last bytes. */ |
| sha256_process_block(ctx->buffer, bytes + pad + 8, ctx); |
| |
| /* Put result from CTX in first 32 bytes following RESBUF. */ |
| for (unsigned i = 0; i < 8; ++i) |
| ((uint32_t *) resbuf)[i] = ntohl(ctx->H[i]); |
| } |
| |
| /* Process the remaining bytes in the internal buffer and the usual |
| prolog according to the standard and write the result to RESBUF. |
| |
| IMPORTANT: On some systems it is required that RESBUF is correctly |
| aligned for a 64 bits value. */ |
| void FAST_FUNC sha512_end(void *resbuf, sha512_ctx_t *ctx) |
| { |
| /* Take yet unprocessed bytes into account. */ |
| uint64_t bytes = ctx->buflen; |
| size_t pad; |
| |
| /* Now count remaining bytes. */ |
| ctx->total[0] += bytes; |
| if (ctx->total[0] < bytes) |
| ctx->total[1]++; |
| |
| /* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0... |
| (FIPS 180-2:5.1.2) */ |
| pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes; |
| memset(&ctx->buffer[bytes], 0, pad); |
| ctx->buffer[bytes] = 0x80; |
| |
| /* Put the 128-bit file length in *bits* at the end of the buffer. */ |
| *(uint64_t *) &ctx->buffer[bytes + pad + 8] = hton64(ctx->total[0] << 3); |
| *(uint64_t *) &ctx->buffer[bytes + pad] = hton64((ctx->total[1] << 3) | (ctx->total[0] >> 61)); |
| |
| /* Process last bytes. */ |
| sha512_process_block(ctx->buffer, bytes + pad + 16, ctx); |
| |
| /* Put result from CTX in first 64 bytes following RESBUF. */ |
| for (unsigned i = 0; i < 8; ++i) |
| ((uint64_t *) resbuf)[i] = hton64(ctx->H[i]); |
| } |