blob: 6e39aeed33d1025a73cfca877731ab761b7b5435 [file] [log] [blame]
/* vi: set sw=4 ts=4: */
/*
* Licensed under GPLv2 or later, see file LICENSE in this source tree.
* Copyright (c) 2018 Gavin D. Howard and contributors.
*/
//config:config BC
//config: bool "bc (45 kb; 49 kb when combined with dc)"
//config: default y
//config: help
//config: bc is a command-line, arbitrary-precision calculator with a
//config: Turing-complete language. See the GNU bc manual
//config: (https://www.gnu.org/software/bc/manual/bc.html) and bc spec
//config: (http://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html).
//config:
//config: This bc has five differences to the GNU bc:
//config: 1) The period (.) is a shortcut for "last", as in the BSD bc.
//config: 2) Arrays are copied before being passed as arguments to
//config: functions. This behavior is required by the bc spec.
//config: 3) Arrays can be passed to the builtin "length" function to get
//config: the number of elements in the array. This prints "1":
//config: a[0] = 0; length(a[])
//config: 4) The precedence of the boolean "not" operator (!) is equal to
//config: that of the unary minus (-) negation operator. This still
//config: allows POSIX-compliant scripts to work while somewhat
//config: preserving expected behavior (versus C) and making parsing
//config: easier.
//config: 5) "read()" accepts expressions, not only numeric literals.
//config:
//config: Options:
//config: -i --interactive force interactive mode
//config: -q --quiet don't print version and copyright
//config: -s --standard error if any non-POSIX extensions are used
//config: -w --warn warn if any non-POSIX extensions are used
//config: -l --mathlib use predefined math routines:
//config: s(expr) sine in radians
//config: c(expr) cosine in radians
//config: a(expr) arctangent, returning radians
//config: l(expr) natural log
//config: e(expr) raises e to the power of expr
//config: j(n, x) Bessel function of integer order n of x
//config:
//config:config DC
//config: bool "dc (38 kb; 49 kb when combined with bc)"
//config: default y
//config: help
//config: dc is a reverse-polish notation command-line calculator which
//config: supports unlimited precision arithmetic. See the FreeBSD man page
//config: (https://www.unix.com/man-page/FreeBSD/1/dc/) and GNU dc manual
//config: (https://www.gnu.org/software/bc/manual/dc-1.05/html_mono/dc.html).
//config:
//config: This dc has a few differences from the two above:
//config: 1) When printing a byte stream (command "P"), this dc follows what
//config: the FreeBSD dc does.
//config: 2) Implements the GNU extensions for divmod ("~") and
//config: modular exponentiation ("|").
//config: 3) Implements all FreeBSD extensions, except for "J" and "M".
//config: 4) Like the FreeBSD dc, this dc supports extended registers.
//config: However, they are implemented differently. When it encounters
//config: whitespace where a register should be, it skips the whitespace.
//config: If the character following is not a lowercase letter, an error
//config: is issued. Otherwise, the register name is parsed by the
//config: following regex:
//config: [a-z][a-z0-9_]*
//config: This generally means that register names will be surrounded by
//config: whitespace. Examples:
//config: l idx s temp L index S temp2 < do_thing
//config: Also note that, like the FreeBSD dc, extended registers are not
//config: allowed unless the "-x" option is given.
//config:
//config:config FEATURE_DC_SMALL
//config: bool "Minimal dc implementation (4.2 kb), not using bc code base"
//config: depends on DC && !BC
//config: default n
//config:
//config:config FEATURE_DC_LIBM
//config: bool "Enable power and exp functions (requires libm)"
//config: default y
//config: depends on FEATURE_DC_SMALL
//config: help
//config: Enable power and exp functions.
//config: NOTE: This will require libm to be present for linking.
//config:
//config:config FEATURE_BC_SIGNALS
//config: bool "Interactive mode (+4kb)"
//config: default y
//config: depends on (BC || DC) && !FEATURE_DC_SMALL
//config: help
//config: Enable interactive mode: when started on a tty,
//config: ^C interrupts execution and returns to command line,
//config: errors also return to command line instead of exiting,
//config: line editing with history is available.
//config:
//config: With this option off, input can still be taken from tty,
//config: but all errors are fatal, ^C is fatal,
//config: tty is treated exactly the same as any other
//config: standard input (IOW: no line editing).
//config:
//config:config FEATURE_BC_LONG_OPTIONS
//config: bool "Enable bc/dc long options"
//config: default y
//config: depends on (BC || DC) && !FEATURE_DC_SMALL
//config: help
//config: Enable long options for bc and dc.
//applet:IF_BC(APPLET(bc, BB_DIR_USR_BIN, BB_SUID_DROP))
//applet:IF_DC(APPLET(dc, BB_DIR_USR_BIN, BB_SUID_DROP))
//kbuild:lib-$(CONFIG_BC) += bc.o
//kbuild:lib-$(CONFIG_DC) += bc.o
//See www.gnu.org/software/bc/manual/bc.html
//usage:#define bc_trivial_usage
//usage: "[-sqliw] FILE..."
//usage:
//usage:#define bc_full_usage "\n"
//usage: "\nArbitrary precision calculator"
//usage: "\n"
///////: "\n -i Interactive" - has no effect for now
//usage: "\n -q Quiet"
//usage: "\n -l Load standard math library"
//usage: "\n -s Be POSIX compatible"
//usage: "\n -w Warn if extensions are used"
///////: "\n -v Version"
//usage: "\n"
//usage: "\n$BC_LINE_LENGTH changes output width"
//usage:
//usage:#define bc_example_usage
//usage: "3 + 4.129\n"
//usage: "1903 - 2893\n"
//usage: "-129 * 213.28935\n"
//usage: "12 / -1932\n"
//usage: "12 % 12\n"
//usage: "34 ^ 189\n"
//usage: "scale = 13\n"
//usage: "ibase = 2\n"
//usage: "obase = A\n"
//usage:
//usage:#define dc_trivial_usage
//usage: IF_NOT_FEATURE_DC_SMALL("[-x] ")"[-eSCRIPT]... [-fFILE]... [FILE]..."
//usage:
//usage:#define dc_full_usage "\n"
//usage: "\nTiny RPN calculator. Operations:"
//usage: "\n+, -, *, /, %, ~, ^," IF_NOT_FEATURE_DC_SMALL(" |,")
//usage: "\np - print top of the stack (without popping)"
//usage: "\nf - print entire stack"
//usage: "\nk - pop the value and set the precision"
//usage: "\ni - pop the value and set input radix"
//usage: "\no - pop the value and set output radix"
//usage: "\nExamples: dc -e'2 2 + p' -> 4, dc -e'8 8 * 2 2 + / p' -> 16"
//usage:
//usage:#define dc_example_usage
//usage: "$ dc -e'2 2 + p'\n"
//usage: "4\n"
//usage: "$ dc -e'8 8 \\* 2 2 + / p'\n"
//usage: "16\n"
//usage: "$ dc -e'0 1 & p'\n"
//usage: "0\n"
//usage: "$ dc -e'0 1 | p'\n"
//usage: "1\n"
//usage: "$ echo '72 9 / 8 * p' | dc\n"
//usage: "64\n"
#include "libbb.h"
#include "common_bufsiz.h"
#if ENABLE_FEATURE_DC_SMALL
# include "dc.c"
#else
#define DEBUG_LEXER 0
#define DEBUG_EXEC 0
#if DEBUG_LEXER
static uint8_t lex_indent;
#define dbg_lex(...) \
do { \
fprintf(stderr, "%*s", lex_indent, ""); \
bb_error_msg(__VA_ARGS__); \
} while (0)
#define dbg_lex_enter(...) \
do { \
dbg_lex(__VA_ARGS__); \
lex_indent++; \
} while (0)
#define dbg_lex_done(...) \
do { \
lex_indent--; \
dbg_lex(__VA_ARGS__); \
} while (0)
#else
# define dbg_lex(...) ((void)0)
# define dbg_lex_enter(...) ((void)0)
# define dbg_lex_done(...) ((void)0)
#endif
#if DEBUG_EXEC
# define dbg_exec(...) bb_error_msg(__VA_ARGS__)
#else
# define dbg_exec(...) ((void)0)
#endif
typedef enum BcStatus {
BC_STATUS_SUCCESS = 0,
BC_STATUS_FAILURE = 1,
BC_STATUS_PARSE_EMPTY_EXP = 2, // bc_parse_expr_empty_ok() uses this
} BcStatus;
#define BC_VEC_INVALID_IDX ((size_t) -1)
#define BC_VEC_START_CAP (1 << 5)
typedef void (*BcVecFree)(void *) FAST_FUNC;
typedef struct BcVec {
char *v;
size_t len;
size_t cap;
size_t size;
BcVecFree dtor;
} BcVec;
typedef signed char BcDig;
typedef struct BcNum {
BcDig *restrict num;
size_t rdx;
size_t len;
size_t cap;
bool neg;
} BcNum;
#define BC_NUM_MIN_BASE ((unsigned long) 2)
#define BC_NUM_MAX_IBASE ((unsigned long) 16)
// larger value might speed up BIGNUM calculations a bit:
#define BC_NUM_DEF_SIZE (16)
#define BC_NUM_PRINT_WIDTH (69)
#define BC_NUM_KARATSUBA_LEN (32)
typedef enum BcInst {
#if ENABLE_BC
BC_INST_INC_PRE,
BC_INST_DEC_PRE,
BC_INST_INC_POST,
BC_INST_DEC_POST,
#endif
BC_INST_NEG,
BC_INST_POWER,
BC_INST_MULTIPLY,
BC_INST_DIVIDE,
BC_INST_MODULUS,
BC_INST_PLUS,
BC_INST_MINUS,
BC_INST_REL_EQ,
BC_INST_REL_LE,
BC_INST_REL_GE,
BC_INST_REL_NE,
BC_INST_REL_LT,
BC_INST_REL_GT,
BC_INST_BOOL_NOT,
BC_INST_BOOL_OR,
BC_INST_BOOL_AND,
#if ENABLE_BC
BC_INST_ASSIGN_POWER,
BC_INST_ASSIGN_MULTIPLY,
BC_INST_ASSIGN_DIVIDE,
BC_INST_ASSIGN_MODULUS,
BC_INST_ASSIGN_PLUS,
BC_INST_ASSIGN_MINUS,
#endif
BC_INST_ASSIGN,
BC_INST_NUM,
BC_INST_VAR,
BC_INST_ARRAY_ELEM,
BC_INST_ARRAY,
BC_INST_SCALE_FUNC,
BC_INST_IBASE,
BC_INST_SCALE,
BC_INST_LAST,
BC_INST_LENGTH,
BC_INST_READ,
BC_INST_OBASE,
BC_INST_SQRT,
BC_INST_PRINT,
BC_INST_PRINT_POP,
BC_INST_STR,
BC_INST_PRINT_STR,
#if ENABLE_BC
BC_INST_JUMP,
BC_INST_JUMP_ZERO,
BC_INST_CALL,
BC_INST_RET,
BC_INST_RET0,
BC_INST_HALT,
#endif
BC_INST_POP,
BC_INST_POP_EXEC,
#if ENABLE_DC
BC_INST_MODEXP,
BC_INST_DIVMOD,
BC_INST_EXECUTE,
BC_INST_EXEC_COND,
BC_INST_ASCIIFY,
BC_INST_PRINT_STREAM,
BC_INST_PRINT_STACK,
BC_INST_CLEAR_STACK,
BC_INST_STACK_LEN,
BC_INST_DUPLICATE,
BC_INST_SWAP,
BC_INST_LOAD,
BC_INST_PUSH_VAR,
BC_INST_PUSH_TO_VAR,
BC_INST_QUIT,
BC_INST_NQUIT,
BC_INST_INVALID = -1,
#endif
} BcInst;
typedef struct BcId {
char *name;
size_t idx;
} BcId;
typedef struct BcFunc {
BcVec code;
BcVec labels;
size_t nparams;
BcVec autos;
} BcFunc;
typedef enum BcResultType {
BC_RESULT_TEMP,
BC_RESULT_VAR,
BC_RESULT_ARRAY_ELEM,
BC_RESULT_ARRAY,
BC_RESULT_STR,
BC_RESULT_IBASE,
BC_RESULT_SCALE,
BC_RESULT_LAST,
// These are between to calculate ibase, obase, and last from instructions.
BC_RESULT_CONSTANT,
BC_RESULT_ONE,
BC_RESULT_OBASE,
} BcResultType;
typedef union BcResultData {
BcNum n;
BcVec v;
BcId id;
} BcResultData;
typedef struct BcResult {
BcResultType t;
BcResultData d;
} BcResult;
typedef struct BcInstPtr {
size_t func;
size_t idx;
size_t len;
} BcInstPtr;
// BC_LEX_NEG is not used in lexing; it is only for parsing.
typedef enum BcLexType {
BC_LEX_EOF,
BC_LEX_INVALID,
BC_LEX_OP_INC,
BC_LEX_OP_DEC,
BC_LEX_NEG,
BC_LEX_OP_POWER,
BC_LEX_OP_MULTIPLY,
BC_LEX_OP_DIVIDE,
BC_LEX_OP_MODULUS,
BC_LEX_OP_PLUS,
BC_LEX_OP_MINUS,
BC_LEX_OP_REL_EQ,
BC_LEX_OP_REL_LE,
BC_LEX_OP_REL_GE,
BC_LEX_OP_REL_NE,
BC_LEX_OP_REL_LT,
BC_LEX_OP_REL_GT,
BC_LEX_OP_BOOL_NOT,
BC_LEX_OP_BOOL_OR,
BC_LEX_OP_BOOL_AND,
BC_LEX_OP_ASSIGN_POWER,
BC_LEX_OP_ASSIGN_MULTIPLY,
BC_LEX_OP_ASSIGN_DIVIDE,
BC_LEX_OP_ASSIGN_MODULUS,
BC_LEX_OP_ASSIGN_PLUS,
BC_LEX_OP_ASSIGN_MINUS,
BC_LEX_OP_ASSIGN,
BC_LEX_NLINE,
BC_LEX_WHITESPACE,
BC_LEX_LPAREN,
BC_LEX_RPAREN,
BC_LEX_LBRACKET,
BC_LEX_COMMA,
BC_LEX_RBRACKET,
BC_LEX_LBRACE, // '{' is 0x7B, '}' is 0x7D,
BC_LEX_SCOLON,
BC_LEX_RBRACE, // should be LBRACE+2: code uses (c - '{' + BC_LEX_LBRACE)
BC_LEX_STR,
BC_LEX_NAME,
BC_LEX_NUMBER,
BC_LEX_KEY_1st_keyword,
BC_LEX_KEY_AUTO = BC_LEX_KEY_1st_keyword,
BC_LEX_KEY_BREAK,
BC_LEX_KEY_CONTINUE,
BC_LEX_KEY_DEFINE,
BC_LEX_KEY_ELSE,
BC_LEX_KEY_FOR,
BC_LEX_KEY_HALT,
// code uses "type - BC_LEX_KEY_IBASE + BC_INST_IBASE" construct,
BC_LEX_KEY_IBASE, // relative order should match for: BC_INST_IBASE
BC_LEX_KEY_IF,
BC_LEX_KEY_LAST, // relative order should match for: BC_INST_LAST
BC_LEX_KEY_LENGTH,
BC_LEX_KEY_LIMITS,
BC_LEX_KEY_OBASE, // relative order should match for: BC_INST_OBASE
BC_LEX_KEY_PRINT,
BC_LEX_KEY_QUIT,
BC_LEX_KEY_READ,
BC_LEX_KEY_RETURN,
BC_LEX_KEY_SCALE,
BC_LEX_KEY_SQRT,
BC_LEX_KEY_WHILE,
#if ENABLE_DC
BC_LEX_EQ_NO_REG,
BC_LEX_OP_MODEXP,
BC_LEX_OP_DIVMOD,
BC_LEX_COLON,
BC_LEX_ELSE,
BC_LEX_EXECUTE,
BC_LEX_PRINT_STACK,
BC_LEX_CLEAR_STACK,
BC_LEX_STACK_LEVEL,
BC_LEX_DUPLICATE,
BC_LEX_SWAP,
BC_LEX_POP,
BC_LEX_ASCIIFY,
BC_LEX_PRINT_STREAM,
BC_LEX_STORE_IBASE,
BC_LEX_STORE_SCALE,
BC_LEX_LOAD,
BC_LEX_LOAD_POP,
BC_LEX_STORE_PUSH,
BC_LEX_STORE_OBASE,
BC_LEX_PRINT_POP,
BC_LEX_NQUIT,
BC_LEX_SCALE_FACTOR,
#endif
} BcLexType;
// must match order of BC_LEX_KEY_foo etc above
#if ENABLE_BC
struct BcLexKeyword {
char name8[8];
};
#define BC_LEX_KW_ENTRY(a, b) \
{ .name8 = a /*, .posix = b */ }
static const struct BcLexKeyword bc_lex_kws[20] = {
BC_LEX_KW_ENTRY("auto" , 1), // 0
BC_LEX_KW_ENTRY("break" , 1), // 1
BC_LEX_KW_ENTRY("continue", 0), // 2 note: this one has no terminating NUL
BC_LEX_KW_ENTRY("define" , 1), // 3
BC_LEX_KW_ENTRY("else" , 0), // 4
BC_LEX_KW_ENTRY("for" , 1), // 5
BC_LEX_KW_ENTRY("halt" , 0), // 6
BC_LEX_KW_ENTRY("ibase" , 1), // 7
BC_LEX_KW_ENTRY("if" , 1), // 8
BC_LEX_KW_ENTRY("last" , 0), // 9
BC_LEX_KW_ENTRY("length" , 1), // 10
BC_LEX_KW_ENTRY("limits" , 0), // 11
BC_LEX_KW_ENTRY("obase" , 1), // 12
BC_LEX_KW_ENTRY("print" , 0), // 13
BC_LEX_KW_ENTRY("quit" , 1), // 14
BC_LEX_KW_ENTRY("read" , 0), // 15
BC_LEX_KW_ENTRY("return" , 1), // 16
BC_LEX_KW_ENTRY("scale" , 1), // 17
BC_LEX_KW_ENTRY("sqrt" , 1), // 18
BC_LEX_KW_ENTRY("while" , 1), // 19
};
#undef BC_LEX_KW_ENTRY
enum {
POSIX_KWORD_MASK = 0
| (1 << 0) // 0
| (1 << 1) // 1
| (0 << 2) // 2
| (1 << 3) // 3
| (0 << 4) // 4
| (1 << 5) // 5
| (0 << 6) // 6
| (1 << 7) // 7
| (1 << 8) // 8
| (0 << 9) // 9
| (1 << 10) // 10
| (0 << 11) // 11
| (1 << 12) // 12
| (0 << 13) // 13
| (1 << 14) // 14
| (0 << 15) // 15
| (1 << 16) // 16
| (1 << 17) // 17
| (1 << 18) // 18
| (1 << 19) // 19
};
#define bc_lex_kws_POSIX(i) ((1 << (i)) & POSIX_KWORD_MASK)
#endif
#if ENABLE_FEATURE_BC_SIGNALS || ENABLE_FEATURE_CLEAN_UP
# define BC_STATUS BcStatus
#else
# define BC_STATUS void
#endif
typedef struct BcLex {
const char *buf;
size_t i;
size_t line;
size_t len;
bool newline;
struct {
BcLexType t;
BcLexType last;
BcVec v;
} t;
} BcLex;
#define BC_PARSE_STREND ((char) UCHAR_MAX)
#define BC_PARSE_REL (1 << 0)
#define BC_PARSE_PRINT (1 << 1)
#define BC_PARSE_NOCALL (1 << 2)
#define BC_PARSE_NOREAD (1 << 3)
#define BC_PARSE_ARRAY (1 << 4)
typedef struct BcParse {
BcLex l;
BcVec exits;
BcVec conds;
BcVec ops;
BcFunc *func;
size_t fidx;
size_t in_funcdef;
} BcParse;
typedef struct BcProgram {
size_t len;
size_t scale;
BcNum ib;
size_t ib_t;
BcNum ob;
size_t ob_t;
BcNum hexb;
#if ENABLE_DC
BcNum strmb;
#endif
BcVec results;
BcVec stack;
BcVec fns;
BcVec fn_map;
BcVec vars;
BcVec var_map;
BcVec arrs;
BcVec arr_map;
BcVec strs;
BcVec consts;
const char *file;
BcNum last;
BcNum zero;
BcNum one;
size_t nchars;
} BcProgram;
#define BC_PROG_STACK(s, n) ((s)->len >= ((size_t) n))
#define BC_PROG_MAIN (0)
#define BC_PROG_READ (1)
#if ENABLE_DC
#define BC_PROG_REQ_FUNCS (2)
#endif
#define BC_PROG_STR(n) (!(n)->num && !(n)->cap)
#define BC_PROG_NUM(r, n) \
((r)->t != BC_RESULT_ARRAY && (r)->t != BC_RESULT_STR && !BC_PROG_STR(n))
#define BC_FLAG_W (1 << 0)
#define BC_FLAG_V (1 << 1)
#define BC_FLAG_S (1 << 2)
#define BC_FLAG_Q (1 << 3)
#define BC_FLAG_L (1 << 4)
#define BC_FLAG_I (1 << 5)
#define DC_FLAG_X (1 << 6)
#define BC_MAX(a, b) ((a) > (b) ? (a) : (b))
#define BC_MIN(a, b) ((a) < (b) ? (a) : (b))
#define BC_MAX_OBASE ((unsigned) 999)
#define BC_MAX_DIM ((unsigned) INT_MAX)
#define BC_MAX_SCALE ((unsigned) UINT_MAX)
#define BC_MAX_STRING ((unsigned) UINT_MAX - 1)
#define BC_MAX_NUM BC_MAX_STRING
// Unused apart from "limits" message. Just show a "biggish number" there.
//#define BC_MAX_NAME BC_MAX_STRING
//#define BC_MAX_EXP ((unsigned long) LONG_MAX)
//#define BC_MAX_VARS ((unsigned long) SIZE_MAX - 1)
#define BC_MAX_NAME_STR "999999999"
#define BC_MAX_EXP_STR "999999999"
#define BC_MAX_VARS_STR "999999999"
#define BC_MAX_OBASE_STR "999"
#if INT_MAX == 2147483647
# define BC_MAX_DIM_STR "2147483647"
#elif INT_MAX == 9223372036854775807
# define BC_MAX_DIM_STR "9223372036854775807"
#else
# error Strange INT_MAX
#endif
#if UINT_MAX == 4294967295
# define BC_MAX_SCALE_STR "4294967295"
# define BC_MAX_STRING_STR "4294967294"
#elif UINT_MAX == 18446744073709551615
# define BC_MAX_SCALE_STR "18446744073709551615"
# define BC_MAX_STRING_STR "18446744073709551614"
#else
# error Strange UINT_MAX
#endif
#define BC_MAX_NUM_STR BC_MAX_STRING_STR
struct globals {
IF_FEATURE_BC_SIGNALS(smallint ttyin;)
IF_FEATURE_CLEAN_UP(smallint exiting;)
smallint in_read;
smallint use_stdin;
BcParse prs;
BcProgram prog;
// For error messages. Can be set to current parsed line,
// or [TODO] to current executing line (can be before last parsed one)
unsigned err_line;
BcVec files;
BcVec stdin_buffer;
char *env_args;
#if ENABLE_FEATURE_EDITING
line_input_t *line_input_state;
#endif
} FIX_ALIASING;
#define G (*ptr_to_globals)
#define INIT_G() do { \
SET_PTR_TO_GLOBALS(xzalloc(sizeof(G))); \
} while (0)
#define FREE_G() do { \
FREE_PTR_TO_GLOBALS(); \
} while (0)
#define G_posix (ENABLE_BC && (option_mask32 & BC_FLAG_S))
#define G_warn (ENABLE_BC && (option_mask32 & BC_FLAG_W))
#define G_exreg (ENABLE_DC && (option_mask32 & DC_FLAG_X))
#if ENABLE_FEATURE_BC_SIGNALS
# define G_interrupt bb_got_signal
# define G_ttyin G.ttyin
#else
# define G_interrupt 0
# define G_ttyin 0
#endif
#if ENABLE_FEATURE_CLEAN_UP
# define G_exiting G.exiting
#else
# define G_exiting 0
#endif
#define IS_BC (ENABLE_BC && (!ENABLE_DC || applet_name[0] == 'b'))
#define IS_DC (ENABLE_DC && (!ENABLE_BC || applet_name[0] != 'b'))
#if ENABLE_BC
// This is a bit array that corresponds to token types. An entry is
// true if the token is valid in an expression, false otherwise.
enum {
BC_PARSE_EXPRS_BITS = 0
+ ((uint64_t)((0 << 0)+(0 << 1)+(1 << 2)+(1 << 3)+(1 << 4)+(1 << 5)+(1 << 6)+(1 << 7)) << (0*8))
+ ((uint64_t)((1 << 0)+(1 << 1)+(1 << 2)+(1 << 3)+(1 << 4)+(1 << 5)+(1 << 6)+(1 << 7)) << (1*8))
+ ((uint64_t)((1 << 0)+(1 << 1)+(1 << 2)+(1 << 3)+(1 << 4)+(1 << 5)+(1 << 6)+(1 << 7)) << (2*8))
+ ((uint64_t)((1 << 0)+(1 << 1)+(1 << 2)+(0 << 3)+(0 << 4)+(1 << 5)+(1 << 6)+(0 << 7)) << (3*8))
+ ((uint64_t)((0 << 0)+(0 << 1)+(0 << 2)+(0 << 3)+(0 << 4)+(0 << 5)+(1 << 6)+(1 << 7)) << (4*8))
+ ((uint64_t)((0 << 0)+(0 << 1)+(0 << 2)+(0 << 3)+(0 << 4)+(0 << 5)+(0 << 6)+(1 << 7)) << (5*8))
+ ((uint64_t)((0 << 0)+(1 << 1)+(1 << 2)+(1 << 3)+(1 << 4)+(0 << 5)+(0 << 6)+(1 << 7)) << (6*8))
+ ((uint64_t)((0 << 0)+(1 << 1)+(1 << 2)+(0 << 3) ) << (7*8))
};
static ALWAYS_INLINE long bc_parse_exprs(unsigned i)
{
#if ULONG_MAX > 0xffffffff
// 64-bit version (will not work correctly for 32-bit longs!)
return BC_PARSE_EXPRS_BITS & (1UL << i);
#else
// 32-bit version
unsigned long m = (uint32_t)BC_PARSE_EXPRS_BITS;
if (i >= 32) {
m = (uint32_t)(BC_PARSE_EXPRS_BITS >> 32);
i &= 31;
}
return m & (1UL << i);
#endif
}
// This is an array of data for operators that correspond to token types.
static const uint8_t bc_parse_ops[] = {
#define OP(p,l) ((int)(l) * 0x10 + (p))
OP(0, false), OP( 0, false ), // inc dec
OP(1, false), // neg
OP(2, false),
OP(3, true ), OP( 3, true ), OP( 3, true ), // pow mul div
OP(4, true ), OP( 4, true ), // mod + -
OP(6, true ), OP( 6, true ), OP( 6, true ), OP( 6, true ), OP( 6, true ), OP( 6, true ), // == <= >= != < >
OP(1, false), // not
OP(7, true ), OP( 7, true ), // or and
OP(5, false), OP( 5, false ), OP( 5, false ), OP( 5, false ), OP( 5, false ), // ^= *= /= %= +=
OP(5, false), OP( 5, false ), // -= =
#undef OP
};
#define bc_parse_op_PREC(i) (bc_parse_ops[i] & 0x0f)
#define bc_parse_op_LEFT(i) (bc_parse_ops[i] & 0x10)
// Byte array of up to 4 BC_LEX's, packed into 32-bit word
typedef uint32_t BcParseNext;
// These identify what tokens can come after expressions in certain cases.
enum {
#define BC_PARSE_NEXT4(a,b,c,d) ( (a) | ((b)<<8) | ((c)<<16) | ((((d)|0x80)<<24)) )
#define BC_PARSE_NEXT2(a,b) BC_PARSE_NEXT4(a,b,0xff,0xff)
#define BC_PARSE_NEXT1(a) BC_PARSE_NEXT4(a,0xff,0xff,0xff)
bc_parse_next_expr = BC_PARSE_NEXT4(BC_LEX_NLINE, BC_LEX_SCOLON, BC_LEX_RBRACE, BC_LEX_EOF),
bc_parse_next_param = BC_PARSE_NEXT2(BC_LEX_RPAREN, BC_LEX_COMMA),
bc_parse_next_print = BC_PARSE_NEXT4(BC_LEX_COMMA, BC_LEX_NLINE, BC_LEX_SCOLON, BC_LEX_EOF),
bc_parse_next_rel = BC_PARSE_NEXT1(BC_LEX_RPAREN),
bc_parse_next_elem = BC_PARSE_NEXT1(BC_LEX_RBRACKET),
bc_parse_next_for = BC_PARSE_NEXT1(BC_LEX_SCOLON),
bc_parse_next_read = BC_PARSE_NEXT2(BC_LEX_NLINE, BC_LEX_EOF),
#undef BC_PARSE_NEXT4
#undef BC_PARSE_NEXT2
#undef BC_PARSE_NEXT1
};
#endif // ENABLE_BC
#if ENABLE_DC
static const //BcLexType - should be this type, but narrower type saves size:
uint8_t
dc_lex_regs[] = {
BC_LEX_OP_REL_EQ, BC_LEX_OP_REL_LE, BC_LEX_OP_REL_GE, BC_LEX_OP_REL_NE,
BC_LEX_OP_REL_LT, BC_LEX_OP_REL_GT, BC_LEX_SCOLON, BC_LEX_COLON,
BC_LEX_ELSE, BC_LEX_LOAD, BC_LEX_LOAD_POP, BC_LEX_OP_ASSIGN,
BC_LEX_STORE_PUSH,
};
static const //BcLexType - should be this type
uint8_t
dc_lex_tokens[] = {
BC_LEX_OP_MODULUS, BC_LEX_INVALID, BC_LEX_INVALID, BC_LEX_LPAREN,
BC_LEX_INVALID, BC_LEX_OP_MULTIPLY, BC_LEX_OP_PLUS, BC_LEX_INVALID,
BC_LEX_OP_MINUS, BC_LEX_INVALID, BC_LEX_OP_DIVIDE,
BC_LEX_INVALID, BC_LEX_INVALID, BC_LEX_INVALID, BC_LEX_INVALID,
BC_LEX_INVALID, BC_LEX_INVALID, BC_LEX_INVALID, BC_LEX_INVALID,
BC_LEX_INVALID, BC_LEX_INVALID,
BC_LEX_COLON, BC_LEX_SCOLON, BC_LEX_OP_REL_GT, BC_LEX_OP_REL_EQ,
BC_LEX_OP_REL_LT, BC_LEX_KEY_READ, BC_LEX_INVALID,
BC_LEX_INVALID, BC_LEX_INVALID, BC_LEX_INVALID, BC_LEX_INVALID,
BC_LEX_INVALID, BC_LEX_INVALID, BC_LEX_EQ_NO_REG, BC_LEX_INVALID,
BC_LEX_KEY_IBASE, BC_LEX_INVALID, BC_LEX_KEY_SCALE, BC_LEX_LOAD_POP,
BC_LEX_INVALID, BC_LEX_OP_BOOL_NOT, BC_LEX_KEY_OBASE, BC_LEX_PRINT_STREAM,
BC_LEX_NQUIT, BC_LEX_POP, BC_LEX_STORE_PUSH, BC_LEX_INVALID, BC_LEX_INVALID,
BC_LEX_INVALID, BC_LEX_INVALID, BC_LEX_SCALE_FACTOR, BC_LEX_INVALID,
BC_LEX_KEY_LENGTH, BC_LEX_INVALID, BC_LEX_INVALID, BC_LEX_INVALID,
BC_LEX_OP_POWER, BC_LEX_NEG, BC_LEX_INVALID,
BC_LEX_ASCIIFY, BC_LEX_INVALID, BC_LEX_CLEAR_STACK, BC_LEX_DUPLICATE,
BC_LEX_ELSE, BC_LEX_PRINT_STACK, BC_LEX_INVALID, BC_LEX_INVALID,
BC_LEX_STORE_IBASE, BC_LEX_INVALID, BC_LEX_STORE_SCALE, BC_LEX_LOAD,
BC_LEX_INVALID, BC_LEX_PRINT_POP, BC_LEX_STORE_OBASE, BC_LEX_KEY_PRINT,
BC_LEX_KEY_QUIT, BC_LEX_SWAP, BC_LEX_OP_ASSIGN, BC_LEX_INVALID,
BC_LEX_INVALID, BC_LEX_KEY_SQRT, BC_LEX_INVALID, BC_LEX_EXECUTE,
BC_LEX_INVALID, BC_LEX_STACK_LEVEL,
BC_LEX_LBRACE, BC_LEX_OP_MODEXP, BC_LEX_INVALID, BC_LEX_OP_DIVMOD,
BC_LEX_INVALID
};
static const //BcInst - should be this type. Using signed narrow type since BC_INST_INVALID is -1
int8_t
dc_parse_insts[] = {
BC_INST_INVALID, BC_INST_INVALID, BC_INST_INVALID, BC_INST_REL_GE,
BC_INST_INVALID, BC_INST_POWER, BC_INST_MULTIPLY, BC_INST_DIVIDE,
BC_INST_MODULUS, BC_INST_PLUS, BC_INST_MINUS,
BC_INST_INVALID, BC_INST_INVALID, BC_INST_INVALID, BC_INST_INVALID,
BC_INST_INVALID, BC_INST_INVALID,
BC_INST_BOOL_NOT, BC_INST_INVALID, BC_INST_INVALID,
BC_INST_INVALID, BC_INST_INVALID, BC_INST_INVALID, BC_INST_INVALID,
BC_INST_INVALID, BC_INST_INVALID, BC_INST_INVALID,
BC_INST_INVALID, BC_INST_INVALID, BC_INST_REL_GT, BC_INST_INVALID,
BC_INST_INVALID, BC_INST_INVALID, BC_INST_INVALID, BC_INST_REL_GE,
BC_INST_INVALID, BC_INST_INVALID,
BC_INST_INVALID, BC_INST_INVALID, BC_INST_INVALID,
BC_INST_INVALID, BC_INST_INVALID, BC_INST_INVALID, BC_INST_INVALID,
BC_INST_INVALID, BC_INST_INVALID, BC_INST_INVALID, BC_INST_IBASE,
BC_INST_INVALID, BC_INST_INVALID, BC_INST_LENGTH, BC_INST_INVALID,
BC_INST_OBASE, BC_INST_PRINT, BC_INST_QUIT, BC_INST_INVALID,
BC_INST_INVALID, BC_INST_SCALE, BC_INST_SQRT, BC_INST_INVALID,
BC_INST_REL_EQ, BC_INST_MODEXP, BC_INST_DIVMOD, BC_INST_INVALID,
BC_INST_INVALID, BC_INST_EXECUTE, BC_INST_PRINT_STACK, BC_INST_CLEAR_STACK,
BC_INST_STACK_LEN, BC_INST_DUPLICATE, BC_INST_SWAP, BC_INST_POP,
BC_INST_ASCIIFY, BC_INST_PRINT_STREAM, BC_INST_INVALID, BC_INST_INVALID,
BC_INST_INVALID, BC_INST_INVALID, BC_INST_INVALID, BC_INST_INVALID,
BC_INST_PRINT, BC_INST_NQUIT, BC_INST_SCALE_FUNC,
};
#endif // ENABLE_DC
// In configurations where errors abort instead of propagating error
// return code up the call chain, functions returning BC_STATUS
// actually don't return anything, they always succeed and return "void".
// A macro wrapper is provided, which makes this statement work:
// s = zbc_func(...)
// and makes it visible to the compiler that s is always zero,
// allowing compiler to optimize dead code after the statement.
//
// To make code more readable, each such function has a "z"
// ("always returning zero") prefix, i.e. zbc_foo or zdc_foo.
//
#if ENABLE_FEATURE_BC_SIGNALS || ENABLE_FEATURE_CLEAN_UP
# define ERRORS_ARE_FATAL 0
# define ERRORFUNC /*nothing*/
# define ERROR_RETURN(a) a
//moved up: # define BC_STATUS BcStatus
# define RETURN_STATUS(v) return (v)
#else
# define ERRORS_ARE_FATAL 1
# define ERRORFUNC NORETURN
# define ERROR_RETURN(a) /*nothing*/
//moved up: # define BC_STATUS void
# define RETURN_STATUS(v) do { ((void)(v)); return; } while (0)
#endif
#define BC_NUM_NEG(n, neg) ((((ssize_t)(n)) ^ -((ssize_t)(neg))) + (neg))
#define BC_NUM_ONE(n) ((n)->len == 1 && (n)->rdx == 0 && (n)->num[0] == 1)
#define BC_NUM_INT(n) ((n)->len - (n)->rdx)
//#define BC_NUM_AREQ(a, b) (BC_MAX((a)->rdx, (b)->rdx) + BC_MAX(BC_NUM_INT(a), BC_NUM_INT(b)) + 1)
static /*ALWAYS_INLINE*/ size_t BC_NUM_AREQ(BcNum *a, BcNum *b)
{
return BC_MAX(a->rdx, b->rdx) + BC_MAX(BC_NUM_INT(a), BC_NUM_INT(b)) + 1;
}
//#define BC_NUM_MREQ(a, b, scale) (BC_NUM_INT(a) + BC_NUM_INT(b) + BC_MAX((scale), (a)->rdx + (b)->rdx) + 1)
static /*ALWAYS_INLINE*/ size_t BC_NUM_MREQ(BcNum *a, BcNum *b, size_t scale)
{
return BC_NUM_INT(a) + BC_NUM_INT(b) + BC_MAX(scale, a->rdx + b->rdx) + 1;
}
typedef void (*BcNumDigitOp)(size_t, size_t, bool) FAST_FUNC;
typedef BC_STATUS (*BcNumBinaryOp)(BcNum *, BcNum *, BcNum *, size_t) FAST_FUNC;
static BC_STATUS zbc_num_binary(BcNum *a, BcNum *b, BcNum *c, size_t scale,
BcNumBinaryOp op, size_t req);
static FAST_FUNC BC_STATUS zbc_num_a(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static FAST_FUNC BC_STATUS zbc_num_s(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static FAST_FUNC BC_STATUS zbc_num_p(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static FAST_FUNC BC_STATUS zbc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static FAST_FUNC BC_STATUS zbc_num_d(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static FAST_FUNC BC_STATUS zbc_num_rem(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
static FAST_FUNC BC_STATUS zbc_num_add(BcNum *a, BcNum *b, BcNum *c, size_t scale)
{
BcNumBinaryOp op = (!a->neg == !b->neg) ? zbc_num_a : zbc_num_s;
(void) scale;
RETURN_STATUS(zbc_num_binary(a, b, c, false, op, BC_NUM_AREQ(a, b)));
}
static FAST_FUNC BC_STATUS zbc_num_sub(BcNum *a, BcNum *b, BcNum *c, size_t scale)
{
BcNumBinaryOp op = (!a->neg == !b->neg) ? zbc_num_s : zbc_num_a;
(void) scale;
RETURN_STATUS(zbc_num_binary(a, b, c, true, op, BC_NUM_AREQ(a, b)));
}
static FAST_FUNC BC_STATUS zbc_num_mul(BcNum *a, BcNum *b, BcNum *c, size_t scale)
{
size_t req = BC_NUM_MREQ(a, b, scale);
RETURN_STATUS(zbc_num_binary(a, b, c, scale, zbc_num_m, req));
}
static FAST_FUNC BC_STATUS zbc_num_div(BcNum *a, BcNum *b, BcNum *c, size_t scale)
{
size_t req = BC_NUM_MREQ(a, b, scale);
RETURN_STATUS(zbc_num_binary(a, b, c, scale, zbc_num_d, req));
}
static FAST_FUNC BC_STATUS zbc_num_mod(BcNum *a, BcNum *b, BcNum *c, size_t scale)
{
size_t req = BC_NUM_MREQ(a, b, scale);
RETURN_STATUS(zbc_num_binary(a, b, c, scale, zbc_num_rem, req));
}
static FAST_FUNC BC_STATUS zbc_num_pow(BcNum *a, BcNum *b, BcNum *c, size_t scale)
{
RETURN_STATUS(zbc_num_binary(a, b, c, scale, zbc_num_p, a->len * b->len + 1));
}
static const BcNumBinaryOp zbc_program_ops[] = {
zbc_num_pow, zbc_num_mul, zbc_num_div, zbc_num_mod, zbc_num_add, zbc_num_sub,
};
#if ERRORS_ARE_FATAL
# define zbc_num_add(...) (zbc_num_add(__VA_ARGS__), BC_STATUS_SUCCESS)
# define zbc_num_sub(...) (zbc_num_sub(__VA_ARGS__), BC_STATUS_SUCCESS)
# define zbc_num_mul(...) (zbc_num_mul(__VA_ARGS__), BC_STATUS_SUCCESS)
# define zbc_num_div(...) (zbc_num_div(__VA_ARGS__), BC_STATUS_SUCCESS)
# define zbc_num_mod(...) (zbc_num_mod(__VA_ARGS__), BC_STATUS_SUCCESS)
# define zbc_num_pow(...) (zbc_num_pow(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static void fflush_and_check(void)
{
fflush_all();
if (ferror(stdout) || ferror(stderr))
bb_perror_msg_and_die("output error");
}
#if ENABLE_FEATURE_CLEAN_UP
#define QUIT_OR_RETURN_TO_MAIN \
do { \
IF_FEATURE_BC_SIGNALS(G_ttyin = 0;) /* do not loop in main loop anymore */ \
G_exiting = 1; \
return BC_STATUS_FAILURE; \
} while (0)
#else
#define QUIT_OR_RETURN_TO_MAIN quit()
#endif
static void quit(void) NORETURN;
static void quit(void)
{
if (ferror(stdin))
bb_perror_msg_and_die("input error");
fflush_and_check();
dbg_exec("quit(): exiting with exitcode SUCCESS");
exit(0);
}
static void bc_verror_msg(const char *fmt, va_list p)
{
const char *sv = sv; // for compiler
if (G.prog.file) {
sv = applet_name;
applet_name = xasprintf("%s: %s:%u", applet_name, G.prog.file, G.err_line);
}
bb_verror_msg(fmt, p, NULL);
if (G.prog.file) {
free((char*)applet_name);
applet_name = sv;
}
}
static NOINLINE ERRORFUNC int bc_error_fmt(const char *fmt, ...)
{
va_list p;
va_start(p, fmt);
bc_verror_msg(fmt, p);
va_end(p);
if (!ENABLE_FEATURE_CLEAN_UP && !G_ttyin)
exit(1);
ERROR_RETURN(return BC_STATUS_FAILURE;)
}
#if ENABLE_BC
static NOINLINE int bc_posix_error_fmt(const char *fmt, ...)
{
va_list p;
// Are non-POSIX constructs totally ok?
if (!(option_mask32 & (BC_FLAG_S|BC_FLAG_W)))
return BC_STATUS_SUCCESS; // yes
va_start(p, fmt);
bc_verror_msg(fmt, p);
va_end(p);
// Do we treat non-POSIX constructs as errors?
if (!(option_mask32 & BC_FLAG_S))
return BC_STATUS_SUCCESS; // no, it's a warning
if (!ENABLE_FEATURE_CLEAN_UP && !G_ttyin)
exit(1);
return BC_STATUS_FAILURE;
}
#endif
// We use error functions with "return bc_error(FMT[, PARAMS])" idiom.
// This idiom begs for tail-call optimization, but for it to work,
// function must not have caller-cleaned parameters on stack.
// Unfortunately, vararg function API does exactly that on most arches.
// Thus, use these shims for the cases when we have no vararg PARAMS:
static ERRORFUNC int bc_error(const char *msg)
{
ERROR_RETURN(return) bc_error_fmt("%s", msg);
}
static ERRORFUNC int bc_error_bad_character(char c)
{
ERROR_RETURN(return) bc_error_fmt("bad character '%c'", c);
}
static ERRORFUNC int bc_error_bad_expression(void)
{
ERROR_RETURN(return) bc_error("bad expression");
}
static ERRORFUNC int bc_error_bad_token(void)
{
ERROR_RETURN(return) bc_error("bad token");
}
static ERRORFUNC int bc_error_stack_has_too_few_elements(void)
{
ERROR_RETURN(return) bc_error("stack has too few elements");
}
static ERRORFUNC int bc_error_variable_is_wrong_type(void)
{
ERROR_RETURN(return) bc_error("variable is wrong type");
}
static ERRORFUNC int bc_error_nested_read_call(void)
{
ERROR_RETURN(return) bc_error("read() call inside of a read() call");
}
#if ENABLE_BC
static int bc_POSIX_requires(const char *msg)
{
return bc_posix_error_fmt("POSIX requires %s", msg);
}
static int bc_POSIX_does_not_allow(const char *msg)
{
return bc_posix_error_fmt("%s%s", "POSIX does not allow ", msg);
}
static int bc_POSIX_does_not_allow_bool_ops_this_is_bad(const char *msg)
{
return bc_posix_error_fmt("%s%s %s", "POSIX does not allow ", "boolean operators; the following is bad:", msg);
}
static int bc_POSIX_does_not_allow_empty_X_expression_in_for(const char *msg)
{
return bc_posix_error_fmt("%san empty %s expression in a for loop", "POSIX does not allow ", msg);
}
#endif
static void bc_vec_grow(BcVec *v, size_t n)
{
size_t cap = v->cap * 2;
while (cap < v->len + n) cap *= 2;
v->v = xrealloc(v->v, v->size * cap);
v->cap = cap;
}
static void bc_vec_init(BcVec *v, size_t esize, BcVecFree dtor)
{
v->size = esize;
v->cap = BC_VEC_START_CAP;
v->len = 0;
v->dtor = dtor;
v->v = xmalloc(esize * BC_VEC_START_CAP);
}
static void bc_char_vec_init(BcVec *v)
{
bc_vec_init(v, sizeof(char), NULL);
}
static void bc_vec_expand(BcVec *v, size_t req)
{
if (v->cap < req) {
v->v = xrealloc(v->v, v->size * req);
v->cap = req;
}
}
static void bc_vec_pop(BcVec *v)
{
v->len--;
if (v->dtor)
v->dtor(v->v + (v->size * v->len));
}
static void bc_vec_npop(BcVec *v, size_t n)
{
if (!v->dtor)
v->len -= n;
else {
size_t len = v->len - n;
while (v->len > len) v->dtor(v->v + (v->size * --v->len));
}
}
static void bc_vec_pop_all(BcVec *v)
{
bc_vec_npop(v, v->len);
}
static void bc_vec_push(BcVec *v, const void *data)
{
if (v->len + 1 > v->cap) bc_vec_grow(v, 1);
memmove(v->v + (v->size * v->len), data, v->size);
v->len += 1;
}
static void bc_vec_pushByte(BcVec *v, char data)
{
bc_vec_push(v, &data);
}
static void bc_vec_pushZeroByte(BcVec *v)
{
//bc_vec_pushByte(v, '\0');
// better:
bc_vec_push(v, &const_int_0);
}
static void bc_vec_pushAt(BcVec *v, const void *data, size_t idx)
{
if (idx == v->len)
bc_vec_push(v, data);
else {
char *ptr;
if (v->len == v->cap) bc_vec_grow(v, 1);
ptr = v->v + v->size * idx;
memmove(ptr + v->size, ptr, v->size * (v->len++ - idx));
memmove(ptr, data, v->size);
}
}
static void bc_vec_string(BcVec *v, size_t len, const char *str)
{
bc_vec_pop_all(v);
bc_vec_expand(v, len + 1);
memcpy(v->v, str, len);
v->len = len;
bc_vec_pushZeroByte(v);
}
#if ENABLE_FEATURE_BC_SIGNALS && ENABLE_FEATURE_EDITING
static void bc_vec_concat(BcVec *v, const char *str)
{
size_t len, slen;
if (v->len == 0) bc_vec_pushZeroByte(v);
slen = strlen(str);
len = v->len + slen;
if (v->cap < len) bc_vec_grow(v, slen);
strcpy(v->v + v->len - 1, str);
v->len = len;
}
#endif
static void *bc_vec_item(const BcVec *v, size_t idx)
{
return v->v + v->size * idx;
}
static char** bc_program_str(size_t idx)
{
return bc_vec_item(&G.prog.strs, idx);
}
static BcFunc* bc_program_func(size_t idx)
{
return bc_vec_item(&G.prog.fns, idx);
}
static void *bc_vec_item_rev(const BcVec *v, size_t idx)
{
return v->v + v->size * (v->len - idx - 1);
}
static void *bc_vec_top(const BcVec *v)
{
return v->v + v->size * (v->len - 1);
}
static FAST_FUNC void bc_vec_free(void *vec)
{
BcVec *v = (BcVec *) vec;
bc_vec_pop_all(v);
free(v->v);
}
static int bc_id_cmp(const void *e1, const void *e2)
{
return strcmp(((const BcId *) e1)->name, ((const BcId *) e2)->name);
}
static FAST_FUNC void bc_id_free(void *id)
{
free(((BcId *) id)->name);
}
static size_t bc_map_find(const BcVec *v, const void *ptr)
{
size_t low = 0, high = v->len;
while (low < high) {
size_t mid = (low + high) / 2;
BcId *id = bc_vec_item(v, mid);
int result = bc_id_cmp(ptr, id);
if (result == 0)
return mid;
else if (result < 0)
high = mid;
else
low = mid + 1;
}
return low;
}
static int bc_map_insert(BcVec *v, const void *ptr, size_t *i)
{
size_t n = *i = bc_map_find(v, ptr);
if (n == v->len)
bc_vec_push(v, ptr);
else if (!bc_id_cmp(ptr, bc_vec_item(v, n)))
return 0; // "was not inserted"
else
bc_vec_pushAt(v, ptr, n);
return 1; // "was inserted"
}
#if ENABLE_BC
static size_t bc_map_index(const BcVec *v, const void *ptr)
{
size_t i = bc_map_find(v, ptr);
if (i >= v->len) return BC_VEC_INVALID_IDX;
return bc_id_cmp(ptr, bc_vec_item(v, i)) ? BC_VEC_INVALID_IDX : i;
}
#endif
static int bad_input_byte(char c)
{
if ((c < ' ' && c != '\t' && c != '\r' && c != '\n') // also allow '\v' '\f'?
|| c > 0x7e
) {
bc_error_fmt("illegal character 0x%02x", c);
return 1;
}
return 0;
}
// Note: it _appends_ data from the stdin to vec.
static void bc_read_line(BcVec *vec)
{
again:
fflush_and_check();
#if ENABLE_FEATURE_BC_SIGNALS
if (G_interrupt) { // ^C was pressed
intr:
G_interrupt = 0;
// GNU bc says "interrupted execution."
// GNU dc says "Interrupt!"
fputs("\ninterrupted execution\n", stderr);
}
# if ENABLE_FEATURE_EDITING
if (G_ttyin) {
int n, i;
# define line_buf bb_common_bufsiz1
n = read_line_input(G.line_input_state, "", line_buf, COMMON_BUFSIZE);
if (n <= 0) { // read errors or EOF, or ^D, or ^C
if (n == 0) // ^C
goto intr;
bc_vec_pushZeroByte(vec);
return;
}
i = 0;
for (;;) {
char c = line_buf[i++];
if (!c) break;
if (bad_input_byte(c)) goto again;
}
bc_vec_concat(vec, line_buf);
# undef line_buf
} else
# endif
#endif
{
int c;
bool bad_chars = 0;
size_t len = vec->len;
IF_FEATURE_BC_SIGNALS(errno = 0;)
do {
c = fgetc(stdin);
#if ENABLE_FEATURE_BC_SIGNALS && !ENABLE_FEATURE_EDITING
// Both conditions appear simultaneously, check both just in case
if (errno == EINTR || G_interrupt) {
// ^C was pressed
clearerr(stdin);
goto intr;
}
#endif
if (c == EOF) {
if (ferror(stdin))
quit(); // this emits error message
// Note: EOF does not append '\n', therefore:
// printf 'print 123\n' | bc - works
// printf 'print 123' | bc - fails (syntax error)
break;
}
bad_chars |= bad_input_byte(c);
bc_vec_pushByte(vec, (char)c);
} while (c != '\n');
if (bad_chars) {
// Bad chars on this line, ignore entire line
vec->len = len;
goto again;
}
bc_vec_pushZeroByte(vec);
}
}
static char* bc_read_file(const char *path)
{
char *buf;
size_t size = ((size_t) -1);
size_t i;
// Never returns NULL (dies on errors)
buf = xmalloc_xopen_read_close(path, &size);
for (i = 0; i < size; ++i) {
char c = buf[i];
if ((c < ' ' && c != '\t' && c != '\r' && c != '\n') // also allow '\v' '\f'?
|| c > 0x7e
) {
free(buf);
buf = NULL;
break;
}
}
return buf;
}
static void bc_num_setToZero(BcNum *n, size_t scale)
{
n->len = 0;
n->neg = false;
n->rdx = scale;
}
static void bc_num_zero(BcNum *n)
{
bc_num_setToZero(n, 0);
}
static void bc_num_one(BcNum *n)
{
bc_num_setToZero(n, 0);
n->len = 1;
n->num[0] = 1;
}
static void bc_num_ten(BcNum *n)
{
bc_num_setToZero(n, 0);
n->len = 2;
n->num[0] = 0;
n->num[1] = 1;
}
// Note: this also sets BcNum to zero
static void bc_num_init(BcNum *n, size_t req)
{
req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
//memset(n, 0, sizeof(BcNum)); - cleared by assignments below
n->num = xmalloc(req);
n->cap = req;
n->rdx = 0;
n->len = 0;
n->neg = false;
}
static void bc_num_init_DEF_SIZE(BcNum *n)
{
bc_num_init(n, BC_NUM_DEF_SIZE);
}
static void bc_num_expand(BcNum *n, size_t req)
{
req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
if (req > n->cap) {
n->num = xrealloc(n->num, req);
n->cap = req;
}
}
static FAST_FUNC void bc_num_free(void *num)
{
free(((BcNum *) num)->num);
}
static void bc_num_copy(BcNum *d, BcNum *s)
{
if (d != s) {
bc_num_expand(d, s->cap);
d->len = s->len;
d->neg = s->neg;
d->rdx = s->rdx;
memcpy(d->num, s->num, sizeof(BcDig) * d->len);
}
}
static BC_STATUS zbc_num_ulong(BcNum *n, unsigned long *result_p)
{
size_t i;
unsigned long pow, result;
if (n->neg) RETURN_STATUS(bc_error("negative number"));
for (result = 0, pow = 1, i = n->rdx; i < n->len; ++i) {
unsigned long prev = result, powprev = pow;
result += ((unsigned long) n->num[i]) * pow;
pow *= 10;
if (result < prev || pow < powprev)
RETURN_STATUS(bc_error("overflow"));
prev = result;
powprev = pow;
}
*result_p = result;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_num_ulong(...) (zbc_num_ulong(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static void bc_num_ulong2num(BcNum *n, unsigned long val)
{
BcDig *ptr;
bc_num_zero(n);
if (val == 0) return;
if (ULONG_MAX == 0xffffffffUL)
bc_num_expand(n, 10); // 10 digits: 4294967295
if (ULONG_MAX == 0xffffffffffffffffULL)
bc_num_expand(n, 20); // 20 digits: 18446744073709551615
BUILD_BUG_ON(ULONG_MAX > 0xffffffffffffffffULL);
ptr = n->num;
for (;;) {
n->len++;
*ptr++ = val % 10;
val /= 10;
if (val == 0) break;
}
}
static void bc_num_subArrays(BcDig *restrict a, BcDig *restrict b,
size_t len)
{
size_t i, j;
for (i = 0; i < len; ++i) {
for (a[i] -= b[i], j = 0; a[i + j] < 0;) {
a[i + j++] += 10;
a[i + j] -= 1;
}
}
}
static ssize_t bc_num_compare(BcDig *restrict a, BcDig *restrict b, size_t len)
{
size_t i;
int c = 0;
for (i = len - 1; i < len && !(c = a[i] - b[i]); --i);
return BC_NUM_NEG(i + 1, c < 0);
}
static ssize_t bc_num_cmp(BcNum *a, BcNum *b)
{
size_t i, min, a_int, b_int, diff;
BcDig *max_num, *min_num;
bool a_max, neg;
ssize_t cmp;
if (a == b) return 0;
if (a->len == 0) return BC_NUM_NEG(!!b->len, !b->neg);
if (b->len == 0) return BC_NUM_NEG(1, a->neg);
if (a->neg != b->neg) // signs of a and b differ
// +a,-b = a>b = 1 or -a,+b = a<b = -1
return (int)b->neg - (int)a->neg;
neg = a->neg; // 1 if both negative, 0 if both positive
a_int = BC_NUM_INT(a);
b_int = BC_NUM_INT(b);
a_int -= b_int;
if (a_int != 0) return (ssize_t) a_int;
a_max = (a->rdx > b->rdx);
if (a_max) {
min = b->rdx;
diff = a->rdx - b->rdx;
max_num = a->num + diff;
min_num = b->num;
// neg = (a_max == neg); - NOP (maps 1->1 and 0->0)
} else {
min = a->rdx;
diff = b->rdx - a->rdx;
max_num = b->num + diff;
min_num = a->num;
neg = !neg; // same as "neg = (a_max == neg)"
}
cmp = bc_num_compare(max_num, min_num, b_int + min);
if (cmp != 0) return BC_NUM_NEG(cmp, neg);
for (max_num -= diff, i = diff - 1; i < diff; --i) {
if (max_num[i]) return BC_NUM_NEG(1, neg);
}
return 0;
}
static void bc_num_truncate(BcNum *n, size_t places)
{
if (places == 0) return;
n->rdx -= places;
if (n->len != 0) {
n->len -= places;
memmove(n->num, n->num + places, n->len * sizeof(BcDig));
}
}
static void bc_num_extend(BcNum *n, size_t places)
{
size_t len = n->len + places;
if (places != 0) {
if (n->cap < len) bc_num_expand(n, len);
memmove(n->num + places, n->num, sizeof(BcDig) * n->len);
memset(n->num, 0, sizeof(BcDig) * places);
n->len += places;
n->rdx += places;
}
}
static void bc_num_clean(BcNum *n)
{
while (n->len > 0 && n->num[n->len - 1] == 0) --n->len;
if (n->len == 0)
n->neg = false;
else if (n->len < n->rdx)
n->len = n->rdx;
}
static void bc_num_retireMul(BcNum *n, size_t scale, bool neg1, bool neg2)
{
if (n->rdx < scale)
bc_num_extend(n, scale - n->rdx);
else
bc_num_truncate(n, n->rdx - scale);
bc_num_clean(n);
if (n->len != 0) n->neg = !neg1 != !neg2;
}
static void bc_num_split(BcNum *restrict n, size_t idx, BcNum *restrict a,
BcNum *restrict b)
{
if (idx < n->len) {
b->len = n->len - idx;
a->len = idx;
a->rdx = b->rdx = 0;
memcpy(b->num, n->num + idx, b->len * sizeof(BcDig));
memcpy(a->num, n->num, idx * sizeof(BcDig));
}
else {
bc_num_zero(b);
bc_num_copy(a, n);
}
bc_num_clean(a);
bc_num_clean(b);
}
static BC_STATUS zbc_num_shift(BcNum *n, size_t places)
{
if (places == 0 || n->len == 0) RETURN_STATUS(BC_STATUS_SUCCESS);
// This check makes sense only if size_t is (much) larger than BC_MAX_NUM.
if (SIZE_MAX > (BC_MAX_NUM | 0xff)) {
if (places + n->len > BC_MAX_NUM)
RETURN_STATUS(bc_error("number too long: must be [1,"BC_MAX_NUM_STR"]"));
}
if (n->rdx >= places)
n->rdx -= places;
else {
bc_num_extend(n, places - n->rdx);
n->rdx = 0;
}
bc_num_clean(n);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_num_shift(...) (zbc_num_shift(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_num_inv(BcNum *a, BcNum *b, size_t scale)
{
BcNum one;
BcDig num[2];
one.cap = 2;
one.num = num;
bc_num_one(&one);
RETURN_STATUS(zbc_num_div(&one, a, b, scale));
}
#if ERRORS_ARE_FATAL
# define zbc_num_inv(...) (zbc_num_inv(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static FAST_FUNC BC_STATUS zbc_num_a(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub)
{
BcDig *ptr, *ptr_a, *ptr_b, *ptr_c;
size_t i, max, min_rdx, min_int, diff, a_int, b_int;
int carry, in;
// Because this function doesn't need to use scale (per the bc spec),
// I am hijacking it to say whether it's doing an add or a subtract.
if (a->len == 0) {
bc_num_copy(c, b);
if (sub && c->len) c->neg = !c->neg;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (b->len == 0) {
bc_num_copy(c, a);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
c->neg = a->neg;
c->rdx = BC_MAX(a->rdx, b->rdx);
min_rdx = BC_MIN(a->rdx, b->rdx);
c->len = 0;
if (a->rdx > b->rdx) {
diff = a->rdx - b->rdx;
ptr = a->num;
ptr_a = a->num + diff;
ptr_b = b->num;
}
else {
diff = b->rdx - a->rdx;
ptr = b->num;
ptr_a = a->num;
ptr_b = b->num + diff;
}
for (ptr_c = c->num, i = 0; i < diff; ++i, ++c->len) ptr_c[i] = ptr[i];
ptr_c += diff;
a_int = BC_NUM_INT(a);
b_int = BC_NUM_INT(b);
if (a_int > b_int) {
min_int = b_int;
max = a_int;
ptr = ptr_a;
}
else {
min_int = a_int;
max = b_int;
ptr = ptr_b;
}
for (carry = 0, i = 0; i < min_rdx + min_int; ++i, ++c->len) {
in = ((int) ptr_a[i]) + ((int) ptr_b[i]) + carry;
carry = in / 10;
ptr_c[i] = (BcDig)(in % 10);
}
for (; i < max + min_rdx; ++i, ++c->len) {
in = ((int) ptr[i]) + carry;
carry = in / 10;
ptr_c[i] = (BcDig)(in % 10);
}
if (carry != 0) c->num[c->len++] = (BcDig) carry;
RETURN_STATUS(BC_STATUS_SUCCESS); // can't make void, see zbc_num_binary()
}
static FAST_FUNC BC_STATUS zbc_num_s(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub)
{
ssize_t cmp;
BcNum *minuend, *subtrahend;
size_t start;
bool aneg, bneg, neg;
// Because this function doesn't need to use scale (per the bc spec),
// I am hijacking it to say whether it's doing an add or a subtract.
if (a->len == 0) {
bc_num_copy(c, b);
if (sub && c->len) c->neg = !c->neg;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (b->len == 0) {
bc_num_copy(c, a);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
aneg = a->neg;
bneg = b->neg;
a->neg = b->neg = false;
cmp = bc_num_cmp(a, b);
a->neg = aneg;
b->neg = bneg;
if (cmp == 0) {
bc_num_setToZero(c, BC_MAX(a->rdx, b->rdx));
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (cmp > 0) {
neg = a->neg;
minuend = a;
subtrahend = b;
}
else {
neg = b->neg;
if (sub) neg = !neg;
minuend = b;
subtrahend = a;
}
bc_num_copy(c, minuend);
c->neg = neg;
if (c->rdx < subtrahend->rdx) {
bc_num_extend(c, subtrahend->rdx - c->rdx);
start = 0;
}
else
start = c->rdx - subtrahend->rdx;
bc_num_subArrays(c->num + start, subtrahend->num, subtrahend->len);
bc_num_clean(c);
RETURN_STATUS(BC_STATUS_SUCCESS); // can't make void, see zbc_num_binary()
}
static FAST_FUNC BC_STATUS zbc_num_k(BcNum *restrict a, BcNum *restrict b,
BcNum *restrict c)
#if ERRORS_ARE_FATAL
# define zbc_num_k(...) (zbc_num_k(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
{
BcStatus s;
size_t max = BC_MAX(a->len, b->len), max2 = (max + 1) / 2;
BcNum l1, h1, l2, h2, m2, m1, z0, z1, z2, temp;
bool aone;
if (a->len == 0 || b->len == 0) {
bc_num_zero(c);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
aone = BC_NUM_ONE(a);
if (aone || BC_NUM_ONE(b)) {
bc_num_copy(c, aone ? b : a);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (a->len + b->len < BC_NUM_KARATSUBA_LEN ||
a->len < BC_NUM_KARATSUBA_LEN || b->len < BC_NUM_KARATSUBA_LEN)
{
size_t i, j, len;
unsigned carry;
bc_num_expand(c, a->len + b->len + 1);
memset(c->num, 0, sizeof(BcDig) * c->cap);
c->len = len = 0;
for (i = 0; i < b->len; ++i) {
carry = 0;
for (j = 0; j < a->len; ++j) {
unsigned in = c->num[i + j];
in += ((unsigned) a->num[j]) * ((unsigned) b->num[i]) + carry;
// note: compilers prefer _unsigned_ div/const
carry = in / 10;
c->num[i + j] = (BcDig)(in % 10);
}
c->num[i + j] += (BcDig) carry;
len = BC_MAX(len, i + j + !!carry);
#if ENABLE_FEATURE_BC_SIGNALS
// a=2^1000000
// a*a <- without check below, this will not be interruptible
if (G_interrupt) return BC_STATUS_FAILURE;
#endif
}
c->len = len;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
bc_num_init(&l1, max);
bc_num_init(&h1, max);
bc_num_init(&l2, max);
bc_num_init(&h2, max);
bc_num_init(&m1, max);
bc_num_init(&m2, max);
bc_num_init(&z0, max);
bc_num_init(&z1, max);
bc_num_init(&z2, max);
bc_num_init(&temp, max + max);
bc_num_split(a, max2, &l1, &h1);
bc_num_split(b, max2, &l2, &h2);
s = zbc_num_add(&h1, &l1, &m1, 0);
if (s) goto err;
s = zbc_num_add(&h2, &l2, &m2, 0);
if (s) goto err;
s = zbc_num_k(&h1, &h2, &z0);
if (s) goto err;
s = zbc_num_k(&m1, &m2, &z1);
if (s) goto err;
s = zbc_num_k(&l1, &l2, &z2);
if (s) goto err;
s = zbc_num_sub(&z1, &z0, &temp, 0);
if (s) goto err;
s = zbc_num_sub(&temp, &z2, &z1, 0);
if (s) goto err;
s = zbc_num_shift(&z0, max2 * 2);
if (s) goto err;
s = zbc_num_shift(&z1, max2);
if (s) goto err;
s = zbc_num_add(&z0, &z1, &temp, 0);
if (s) goto err;
s = zbc_num_add(&temp, &z2, c, 0);
err:
bc_num_free(&temp);
bc_num_free(&z2);
bc_num_free(&z1);
bc_num_free(&z0);
bc_num_free(&m2);
bc_num_free(&m1);
bc_num_free(&h2);
bc_num_free(&l2);
bc_num_free(&h1);
bc_num_free(&l1);
RETURN_STATUS(s);
}
static FAST_FUNC BC_STATUS zbc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale)
{
BcStatus s;
BcNum cpa, cpb;
size_t maxrdx = BC_MAX(a->rdx, b->rdx);
scale = BC_MAX(scale, a->rdx);
scale = BC_MAX(scale, b->rdx);
scale = BC_MIN(a->rdx + b->rdx, scale);
maxrdx = BC_MAX(maxrdx, scale);
bc_num_init(&cpa, a->len);
bc_num_init(&cpb, b->len);
bc_num_copy(&cpa, a);
bc_num_copy(&cpb, b);
cpa.neg = cpb.neg = false;
s = zbc_num_shift(&cpa, maxrdx);
if (s) goto err;
s = zbc_num_shift(&cpb, maxrdx);
if (s) goto err;
s = zbc_num_k(&cpa, &cpb, c);
if (s) goto err;
maxrdx += scale;
bc_num_expand(c, c->len + maxrdx);
if (c->len < maxrdx) {
memset(c->num + c->len, 0, (c->cap - c->len) * sizeof(BcDig));
c->len += maxrdx;
}
c->rdx = maxrdx;
bc_num_retireMul(c, scale, a->neg, b->neg);
err:
bc_num_free(&cpb);
bc_num_free(&cpa);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_num_m(...) (zbc_num_m(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static FAST_FUNC BC_STATUS zbc_num_d(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale)
{
BcStatus s = BC_STATUS_SUCCESS;
BcDig *n, *p, q;
size_t len, end, i;
BcNum cp;
bool zero = true;
if (b->len == 0)
RETURN_STATUS(bc_error("divide by zero"));
if (a->len == 0) {
bc_num_setToZero(c, scale);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (BC_NUM_ONE(b)) {
bc_num_copy(c, a);
bc_num_retireMul(c, scale, a->neg, b->neg);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
bc_num_init(&cp, BC_NUM_MREQ(a, b, scale));
bc_num_copy(&cp, a);
len = b->len;
if (len > cp.len) {
bc_num_expand(&cp, len + 2);
bc_num_extend(&cp, len - cp.len);
}
if (b->rdx > cp.rdx) bc_num_extend(&cp, b->rdx - cp.rdx);
cp.rdx -= b->rdx;
if (scale > cp.rdx) bc_num_extend(&cp, scale - cp.rdx);
if (b->rdx == b->len) {
for (i = 0; zero && i < len; ++i) zero = !b->num[len - i - 1];
len -= i - 1;
}
if (cp.cap == cp.len) bc_num_expand(&cp, cp.len + 1);
// We want an extra zero in front to make things simpler.
cp.num[cp.len++] = 0;
end = cp.len - len;
bc_num_expand(c, cp.len);
bc_num_zero(c);
memset(c->num + end, 0, (c->cap - end) * sizeof(BcDig));
c->rdx = cp.rdx;
c->len = cp.len;
p = b->num;
for (i = end - 1; !s && i < end; --i) {
n = cp.num + i;
for (q = 0; (!s && n[len] != 0) || bc_num_compare(n, p, len) >= 0; ++q)
bc_num_subArrays(n, p, len);
c->num[i] = q;
#if ENABLE_FEATURE_BC_SIGNALS
// a=2^100000
// scale=40000
// 1/a <- without check below, this will not be interruptible
if (G_interrupt) {
s = BC_STATUS_FAILURE;
break;
}
#endif
}
bc_num_retireMul(c, scale, a->neg, b->neg);
bc_num_free(&cp);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_num_d(...) (zbc_num_d(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static FAST_FUNC BC_STATUS zbc_num_r(BcNum *a, BcNum *b, BcNum *restrict c,
BcNum *restrict d, size_t scale, size_t ts)
{
BcStatus s;
BcNum temp;
bool neg;
if (b->len == 0)
RETURN_STATUS(bc_error("divide by zero"));
if (a->len == 0) {
bc_num_setToZero(d, ts);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
bc_num_init(&temp, d->cap);
s = zbc_num_d(a, b, c, scale);
if (s) goto err;
if (scale != 0) scale = ts;
s = zbc_num_m(c, b, &temp, scale);
if (s) goto err;
s = zbc_num_sub(a, &temp, d, scale);
if (s) goto err;
if (ts > d->rdx && d->len) bc_num_extend(d, ts - d->rdx);
neg = d->neg;
bc_num_retireMul(d, ts, a->neg, b->neg);
d->neg = neg;
err:
bc_num_free(&temp);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_num_r(...) (zbc_num_r(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static FAST_FUNC BC_STATUS zbc_num_rem(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale)
{
BcStatus s;
BcNum c1;
size_t ts = BC_MAX(scale + b->rdx, a->rdx), len = BC_NUM_MREQ(a, b, ts);
bc_num_init(&c1, len);
s = zbc_num_r(a, b, &c1, c, scale, ts);
bc_num_free(&c1);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_num_rem(...) (zbc_num_rem(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static FAST_FUNC BC_STATUS zbc_num_p(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale)
{
BcStatus s = BC_STATUS_SUCCESS;
BcNum copy;
unsigned long pow;
size_t i, powrdx, resrdx;
bool neg, zero;
if (b->rdx) RETURN_STATUS(bc_error("non integer number"));
if (b->len == 0) {
bc_num_one(c);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (a->len == 0) {
bc_num_setToZero(c, scale);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
if (BC_NUM_ONE(b)) {
if (!b->neg)
bc_num_copy(c, a);
else
s = zbc_num_inv(a, c, scale);
RETURN_STATUS(s);
}
neg = b->neg;
b->neg = false;
s = zbc_num_ulong(b, &pow);
if (s) RETURN_STATUS(s);
bc_num_init(&copy, a->len);
bc_num_copy(&copy, a);
if (!neg) {
if (a->rdx > scale)
scale = a->rdx;
if (a->rdx * pow < scale)
scale = a->rdx * pow;
}
b->neg = neg;
for (powrdx = a->rdx; !(pow & 1); pow >>= 1) {
powrdx <<= 1;
s = zbc_num_mul(&copy, &copy, &copy, powrdx);
if (s) goto err;
// Not needed: zbc_num_mul() has a check for ^C:
//if (G_interrupt) {
// s = BC_STATUS_FAILURE;
// goto err;
//}
}
bc_num_copy(c, &copy);
for (resrdx = powrdx, pow >>= 1; pow != 0; pow >>= 1) {
powrdx <<= 1;
s = zbc_num_mul(&copy, &copy, &copy, powrdx);
if (s) goto err;
if (pow & 1) {
resrdx += powrdx;
s = zbc_num_mul(c, &copy, c, resrdx);
if (s) goto err;
}
// Not needed: zbc_num_mul() has a check for ^C:
//if (G_interrupt) {
// s = BC_STATUS_FAILURE;
// goto err;
//}
}
if (neg) {
s = zbc_num_inv(c, c, scale);
if (s) goto err;
}
if (c->rdx > scale) bc_num_truncate(c, c->rdx - scale);
// We can't use bc_num_clean() here.
for (zero = true, i = 0; zero && i < c->len; ++i) zero = !c->num[i];
if (zero) bc_num_setToZero(c, scale);
err:
bc_num_free(&copy);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_num_p(...) (zbc_num_p(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_num_binary(BcNum *a, BcNum *b, BcNum *c, size_t scale,
BcNumBinaryOp op, size_t req)
{
BcStatus s;
BcNum num2, *ptr_a, *ptr_b;
bool init = false;
if (c == a) {
ptr_a = &num2;
memcpy(ptr_a, c, sizeof(BcNum));
init = true;
}
else
ptr_a = a;
if (c == b) {
ptr_b = &num2;
if (c != a) {
memcpy(ptr_b, c, sizeof(BcNum));
init = true;
}
}
else
ptr_b = b;
if (init)
bc_num_init(c, req);
else
bc_num_expand(c, req);
s = BC_STATUS_SUCCESS;
ERROR_RETURN(s =) op(ptr_a, ptr_b, c, scale);
if (init) bc_num_free(&num2);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_num_binary(...) (zbc_num_binary(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static bool bc_num_strValid(const char *val, size_t base)
{
BcDig b;
bool radix;
b = (BcDig)(base <= 10 ? base + '0' : base - 10 + 'A');
radix = false;
for (;;) {
BcDig c = *val++;
if (c == '\0')
break;
if (c == '.') {
if (radix) return false;
radix = true;
continue;
}
if (c < '0' || c >= b || (c > '9' && c < 'A'))
return false;
}
return true;
}
// Note: n is already "bc_num_zero()"ed,
// leading zeroes in "val" are removed
static void bc_num_parseDecimal(BcNum *n, const char *val)
{
size_t len, i;
const char *ptr;
len = strlen(val);
if (len == 0)
return;
bc_num_expand(n, len);
ptr = strchr(val, '.');
n->rdx = 0;
if (ptr != NULL)
n->rdx = (size_t)((val + len) - (ptr + 1));
for (i = 0; val[i]; ++i) {
if (val[i] != '0' && val[i] != '.') {
// Not entirely zero value - convert it, and exit
i = len - 1;
for (;;) {
n->num[n->len] = val[i] - '0';
++n->len;
skip_dot:
if (i == 0) break;
if (val[--i] == '.') goto skip_dot;
}
break;
}
}
// if for() exits without hitting if(), the value is entirely zero
}
// Note: n is already "bc_num_zero()"ed,
// leading zeroes in "val" are removed
static void bc_num_parseBase(BcNum *n, const char *val, BcNum *base)
{
BcStatus s;
BcNum temp, mult, result;
BcDig c = '\0';
unsigned long v;
size_t i, digits;
for (i = 0; ; ++i) {
if (val[i] == '\0')
return;
if (val[i] != '.' && val[i] != '0')
break;
}
bc_num_init_DEF_SIZE(&temp);
bc_num_init_DEF_SIZE(&mult);
for (;;) {
c = *val++;
if (c == '\0') goto int_err;
if (c == '.') break;
v = (unsigned long) (c <= '9' ? c - '0' : c - 'A' + 10);
s = zbc_num_mul(n, base, &mult, 0);
if (s) goto int_err;
bc_num_ulong2num(&temp, v);
s = zbc_num_add(&mult, &temp, n, 0);
if (s) goto int_err;
}
bc_num_init(&result, base->len);
//bc_num_zero(&result); - already is
bc_num_one(&mult);
digits = 0;
for (;;) {
c = *val++;
if (c == '\0') break;
digits++;
v = (unsigned long) (c <= '9' ? c - '0' : c - 'A' + 10);
s = zbc_num_mul(&result, base, &result, 0);
if (s) goto err;
bc_num_ulong2num(&temp, v);
s = zbc_num_add(&result, &temp, &result, 0);
if (s) goto err;
s = zbc_num_mul(&mult, base, &mult, 0);
if (s) goto err;
}
s = zbc_num_div(&result, &mult, &result, digits);
if (s) goto err;
s = zbc_num_add(n, &result, n, digits);
if (s) goto err;
if (n->len != 0) {
if (n->rdx < digits) bc_num_extend(n, digits - n->rdx);
} else
bc_num_zero(n);
err:
bc_num_free(&result);
int_err:
bc_num_free(&mult);
bc_num_free(&temp);
}
static BC_STATUS zbc_num_parse(BcNum *n, const char *val, BcNum *base,
size_t base_t)
{
if (!bc_num_strValid(val, base_t))
RETURN_STATUS(bc_error("bad number string"));
bc_num_zero(n);
while (*val == '0') val++;
if (base_t == 10)
bc_num_parseDecimal(n, val);
else
bc_num_parseBase(n, val, base);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_num_parse(...) (zbc_num_parse(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_num_sqrt(BcNum *a, BcNum *restrict b, size_t scale)
{
BcStatus s;
BcNum num1, num2, half, f, fprime, *x0, *x1, *temp;
size_t pow, len, digs, digs1, resrdx, req, times = 0;
ssize_t cmp = 1, cmp1 = SSIZE_MAX, cmp2 = SSIZE_MAX;
req = BC_MAX(scale, a->rdx) + ((BC_NUM_INT(a) + 1) >> 1) + 1;
bc_num_expand(b, req);
if (a->len == 0) {
bc_num_setToZero(b, scale);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
else if (a->neg)
RETURN_STATUS(bc_error("negative number"));
else if (BC_NUM_ONE(a)) {
bc_num_one(b);
bc_num_extend(b, scale);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
scale = BC_MAX(scale, a->rdx) + 1;
len = a->len + scale;
bc_num_init(&num1, len);
bc_num_init(&num2, len);
bc_num_init_DEF_SIZE(&half);
bc_num_one(&half);
half.num[0] = 5;
half.rdx = 1;
bc_num_init(&f, len);
bc_num_init(&fprime, len);
x0 = &num1;
x1 = &num2;
bc_num_one(x0);
pow = BC_NUM_INT(a);
if (pow) {
if (pow & 1)
x0->num[0] = 2;
else
x0->num[0] = 6;
pow -= 2 - (pow & 1);
bc_num_extend(x0, pow);
// Make sure to move the radix back.
x0->rdx -= pow;
}
x0->rdx = digs = digs1 = 0;
resrdx = scale + 2;
len = BC_NUM_INT(x0) + resrdx - 1;
while (cmp != 0 || digs < len) {
s = zbc_num_div(a, x0, &f, resrdx);
if (s) goto err;
s = zbc_num_add(x0, &f, &fprime, resrdx);
if (s) goto err;
s = zbc_num_mul(&fprime, &half, x1, resrdx);
if (s) goto err;
cmp = bc_num_cmp(x1, x0);
digs = x1->len - (unsigned long long) llabs(cmp);
if (cmp == cmp2 && digs == digs1)
times += 1;
else
times = 0;
resrdx += times > 4;
cmp2 = cmp1;
cmp1 = cmp;
digs1 = digs;
temp = x0;
x0 = x1;
x1 = temp;
}
bc_num_copy(b, x0);
scale -= 1;
if (b->rdx > scale) bc_num_truncate(b, b->rdx - scale);
err:
bc_num_free(&fprime);
bc_num_free(&f);
bc_num_free(&half);
bc_num_free(&num2);
bc_num_free(&num1);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_num_sqrt(...) (zbc_num_sqrt(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_num_divmod(BcNum *a, BcNum *b, BcNum *c, BcNum *d,
size_t scale)
{
BcStatus s;
BcNum num2, *ptr_a;
bool init = false;
size_t ts = BC_MAX(scale + b->rdx, a->rdx), len = BC_NUM_MREQ(a, b, ts);
if (c == a) {
memcpy(&num2, c, sizeof(BcNum));
ptr_a = &num2;
bc_num_init(c, len);
init = true;
}
else {
ptr_a = a;
bc_num_expand(c, len);
}
s = zbc_num_r(ptr_a, b, c, d, scale, ts);
if (init) bc_num_free(&num2);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_num_divmod(...) (zbc_num_divmod(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#if ENABLE_DC
static BC_STATUS zbc_num_modexp(BcNum *a, BcNum *b, BcNum *c, BcNum *restrict d)
{
BcStatus s;
BcNum base, exp, two, temp;
if (c->len == 0)
RETURN_STATUS(bc_error("divide by zero"));
if (a->rdx || b->rdx || c->rdx)
RETURN_STATUS(bc_error("non integer number"));
if (b->neg)
RETURN_STATUS(bc_error("negative number"));
bc_num_expand(d, c->len);
bc_num_init(&base, c->len);
bc_num_init(&exp, b->len);
bc_num_init_DEF_SIZE(&two);
bc_num_init(&temp, b->len);
bc_num_one(&two);
two.num[0] = 2;
bc_num_one(d);
s = zbc_num_rem(a, c, &base, 0);
if (s) goto err;
bc_num_copy(&exp, b);
while (exp.len != 0) {
s = zbc_num_divmod(&exp, &two, &exp, &temp, 0);
if (s) goto err;
if (BC_NUM_ONE(&temp)) {
s = zbc_num_mul(d, &base, &temp, 0);
if (s) goto err;
s = zbc_num_rem(&temp, c, d, 0);
if (s) goto err;
}
s = zbc_num_mul(&base, &base, &temp, 0);
if (s) goto err;
s = zbc_num_rem(&temp, c, &base, 0);
if (s) goto err;
}
err:
bc_num_free(&temp);
bc_num_free(&two);
bc_num_free(&exp);
bc_num_free(&base);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_num_modexp(...) (zbc_num_modexp(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#endif // ENABLE_DC
#if ENABLE_BC
static BC_STATUS zbc_func_insert(BcFunc *f, char *name, bool var)
{
BcId a;
size_t i;
for (i = 0; i < f->autos.len; ++i) {
if (strcmp(name, ((BcId *) bc_vec_item(&f->autos, i))->name) == 0)
RETURN_STATUS(bc_error("function parameter or auto var has the same name as another"));
}
a.idx = var;
a.name = name;
bc_vec_push(&f->autos, &a);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_func_insert(...) (zbc_func_insert(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#endif
static void bc_func_init(BcFunc *f)
{
bc_char_vec_init(&f->code);
bc_vec_init(&f->autos, sizeof(BcId), bc_id_free);
bc_vec_init(&f->labels, sizeof(size_t), NULL);
f->nparams = 0;
}
static FAST_FUNC void bc_func_free(void *func)
{
BcFunc *f = (BcFunc *) func;
bc_vec_free(&f->code);
bc_vec_free(&f->autos);
bc_vec_free(&f->labels);
}
static void bc_array_expand(BcVec *a, size_t len);
static void bc_array_init(BcVec *a, bool nums)
{
if (nums)
bc_vec_init(a, sizeof(BcNum), bc_num_free);
else
bc_vec_init(a, sizeof(BcVec), bc_vec_free);
bc_array_expand(a, 1);
}
static void bc_array_expand(BcVec *a, size_t len)
{
BcResultData data;
if (a->size == sizeof(BcNum) && a->dtor == bc_num_free) {
while (len > a->len) {
bc_num_init_DEF_SIZE(&data.n);
bc_vec_push(a, &data.n);
}
}
else {
while (len > a->len) {
bc_array_init(&data.v, true);
bc_vec_push(a, &data.v);
}
}
}
static void bc_array_copy(BcVec *d, const BcVec *s)
{
size_t i;
bc_vec_pop_all(d);
bc_vec_expand(d, s->cap);
d->len = s->len;
for (i = 0; i < s->len; ++i) {
BcNum *dnum = bc_vec_item(d, i), *snum = bc_vec_item(s, i);
bc_num_init(dnum, snum->len);
bc_num_copy(dnum, snum);
}
}
static FAST_FUNC void bc_string_free(void *string)
{
free(*((char **) string));
}
#if ENABLE_DC
static void bc_result_copy(BcResult *d, BcResult *src)
{
d->t = src->t;
switch (d->t) {
case BC_RESULT_TEMP:
case BC_RESULT_IBASE:
case BC_RESULT_SCALE:
case BC_RESULT_OBASE:
{
bc_num_init(&d->d.n, src->d.n.len);
bc_num_copy(&d->d.n, &src->d.n);
break;
}
case BC_RESULT_VAR:
case BC_RESULT_ARRAY:
case BC_RESULT_ARRAY_ELEM:
{
d->d.id.name = xstrdup(src->d.id.name);
break;
}
case BC_RESULT_CONSTANT:
case BC_RESULT_LAST:
case BC_RESULT_ONE:
case BC_RESULT_STR:
{
memcpy(&d->d.n, &src->d.n, sizeof(BcNum));
break;
}
}
}
#endif // ENABLE_DC
static FAST_FUNC void bc_result_free(void *result)
{
BcResult *r = (BcResult *) result;
switch (r->t) {
case BC_RESULT_TEMP:
case BC_RESULT_IBASE:
case BC_RESULT_SCALE:
case BC_RESULT_OBASE:
{
bc_num_free(&r->d.n);
break;
}
case BC_RESULT_VAR:
case BC_RESULT_ARRAY:
case BC_RESULT_ARRAY_ELEM:
{
free(r->d.id.name);
break;
}
default:
{
// Do nothing.
break;
}
}
}
static void bc_lex_lineComment(BcLex *l)
{
l->t.t = BC_LEX_WHITESPACE;
while (l->i < l->len && l->buf[l->i++] != '\n');
--l->i;
}
static void bc_lex_whitespace(BcLex *l)
{
l->t.t = BC_LEX_WHITESPACE;
for (;;) {
char c = l->buf[l->i];
if (c == '\n') // this is BC_LEX_NLINE, not BC_LEX_WHITESPACE
break;
if (!isspace(c))
break;
l->i++;
}
}
static BC_STATUS zbc_lex_number(BcLex *l, char start)
{
const char *buf = l->buf + l->i;
size_t len, bslashes, i, ccnt;
bool pt;
pt = (start == '.');
l->t.t = BC_LEX_NUMBER;
bslashes = 0;
ccnt = i = 0;
for (;;) {
char c = buf[i];
if (c == '\0')
break;
if (c == '\\' && buf[i + 1] == '\n') {
i += 2;
bslashes++;
continue;
}
if (!isdigit(c) && (c < 'A' || c > 'F')) {
if (c != '.') break;
// if '.' was already seen, stop on second one:
if (pt) break;
pt = 1;
}
// buf[i] is one of "0-9A-F."
i++;
if (c != '.')
ccnt = i;
}
//i is buf[i] index of the first not-yet-parsed char
l->i += i;
//ccnt is the number of chars in the number string, excluding possible
//trailing "." and possible following trailing "\<newline>"(s).
len = ccnt - bslashes * 2 + 1; // +1 byte for NUL termination
// This check makes sense only if size_t is (much) larger than BC_MAX_NUM.
if (SIZE_MAX > (BC_MAX_NUM | 0xff)) {
if (len > BC_MAX_NUM)
RETURN_STATUS(bc_error("number too long: must be [1,"BC_MAX_NUM_STR"]"));
}
bc_vec_pop_all(&l->t.v);
bc_vec_expand(&l->t.v, 1 + len);
bc_vec_push(&l->t.v, &start);
while (ccnt != 0) {
// If we have hit a backslash, skip it. We don't have
// to check for a newline because it's guaranteed.
if (*buf == '\\') {
buf += 2;
ccnt -= 2;
continue;
}
bc_vec_push(&l->t.v, buf);
buf++;
ccnt--;
}
bc_vec_pushZeroByte(&l->t.v);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_lex_number(...) (zbc_lex_number(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static void bc_lex_name(BcLex *l)
{
size_t i;
const char *buf;
l->t.t = BC_LEX_NAME;
i = 0;
buf = l->buf + l->i - 1;
for (;;) {
char c = buf[i];
if ((c < 'a' || c > 'z') && !isdigit(c) && c != '_') break;
i++;
}
#if 0 // We do not protect against people with gigabyte-long names
// This check makes sense only if size_t is (much) larger than BC_MAX_STRING.
if (SIZE_MAX > (BC_MAX_STRING | 0xff)) {
if (i > BC_MAX_STRING)
return bc_error("name too long: must be [1,"BC_MAX_STRING_STR"]");
}
#endif
bc_vec_string(&l->t.v, i, buf);
// Increment the index. We minus 1 because it has already been incremented.
l->i += i - 1;
//return BC_STATUS_SUCCESS;
}
static void bc_lex_init(BcLex *l)
{
bc_char_vec_init(&l->t.v);
}
static void bc_lex_free(BcLex *l)
{
bc_vec_free(&l->t.v);
}
static void bc_lex_file(BcLex *l)
{
G.err_line = l->line = 1;
l->newline = false;
}
IF_BC(static BC_STATUS zbc_lex_token(BcLex *l);)
IF_DC(static BC_STATUS zdc_lex_token(BcLex *l);)
static BC_STATUS zcommon_lex_token(BcLex *l)
{
if (IS_BC) {
IF_BC(RETURN_STATUS(zbc_lex_token(l));)
}
IF_DC(RETURN_STATUS(zdc_lex_token(l));)
}
static bool bc_lex_more_input(BcLex *l)
{
size_t str;
bool comment;
bc_vec_pop_all(&G.stdin_buffer);
// This loop is complex because the vm tries not to send any lines that end
// with a backslash to the parser. The reason for that is because the parser
// treats a backslash+newline combo as whitespace, per the bc spec. In that
// case, and for strings and comments, the parser will expect more stuff.
comment = false;
str = 0;
for (;;) {
size_t prevlen = G.stdin_buffer.len;
char *string;
bc_read_line(&G.stdin_buffer);
// No more input means EOF
if (G.stdin_buffer.len <= prevlen + 1) // (we expect +1 for NUL byte)
break;
string = G.stdin_buffer.v + prevlen;
while (*string) {
char c = *string;
if (string == G.stdin_buffer.v || string[-1] != '\\') {
if (IS_BC)
str ^= (c == '"');
else {
if (c == ']')
str -= 1;
else if (c == '[')
str += 1;
}
}
string++;
if (c == '/' && *string == '*') {
comment = true;
string++;
continue;
}
if (c == '*' && *string == '/') {
comment = false;
string++;
}
}
if (str != 0 || comment) {
G.stdin_buffer.len--; // backstep over the trailing NUL byte
continue;
}
// Check for backslash+newline.
// we do not check that last char is '\n' -
// if it is not, then it's EOF, and looping back
// to bc_read_line() will detect it:
string -= 2;
if (string >= G.stdin_buffer.v && *string == '\\') {
G.stdin_buffer.len--;
continue;
}
break;
}
l->buf = G.stdin_buffer.v;
l->i = 0;
//bb_error_msg("G.stdin_buffer.len:%d '%s'", G.stdin_buffer.len, G.stdin_buffer.v);
l->len = G.stdin_buffer.len - 1; // do not include NUL
G.use_stdin = (l->len != 0);
return G.use_stdin;
}
static BC_STATUS zbc_lex_next(BcLex *l)
{
BcStatus s;
l->t.last = l->t.t;
if (l->t.last == BC_LEX_EOF) RETURN_STATUS(bc_error("end of file"));
l->line += l->newline;
G.err_line = l->line;
l->t.t = BC_LEX_EOF;
//this NL handling is bogus
l->newline = (l->i == l->len);
if (l->newline) {
if (!G.use_stdin || !bc_lex_more_input(l))
RETURN_STATUS(BC_STATUS_SUCCESS);
// here it's guaranteed that l->i is below l->len
l->newline = false;
}
// Loop until failure or we don't have whitespace. This
// is so the parser doesn't get inundated with whitespace.
// Comments are also BC_LEX_WHITESPACE tokens and eaten here.
s = BC_STATUS_SUCCESS;
do {
dbg_lex("next string to parse:'%.*s'",
(int)(strchrnul(l->buf + l->i, '\n') - (l->buf + l->i)),
l->buf + l->i);
ERROR_RETURN(s =) zcommon_lex_token(l);
} while (!s && l->t.t == BC_LEX_WHITESPACE);
dbg_lex("l->t.t from string:%d", l->t.t);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_lex_next(...) (zbc_lex_next(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_lex_skip_if_at_NLINE(BcLex *l)
{
if (l->t.t == BC_LEX_NLINE)
RETURN_STATUS(zbc_lex_next(l));
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_lex_skip_if_at_NLINE(...) (zbc_lex_skip_if_at_NLINE(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_lex_next_and_skip_NLINE(BcLex *l)
{
BcStatus s;
s = zbc_lex_next(l);
if (s) RETURN_STATUS(s);
// if(cond)<newline>stmt is accepted too (but not 2+ newlines)
s = zbc_lex_skip_if_at_NLINE(l);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_lex_next_and_skip_NLINE(...) (zbc_lex_next_and_skip_NLINE(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_lex_text_init(BcLex *l, const char *text)
{
l->buf = text;
l->i = 0;
l->len = strlen(text);
l->t.t = l->t.last = BC_LEX_INVALID;
RETURN_STATUS(zbc_lex_next(l));
}
#if ERRORS_ARE_FATAL
# define zbc_lex_text_init(...) (zbc_lex_text_init(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#if ENABLE_BC
static BC_STATUS zbc_lex_identifier(BcLex *l)
{
BcStatus s;
unsigned i;
const char *buf = l->buf + l->i - 1;
for (i = 0; i < ARRAY_SIZE(bc_lex_kws); ++i) {
const char *keyword8 = bc_lex_kws[i].name8;
unsigned j = 0;
while (buf[j] != '\0' && buf[j] == keyword8[j]) {
j++;
if (j == 8) goto match;
}
if (keyword8[j] != '\0')
continue;
match:
// buf starts with keyword bc_lex_kws[i]
l->t.t = BC_LEX_KEY_1st_keyword + i;
if (!bc_lex_kws_POSIX(i)) {
s = bc_posix_error_fmt("%sthe '%.8s' keyword", "POSIX does not allow ", bc_lex_kws[i].name8);
ERROR_RETURN(if (s) RETURN_STATUS(s);)
}
// We minus 1 because the index has already been incremented.
l->i += j - 1;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
bc_lex_name(l);
if (l->t.v.len > 2) {
// Prevent this:
// >>> qwe=1
// bc: POSIX only allows one character names; the following is bad: 'qwe=1
// '
unsigned len = strchrnul(buf, '\n') - buf;
s = bc_posix_error_fmt("POSIX only allows one character names; the following is bad: '%.*s'", len, buf);
}
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_lex_identifier(...) (zbc_lex_identifier(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_lex_string(BcLex *l)
{
size_t len, nls = 0, i = l->i;
char c;
l->t.t = BC_LEX_STR;
for (c = l->buf[i]; c != 0 && c != '"'; c = l->buf[++i])
nls += (c == '\n');
if (c == '\0') {
l->i = i;
RETURN_STATUS(bc_error("string end could not be found"));
}
len = i - l->i;
// This check makes sense only if size_t is (much) larger than BC_MAX_STRING.
if (SIZE_MAX > (BC_MAX_STRING | 0xff)) {
if (len > BC_MAX_STRING)
RETURN_STATUS(bc_error("string too long: must be [1,"BC_MAX_STRING_STR"]"));
}
bc_vec_string(&l->t.v, len, l->buf + l->i);
l->i = i + 1;
l->line += nls;
G.err_line = l->line;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_lex_string(...) (zbc_lex_string(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static void bc_lex_assign(BcLex *l, unsigned with_and_without)
{
if (l->buf[l->i] == '=') {
++l->i;
with_and_without >>= 8; // store "with" value
} // else store "without" value
l->t.t = (with_and_without & 0xff);
}
#define bc_lex_assign(l, with, without) \
bc_lex_assign(l, ((with)<<8)|(without))
static BC_STATUS zbc_lex_comment(BcLex *l)
{
size_t i, nls = 0;
const char *buf = l->buf;
l->t.t = BC_LEX_WHITESPACE;
i = l->i; /* here buf[l->i] is the '*' of opening comment delimiter */
for (;;) {
char c = buf[++i];
check_star:
if (c == '*') {
c = buf[++i];
if (c == '/')
break;
goto check_star;
}
if (c == '\0') {
l->i = i;
RETURN_STATUS(bc_error("comment end could not be found"));
}
nls += (c == '\n');
}
l->i = i + 1;
l->line += nls;
G.err_line = l->line;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_lex_comment(...) (zbc_lex_comment(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_lex_token(BcLex *l)
{
BcStatus s = BC_STATUS_SUCCESS;
char c = l->buf[l->i++], c2;
// This is the workhorse of the lexer.
switch (c) {
case '\0': // probably never reached
l->i--;
l->t.t = BC_LEX_EOF;
l->newline = true;
break;
case '\n':
l->t.t = BC_LEX_NLINE;
l->newline = true;
break;
case '\t':
case '\v':
case '\f':
case '\r':
case ' ':
bc_lex_whitespace(l);
break;
case '!':
bc_lex_assign(l, BC_LEX_OP_REL_NE, BC_LEX_OP_BOOL_NOT);
if (l->t.t == BC_LEX_OP_BOOL_NOT) {
s = bc_POSIX_does_not_allow_bool_ops_this_is_bad("!");
ERROR_RETURN(if (s) RETURN_STATUS(s);)
}
break;
case '"':
s = zbc_lex_string(l);
break;
case '#':
s = bc_POSIX_does_not_allow("'#' script comments");
ERROR_RETURN(if (s) RETURN_STATUS(s);)
bc_lex_lineComment(l);
break;
case '%':
bc_lex_assign(l, BC_LEX_OP_ASSIGN_MODULUS, BC_LEX_OP_MODULUS);
break;
case '&':
c2 = l->buf[l->i];
if (c2 == '&') {
s = bc_POSIX_does_not_allow_bool_ops_this_is_bad("&&");
ERROR_RETURN(if (s) RETURN_STATUS(s);)
++l->i;
l->t.t = BC_LEX_OP_BOOL_AND;
} else {
l->t.t = BC_LEX_INVALID;
s = bc_error_bad_character('&');
}
break;
case '(':
case ')':
l->t.t = (BcLexType)(c - '(' + BC_LEX_LPAREN);
break;
case '*':
bc_lex_assign(l, BC_LEX_OP_ASSIGN_MULTIPLY, BC_LEX_OP_MULTIPLY);
break;
case '+':
c2 = l->buf[l->i];
if (c2 == '+') {
++l->i;
l->t.t = BC_LEX_OP_INC;
} else
bc_lex_assign(l, BC_LEX_OP_ASSIGN_PLUS, BC_LEX_OP_PLUS);
break;
case ',':
l->t.t = BC_LEX_COMMA;
break;
case '-':
c2 = l->buf[l->i];
if (c2 == '-') {
++l->i;
l->t.t = BC_LEX_OP_DEC;
} else
bc_lex_assign(l, BC_LEX_OP_ASSIGN_MINUS, BC_LEX_OP_MINUS);
break;
case '.':
if (isdigit(l->buf[l->i]))
s = zbc_lex_number(l, c);
else {
l->t.t = BC_LEX_KEY_LAST;
s = bc_POSIX_does_not_allow("a period ('.') as a shortcut for the last result");
}
break;
case '/':
c2 = l->buf[l->i];
if (c2 == '*')
s = zbc_lex_comment(l);
else
bc_lex_assign(l, BC_LEX_OP_ASSIGN_DIVIDE, BC_LEX_OP_DIVIDE);
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
s = zbc_lex_number(l, c);
break;
case ';':
l->t.t = BC_LEX_SCOLON;
break;
case '<':
bc_lex_assign(l, BC_LEX_OP_REL_LE, BC_LEX_OP_REL_LT);
break;
case '=':
bc_lex_assign(l, BC_LEX_OP_REL_EQ, BC_LEX_OP_ASSIGN);
break;
case '>':
bc_lex_assign(l, BC_LEX_OP_REL_GE, BC_LEX_OP_REL_GT);
break;
case '[':
case ']':
l->t.t = (BcLexType)(c - '[' + BC_LEX_LBRACKET);
break;
case '\\':
if (l->buf[l->i] == '\n') {
l->t.t = BC_LEX_WHITESPACE;
++l->i;
} else
s = bc_error_bad_character(c);
break;
case '^':
bc_lex_assign(l, BC_LEX_OP_ASSIGN_POWER, BC_LEX_OP_POWER);
break;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
case 'g':
case 'h':
case 'i':
case 'j':
case 'k':
case 'l':
case 'm':
case 'n':
case 'o':
case 'p':
case 'q':
case 'r':
case 's':
case 't':
case 'u':
case 'v':
case 'w':
case 'x':
case 'y':
case 'z':
s = zbc_lex_identifier(l);
break;
case '{':
case '}':
l->t.t = (BcLexType)(c - '{' + BC_LEX_LBRACE);
break;
case '|':
c2 = l->buf[l->i];
if (c2 == '|') {
s = bc_POSIX_does_not_allow_bool_ops_this_is_bad("||");
ERROR_RETURN(if (s) RETURN_STATUS(s);)
++l->i;
l->t.t = BC_LEX_OP_BOOL_OR;
} else {
l->t.t = BC_LEX_INVALID;
s = bc_error_bad_character(c);
}
break;
default:
l->t.t = BC_LEX_INVALID;
s = bc_error_bad_character(c);
break;
}
RETURN_STATUS(s);
}
#endif // ENABLE_BC
#if ENABLE_DC
static BC_STATUS zdc_lex_register(BcLex *l)
{
if (isspace(l->buf[l->i - 1])) {
bc_lex_whitespace(l);
++l->i;
if (!G_exreg)
RETURN_STATUS(bc_error("extended register"));
bc_lex_name(l);
}
else {
bc_vec_pop_all(&l->t.v);
bc_vec_push(&l->t.v, &l->buf[l->i - 1]);
bc_vec_pushZeroByte(&l->t.v);
l->t.t = BC_LEX_NAME;
}
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zdc_lex_register(...) (zdc_lex_register(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zdc_lex_string(BcLex *l)
{
size_t depth = 1, nls = 0, i = l->i;
char c;
l->t.t = BC_LEX_STR;
bc_vec_pop_all(&l->t.v);
for (c = l->buf[i]; c != 0 && depth; c = l->buf[++i]) {
depth += (c == '[' && (i == l->i || l->buf[i - 1] != '\\'));
depth -= (c == ']' && (i == l->i || l->buf[i - 1] != '\\'));
nls += (c == '\n');
if (depth) bc_vec_push(&l->t.v, &c);
}
if (c == '\0') {
l->i = i;
RETURN_STATUS(bc_error("string end could not be found"));
}
bc_vec_pushZeroByte(&l->t.v);
// This check makes sense only if size_t is (much) larger than BC_MAX_STRING.
if (SIZE_MAX > (BC_MAX_STRING | 0xff)) {
if (i - l->i > BC_MAX_STRING)
RETURN_STATUS(bc_error("string too long: must be [1,"BC_MAX_STRING_STR"]"));
}
l->i = i;
l->line += nls;
G.err_line = l->line;
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zdc_lex_string(...) (zdc_lex_string(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zdc_lex_token(BcLex *l)
{
BcStatus s = BC_STATUS_SUCCESS;
char c = l->buf[l->i++], c2;
size_t i;
for (i = 0; i < ARRAY_SIZE(dc_lex_regs); ++i) {
if (l->t.last == dc_lex_regs[i])
RETURN_STATUS(zdc_lex_register(l));
}
if (c >= '%' && c <= '~'
&& (l->t.t = dc_lex_tokens[(c - '%')]) != BC_LEX_INVALID
) {
RETURN_STATUS(s);
}
// This is the workhorse of the lexer.
switch (c) {
case '\0':
l->t.t = BC_LEX_EOF;
break;
case '\n':
case '\t':
case '\v':
case '\f':
case '\r':
case ' ':
l->newline = (c == '\n');
bc_lex_whitespace(l);
break;
case '!':
c2 = l->buf[l->i];
if (c2 == '=')
l->t.t = BC_LEX_OP_REL_NE;
else if (c2 == '<')
l->t.t = BC_LEX_OP_REL_LE;
else if (c2 == '>')
l->t.t = BC_LEX_OP_REL_GE;
else
RETURN_STATUS(bc_error_bad_character(c));
++l->i;
break;
case '#':
bc_lex_lineComment(l);
break;
case '.':
if (isdigit(l->buf[l->i]))
s = zbc_lex_number(l, c);
else
s = bc_error_bad_character(c);
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
s = zbc_lex_number(l, c);
break;
case '[':
s = zdc_lex_string(l);
break;
default:
l->t.t = BC_LEX_INVALID;
s = bc_error_bad_character(c);
break;
}
RETURN_STATUS(s);
}
#endif // ENABLE_DC
static void bc_program_addFunc(char *name, size_t *idx);
static void bc_parse_addFunc(BcParse *p, char *name, size_t *idx)
{
bc_program_addFunc(name, idx);
p->func = bc_program_func(p->fidx);
}
static void bc_parse_push(BcParse *p, char i)
{
dbg_lex("%s:%d pushing opcode %d", __func__, __LINE__, i);
bc_vec_pushByte(&p->func->code, i);
}
static void bc_parse_pushName(BcParse *p, char *name)
{
while (*name)
bc_parse_push(p, *name++);
bc_parse_push(p, BC_PARSE_STREND);
}
static void bc_parse_pushIndex(BcParse *p, size_t idx)
{
size_t mask;
unsigned amt;
dbg_lex("%s:%d pushing index %d", __func__, __LINE__, idx);
mask = ((size_t)0xff) << (sizeof(idx) * 8 - 8);
amt = sizeof(idx);
do {
if (idx & mask) break;
mask >>= 8;
amt--;
} while (amt != 0);
bc_parse_push(p, amt);
while (idx != 0) {
bc_parse_push(p, (unsigned char)idx);
idx >>= 8;
}
}
static void bc_parse_number(BcParse *p)
{
char *num = xstrdup(p->l.t.v.v);
size_t idx = G.prog.consts.len;
bc_vec_push(&G.prog.consts, &num);
bc_parse_push(p, BC_INST_NUM);
bc_parse_pushIndex(p, idx);
}
IF_BC(static BC_STATUS zbc_parse_stmt_or_funcdef(BcParse *p);)
IF_DC(static BC_STATUS zdc_parse_parse(BcParse *p);)
static BC_STATUS zcommon_parse(BcParse *p)
{
if (IS_BC) {
IF_BC(RETURN_STATUS(zbc_parse_stmt_or_funcdef(p));)
}
IF_DC(RETURN_STATUS(zdc_parse_parse(p));)
}
static BC_STATUS zbc_parse_text_init(BcParse *p, const char *text)
{
p->func = bc_program_func(p->fidx);
RETURN_STATUS(zbc_lex_text_init(&p->l, text));
}
#if ERRORS_ARE_FATAL
# define zbc_parse_text_init(...) (zbc_parse_text_init(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
// Called when parsing or execution detects a failure,
// resets execution structures.
static void bc_program_reset(void)
{
BcFunc *f;
BcInstPtr *ip;
bc_vec_npop(&G.prog.stack, G.prog.stack.len - 1);
bc_vec_pop_all(&G.prog.results);
f = bc_program_func(0);
ip = bc_vec_top(&G.prog.stack);
ip->idx = f->code.len;
}
#define bc_parse_updateFunc(p, f) \
((p)->func = bc_program_func((p)->fidx = (f)))
// Called when zbc/zdc_parse_parse() detects a failure,
// resets parsing structures.
static void bc_parse_reset(BcParse *p)
{
if (p->fidx != BC_PROG_MAIN) {
p->func->nparams = 0;
bc_vec_pop_all(&p->func->code);
bc_vec_pop_all(&p->func->autos);
bc_vec_pop_all(&p->func->labels);
bc_parse_updateFunc(p, BC_PROG_MAIN);
}
p->l.i = p->l.len;
p->l.t.t = BC_LEX_EOF;
bc_vec_pop_all(&p->exits);
bc_vec_pop_all(&p->conds);
bc_vec_pop_all(&p->ops);
bc_program_reset();
}
static void bc_parse_free(BcParse *p)
{
bc_vec_free(&p->exits);
bc_vec_free(&p->conds);
bc_vec_free(&p->ops);
bc_lex_free(&p->l);
}
static void bc_parse_create(BcParse *p, size_t func)
{
memset(p, 0, sizeof(BcParse));
bc_lex_init(&p->l);
bc_vec_init(&p->exits, sizeof(BcInstPtr), NULL);
bc_vec_init(&p->conds, sizeof(size_t), NULL);
bc_vec_init(&p->ops, sizeof(BcLexType), NULL);
bc_parse_updateFunc(p, func);
}
#if ENABLE_BC
#define BC_PARSE_TOP_OP(p) (*((BcLexType *) bc_vec_top(&(p)->ops)))
#define BC_PARSE_LEAF(p, rparen) \
(((p) >= BC_INST_NUM && (p) <= BC_INST_SQRT) || (rparen) || \
(p) == BC_INST_INC_POST || (p) == BC_INST_DEC_POST)
// We can calculate the conversion between tokens and exprs by subtracting the
// position of the first operator in the lex enum and adding the position of the
// first in the expr enum. Note: This only works for binary operators.
#define BC_TOKEN_2_INST(t) ((char) ((t) - BC_LEX_NEG + BC_INST_NEG))
static BC_STATUS zbc_parse_stmt_possibly_auto(BcParse *p, bool auto_allowed);
static BC_STATUS zbc_parse_expr(BcParse *p, uint8_t flags, BcParseNext next);
static BcStatus bc_parse_expr_empty_ok(BcParse *p, uint8_t flags, BcParseNext next);
#if ERRORS_ARE_FATAL
# define zbc_parse_expr(...) (zbc_parse_expr(__VA_ARGS__), BC_STATUS_SUCCESS)
# defone zbc_parse_stmt_possibly_auto(...) (zbc_parse_stmt_possibly_auto(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_stmt(BcParse *p)
{
RETURN_STATUS(zbc_parse_stmt_possibly_auto(p, false));
}
#if ERRORS_ARE_FATAL
# define zbc_parse_stmt(...) (zbc_parse_stmt(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static void bc_parse_operator(BcParse *p, BcLexType type, size_t start,
size_t *nexprs)
{
char l, r = bc_parse_op_PREC(type - BC_LEX_OP_INC);
bool left = bc_parse_op_LEFT(type - BC_LEX_OP_INC);
while (p->ops.len > start) {
BcLexType t = BC_PARSE_TOP_OP(p);
if (t == BC_LEX_LPAREN) break;
l = bc_parse_op_PREC(t - BC_LEX_OP_INC);
if (l >= r && (l != r || !left)) break;
bc_parse_push(p, BC_TOKEN_2_INST(t));
bc_vec_pop(&p->ops);
*nexprs -= (t != BC_LEX_OP_BOOL_NOT && t != BC_LEX_NEG);
}
bc_vec_push(&p->ops, &type);
}
static BC_STATUS zbc_parse_rightParen(BcParse *p, size_t ops_bgn, size_t *nexs)
{
BcLexType top;
if (p->ops.len <= ops_bgn)
RETURN_STATUS(bc_error_bad_expression());
top = BC_PARSE_TOP_OP(p);
while (top != BC_LEX_LPAREN) {
bc_parse_push(p, BC_TOKEN_2_INST(top));
bc_vec_pop(&p->ops);
*nexs -= top != BC_LEX_OP_BOOL_NOT && top != BC_LEX_NEG;
if (p->ops.len <= ops_bgn)
RETURN_STATUS(bc_error_bad_expression());
top = BC_PARSE_TOP_OP(p);
}
bc_vec_pop(&p->ops);
RETURN_STATUS(zbc_lex_next(&p->l));
}
#if ERRORS_ARE_FATAL
# define zbc_parse_rightParen(...) (zbc_parse_rightParen(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_params(BcParse *p, uint8_t flags)
{
BcStatus s;
bool comma = false;
size_t nparams;
dbg_lex("%s:%d p->l.t.t:%d", __func__, __LINE__, p->l.t.t);
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
for (nparams = 0; p->l.t.t != BC_LEX_RPAREN; ++nparams) {
flags = (flags & ~(BC_PARSE_PRINT | BC_PARSE_REL)) | BC_PARSE_ARRAY;
s = zbc_parse_expr(p, flags, bc_parse_next_param);
if (s) RETURN_STATUS(s);
comma = p->l.t.t == BC_LEX_COMMA;
if (comma) {
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
}
}
if (comma) RETURN_STATUS(bc_error_bad_token());
bc_parse_push(p, BC_INST_CALL);
bc_parse_pushIndex(p, nparams);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_params(...) (zbc_parse_params(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_call(BcParse *p, char *name, uint8_t flags)
{
BcStatus s;
BcId entry, *entry_ptr;
size_t idx;
entry.name = name;
s = zbc_parse_params(p, flags);
if (s) goto err;
if (p->l.t.t != BC_LEX_RPAREN) {
s = bc_error_bad_token();
goto err;
}
idx = bc_map_index(&G.prog.fn_map, &entry);
if (idx == BC_VEC_INVALID_IDX) {
name = xstrdup(entry.name);
bc_parse_addFunc(p, name, &idx);
idx = bc_map_index(&G.prog.fn_map, &entry);
free(entry.name);
} else
free(name);
entry_ptr = bc_vec_item(&G.prog.fn_map, idx);
bc_parse_pushIndex(p, entry_ptr->idx);
RETURN_STATUS(zbc_lex_next(&p->l));
err:
free(name);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_call(...) (zbc_parse_call(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_name(BcParse *p, BcInst *type, uint8_t flags)
{
BcStatus s;
char *name;
name = xstrdup(p->l.t.v.v);
s = zbc_lex_next(&p->l);
if (s) goto err;
if (p->l.t.t == BC_LEX_LBRACKET) {
s = zbc_lex_next(&p->l);
if (s) goto err;
if (p->l.t.t == BC_LEX_RBRACKET) {
if (!(flags & BC_PARSE_ARRAY)) {
s = bc_error_bad_expression();
goto err;
}
*type = BC_INST_ARRAY;
} else {
*type = BC_INST_ARRAY_ELEM;
flags &= ~(BC_PARSE_PRINT | BC_PARSE_REL);
s = zbc_parse_expr(p, flags, bc_parse_next_elem);
if (s) goto err;
}
s = zbc_lex_next(&p->l);
if (s) goto err;
bc_parse_push(p, *type);
bc_parse_pushName(p, name);
free(name);
}
else if (p->l.t.t == BC_LEX_LPAREN) {
if (flags & BC_PARSE_NOCALL) {
s = bc_error_bad_token();
goto err;
}
*type = BC_INST_CALL;
s = zbc_parse_call(p, name, flags);
} else {
*type = BC_INST_VAR;
bc_parse_push(p, BC_INST_VAR);
bc_parse_pushName(p, name);
free(name);
}
RETURN_STATUS(s);
err:
free(name);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_name(...) (zbc_parse_name(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_read(BcParse *p)
{
BcStatus s;
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token());
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token());
bc_parse_push(p, BC_INST_READ);
RETURN_STATUS(zbc_lex_next(&p->l));
}
#if ERRORS_ARE_FATAL
# define zbc_parse_read(...) (zbc_parse_read(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_builtin(BcParse *p, BcLexType type, uint8_t flags,
BcInst *prev)
{
BcStatus s;
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token());
flags = (flags & ~(BC_PARSE_PRINT | BC_PARSE_REL)) | BC_PARSE_ARRAY;
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
s = zbc_parse_expr(p, flags, bc_parse_next_rel);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token());
*prev = (type == BC_LEX_KEY_LENGTH) ? BC_INST_LENGTH : BC_INST_SQRT;
bc_parse_push(p, *prev);
RETURN_STATUS(zbc_lex_next(&p->l));
}
#if ERRORS_ARE_FATAL
# define zbc_parse_builtin(...) (zbc_parse_builtin(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_scale(BcParse *p, BcInst *type, uint8_t flags)
{
BcStatus s;
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_LPAREN) {
*type = BC_INST_SCALE;
bc_parse_push(p, BC_INST_SCALE);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
*type = BC_INST_SCALE_FUNC;
flags &= ~(BC_PARSE_PRINT | BC_PARSE_REL);
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
s = zbc_parse_expr(p, flags, bc_parse_next_rel);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_RPAREN)
RETURN_STATUS(bc_error_bad_token());
bc_parse_push(p, BC_INST_SCALE_FUNC);
RETURN_STATUS(zbc_lex_next(&p->l));
}
#if ERRORS_ARE_FATAL
# define zbc_parse_scale(...) (zbc_parse_scale(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_incdec(BcParse *p, BcInst *prev, bool *paren_expr,
size_t *nexprs, uint8_t flags)
{
BcStatus s;
BcLexType type;
char inst;
BcInst etype = *prev;
if (etype == BC_INST_VAR || etype == BC_INST_ARRAY_ELEM ||
etype == BC_INST_SCALE || etype == BC_INST_LAST ||
etype == BC_INST_IBASE || etype == BC_INST_OBASE)
{
*prev = inst = BC_INST_INC_POST + (p->l.t.t != BC_LEX_OP_INC);
bc_parse_push(p, inst);
s = zbc_lex_next(&p->l);
}
else {
*prev = inst = BC_INST_INC_PRE + (p->l.t.t != BC_LEX_OP_INC);
*paren_expr = true;
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
type = p->l.t.t;
// Because we parse the next part of the expression
// right here, we need to increment this.
*nexprs = *nexprs + 1;
switch (type) {
case BC_LEX_NAME:
s = zbc_parse_name(p, prev, flags | BC_PARSE_NOCALL);
break;
case BC_LEX_KEY_IBASE:
case BC_LEX_KEY_LAST:
case BC_LEX_KEY_OBASE:
bc_parse_push(p, type - BC_LEX_KEY_IBASE + BC_INST_IBASE);
s = zbc_lex_next(&p->l);
break;
case BC_LEX_KEY_SCALE:
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t == BC_LEX_LPAREN)
s = bc_error_bad_token();
else
bc_parse_push(p, BC_INST_SCALE);
break;
default:
s = bc_error_bad_token();
break;
}
if (!s) bc_parse_push(p, inst);
}
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_incdec(...) (zbc_parse_incdec(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_minus(BcParse *p, BcInst *prev, size_t ops_bgn,
bool rparen, size_t *nexprs)
{
BcStatus s;
BcLexType type;
BcInst etype = *prev;
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
type = rparen || etype == BC_INST_INC_POST || etype == BC_INST_DEC_POST ||
(etype >= BC_INST_NUM && etype <= BC_INST_SQRT) ?
BC_LEX_OP_MINUS :
BC_LEX_NEG;
*prev = BC_TOKEN_2_INST(type);
// We can just push onto the op stack because this is the largest
// precedence operator that gets pushed. Inc/dec does not.
if (type != BC_LEX_OP_MINUS)
bc_vec_push(&p->ops, &type);
else
bc_parse_operator(p, type, ops_bgn, nexprs);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_minus(...) (zbc_parse_minus(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_string(BcParse *p, char inst)
{
char *str = xstrdup(p->l.t.v.v);
bc_parse_push(p, BC_INST_STR);
bc_parse_pushIndex(p, G.prog.strs.len);
bc_vec_push(&G.prog.strs, &str);
bc_parse_push(p, inst);
RETURN_STATUS(zbc_lex_next(&p->l));
}
#if ERRORS_ARE_FATAL
# define zbc_parse_string(...) (zbc_parse_string(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_print(BcParse *p)
{
BcStatus s;
BcLexType type;
bool comma;
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
type = p->l.t.t;
if (type == BC_LEX_SCOLON || type == BC_LEX_NLINE)
RETURN_STATUS(bc_error("bad print statement"));
comma = false;
while (type != BC_LEX_SCOLON && type != BC_LEX_NLINE) {
if (type == BC_LEX_STR) {
s = zbc_parse_string(p, BC_INST_PRINT_POP);
if (s) RETURN_STATUS(s);
} else {
s = zbc_parse_expr(p, 0, bc_parse_next_print);
if (s) RETURN_STATUS(s);
bc_parse_push(p, BC_INST_PRINT_POP);
}
comma = p->l.t.t == BC_LEX_COMMA;
if (comma) {
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
}
type = p->l.t.t;
}
if (comma) RETURN_STATUS(bc_error_bad_token());
RETURN_STATUS(zbc_lex_next(&p->l));
}
#if ERRORS_ARE_FATAL
# define zbc_parse_print(...) (zbc_parse_print(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_return(BcParse *p)
{
BcStatus s;
BcLexType t;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
t = p->l.t.t;
if (t == BC_LEX_NLINE || t == BC_LEX_SCOLON)
bc_parse_push(p, BC_INST_RET0);
else {
bool paren = (t == BC_LEX_LPAREN);
s = bc_parse_expr_empty_ok(p, 0, bc_parse_next_expr);
if (s == BC_STATUS_PARSE_EMPTY_EXP) {
bc_parse_push(p, BC_INST_RET0);
s = zbc_lex_next(&p->l);
}
if (s) RETURN_STATUS(s);
if (!paren || p->l.t.last != BC_LEX_RPAREN) {
s = bc_POSIX_requires("parentheses around return expressions");
ERROR_RETURN(if (s) RETURN_STATUS(s);)
}
bc_parse_push(p, BC_INST_RET);
}
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_return(...) (zbc_parse_return(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_if(BcParse *p)
{
BcStatus s;
BcInstPtr ip;
BcInstPtr *ipp;
size_t *label;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token());
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
s = zbc_parse_expr(p, BC_PARSE_REL, bc_parse_next_rel);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token());
// if(cond)<newline>stmt is accepted too (but not 2+ newlines)
s = zbc_lex_next_and_skip_NLINE(&p->l);
if (s) RETURN_STATUS(s);
bc_parse_push(p, BC_INST_JUMP_ZERO);
ip.idx = p->func->labels.len;
ip.func = ip.len = 0;
bc_parse_pushIndex(p, ip.idx);
//TODO: can get rid of p->exits stack?
bc_vec_push(&p->exits, &ip);
bc_vec_push(&p->func->labels, &ip.idx);
s = zbc_parse_stmt(p);
if (s) RETURN_STATUS(s);
dbg_lex("%s:%d in if after stmt: p->l.t.t:%d", __func__, __LINE__, p->l.t.t);
if (p->l.t.t == BC_LEX_KEY_ELSE) {
s = zbc_lex_next_and_skip_NLINE(&p->l);
if (s) RETURN_STATUS(s);
ip.idx = p->func->labels.len;
ip.func = ip.len = 0;
dbg_lex("%s:%d after if() body: BC_INST_JUMP to %d", __func__, __LINE__, ip.idx);
bc_parse_push(p, BC_INST_JUMP);
bc_parse_pushIndex(p, ip.idx);
ipp = bc_vec_top(&p->exits);
label = bc_vec_item(&p->func->labels, ipp->idx);
dbg_lex("%s:%d rewriting label: %d -> %d", __func__, __LINE__, *label, p->func->code.len);
*label = p->func->code.len;
bc_vec_pop(&p->exits);
bc_vec_push(&p->exits, &ip);
bc_vec_push(&p->func->labels, &ip.idx);
s = zbc_parse_stmt(p);
if (s) RETURN_STATUS(s);
}
ipp = bc_vec_top(&p->exits);
label = bc_vec_item(&p->func->labels, ipp->idx);
dbg_lex("%s:%d rewriting label: %d -> %d", __func__, __LINE__, *label, p->func->code.len);
*label = p->func->code.len;
bc_vec_pop(&p->exits);
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_if(...) (zbc_parse_if(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_while(BcParse *p)
{
BcStatus s;
BcInstPtr ip;
BcInstPtr *ipp;
size_t *label;
size_t n;
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token());
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
ip.idx = p->func->labels.len;
bc_vec_push(&p->func->labels, &p->func->code.len);
bc_vec_push(&p->conds, &ip.idx);
ip.idx = p->func->labels.len;
ip.func = 1;
ip.len = 0;
bc_vec_push(&p->exits, &ip);
bc_vec_push(&p->func->labels, &ip.idx);
s = zbc_parse_expr(p, BC_PARSE_REL, bc_parse_next_rel);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token());
// while(cond)<newline>stmt is accepted too
s = zbc_lex_next_and_skip_NLINE(&p->l);
if (s) RETURN_STATUS(s);
bc_parse_push(p, BC_INST_JUMP_ZERO);
bc_parse_pushIndex(p, ip.idx);
//TODO: diagnose "while(cond)<newline><newline>"? Now it is seen as "while() with empty body"
s = zbc_parse_stmt(p);
if (s) RETURN_STATUS(s);
n = *((size_t *) bc_vec_top(&p->conds));
bc_parse_push(p, BC_INST_JUMP);
bc_parse_pushIndex(p, n);
ipp = bc_vec_top(&p->exits);
label = bc_vec_top(&p->conds);
dbg_lex("%s:%d BC_INST_JUMP to %d", __func__, __LINE__, *label);
bc_parse_push(p, BC_INST_JUMP);
bc_parse_pushIndex(p, *label);
label = bc_vec_item(&p->func->labels, ipp->idx);
dbg_lex("%s:%d rewriting label: %d -> %d", __func__, __LINE__, *label, p->func->code.len);
*label = p->func->code.len;
bc_vec_pop(&p->exits);
bc_vec_pop(&p->conds);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_while(...) (zbc_parse_while(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_for(BcParse *p)
{
BcStatus s;
BcInstPtr ip;
BcInstPtr *ipp;
size_t *label;
size_t cond_idx, exit_idx, body_idx, update_idx;
size_t n;
dbg_lex("%s:%d p->l.t.t:%d", __func__, __LINE__, p->l.t.t);
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token());
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_SCOLON)
s = zbc_parse_expr(p, 0, bc_parse_next_for);
else
s = bc_POSIX_does_not_allow_empty_X_expression_in_for("init");
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_SCOLON) RETURN_STATUS(bc_error_bad_token());
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
cond_idx = p->func->labels.len;
update_idx = cond_idx + 1;
body_idx = update_idx + 1;
exit_idx = body_idx + 1;
bc_vec_push(&p->func->labels, &p->func->code.len);
if (p->l.t.t != BC_LEX_SCOLON)
s = zbc_parse_expr(p, BC_PARSE_REL, bc_parse_next_for);
else
s = bc_POSIX_does_not_allow_empty_X_expression_in_for("condition");
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_SCOLON) RETURN_STATUS(bc_error_bad_token());
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
bc_parse_push(p, BC_INST_JUMP_ZERO);
bc_parse_pushIndex(p, exit_idx);
bc_parse_push(p, BC_INST_JUMP);
bc_parse_pushIndex(p, body_idx);
ip.idx = p->func->labels.len;
bc_vec_push(&p->conds, &update_idx);
bc_vec_push(&p->func->labels, &p->func->code.len);
if (p->l.t.t != BC_LEX_RPAREN)
s = zbc_parse_expr(p, 0, bc_parse_next_rel);
else
s = bc_POSIX_does_not_allow_empty_X_expression_in_for("update");
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token());
bc_parse_push(p, BC_INST_JUMP);
bc_parse_pushIndex(p, cond_idx);
bc_vec_push(&p->func->labels, &p->func->code.len);
ip.idx = exit_idx;
ip.func = 1;
ip.len = 0;
bc_vec_push(&p->exits, &ip);
bc_vec_push(&p->func->labels, &ip.idx);
// for(...)<newline>stmt is accepted as well
s = zbc_lex_next_and_skip_NLINE(&p->l);
if (s) RETURN_STATUS(s);
s = zbc_parse_stmt(p);
if (s) RETURN_STATUS(s);
n = *((size_t *) bc_vec_top(&p->conds));
bc_parse_push(p, BC_INST_JUMP);
bc_parse_pushIndex(p, n);
ipp = bc_vec_top(&p->exits);
label = bc_vec_top(&p->conds);
//TODO: commonalize?
dbg_lex("%s:%d BC_INST_JUMP to %d", __func__, __LINE__, *label);
bc_parse_push(p, BC_INST_JUMP);
bc_parse_pushIndex(p, *label);
label = bc_vec_item(&p->func->labels, ipp->idx);
dbg_lex("%s:%d rewriting label: %d -> %d", __func__, __LINE__, *label, p->func->code.len);
*label = p->func->code.len;
bc_vec_pop(&p->exits);
bc_vec_pop(&p->conds);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_for(...) (zbc_parse_for(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_break_or_continue(BcParse *p, BcLexType type)
{
BcStatus s;
size_t i;
if (type == BC_LEX_KEY_BREAK) {
BcInstPtr *ipp;
i = p->exits.len;
for (;;) {
if (i == 0) // none of the enclosing blocks is a loop
RETURN_STATUS(bc_error_bad_token());
ipp = bc_vec_item(&p->exits, --i);
if (ipp->func != 0)
break;
}
i = ipp->idx;
}
else
i = *((size_t *) bc_vec_top(&p->conds));
bc_parse_push(p, BC_INST_JUMP);
bc_parse_pushIndex(p, i);
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_SCOLON && p->l.t.t != BC_LEX_NLINE)
RETURN_STATUS(bc_error_bad_token());
RETURN_STATUS(zbc_lex_next(&p->l));
}
#if ERRORS_ARE_FATAL
# define zbc_parse_break_or_continue(...) (zbc_parse_break_or_continue(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_funcdef(BcParse *p)
{
BcStatus s;
bool var, comma = false;
char *name;
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_NAME)
RETURN_STATUS(bc_error("bad function definition"));
name = xstrdup(p->l.t.v.v);
bc_parse_addFunc(p, name, &p->fidx);
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_LPAREN)
RETURN_STATUS(bc_error("bad function definition"));
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
while (p->l.t.t != BC_LEX_RPAREN) {
if (p->l.t.t != BC_LEX_NAME)
RETURN_STATUS(bc_error("bad function definition"));
++p->func->nparams;
name = xstrdup(p->l.t.v.v);
s = zbc_lex_next(&p->l);
if (s) goto err;
var = p->l.t.t != BC_LEX_LBRACKET;
if (!var) {
s = zbc_lex_next(&p->l);
if (s) goto err;
if (p->l.t.t != BC_LEX_RBRACKET) {
s = bc_error("bad function definition");
goto err;
}
s = zbc_lex_next(&p->l);
if (s) goto err;
}
comma = p->l.t.t == BC_LEX_COMMA;
if (comma) {
s = zbc_lex_next(&p->l);
if (s) goto err;
}
s = zbc_func_insert(p->func, name, var);
if (s) goto err;
}
if (comma) RETURN_STATUS(bc_error("bad function definition"));
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_LBRACE)
s = bc_POSIX_requires("the left brace be on the same line as the function header");
// Prevent "define z()<newline>" from being interpreted as function with empty stmt as body
s = zbc_lex_skip_if_at_NLINE(&p->l);
if (s) RETURN_STATUS(s);
//TODO: GNU bc requires a {} block even if function body has single stmt, enforce this?
p->in_funcdef++; // to determine whether "return" stmt is allowed, and such
s = zbc_parse_stmt_possibly_auto(p, true);
p->in_funcdef--;
if (s) RETURN_STATUS(s);
bc_parse_push(p, BC_INST_RET0);
bc_parse_updateFunc(p, BC_PROG_MAIN);
RETURN_STATUS(s);
err:
free(name);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_funcdef(...) (zbc_parse_funcdef(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_auto(BcParse *p)
{
BcStatus s;
bool comma, var, one;
char *name;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
comma = false;
one = p->l.t.t == BC_LEX_NAME;
while (p->l.t.t == BC_LEX_NAME) {
name = xstrdup(p->l.t.v.v);
s = zbc_lex_next(&p->l);
if (s) goto err;
var = p->l.t.t != BC_LEX_LBRACKET;
if (!var) {
s = zbc_lex_next(&p->l);
if (s) goto err;
if (p->l.t.t != BC_LEX_RBRACKET) {
s = bc_error("bad function definition");
goto err;
}
s = zbc_lex_next(&p->l);
if (s) goto err;
}
comma = p->l.t.t == BC_LEX_COMMA;
if (comma) {
s = zbc_lex_next(&p->l);
if (s) goto err;
}
s = zbc_func_insert(p->func, name, var);
if (s) goto err;
}
if (comma) RETURN_STATUS(bc_error("bad function definition"));
if (!one) RETURN_STATUS(bc_error("no auto variable found"));
if (p->l.t.t != BC_LEX_NLINE && p->l.t.t != BC_LEX_SCOLON)
RETURN_STATUS(bc_error_bad_token());
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(zbc_lex_next(&p->l));
err:
free(name);
dbg_lex_done("%s:%d done (ERROR)", __func__, __LINE__);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_auto(...) (zbc_parse_auto(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#undef zbc_parse_stmt_possibly_auto
static BC_STATUS zbc_parse_stmt_possibly_auto(BcParse *p, bool auto_allowed)
{
BcStatus s = BC_STATUS_SUCCESS;
dbg_lex_enter("%s:%d entered, p->l.t.t:%d", __func__, __LINE__, p->l.t.t);
if (p->l.t.t == BC_LEX_NLINE) {
dbg_lex_done("%s:%d done (seen BC_LEX_NLINE)", __func__, __LINE__);
RETURN_STATUS(zbc_lex_next(&p->l));
}
if (p->l.t.t == BC_LEX_SCOLON) {
dbg_lex_done("%s:%d done (seen BC_LEX_SCOLON)", __func__, __LINE__);
RETURN_STATUS(zbc_lex_next(&p->l));
}
if (p->l.t.t == BC_LEX_LBRACE) {
dbg_lex("%s:%d BC_LEX_LBRACE: (auto_allowed:%d)", __func__, __LINE__, auto_allowed);
do {
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
} while (p->l.t.t == BC_LEX_NLINE);
if (auto_allowed && p->l.t.t == BC_LEX_KEY_AUTO) {
dbg_lex("%s:%d calling zbc_parse_auto()", __func__, __LINE__);
s = zbc_parse_auto(p);
if (s) RETURN_STATUS(s);
}
while (p->l.t.t != BC_LEX_RBRACE) {
dbg_lex("%s:%d block parsing loop", __func__, __LINE__);
s = zbc_parse_stmt(p);
if (s) RETURN_STATUS(s);
}
s = zbc_lex_next(&p->l);
dbg_lex_done("%s:%d done (seen BC_LEX_RBRACE)", __func__, __LINE__);
RETURN_STATUS(s);
}
dbg_lex("%s:%d p->l.t.t:%d", __func__, __LINE__, p->l.t.t);
switch (p->l.t.t) {
case BC_LEX_OP_INC:
case BC_LEX_OP_DEC:
case BC_LEX_OP_MINUS:
case BC_LEX_OP_BOOL_NOT:
case BC_LEX_LPAREN:
case BC_LEX_NAME:
case BC_LEX_NUMBER:
case BC_LEX_KEY_IBASE:
case BC_LEX_KEY_LAST:
case BC_LEX_KEY_LENGTH:
case BC_LEX_KEY_OBASE:
case BC_LEX_KEY_READ:
case BC_LEX_KEY_SCALE:
case BC_LEX_KEY_SQRT:
s = zbc_parse_expr(p, BC_PARSE_PRINT, bc_parse_next_expr);
break;
case BC_LEX_STR:
s = zbc_parse_string(p, BC_INST_PRINT_STR);
break;
case BC_LEX_KEY_BREAK:
case BC_LEX_KEY_CONTINUE:
s = zbc_parse_break_or_continue(p, p->l.t.t);
break;
case BC_LEX_KEY_FOR:
s = zbc_parse_for(p);
break;
case BC_LEX_KEY_HALT:
bc_parse_push(p, BC_INST_HALT);
s = zbc_lex_next(&p->l);
break;
case BC_LEX_KEY_IF:
s = zbc_parse_if(p);
break;
case BC_LEX_KEY_LIMITS:
// "limits" is a compile-time command,
// the output is produced at _parse time_.
printf(
"BC_BASE_MAX = "BC_MAX_OBASE_STR "\n"
"BC_DIM_MAX = "BC_MAX_DIM_STR "\n"
"BC_SCALE_MAX = "BC_MAX_SCALE_STR "\n"
"BC_STRING_MAX = "BC_MAX_STRING_STR"\n"
"BC_NAME_MAX = "BC_MAX_NAME_STR "\n"
"BC_NUM_MAX = "BC_MAX_NUM_STR "\n"
"MAX Exponent = "BC_MAX_EXP_STR "\n"
"Number of vars = "BC_MAX_VARS_STR "\n"
);
s = zbc_lex_next(&p->l);
break;
case BC_LEX_KEY_PRINT:
s = zbc_parse_print(p);
break;
case BC_LEX_KEY_QUIT:
// "quit" is a compile-time command. For example,
// "if (0 == 1) quit" terminates when parsing the statement,
// not when it is executed
QUIT_OR_RETURN_TO_MAIN;
case BC_LEX_KEY_RETURN:
if (!p->in_funcdef)
RETURN_STATUS(bc_error("'return' not in a function"));
s = zbc_parse_return(p);
break;
case BC_LEX_KEY_WHILE:
s = zbc_parse_while(p);
break;
default:
s = bc_error_bad_token();
break;
}
if (s || G_interrupt) {
bc_parse_reset(p);
s = BC_STATUS_FAILURE;
}
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_stmt_possibly_auto(...) (zbc_parse_stmt_possibly_auto(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_parse_stmt_or_funcdef(BcParse *p)
{
BcStatus s;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
if (p->l.t.t == BC_LEX_EOF)
s = bc_error("end of file");
else if (p->l.t.t == BC_LEX_KEY_DEFINE) {
dbg_lex("%s:%d p->l.t.t:BC_LEX_KEY_DEFINE", __func__, __LINE__);
s = zbc_parse_funcdef(p);
} else {
dbg_lex("%s:%d p->l.t.t:%d (not BC_LEX_KEY_DEFINE)", __func__, __LINE__, p->l.t.t);
s = zbc_parse_stmt(p);
}
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_stmt_or_funcdef(...) (zbc_parse_stmt_or_funcdef(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
// This is not a "z" function: can also return BC_STATUS_PARSE_EMPTY_EXP
static BcStatus bc_parse_expr_empty_ok(BcParse *p, uint8_t flags, BcParseNext next)
{
BcStatus s = BC_STATUS_SUCCESS;
BcInst prev = BC_INST_PRINT;
BcLexType top, t = p->l.t.t;
size_t nexprs = 0, ops_bgn = p->ops.len;
unsigned nparens, nrelops;
bool paren_first, paren_expr, rprn, done, get_token, assign, bin_last;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
paren_first = p->l.t.t == BC_LEX_LPAREN;
nparens = nrelops = 0;
paren_expr = rprn = done = get_token = assign = false;
bin_last = true;
for (; !G_interrupt && !s && !done && bc_parse_exprs(t); t = p->l.t.t) {
switch (t) {
case BC_LEX_OP_INC:
case BC_LEX_OP_DEC:
{
s = zbc_parse_incdec(p, &prev, &paren_expr, &nexprs, flags);
rprn = get_token = bin_last = false;
break;
}
case BC_LEX_OP_MINUS:
{
s = zbc_parse_minus(p, &prev, ops_bgn, rprn, &nexprs);
rprn = get_token = false;
bin_last = prev == BC_INST_MINUS;
break;
}
case BC_LEX_OP_ASSIGN_POWER:
case BC_LEX_OP_ASSIGN_MULTIPLY:
case BC_LEX_OP_ASSIGN_DIVIDE:
case BC_LEX_OP_ASSIGN_MODULUS:
case BC_LEX_OP_ASSIGN_PLUS:
case BC_LEX_OP_ASSIGN_MINUS:
case BC_LEX_OP_ASSIGN:
{
if (prev != BC_INST_VAR && prev != BC_INST_ARRAY_ELEM &&
prev != BC_INST_SCALE && prev != BC_INST_IBASE &&
prev != BC_INST_OBASE && prev != BC_INST_LAST)
{
s = bc_error("bad assignment:"
" left side must be variable"
" or array element"
); // note: shared string
break;
}
}
// Fallthrough.
case BC_LEX_OP_POWER:
case BC_LEX_OP_MULTIPLY:
case BC_LEX_OP_DIVIDE:
case BC_LEX_OP_MODULUS:
case BC_LEX_OP_PLUS:
case BC_LEX_OP_REL_EQ:
case BC_LEX_OP_REL_LE:
case BC_LEX_OP_REL_GE:
case BC_LEX_OP_REL_NE:
case BC_LEX_OP_REL_LT:
case BC_LEX_OP_REL_GT:
case BC_LEX_OP_BOOL_NOT:
case BC_LEX_OP_BOOL_OR:
case BC_LEX_OP_BOOL_AND:
{
if (((t == BC_LEX_OP_BOOL_NOT) != bin_last)
|| (t != BC_LEX_OP_BOOL_NOT && prev == BC_INST_BOOL_NOT)
) {
return bc_error_bad_expression();
}
nrelops += t >= BC_LEX_OP_REL_EQ && t <= BC_LEX_OP_REL_GT;
prev = BC_TOKEN_2_INST(t);
bc_parse_operator(p, t, ops_bgn, &nexprs);
s = zbc_lex_next(&p->l);
rprn = get_token = false;
bin_last = t != BC_LEX_OP_BOOL_NOT;
break;
}
case BC_LEX_LPAREN:
{
if (BC_PARSE_LEAF(prev, rprn))
return bc_error_bad_expression();
++nparens;
paren_expr = rprn = bin_last = false;
get_token = true;
bc_vec_push(&p->ops, &t);
break;
}
case BC_LEX_RPAREN:
{
if (bin_last || prev == BC_INST_BOOL_NOT)
return bc_error_bad_expression();
if (nparens == 0) {
s = BC_STATUS_SUCCESS;
done = true;
get_token = false;
break;
}
else if (!paren_expr) {
dbg_lex_done("%s:%d done (returning EMPTY_EXP)", __func__, __LINE__);
return BC_STATUS_PARSE_EMPTY_EXP;
}
--nparens;
paren_expr = rprn = true;
get_token = bin_last = false;
s = zbc_parse_rightParen(p, ops_bgn, &nexprs);
break;
}
case BC_LEX_NAME:
{
if (BC_PARSE_LEAF(prev, rprn))
return bc_error_bad_expression();
paren_expr = true;
rprn = get_token = bin_last = false;
s = zbc_parse_name(p, &prev, flags & ~BC_PARSE_NOCALL);
++nexprs;
break;
}
case BC_LEX_NUMBER:
{
if (BC_PARSE_LEAF(prev, rprn))
return bc_error_bad_expression();
bc_parse_number(p);
nexprs++;
prev = BC_INST_NUM;
paren_expr = get_token = true;
rprn = bin_last = false;
break;
}
case BC_LEX_KEY_IBASE:
case BC_LEX_KEY_LAST:
case BC_LEX_KEY_OBASE:
{
if (BC_PARSE_LEAF(prev, rprn))
return bc_error_bad_expression();
prev = (char) (t - BC_LEX_KEY_IBASE + BC_INST_IBASE);
bc_parse_push(p, (char) prev);
paren_expr = get_token = true;
rprn = bin_last = false;
++nexprs;
break;
}
case BC_LEX_KEY_LENGTH:
case BC_LEX_KEY_SQRT:
{
if (BC_PARSE_LEAF(prev, rprn))
return bc_error_bad_expression();
s = zbc_parse_builtin(p, t, flags, &prev);
paren_expr = true;
rprn = get_token = bin_last = false;
++nexprs;
break;
}
case BC_LEX_KEY_READ:
{
if (BC_PARSE_LEAF(prev, rprn))
return bc_error_bad_expression();
else if (flags & BC_PARSE_NOREAD)
s = bc_error_nested_read_call();
else
s = zbc_parse_read(p);
paren_expr = true;
rprn = get_token = bin_last = false;
++nexprs;
prev = BC_INST_READ;
break;
}
case BC_LEX_KEY_SCALE:
{
if (BC_PARSE_LEAF(prev, rprn))
return bc_error_bad_expression();
s = zbc_parse_scale(p, &prev, flags);
paren_expr = true;
rprn = get_token = bin_last = false;
++nexprs;
prev = BC_INST_SCALE;
break;
}
default:
{
s = bc_error_bad_token();
break;
}
}
if (!s && get_token) s = zbc_lex_next(&p->l);
}
if (s) return s;
if (G_interrupt) return BC_STATUS_FAILURE; // ^C: stop parsing
while (p->ops.len > ops_bgn) {
top = BC_PARSE_TOP_OP(p);
assign = top >= BC_LEX_OP_ASSIGN_POWER && top <= BC_LEX_OP_ASSIGN;
if (top == BC_LEX_LPAREN || top == BC_LEX_RPAREN)
return bc_error_bad_expression();
bc_parse_push(p, BC_TOKEN_2_INST(top));
nexprs -= top != BC_LEX_OP_BOOL_NOT && top != BC_LEX_NEG;
bc_vec_pop(&p->ops);
}
if (prev == BC_INST_BOOL_NOT || nexprs != 1)
return bc_error_bad_expression();
//TODO: why is this needed at all?
// next is BcParseNext, byte array of up to 4 BC_LEX's, packed into 32-bit word
for (;;) {
if (t == (next & 0x7f))
goto ok;
if (next & 0x80) // last element?
break;
next >>= 8;
}
if (t != BC_LEX_KEY_ELSE)
return bc_error_bad_expression();
ok:
if (!(flags & BC_PARSE_REL) && nrelops) {
s = bc_POSIX_does_not_allow("comparison operators outside if or loops");
ERROR_RETURN(if (s) return s;)
}
else if ((flags & BC_PARSE_REL) && nrelops > 1) {
s = bc_POSIX_requires("exactly one comparison operator per condition");
ERROR_RETURN(if (s) return s;)
}
if (flags & BC_PARSE_PRINT) {
if (paren_first || !assign) bc_parse_push(p, BC_INST_PRINT);
bc_parse_push(p, BC_INST_POP);
}
dbg_lex_done("%s:%d done", __func__, __LINE__);
return s;
}
#undef zbc_parse_expr
static BC_STATUS zbc_parse_expr(BcParse *p, uint8_t flags, BcParseNext next)
{
BcStatus s;
s = bc_parse_expr_empty_ok(p, flags, next);
if (s == BC_STATUS_PARSE_EMPTY_EXP)
RETURN_STATUS(bc_error("empty expression"));
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_parse_expr(...) (zbc_parse_expr(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#endif // ENABLE_BC
#if ENABLE_DC
#define DC_PARSE_BUF_LEN ((int) (sizeof(uint32_t) * CHAR_BIT))
static BC_STATUS zdc_parse_register(BcParse *p)
{
BcStatus s;
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_NAME) RETURN_STATUS(bc_error_bad_token());
bc_parse_pushName(p, p->l.t.v.v);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zdc_parse_register(...) (zdc_parse_register(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zdc_parse_string(BcParse *p)
{
char *str, *name, b[DC_PARSE_BUF_LEN + 1];
size_t idx, len = G.prog.strs.len;
sprintf(b, "%0*zu", DC_PARSE_BUF_LEN, len);
name = xstrdup(b);
str = xstrdup(p->l.t.v.v);
bc_parse_push(p, BC_INST_STR);
bc_parse_pushIndex(p, len);
bc_vec_push(&G.prog.strs, &str);
bc_parse_addFunc(p, name, &idx);
RETURN_STATUS(zbc_lex_next(&p->l));
}
#if ERRORS_ARE_FATAL
# define zdc_parse_string(...) (zdc_parse_string(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zdc_parse_mem(BcParse *p, uint8_t inst, bool name, bool store)
{
BcStatus s;
bc_parse_push(p, inst);
if (name) {
s = zdc_parse_register(p);
if (s) RETURN_STATUS(s);
}
if (store) {
bc_parse_push(p, BC_INST_SWAP);
bc_parse_push(p, BC_INST_ASSIGN);
bc_parse_push(p, BC_INST_POP);
}
RETURN_STATUS(zbc_lex_next(&p->l));
}
#if ERRORS_ARE_FATAL
# define zdc_parse_mem(...) (zdc_parse_mem(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zdc_parse_cond(BcParse *p, uint8_t inst)
{
BcStatus s;
bc_parse_push(p, inst);
bc_parse_push(p, BC_INST_EXEC_COND);
s = zdc_parse_register(p);
if (s) RETURN_STATUS(s);
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t == BC_LEX_ELSE) {
s = zdc_parse_register(p);
if (s) RETURN_STATUS(s);
s = zbc_lex_next(&p->l);
}
else
bc_parse_push(p, BC_PARSE_STREND);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zdc_parse_cond(...) (zdc_parse_cond(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zdc_parse_token(BcParse *p, BcLexType t, uint8_t flags)
{
BcStatus s = BC_STATUS_SUCCESS;
BcInst prev;
uint8_t inst;
bool assign, get_token = false;
switch (t) {
case BC_LEX_OP_REL_EQ:
case BC_LEX_OP_REL_LE:
case BC_LEX_OP_REL_GE:
case BC_LEX_OP_REL_NE:
case BC_LEX_OP_REL_LT:
case BC_LEX_OP_REL_GT:
s = zdc_parse_cond(p, t - BC_LEX_OP_REL_EQ + BC_INST_REL_EQ);
break;
case BC_LEX_SCOLON:
case BC_LEX_COLON:
s = zdc_parse_mem(p, BC_INST_ARRAY_ELEM, true, t == BC_LEX_COLON);
break;
case BC_LEX_STR:
s = zdc_parse_string(p);
break;
case BC_LEX_NEG:
case BC_LEX_NUMBER:
if (t == BC_LEX_NEG) {
s = zbc_lex_next(&p->l);
if (s) RETURN_STATUS(s);
if (p->l.t.t != BC_LEX_NUMBER)
RETURN_STATUS(bc_error_bad_token());
}
bc_parse_number(p);
prev = BC_INST_NUM;
if (t == BC_LEX_NEG) bc_parse_push(p, BC_INST_NEG);
get_token = true;
break;
case BC_LEX_KEY_READ:
if (flags & BC_PARSE_NOREAD)
s = bc_error_nested_read_call();
else
bc_parse_push(p, BC_INST_READ);
get_token = true;
break;
case BC_LEX_OP_ASSIGN:
case BC_LEX_STORE_PUSH:
assign = t == BC_LEX_OP_ASSIGN;
inst = assign ? BC_INST_VAR : BC_INST_PUSH_TO_VAR;
s = zdc_parse_mem(p, inst, true, assign);
break;
case BC_LEX_LOAD:
case BC_LEX_LOAD_POP:
inst = t == BC_LEX_LOAD_POP ? BC_INST_PUSH_VAR : BC_INST_LOAD;
s = zdc_parse_mem(p, inst, true, false);
break;
case BC_LEX_STORE_IBASE:
case BC_LEX_STORE_SCALE:
case BC_LEX_STORE_OBASE:
inst = t - BC_LEX_STORE_IBASE + BC_INST_IBASE;
s = zdc_parse_mem(p, inst, false, true);
break;
default:
s = bc_error_bad_token();
get_token = true;
break;
}
if (!s && get_token) s = zbc_lex_next(&p->l);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zdc_parse_token(...) (zdc_parse_token(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zdc_parse_expr(BcParse *p, uint8_t flags)
{
BcStatus s = BC_STATUS_SUCCESS;
BcInst inst;
BcLexType t;
for (t = p->l.t.t; !s && t != BC_LEX_EOF; t = p->l.t.t) {
inst = dc_parse_insts[t];
if (inst != BC_INST_INVALID) {
bc_parse_push(p, inst);
s = zbc_lex_next(&p->l);
} else
s = zdc_parse_token(p, t, flags);
}
if (!s && p->l.t.t == BC_LEX_EOF && (flags & BC_PARSE_NOCALL))
bc_parse_push(p, BC_INST_POP_EXEC);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zdc_parse_expr(...) (zdc_parse_expr(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zdc_parse_parse(BcParse *p)
{
BcStatus s;
if (p->l.t.t == BC_LEX_EOF)
s = bc_error("end of file");
else
s = zdc_parse_expr(p, 0);
if (s || G_interrupt) {
bc_parse_reset(p);
s = BC_STATUS_FAILURE;
}
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zdc_parse_parse(...) (zdc_parse_parse(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#endif // ENABLE_DC
static BC_STATUS zcommon_parse_expr(BcParse *p, uint8_t flags)
{
if (IS_BC) {
IF_BC(RETURN_STATUS(zbc_parse_expr(p, flags, bc_parse_next_read)));
} else {
IF_DC(RETURN_STATUS(zdc_parse_expr(p, flags)));
}
}
#if ERRORS_ARE_FATAL
# define zcommon_parse_expr(...) (zcommon_parse_expr(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BcVec* bc_program_search(char *id, bool var)
{
BcId e, *ptr;
BcVec *v, *map;
size_t i;
BcResultData data;
int new;
v = var ? &G.prog.vars : &G.prog.arrs;
map = var ? &G.prog.var_map : &G.prog.arr_map;
e.name = id;
e.idx = v->len;
new = bc_map_insert(map, &e, &i); // 1 if insertion was successful
if (new) {
bc_array_init(&data.v, var);
bc_vec_push(v, &data.v);
}
ptr = bc_vec_item(map, i);
if (new) ptr->name = xstrdup(e.name);
return bc_vec_item(v, ptr->idx);
}
static BC_STATUS zbc_program_num(BcResult *r, BcNum **num, bool hex)
{
switch (r->t) {
case BC_RESULT_STR:
case BC_RESULT_TEMP:
case BC_RESULT_IBASE:
case BC_RESULT_SCALE:
case BC_RESULT_OBASE:
{
*num = &r->d.n;
break;
}
case BC_RESULT_CONSTANT:
{
BcStatus s;
char **str = bc_vec_item(&G.prog.consts, r->d.id.idx);
size_t base_t, len = strlen(*str);
BcNum *base;
bc_num_init(&r->d.n, len);
hex = hex && len == 1;
base = hex ? &G.prog.hexb : &G.prog.ib;
base_t = hex ? BC_NUM_MAX_IBASE : G.prog.ib_t;
s = zbc_num_parse(&r->d.n, *str, base, base_t);
if (s) {
bc_num_free(&r->d.n);
RETURN_STATUS(s);
}
*num = &r->d.n;
r->t = BC_RESULT_TEMP;
break;
}
case BC_RESULT_VAR:
case BC_RESULT_ARRAY:
case BC_RESULT_ARRAY_ELEM:
{
BcVec *v;
v = bc_program_search(r->d.id.name, r->t == BC_RESULT_VAR);
if (r->t == BC_RESULT_ARRAY_ELEM) {
v = bc_vec_top(v);
if (v->len <= r->d.id.idx) bc_array_expand(v, r->d.id.idx + 1);
*num = bc_vec_item(v, r->d.id.idx);
}
else
*num = bc_vec_top(v);
break;
}
case BC_RESULT_LAST:
{
*num = &G.prog.last;
break;
}
case BC_RESULT_ONE:
{
*num = &G.prog.one;
break;
}
}
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_program_num(...) (zbc_program_num(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_program_binOpPrep(BcResult **l, BcNum **ln,
BcResult **r, BcNum **rn, bool assign)
{
BcStatus s;
bool hex;
BcResultType lt, rt;
if (!BC_PROG_STACK(&G.prog.results, 2))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
*r = bc_vec_item_rev(&G.prog.results, 0);
*l = bc_vec_item_rev(&G.prog.results, 1);
lt = (*l)->t;
rt = (*r)->t;
hex = assign && (lt == BC_RESULT_IBASE || lt == BC_RESULT_OBASE);
s = zbc_program_num(*l, ln, false);
if (s) RETURN_STATUS(s);
s = zbc_program_num(*r, rn, hex);
if (s) RETURN_STATUS(s);
// We run this again under these conditions in case any vector has been
// reallocated out from under the BcNums or arrays we had.
if (lt == rt && (lt == BC_RESULT_VAR || lt == BC_RESULT_ARRAY_ELEM)) {
s = zbc_program_num(*l, ln, false);
if (s) RETURN_STATUS(s);
}
if (!BC_PROG_NUM((*l), (*ln)) && (!assign || (*l)->t != BC_RESULT_VAR))
RETURN_STATUS(bc_error_variable_is_wrong_type());
if (!assign && !BC_PROG_NUM((*r), (*ln)))
RETURN_STATUS(bc_error_variable_is_wrong_type());
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_binOpPrep(...) (zbc_program_binOpPrep(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static void bc_program_binOpRetire(BcResult *r)
{
r->t = BC_RESULT_TEMP;
bc_vec_pop(&G.prog.results);
bc_vec_pop(&G.prog.results);
bc_vec_push(&G.prog.results, r);
}
static BC_STATUS zbc_program_prep(BcResult **r, BcNum **n)
{
BcStatus s;
if (!BC_PROG_STACK(&G.prog.results, 1))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
*r = bc_vec_top(&G.prog.results);
s = zbc_program_num(*r, n, false);
if (s) RETURN_STATUS(s);
if (!BC_PROG_NUM((*r), (*n)))
RETURN_STATUS(bc_error_variable_is_wrong_type());
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_prep(...) (zbc_program_prep(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static void bc_program_retire(BcResult *r, BcResultType t)
{
r->t = t;
bc_vec_pop(&G.prog.results);
bc_vec_push(&G.prog.results, r);
}
static BC_STATUS zbc_program_op(char inst)
{
BcStatus s;
BcResult *opd1, *opd2, res;
BcNum *n1, *n2 = NULL;
s = zbc_program_binOpPrep(&opd1, &n1, &opd2, &n2, false);
if (s) RETURN_STATUS(s);
bc_num_init_DEF_SIZE(&res.d.n);
s = BC_STATUS_SUCCESS;
ERROR_RETURN(s =) zbc_program_ops[inst - BC_INST_POWER](n1, n2, &res.d.n, G.prog.scale);
if (s) goto err;
bc_program_binOpRetire(&res);
RETURN_STATUS(s);
err:
bc_num_free(&res.d.n);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_op(...) (zbc_program_op(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_program_read(void)
{
const char *sv_file;
BcStatus s;
BcParse parse;
BcVec buf;
BcInstPtr ip;
BcFunc *f;
if (G.in_read)
RETURN_STATUS(bc_error_nested_read_call());
f = bc_program_func(BC_PROG_READ);
bc_vec_pop_all(&f->code);
sv_file = G.prog.file;
G.prog.file = NULL;
G.in_read = 1;
bc_char_vec_init(&buf);
bc_read_line(&buf);
bc_parse_create(&parse, BC_PROG_READ);
bc_lex_file(&parse.l);
s = zbc_parse_text_init(&parse, buf.v);
if (s) goto exec_err;
s = zcommon_parse_expr(&parse, BC_PARSE_NOREAD);
if (s) goto exec_err;
if (parse.l.t.t != BC_LEX_NLINE && parse.l.t.t != BC_LEX_EOF) {
s = bc_error("bad read() expression");
goto exec_err;
}
ip.func = BC_PROG_READ;
ip.idx = 0;
ip.len = G.prog.results.len;
// Update this pointer, just in case.
f = bc_program_func(BC_PROG_READ);
bc_vec_pushByte(&f->code, BC_INST_POP_EXEC);
bc_vec_push(&G.prog.stack, &ip);
exec_err:
bc_parse_free(&parse);
//io_err:
G.in_read = 0;
G.prog.file = sv_file;
bc_vec_free(&buf);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_read(...) (zbc_program_read(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static size_t bc_program_index(char *code, size_t *bgn)
{
char amt = code[(*bgn)++], i = 0;
size_t res = 0;
for (; i < amt; ++i, ++(*bgn))
res |= (((size_t)((int) code[*bgn]) & UCHAR_MAX) << (i * CHAR_BIT));
return res;
}
static char *bc_program_name(char *code, size_t *bgn)
{
size_t i;
char c, *s, *str = code + *bgn, *ptr = strchr(str, BC_PARSE_STREND);
s = xmalloc(ptr - str + 1);
c = code[(*bgn)++];
for (i = 0; c != 0 && c != BC_PARSE_STREND; c = code[(*bgn)++], ++i)
s[i] = c;
s[i] = '\0';
return s;
}
static void bc_program_printString(const char *str)
{
#if ENABLE_DC
if (!str[0]) {
// Example: echo '[]ap' | dc
// should print two bytes: 0x00, 0x0A
bb_putchar('\0');
return;
}
#endif
while (*str) {
int c = *str++;
if (c != '\\' || !*str)
bb_putchar(c);
else {
c = *str++;
switch (c) {
case 'a':
bb_putchar('\a');
break;
case 'b':
bb_putchar('\b');
break;
case '\\':
case 'e':
bb_putchar('\\');
break;
case 'f':
bb_putchar('\f');
break;
case 'n':
bb_putchar('\n');
G.prog.nchars = SIZE_MAX;
break;
case 'r':
bb_putchar('\r');
break;
case 'q':
bb_putchar('"');
break;
case 't':
bb_putchar('\t');
break;
default:
// Just print the backslash and following character.
bb_putchar('\\');
++G.prog.nchars;
bb_putchar(c);
break;
}
}
++G.prog.nchars;
}
}
static void bc_num_printNewline(void)
{
if (G.prog.nchars == G.prog.len - 1) {
bb_putchar('\\');
bb_putchar('\n');
G.prog.nchars = 0;
}
}
#if ENABLE_DC
static FAST_FUNC void bc_num_printChar(size_t num, size_t width, bool radix)
{
(void) radix;
bb_putchar((char) num);
G.prog.nchars += width;
}
#endif
static FAST_FUNC void bc_num_printDigits(size_t num, size_t width, bool radix)
{
size_t exp, pow;
bc_num_printNewline();
bb_putchar(radix ? '.' : ' ');
++G.prog.nchars;
bc_num_printNewline();
for (exp = 0, pow = 1; exp < width - 1; ++exp, pow *= 10)
continue;
for (exp = 0; exp < width; pow /= 10, ++G.prog.nchars, ++exp) {
size_t dig;
bc_num_printNewline();
dig = num / pow;
num -= dig * pow;
bb_putchar(((char) dig) + '0');
}
}
static FAST_FUNC void bc_num_printHex(size_t num, size_t width, bool radix)
{
if (radix) {
bc_num_printNewline();
bb_putchar('.');
G.prog.nchars += 1;
}
bc_num_printNewline();
bb_putchar(bb_hexdigits_upcase[num]);
G.prog.nchars += width;
}
static void bc_num_printDecimal(BcNum *n)
{
size_t i, rdx = n->rdx - 1;
if (n->neg) bb_putchar('-');
G.prog.nchars += n->neg;
for (i = n->len - 1; i < n->len; --i)
bc_num_printHex((size_t) n->num[i], 1, i == rdx);
}
static BC_STATUS zbc_num_printNum(BcNum *n, BcNum *base, size_t width, BcNumDigitOp print)
{
BcStatus s;
BcVec stack;
BcNum intp, fracp, digit, frac_len;
unsigned long dig, *ptr;
size_t i;
bool radix;
if (n->len == 0) {
print(0, width, false);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
bc_vec_init(&stack, sizeof(long), NULL);
bc_num_init(&intp, n->len);
bc_num_init(&fracp, n->rdx);
bc_num_init(&digit, width);
bc_num_init(&frac_len, BC_NUM_INT(n));
bc_num_copy(&intp, n);
bc_num_one(&frac_len);
bc_num_truncate(&intp, intp.rdx);
s = zbc_num_sub(n, &intp, &fracp, 0);
if (s) goto err;
while (intp.len != 0) {
s = zbc_num_divmod(&intp, base, &intp, &digit, 0);
if (s) goto err;
s = zbc_num_ulong(&digit, &dig);
if (s) goto err;
bc_vec_push(&stack, &dig);
}
for (i = 0; i < stack.len; ++i) {
ptr = bc_vec_item_rev(&stack, i);
print(*ptr, width, false);
}
if (!n->rdx) goto err;
for (radix = true; frac_len.len <= n->rdx; radix = false) {
s = zbc_num_mul(&fracp, base, &fracp, n->rdx);
if (s) goto err;
s = zbc_num_ulong(&fracp, &dig);
if (s) goto err;
bc_num_ulong2num(&intp, dig);
s = zbc_num_sub(&fracp, &intp, &fracp, 0);
if (s) goto err;
print(dig, width, radix);
s = zbc_num_mul(&frac_len, base, &frac_len, 0);
if (s) goto err;
}
err:
bc_num_free(&frac_len);
bc_num_free(&digit);
bc_num_free(&fracp);
bc_num_free(&intp);
bc_vec_free(&stack);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_num_printNum(...) (zbc_num_printNum(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_num_printBase(BcNum *n)
{
BcStatus s;
size_t width, i;
BcNumDigitOp print;
bool neg = n->neg;
if (neg) {
bb_putchar('-');
G.prog.nchars++;
}
n->neg = false;
if (G.prog.ob_t <= BC_NUM_MAX_IBASE) {
width = 1;
print = bc_num_printHex;
}
else {
for (i = G.prog.ob_t - 1, width = 0; i != 0; i /= 10, ++width)
continue;
print = bc_num_printDigits;
}
s = zbc_num_printNum(n, &G.prog.ob, width, print);
n->neg = neg;
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_num_printBase(...) (zbc_num_printBase(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#if ENABLE_DC
static BC_STATUS zbc_num_stream(BcNum *n, BcNum *base)
{
RETURN_STATUS(zbc_num_printNum(n, base, 1, bc_num_printChar));
}
#if ERRORS_ARE_FATAL
# define zbc_num_stream(...) (zbc_num_stream(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#endif
static BC_STATUS zbc_num_print(BcNum *n, bool newline)
{
BcStatus s = BC_STATUS_SUCCESS;
bc_num_printNewline();
if (n->len == 0) {
bb_putchar('0');
++G.prog.nchars;
}
else if (G.prog.ob_t == 10)
bc_num_printDecimal(n);
else
s = zbc_num_printBase(n);
if (newline) {
bb_putchar('\n');
G.prog.nchars = 0;
}
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_num_print(...) (zbc_num_print(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_program_print(char inst, size_t idx)
{
BcStatus s;
BcResult *r;
BcNum *num;
bool pop = inst != BC_INST_PRINT;
if (!BC_PROG_STACK(&G.prog.results, idx + 1))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
r = bc_vec_item_rev(&G.prog.results, idx);
num = NULL; // is this NULL necessary?
s = zbc_program_num(r, &num, false);
if (s) RETURN_STATUS(s);
if (BC_PROG_NUM(r, num)) {
s = zbc_num_print(num, !pop);
if (!s) bc_num_copy(&G.prog.last, num);
}
else {
char *str;
idx = (r->t == BC_RESULT_STR) ? r->d.id.idx : num->rdx;
str = *bc_program_str(idx);
if (inst == BC_INST_PRINT_STR) {
for (;;) {
char c = *str++;
if (c == '\0') break;
bb_putchar(c);
++G.prog.nchars;
if (c == '\n') G.prog.nchars = 0;
}
}
else {
bc_program_printString(str);
if (inst == BC_INST_PRINT) bb_putchar('\n');
}
}
if (!s && pop) bc_vec_pop(&G.prog.results);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_print(...) (zbc_program_print(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_program_negate(void)
{
BcStatus s;
BcResult res, *ptr;
BcNum *num = NULL;
s = zbc_program_prep(&ptr, &num);
if (s) RETURN_STATUS(s);
bc_num_init(&res.d.n, num->len);
bc_num_copy(&res.d.n, num);
if (res.d.n.len) res.d.n.neg = !res.d.n.neg;
bc_program_retire(&res, BC_RESULT_TEMP);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_negate(...) (zbc_program_negate(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_program_logical(char inst)
{
BcStatus s;
BcResult *opd1, *opd2, res;
BcNum *n1, *n2;
ssize_t cond;
s = zbc_program_binOpPrep(&opd1, &n1, &opd2, &n2, false);
if (s) RETURN_STATUS(s);
bc_num_init_DEF_SIZE(&res.d.n);
if (inst == BC_INST_BOOL_AND)
cond = bc_num_cmp(n1, &G.prog.zero) && bc_num_cmp(n2, &G.prog.zero);
else if (inst == BC_INST_BOOL_OR)
cond = bc_num_cmp(n1, &G.prog.zero) || bc_num_cmp(n2, &G.prog.zero);
else {
cond = bc_num_cmp(n1, n2);
switch (inst) {
case BC_INST_REL_EQ:
cond = (cond == 0);
break;
case BC_INST_REL_LE:
cond = (cond <= 0);
break;
case BC_INST_REL_GE:
cond = (cond >= 0);
break;
case BC_INST_REL_LT:
cond = (cond < 0);
break;
case BC_INST_REL_GT:
cond = (cond > 0);
break;
default: // = case BC_INST_REL_NE:
//cond = (cond != 0); - not needed
break;
}
}
if (cond) bc_num_one(&res.d.n);
//else bc_num_zero(&res.d.n); - already is
bc_program_binOpRetire(&res);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_logical(...) (zbc_program_logical(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#if ENABLE_DC
static BC_STATUS zbc_program_assignStr(BcResult *r, BcVec *v,
bool push)
{
BcNum n2;
BcResult res;
memset(&n2, 0, sizeof(BcNum));
n2.rdx = res.d.id.idx = r->d.id.idx;
res.t = BC_RESULT_STR;
if (!push) {
if (!BC_PROG_STACK(&G.prog.results, 2))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
bc_vec_pop(v);
bc_vec_pop(&G.prog.results);
}
bc_vec_pop(&G.prog.results);
bc_vec_push(&G.prog.results, &res);
bc_vec_push(v, &n2);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_program_assignStr(...) (zbc_program_assignStr(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#endif // ENABLE_DC
static BC_STATUS zbc_program_copyToVar(char *name, bool var)
{
BcStatus s;
BcResult *ptr, r;
BcVec *v;
BcNum *n;
if (!BC_PROG_STACK(&G.prog.results, 1))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
ptr = bc_vec_top(&G.prog.results);
if ((ptr->t == BC_RESULT_ARRAY) != !var)
RETURN_STATUS(bc_error_variable_is_wrong_type());
v = bc_program_search(name, var);
#if ENABLE_DC
if (ptr->t == BC_RESULT_STR && !var)
RETURN_STATUS(bc_error_variable_is_wrong_type());
if (ptr->t == BC_RESULT_STR)
RETURN_STATUS(zbc_program_assignStr(ptr, v, true));
#endif
s = zbc_program_num(ptr, &n, false);
if (s) RETURN_STATUS(s);
// Do this once more to make sure that pointers were not invalidated.
v = bc_program_search(name, var);
if (var) {
bc_num_init_DEF_SIZE(&r.d.n);
bc_num_copy(&r.d.n, n);
}
else {
bc_array_init(&r.d.v, true);
bc_array_copy(&r.d.v, (BcVec *) n);
}
bc_vec_push(v, &r.d);
bc_vec_pop(&G.prog.results);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_copyToVar(...) (zbc_program_copyToVar(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_program_assign(char inst)
{
BcStatus s;
BcResult *left, *right, res;
BcNum *l = NULL, *r = NULL;
bool assign = inst == BC_INST_ASSIGN, ib, sc;
s = zbc_program_binOpPrep(&left, &l, &right, &r, assign);
if (s) RETURN_STATUS(s);
ib = left->t == BC_RESULT_IBASE;
sc = left->t == BC_RESULT_SCALE;
#if ENABLE_DC
if (right->t == BC_RESULT_STR) {
BcVec *v;
if (left->t != BC_RESULT_VAR)
RETURN_STATUS(bc_error_variable_is_wrong_type());
v = bc_program_search(left->d.id.name, true);
RETURN_STATUS(zbc_program_assignStr(right, v, false));
}
#endif
if (left->t == BC_RESULT_CONSTANT || left->t == BC_RESULT_TEMP)
RETURN_STATUS(bc_error("bad assignment:"
" left side must be variable"
" or array element"
)); // note: shared string
#if ENABLE_BC
if (inst == BC_INST_ASSIGN_DIVIDE && !bc_num_cmp(r, &G.prog.zero))
RETURN_STATUS(bc_error("divide by zero"));
if (assign)
bc_num_copy(l, r);
else {
s = BC_STATUS_SUCCESS;
ERROR_RETURN(s =) zbc_program_ops[inst - BC_INST_ASSIGN_POWER](l, r, l, G.prog.scale);
}
if (s) RETURN_STATUS(s);
#else
bc_num_copy(l, r);
#endif
if (ib || sc || left->t == BC_RESULT_OBASE) {
static const char *const msg[] = {
"bad ibase; must be [2,16]", //BC_RESULT_IBASE
"bad scale; must be [0,"BC_MAX_SCALE_STR"]", //BC_RESULT_SCALE
NULL, //can't happen //BC_RESULT_LAST
NULL, //can't happen //BC_RESULT_CONSTANT
NULL, //can't happen //BC_RESULT_ONE
"bad obase; must be [2,"BC_MAX_OBASE_STR"]", //BC_RESULT_OBASE
};
size_t *ptr;
unsigned long val, max;
s = zbc_num_ulong(l, &val);
if (s) RETURN_STATUS(s);
s = left->t - BC_RESULT_IBASE;
if (sc) {
max = BC_MAX_SCALE;
ptr = &G.prog.scale;
}
else {
if (val < BC_NUM_MIN_BASE)
RETURN_STATUS(bc_error(msg[s]));
max = ib ? BC_NUM_MAX_IBASE : BC_MAX_OBASE;
ptr = ib ? &G.prog.ib_t : &G.prog.ob_t;
}
if (val > max)
RETURN_STATUS(bc_error(msg[s]));
if (!sc)
bc_num_copy(ib ? &G.prog.ib : &G.prog.ob, l);
*ptr = (size_t) val;
s = BC_STATUS_SUCCESS;
}
bc_num_init(&res.d.n, l->len);
bc_num_copy(&res.d.n, l);
bc_program_binOpRetire(&res);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_assign(...) (zbc_program_assign(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#if !ENABLE_DC
#define bc_program_pushVar(code, bgn, pop, copy) \
bc_program_pushVar(code, bgn)
// for bc, 'pop' and 'copy' are always false
#endif
static BC_STATUS bc_program_pushVar(char *code, size_t *bgn,
bool pop, bool copy)
{
BcResult r;
char *name = bc_program_name(code, bgn);
r.t = BC_RESULT_VAR;
r.d.id.name = name;
#if ENABLE_DC
{
BcVec *v = bc_program_search(name, true);
BcNum *num = bc_vec_top(v);
if (pop || copy) {
if (!BC_PROG_STACK(v, 2 - copy)) {
free(name);
RETURN_STATUS(bc_error_stack_has_too_few_elements());
}
free(name);
name = NULL;
if (!BC_PROG_STR(num)) {
r.t = BC_RESULT_TEMP;
bc_num_init_DEF_SIZE(&r.d.n);
bc_num_copy(&r.d.n, num);
}
else {
r.t = BC_RESULT_STR;
r.d.id.idx = num->rdx;
}
if (!copy) bc_vec_pop(v);
}
}
#endif // ENABLE_DC
bc_vec_push(&G.prog.results, &r);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_program_pushVar(...) (bc_program_pushVar(__VA_ARGS__), BC_STATUS_SUCCESS)
#else
# define zbc_program_pushVar(...) bc_program_pushVar(__VA_ARGS__)
#endif
static BC_STATUS zbc_program_pushArray(char *code, size_t *bgn,
char inst)
{
BcStatus s = BC_STATUS_SUCCESS;
BcResult r;
BcNum *num;
r.d.id.name = bc_program_name(code, bgn);
if (inst == BC_INST_ARRAY) {
r.t = BC_RESULT_ARRAY;
bc_vec_push(&G.prog.results, &r);
}
else {
BcResult *operand;
unsigned long temp;
s = zbc_program_prep(&operand, &num);
if (s) goto err;
s = zbc_num_ulong(num, &temp);
if (s) goto err;
if (temp > BC_MAX_DIM) {
s = bc_error("array too long; must be [1,"BC_MAX_DIM_STR"]");
goto err;
}
r.d.id.idx = (size_t) temp;
bc_program_retire(&r, BC_RESULT_ARRAY_ELEM);
}
err:
if (s) free(r.d.id.name);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_pushArray(...) (zbc_program_pushArray(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#if ENABLE_BC
static BC_STATUS zbc_program_incdec(char inst)
{
BcStatus s;
BcResult *ptr, res, copy;
BcNum *num = NULL;
char inst2 = inst;
s = zbc_program_prep(&ptr, &num);
if (s) RETURN_STATUS(s);
if (inst == BC_INST_INC_POST || inst == BC_INST_DEC_POST) {
copy.t = BC_RESULT_TEMP;
bc_num_init(&copy.d.n, num->len);
bc_num_copy(&copy.d.n, num);
}
res.t = BC_RESULT_ONE;
inst = inst == BC_INST_INC_PRE || inst == BC_INST_INC_POST ?
BC_INST_ASSIGN_PLUS :
BC_INST_ASSIGN_MINUS;
bc_vec_push(&G.prog.results, &res);
s = zbc_program_assign(inst);
if (s) RETURN_STATUS(s);
if (inst2 == BC_INST_INC_POST || inst2 == BC_INST_DEC_POST) {
bc_vec_pop(&G.prog.results);
bc_vec_push(&G.prog.results, &copy);
}
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_incdec(...) (zbc_program_incdec(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_program_call(char *code, size_t *idx)
{
BcInstPtr ip;
size_t i, nparams = bc_program_index(code, idx);
BcFunc *func;
BcId *a;
BcResultData param;
BcResult *arg;
ip.idx = 0;
ip.func = bc_program_index(code, idx);
func = bc_program_func(ip.func);
if (func->code.len == 0) {
RETURN_STATUS(bc_error("undefined function"));
}
if (nparams != func->nparams) {
RETURN_STATUS(bc_error_fmt("function has %u parameters, but called with %u", func->nparams, nparams));
}
ip.len = G.prog.results.len - nparams;
for (i = 0; i < nparams; ++i) {
BcStatus s;
a = bc_vec_item(&func->autos, nparams - 1 - i);
arg = bc_vec_top(&G.prog.results);
if ((!a->idx) != (arg->t == BC_RESULT_ARRAY) || arg->t == BC_RESULT_STR)
RETURN_STATUS(bc_error_variable_is_wrong_type());
s = zbc_program_copyToVar(a->name, a->idx);
if (s) RETURN_STATUS(s);
}
for (; i < func->autos.len; ++i) {
BcVec *v;
a = bc_vec_item(&func->autos, i);
v = bc_program_search(a->name, a->idx);
if (a->idx) {
bc_num_init_DEF_SIZE(&param.n);
bc_vec_push(v, &param.n);
}
else {
bc_array_init(&param.v, true);
bc_vec_push(v, &param.v);
}
}
bc_vec_push(&G.prog.stack, &ip);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_program_call(...) (zbc_program_call(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_program_return(char inst)
{
BcResult res;
BcFunc *f;
size_t i;
BcInstPtr *ip = bc_vec_top(&G.prog.stack);
if (!BC_PROG_STACK(&G.prog.results, ip->len + inst == BC_INST_RET))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
f = bc_program_func(ip->func);
res.t = BC_RESULT_TEMP;
if (inst == BC_INST_RET) {
BcStatus s;
BcNum *num;
BcResult *operand = bc_vec_top(&G.prog.results);
s = zbc_program_num(operand, &num, false);
if (s) RETURN_STATUS(s);
bc_num_init(&res.d.n, num->len);
bc_num_copy(&res.d.n, num);
}
else {
bc_num_init_DEF_SIZE(&res.d.n);
//bc_num_zero(&res.d.n); - already is
}
// We need to pop arguments as well, so this takes that into account.
for (i = 0; i < f->autos.len; ++i) {
BcVec *v;
BcId *a = bc_vec_item(&f->autos, i);
v = bc_program_search(a->name, a->idx);
bc_vec_pop(v);
}
bc_vec_npop(&G.prog.results, G.prog.results.len - ip->len);
bc_vec_push(&G.prog.results, &res);
bc_vec_pop(&G.prog.stack);
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_program_return(...) (zbc_program_return(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#endif // ENABLE_BC
static unsigned long bc_program_scale(BcNum *n)
{
return (unsigned long) n->rdx;
}
static unsigned long bc_program_len(BcNum *n)
{
size_t len = n->len;
if (n->rdx != len) return len;
for (;;) {
if (len == 0) break;
len--;
if (n->num[len] != 0) break;
}
return len;
}
static BC_STATUS zbc_program_builtin(char inst)
{
BcStatus s;
BcResult *opnd;
BcNum *num = NULL;
BcResult res;
bool len = inst == BC_INST_LENGTH;
if (!BC_PROG_STACK(&G.prog.results, 1))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
opnd = bc_vec_top(&G.prog.results);
s = zbc_program_num(opnd, &num, false);
if (s) RETURN_STATUS(s);
#if ENABLE_DC
if (!BC_PROG_NUM(opnd, num) && !len)
RETURN_STATUS(bc_error_variable_is_wrong_type());
#endif
bc_num_init_DEF_SIZE(&res.d.n);
if (inst == BC_INST_SQRT) s = zbc_num_sqrt(num, &res.d.n, G.prog.scale);
#if ENABLE_BC
else if (len != 0 && opnd->t == BC_RESULT_ARRAY) {
bc_num_ulong2num(&res.d.n, (unsigned long) ((BcVec *) num)->len);
}
#endif
#if ENABLE_DC
else if (len != 0 && !BC_PROG_NUM(opnd, num)) {
char **str;
size_t idx = opnd->t == BC_RESULT_STR ? opnd->d.id.idx : num->rdx;
str = bc_program_str(idx);
bc_num_ulong2num(&res.d.n, strlen(*str));
}
#endif
else {
bc_num_ulong2num(&res.d.n, len ? bc_program_len(num) : bc_program_scale(num));
}
bc_program_retire(&res, BC_RESULT_TEMP);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_builtin(...) (zbc_program_builtin(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#if ENABLE_DC
static BC_STATUS zbc_program_divmod(void)
{
BcStatus s;
BcResult *opd1, *opd2, res, res2;
BcNum *n1, *n2 = NULL;
s = zbc_program_binOpPrep(&opd1, &n1, &opd2, &n2, false);
if (s) RETURN_STATUS(s);
bc_num_init_DEF_SIZE(&res.d.n);
bc_num_init(&res2.d.n, n2->len);
s = zbc_num_divmod(n1, n2, &res2.d.n, &res.d.n, G.prog.scale);
if (s) goto err;
bc_program_binOpRetire(&res2);
res.t = BC_RESULT_TEMP;
bc_vec_push(&G.prog.results, &res);
RETURN_STATUS(s);
err:
bc_num_free(&res2.d.n);
bc_num_free(&res.d.n);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_divmod(...) (zbc_program_divmod(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_program_modexp(void)
{
BcStatus s;
BcResult *r1, *r2, *r3, res;
BcNum *n1, *n2, *n3;
if (!BC_PROG_STACK(&G.prog.results, 3))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
s = zbc_program_binOpPrep(&r2, &n2, &r3, &n3, false);
if (s) RETURN_STATUS(s);
r1 = bc_vec_item_rev(&G.prog.results, 2);
s = zbc_program_num(r1, &n1, false);
if (s) RETURN_STATUS(s);
if (!BC_PROG_NUM(r1, n1))
RETURN_STATUS(bc_error_variable_is_wrong_type());
// Make sure that the values have their pointers updated, if necessary.
if (r1->t == BC_RESULT_VAR || r1->t == BC_RESULT_ARRAY_ELEM) {
if (r1->t == r2->t) {
s = zbc_program_num(r2, &n2, false);
if (s) RETURN_STATUS(s);
}
if (r1->t == r3->t) {
s = zbc_program_num(r3, &n3, false);
if (s) RETURN_STATUS(s);
}
}
bc_num_init(&res.d.n, n3->len);
s = zbc_num_modexp(n1, n2, n3, &res.d.n);
if (s) goto err;
bc_vec_pop(&G.prog.results);
bc_program_binOpRetire(&res);
RETURN_STATUS(s);
err:
bc_num_free(&res.d.n);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_modexp(...) (zbc_program_modexp(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static void bc_program_stackLen(void)
{
BcResult res;
size_t len = G.prog.results.len;
res.t = BC_RESULT_TEMP;
bc_num_init_DEF_SIZE(&res.d.n);
bc_num_ulong2num(&res.d.n, len);
bc_vec_push(&G.prog.results, &res);
}
static BC_STATUS zbc_program_asciify(void)
{
BcStatus s;
BcResult *r, res;
BcNum *num, n;
char *str, *str2, c;
size_t len = G.prog.strs.len, idx;
unsigned long val;
if (!BC_PROG_STACK(&G.prog.results, 1))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
r = bc_vec_top(&G.prog.results);
num = NULL; // TODO: is this NULL needed?
s = zbc_program_num(r, &num, false);
if (s) RETURN_STATUS(s);
if (BC_PROG_NUM(r, num)) {
bc_num_init_DEF_SIZE(&n);
bc_num_copy(&n, num);
bc_num_truncate(&n, n.rdx);
s = zbc_num_mod(&n, &G.prog.strmb, &n, 0);
if (s) goto num_err;
s = zbc_num_ulong(&n, &val);
if (s) goto num_err;
c = (char) val;
bc_num_free(&n);
}
else {
idx = (r->t == BC_RESULT_STR) ? r->d.id.idx : num->rdx;
str2 = *bc_program_str(idx);
c = str2[0];
}
str = xzalloc(2);
str[0] = c;
//str[1] = '\0'; - already is
str2 = xstrdup(str);
bc_program_addFunc(str2, &idx);
if (idx != len + BC_PROG_REQ_FUNCS) {
for (idx = 0; idx < G.prog.strs.len; ++idx) {
if (strcmp(*bc_program_str(idx), str) == 0) {
len = idx;
break;
}
}
free(str);
}
else
bc_vec_push(&G.prog.strs, &str);
res.t = BC_RESULT_STR;
res.d.id.idx = len;
bc_vec_pop(&G.prog.results);
bc_vec_push(&G.prog.results, &res);
RETURN_STATUS(BC_STATUS_SUCCESS);
num_err:
bc_num_free(&n);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_asciify(...) (zbc_program_asciify(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_program_printStream(void)
{
BcStatus s;
BcResult *r;
BcNum *n = NULL;
size_t idx;
char *str;
if (!BC_PROG_STACK(&G.prog.results, 1))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
r = bc_vec_top(&G.prog.results);
s = zbc_program_num(r, &n, false);
if (s) RETURN_STATUS(s);
if (BC_PROG_NUM(r, n))
s = zbc_num_stream(n, &G.prog.strmb);
else {
idx = (r->t == BC_RESULT_STR) ? r->d.id.idx : n->rdx;
str = *bc_program_str(idx);
printf("%s", str);
}
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_printStream(...) (zbc_program_printStream(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_program_nquit(void)
{
BcStatus s;
BcResult *opnd;
BcNum *num = NULL;
unsigned long val;
s = zbc_program_prep(&opnd, &num);
if (s) RETURN_STATUS(s);
s = zbc_num_ulong(num, &val);
if (s) RETURN_STATUS(s);
bc_vec_pop(&G.prog.results);
if (G.prog.stack.len < val)
RETURN_STATUS(bc_error_stack_has_too_few_elements());
if (G.prog.stack.len == val) {
QUIT_OR_RETURN_TO_MAIN;
}
bc_vec_npop(&G.prog.stack, val);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_nquit(...) (zbc_program_nquit(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_program_execStr(char *code, size_t *bgn,
bool cond)
{
BcStatus s = BC_STATUS_SUCCESS;
BcResult *r;
char **str;
BcFunc *f;
BcParse prs;
BcInstPtr ip;
size_t fidx, sidx;
if (!BC_PROG_STACK(&G.prog.results, 1))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
r = bc_vec_top(&G.prog.results);
if (cond) {
BcNum *n = n; // for compiler
bool exec;
char *name;
char *then_name = bc_program_name(code, bgn);
char *else_name = NULL;
if (code[*bgn] == BC_PARSE_STREND)
(*bgn) += 1;
else
else_name = bc_program_name(code, bgn);
exec = r->d.n.len != 0;
name = then_name;
if (!exec && else_name != NULL) {
exec = true;
name = else_name;
}
if (exec) {
BcVec *v;
v = bc_program_search(name, true);
n = bc_vec_top(v);
}
free(then_name);
free(else_name);
if (!exec) goto exit;
if (!BC_PROG_STR(n)) {
s = bc_error_variable_is_wrong_type();
goto exit;
}
sidx = n->rdx;
} else {
if (r->t == BC_RESULT_STR) {
sidx = r->d.id.idx;
} else if (r->t == BC_RESULT_VAR) {
BcNum *n;
s = zbc_program_num(r, &n, false);
if (s || !BC_PROG_STR(n)) goto exit;
sidx = n->rdx;
} else
goto exit;
}
fidx = sidx + BC_PROG_REQ_FUNCS;
str = bc_program_str(sidx);
f = bc_program_func(fidx);
if (f->code.len == 0) {
bc_parse_create(&prs, fidx);
s = zbc_parse_text_init(&prs, *str);
if (s) goto err;
s = zcommon_parse_expr(&prs, BC_PARSE_NOCALL);
if (s) goto err;
if (prs.l.t.t != BC_LEX_EOF) {
s = bc_error_bad_expression();
goto err;
}
bc_parse_free(&prs);
}
ip.idx = 0;
ip.len = G.prog.results.len;
ip.func = fidx;
bc_vec_pop(&G.prog.results);
bc_vec_push(&G.prog.stack, &ip);
RETURN_STATUS(BC_STATUS_SUCCESS);
err:
bc_parse_free(&prs);
f = bc_program_func(fidx);
bc_vec_pop_all(&f->code);
exit:
bc_vec_pop(&G.prog.results);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_program_execStr(...) (zbc_program_execStr(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#endif // ENABLE_DC
static void bc_program_pushGlobal(char inst)
{
BcResult res;
unsigned long val;
res.t = inst - BC_INST_IBASE + BC_RESULT_IBASE;
if (inst == BC_INST_IBASE)
val = (unsigned long) G.prog.ib_t;
else if (inst == BC_INST_SCALE)
val = (unsigned long) G.prog.scale;
else
val = (unsigned long) G.prog.ob_t;
bc_num_init_DEF_SIZE(&res.d.n);
bc_num_ulong2num(&res.d.n, val);
bc_vec_push(&G.prog.results, &res);
}
static void bc_program_addFunc(char *name, size_t *idx)
{
BcId entry, *entry_ptr;
BcFunc f;
int inserted;
entry.name = name;
entry.idx = G.prog.fns.len;
inserted = bc_map_insert(&G.prog.fn_map, &entry, idx);
if (!inserted) free(name);
entry_ptr = bc_vec_item(&G.prog.fn_map, *idx);
*idx = entry_ptr->idx;
if (!inserted) {
BcFunc *func = bc_program_func(entry_ptr->idx);
// We need to reset these, so the function can be repopulated.
func->nparams = 0;
bc_vec_pop_all(&func->autos);
bc_vec_pop_all(&func->code);
bc_vec_pop_all(&func->labels);
}
else {
bc_func_init(&f);
bc_vec_push(&G.prog.fns, &f);
}
}
static BC_STATUS zbc_program_exec(void)
{
BcResult r, *ptr;
BcNum *num;
BcInstPtr *ip = bc_vec_top(&G.prog.stack);
BcFunc *func = bc_program_func(ip->func);
char *code = func->code.v;
while (ip->idx < func->code.len) {
BcStatus s = BC_STATUS_SUCCESS;
char inst = code[(ip->idx)++];
dbg_exec("inst:%d", inst);
switch (inst) {
#if ENABLE_BC
case BC_INST_JUMP_ZERO: {
bool zero;
dbg_exec("BC_INST_JUMP_ZERO:");
s = zbc_program_prep(&ptr, &num);
if (s) RETURN_STATUS(s);
zero = (bc_num_cmp(num, &G.prog.zero) == 0);
bc_vec_pop(&G.prog.results);
if (!zero) {
bc_program_index(code, &ip->idx);
break;
}
// else: fall through
}
case BC_INST_JUMP: {
size_t idx = bc_program_index(code, &ip->idx);
size_t *addr = bc_vec_item(&func->labels, idx);
dbg_exec("BC_INST_JUMP: to %ld", (long)*addr);
ip->idx = *addr;
break;
}
case BC_INST_CALL:
dbg_exec("BC_INST_CALL:");
s = zbc_program_call(code, &ip->idx);
break;
case BC_INST_INC_PRE:
case BC_INST_DEC_PRE:
case BC_INST_INC_POST:
case BC_INST_DEC_POST:
dbg_exec("BC_INST_INCDEC:");
s = zbc_program_incdec(inst);
break;
case BC_INST_HALT:
dbg_exec("BC_INST_HALT:");
QUIT_OR_RETURN_TO_MAIN;
break;
case BC_INST_RET:
case BC_INST_RET0:
dbg_exec("BC_INST_RET[0]:");
s = zbc_program_return(inst);
break;
case BC_INST_BOOL_OR:
case BC_INST_BOOL_AND:
#endif // ENABLE_BC
case BC_INST_REL_EQ:
case BC_INST_REL_LE:
case BC_INST_REL_GE:
case BC_INST_REL_NE:
case BC_INST_REL_LT:
case BC_INST_REL_GT:
dbg_exec("BC_INST_BOOL:");
s = zbc_program_logical(inst);
break;
case BC_INST_READ:
dbg_exec("BC_INST_READ:");
s = zbc_program_read();
break;
case BC_INST_VAR:
dbg_exec("BC_INST_VAR:");
s = zbc_program_pushVar(code, &ip->idx, false, false);
break;
case BC_INST_ARRAY_ELEM:
case BC_INST_ARRAY:
dbg_exec("BC_INST_ARRAY[_ELEM]:");
s = zbc_program_pushArray(code, &ip->idx, inst);
break;
case BC_INST_LAST:
r.t = BC_RESULT_LAST;
bc_vec_push(&G.prog.results, &r);
break;
case BC_INST_IBASE:
case BC_INST_SCALE:
case BC_INST_OBASE:
bc_program_pushGlobal(inst);
break;
case BC_INST_SCALE_FUNC:
case BC_INST_LENGTH:
case BC_INST_SQRT:
dbg_exec("BC_INST_builtin:");
s = zbc_program_builtin(inst);
break;
case BC_INST_NUM:
dbg_exec("BC_INST_NUM:");
r.t = BC_RESULT_CONSTANT;
r.d.id.idx = bc_program_index(code, &ip->idx);
bc_vec_push(&G.prog.results, &r);
break;
case BC_INST_POP:
dbg_exec("BC_INST_POP:");
if (!BC_PROG_STACK(&G.prog.results, 1))
s = bc_error_stack_has_too_few_elements();
else
bc_vec_pop(&G.prog.results);
break;
case BC_INST_POP_EXEC:
dbg_exec("BC_INST_POP_EXEC:");
bc_vec_pop(&G.prog.stack);
break;
case BC_INST_PRINT:
case BC_INST_PRINT_POP:
case BC_INST_PRINT_STR:
dbg_exec("BC_INST_PRINTxyz:");
s = zbc_program_print(inst, 0);
break;
case BC_INST_STR:
dbg_exec("BC_INST_STR:");
r.t = BC_RESULT_STR;
r.d.id.idx = bc_program_index(code, &ip->idx);
bc_vec_push(&G.prog.results, &r);
break;
case BC_INST_POWER:
case BC_INST_MULTIPLY:
case BC_INST_DIVIDE:
case BC_INST_MODULUS:
case BC_INST_PLUS:
case BC_INST_MINUS:
dbg_exec("BC_INST_binaryop:");
s = zbc_program_op(inst);
break;
case BC_INST_BOOL_NOT:
dbg_exec("BC_INST_BOOL_NOT:");
s = zbc_program_prep(&ptr, &num);
if (s) RETURN_STATUS(s);
bc_num_init_DEF_SIZE(&r.d.n);
if (!bc_num_cmp(num, &G.prog.zero))
bc_num_one(&r.d.n);
//else bc_num_zero(&r.d.n); - already is
bc_program_retire(&r, BC_RESULT_TEMP);
break;
case BC_INST_NEG:
dbg_exec("BC_INST_NEG:");
s = zbc_program_negate();
break;
#if ENABLE_BC
case BC_INST_ASSIGN_POWER:
case BC_INST_ASSIGN_MULTIPLY:
case BC_INST_ASSIGN_DIVIDE:
case BC_INST_ASSIGN_MODULUS:
case BC_INST_ASSIGN_PLUS:
case BC_INST_ASSIGN_MINUS:
#endif
case BC_INST_ASSIGN:
dbg_exec("BC_INST_ASSIGNxyz:");
s = zbc_program_assign(inst);
break;
#if ENABLE_DC
case BC_INST_MODEXP:
s = zbc_program_modexp();
break;
case BC_INST_DIVMOD:
s = zbc_program_divmod();
break;
case BC_INST_EXECUTE:
case BC_INST_EXEC_COND:
s = zbc_program_execStr(code, &ip->idx, inst == BC_INST_EXEC_COND);
break;
case BC_INST_PRINT_STACK: {
size_t idx;
for (idx = 0; idx < G.prog.results.len; ++idx) {
s = zbc_program_print(BC_INST_PRINT, idx);
if (s) break;
}
break;
}
case BC_INST_CLEAR_STACK:
bc_vec_pop_all(&G.prog.results);
break;
case BC_INST_STACK_LEN:
bc_program_stackLen();
break;
case BC_INST_DUPLICATE:
if (!BC_PROG_STACK(&G.prog.results, 1))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
ptr = bc_vec_top(&G.prog.results);
bc_result_copy(&r, ptr);
bc_vec_push(&G.prog.results, &r);
break;
case BC_INST_SWAP: {
BcResult *ptr2;
if (!BC_PROG_STACK(&G.prog.results, 2))
RETURN_STATUS(bc_error_stack_has_too_few_elements());
ptr = bc_vec_item_rev(&G.prog.results, 0);
ptr2 = bc_vec_item_rev(&G.prog.results, 1);
memcpy(&r, ptr, sizeof(BcResult));
memcpy(ptr, ptr2, sizeof(BcResult));
memcpy(ptr2, &r, sizeof(BcResult));
break;
}
case BC_INST_ASCIIFY:
s = zbc_program_asciify();
break;
case BC_INST_PRINT_STREAM:
s = zbc_program_printStream();
break;
case BC_INST_LOAD:
case BC_INST_PUSH_VAR: {
bool copy = inst == BC_INST_LOAD;
s = zbc_program_pushVar(code, &ip->idx, true, copy);
break;
}
case BC_INST_PUSH_TO_VAR: {
char *name = bc_program_name(code, &ip->idx);
s = zbc_program_copyToVar(name, true);
free(name);
break;
}
case BC_INST_QUIT:
dbg_exec("BC_INST_NEG:");
if (G.prog.stack.len <= 2)
QUIT_OR_RETURN_TO_MAIN;
bc_vec_npop(&G.prog.stack, 2);
break;
case BC_INST_NQUIT:
s = zbc_program_nquit();
break;
#endif // ENABLE_DC
}
if (s || G_interrupt) {
bc_program_reset();
RETURN_STATUS(s);
}
// If the stack has changed, pointers may be invalid.
ip = bc_vec_top(&G.prog.stack);
func = bc_program_func(ip->func);
code = func->code.v;
}
RETURN_STATUS(BC_STATUS_SUCCESS);
}
#if ERRORS_ARE_FATAL
# define zbc_program_exec(...) (zbc_program_exec(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static unsigned bc_vm_envLen(const char *var)
{
char *lenv;
unsigned len;
lenv = getenv(var);
len = BC_NUM_PRINT_WIDTH;
if (!lenv) return len;
len = bb_strtou(lenv, NULL, 10) - 1;
if (errno || len < 2 || len >= INT_MAX)
len = BC_NUM_PRINT_WIDTH;
return len;
}
static BC_STATUS zbc_vm_process(const char *text)
{
BcStatus s;
dbg_lex_enter("%s:%d entered", __func__, __LINE__);
s = zbc_parse_text_init(&G.prs, text);
if (s) RETURN_STATUS(s);
while (G.prs.l.t.t != BC_LEX_EOF) {
dbg_lex("%s:%d G.prs.l.t.t:%d", __func__, __LINE__, G.prs.l.t.t);
ERROR_RETURN(s =) zcommon_parse(&G.prs);
if (s) RETURN_STATUS(s);
s = zbc_program_exec();
if (s) {
bc_program_reset();
break;
}
fflush_and_check();
}
dbg_lex_done("%s:%d done", __func__, __LINE__);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_vm_process(...) (zbc_vm_process(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_vm_file(const char *file)
{
// So far bc/dc have no way to include a file from another file,
// therefore we know G.prog.file == NULL on entry
//const char *sv_file;
char *data;
BcStatus s;
BcFunc *main_func;
BcInstPtr *ip;
data = bc_read_file(file);
if (!data) RETURN_STATUS(bc_error_fmt("file '%s' is not text", file));
//sv_file = G.prog.file;
G.prog.file = file;
bc_lex_file(&G.prs.l);
s = zbc_vm_process(data);
if (s) goto err;
main_func = bc_program_func(BC_PROG_MAIN);
ip = bc_vec_item(&G.prog.stack, 0);
if (main_func->code.len < ip->idx)
s = bc_error_fmt("file '%s' is not executable", file);
err:
//G.prog.file = sv_file;
G.prog.file = NULL;
free(data);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_vm_file(...) (zbc_vm_file(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
static BC_STATUS zbc_vm_stdin(void)
{
BcStatus s;
//G.prog.file = NULL; - already is
bc_lex_file(&G.prs.l);
G.use_stdin = 1;
do {
s = zbc_vm_process("");
// We do not stop looping on errors here.
// Example: start interactive bc and enter "return".
// It should say "'return' not in a function"
// but should not exit.
} while (G.use_stdin);
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_vm_stdin(...) (zbc_vm_stdin(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#if ENABLE_BC
static void bc_vm_info(void)
{
printf("%s "BB_VER"\n"
"Copyright (c) 2018 Gavin D. Howard and contributors\n"
, applet_name);
}
static void bc_args(char **argv)
{
unsigned opts;
int i;
GETOPT_RESET();
#if ENABLE_FEATURE_BC_LONG_OPTIONS
opts = option_mask32 |= getopt32long(argv, "wvsqli",
"warn\0" No_argument "w"
"version\0" No_argument "v"
"standard\0" No_argument "s"
"quiet\0" No_argument "q"
"mathlib\0" No_argument "l"
"interactive\0" No_argument "i"
);
#else
opts = option_mask32 |= getopt32(argv, "wvsqli");
#endif
if (getenv("POSIXLY_CORRECT"))
option_mask32 |= BC_FLAG_S;
if (opts & BC_FLAG_V) {
bc_vm_info();
exit(0);
}
for (i = optind; argv[i]; ++i)
bc_vec_push(&G.files, argv + i);
}
static void bc_vm_envArgs(void)
{
BcVec v;
char *buf;
char *env_args = getenv("BC_ENV_ARGS");
if (!env_args) return;
G.env_args = xstrdup(env_args);
buf = G.env_args;
bc_vec_init(&v, sizeof(char *), NULL);
while (*(buf = skip_whitespace(buf)) != '\0') {
bc_vec_push(&v, &buf);
buf = skip_non_whitespace(buf);
if (!*buf)
break;
*buf++ = '\0';
}
// NULL terminate, and pass argv[] so that first arg is argv[1]
if (sizeof(int) == sizeof(char*)) {
bc_vec_push(&v, &const_int_0);
} else {
static char *const nullptr = NULL;
bc_vec_push(&v, &nullptr);
}
bc_args(((char **)v.v) - 1);
bc_vec_free(&v);
}
static const char bc_lib[] ALIGN1 = {
"scale=20"
"\n" "define e(x){"
"\n" "auto b,s,n,r,d,i,p,f,v"
////////////////"if(x<0)return(1/e(-x))" // and drop 'n' and x<0 logic below
//^^^^^^^^^^^^^^^^ this would work, and is even more precise than GNU bc:
//e(-.998896): GNU:.36828580434569428695
// above code:.36828580434569428696
// actual value:.3682858043456942869594...
// but for now let's be "GNU compatible"
"\n" "b=ibase"
"\n" "ibase=A"
"\n" "if(x<0){"
"\n" "n=1"
"\n" "x=-x"
"\n" "}"
"\n" "s=scale"
"\n" "r=6+s+0.44*x"
"\n" "scale=scale(x)+1"
"\n" "while(x>1){"
"\n" "d+=1"
"\n" "x/=2"
"\n" "scale+=1"
"\n" "}"
"\n" "scale=r"
"\n" "r=x+1"
"\n" "p=x"
"\n" "f=v=1"
"\n" "for(i=2;v;++i){"
"\n" "p*=x"
"\n" "f*=i"
"\n" "v=p/f"
"\n" "r+=v"
"\n" "}"
"\n" "while(d--)r*=r"
"\n" "scale=s"
"\n" "ibase=b"
"\n" "if(n)return(1/r)"
"\n" "return(r/1)"
"\n" "}"
"\n" "define l(x){"
"\n" "auto b,s,r,p,a,q,i,v"
"\n" "b=ibase"
"\n" "ibase=A"
"\n" "if(x<=0){"
"\n" "r=(1-10^scale)/1"
"\n" "ibase=b"
"\n" "return(r)"
"\n" "}"
"\n" "s=scale"
"\n" "scale+=6"
"\n" "p=2"
"\n" "while(x>=2){"
"\n" "p*=2"
"\n" "x=sqrt(x)"
"\n" "}"
"\n" "while(x<=0.5){"
"\n" "p*=2"
"\n" "x=sqrt(x)"
"\n" "}"
"\n" "r=a=(x-1)/(x+1)"
"\n" "q=a*a"
"\n" "v=1"
"\n" "for(i=3;v;i+=2){"
"\n" "a*=q"
"\n" "v=a/i"
"\n" "r+=v"
"\n" "}"
"\n" "r*=p"
"\n" "scale=s"
"\n" "ibase=b"
"\n" "return(r/1)"
"\n" "}"
"\n" "define s(x){"
"\n" "auto b,s,r,a,q,i"
"\n" "if(x<0)return(-s(-x))"
"\n" "b=ibase"
"\n" "ibase=A"
"\n" "s=scale"
"\n" "scale=1.1*s+2"
"\n" "a=a(1)"
"\n" "scale=0"
"\n" "q=(x/a+2)/4"
"\n" "x-=4*q*a"
"\n" "if(q%2)x=-x"
"\n" "scale=s+2"
"\n" "r=a=x"
"\n" "q=-x*x"
"\n" "for(i=3;a;i+=2){"
"\n" "a*=q/(i*(i-1))"
"\n" "r+=a"
"\n" "}"
"\n" "scale=s"
"\n" "ibase=b"
"\n" "return(r/1)"
"\n" "}"
"\n" "define c(x){"
"\n" "auto b,s"
"\n" "b=ibase"
"\n" "ibase=A"
"\n" "s=scale"
"\n" "scale*=1.2"
"\n" "x=s(2*a(1)+x)"
"\n" "scale=s"
"\n" "ibase=b"
"\n" "return(x/1)"
"\n" "}"
"\n" "define a(x){"
"\n" "auto b,s,r,n,a,m,t,f,i,u"
"\n" "b=ibase"
"\n" "ibase=A"
"\n" "n=1"
"\n" "if(x<0){"
"\n" "n=-1"
"\n" "x=-x"
"\n" "}"
"\n" "if(scale<65){"
"\n" "if(x==1)return(.7853981633974483096156608458198757210492923498437764552437361480/n)"
"\n" "if(x==.2)return(.1973955598498807583700497651947902934475851037878521015176889402/n)"
"\n" "}"
"\n" "s=scale"
"\n" "if(x>.2){"
"\n" "scale+=5"
"\n" "a=a(.2)"
"\n" "}"
"\n" "scale=s+3"
"\n" "while(x>.2){"
"\n" "m+=1"
"\n" "x=(x-.2)/(1+.2*x)"
"\n" "}"
"\n" "r=u=x"
"\n" "f=-x*x"
"\n" "t=1"
"\n" "for(i=3;t;i+=2){"
"\n" "u*=f"
"\n" "t=u/i"
"\n" "r+=t"
"\n" "}"
"\n" "scale=s"
"\n" "ibase=b"
"\n" "return((m*a+r)/n)"
"\n" "}"
"\n" "define j(n,x){"
"\n" "auto b,s,o,a,i,v,f"
"\n" "b=ibase"
"\n" "ibase=A"
"\n" "s=scale"
"\n" "scale=0"
"\n" "n/=1"
"\n" "if(n<0){"
"\n" "n=-n"
"\n" "o=n%2"
"\n" "}"
"\n" "a=1"
"\n" "for(i=2;i<=n;++i)a*=i"
"\n" "scale=1.5*s"
"\n" "a=(x^n)/2^n/a"
"\n" "r=v=1"
"\n" "f=-x*x/4"
"\n" "scale+=length(a)-scale(a)"
"\n" "for(i=1;v;++i){"
"\n" "v=v*f/i/(n+i)"
"\n" "r+=v"
"\n" "}"
"\n" "scale=s"
"\n" "ibase=b"
"\n" "if(o)a=-a"
"\n" "return(a*r/1)"
"\n" "}"
};
#endif // ENABLE_BC
static BC_STATUS zbc_vm_exec(void)
{
BcStatus s;
size_t i;
#if ENABLE_BC
if (option_mask32 & BC_FLAG_L) {
// We know that internal library is not buggy,
// thus error checking is normally disabled.
# define DEBUG_LIB 0
bc_lex_file(&G.prs.l);
s = zbc_vm_process(bc_lib);
if (DEBUG_LIB && s) RETURN_STATUS(s);
}
#endif
s = BC_STATUS_SUCCESS;
for (i = 0; !s && i < G.files.len; ++i)
s = zbc_vm_file(*((char **) bc_vec_item(&G.files, i)));
if (ENABLE_FEATURE_CLEAN_UP && s && !G_ttyin) {
// Debug config, non-interactive mode:
// return all the way back to main.
// Non-debug builds do not come here, they exit.
RETURN_STATUS(s);
}
if (IS_BC || (option_mask32 & BC_FLAG_I))
s = zbc_vm_stdin();
RETURN_STATUS(s);
}
#if ERRORS_ARE_FATAL
# define zbc_vm_exec(...) (zbc_vm_exec(__VA_ARGS__), BC_STATUS_SUCCESS)
#endif
#if ENABLE_FEATURE_CLEAN_UP
static void bc_program_free(void)
{
bc_num_free(&G.prog.ib);
bc_num_free(&G.prog.ob);
bc_num_free(&G.prog.hexb);
# if ENABLE_DC
bc_num_free(&G.prog.strmb);
# endif
bc_vec_free(&G.prog.fns);
bc_vec_free(&G.prog.fn_map);
bc_vec_free(&G.prog.vars);
bc_vec_free(&G.prog.var_map);
bc_vec_free(&G.prog.arrs);
bc_vec_free(&G.prog.arr_map);
bc_vec_free(&G.prog.strs);
bc_vec_free(&G.prog.consts);
bc_vec_free(&G.prog.results);
bc_vec_free(&G.prog.stack);
bc_num_free(&G.prog.last);
bc_num_free(&G.prog.zero);
bc_num_free(&G.prog.one);
bc_vec_free(&G.stdin_buffer);
}
static void bc_vm_free(void)
{
bc_vec_free(&G.files);
bc_program_free();
bc_parse_free(&G.prs);
free(G.env_args);
}
#endif
static void bc_program_init(void)
{
size_t idx;
BcInstPtr ip;
// memset(&G.prog, 0, sizeof(G.prog)); - already is
memset(&ip, 0, sizeof(BcInstPtr));
// G.prog.nchars = G.prog.scale = 0; - already is
bc_num_init_DEF_SIZE(&G.prog.ib);
bc_num_ten(&G.prog.ib);
G.prog.ib_t = 10;
bc_num_init_DEF_SIZE(&G.prog.ob);
bc_num_ten(&G.prog.ob);
G.prog.ob_t = 10;
bc_num_init_DEF_SIZE(&G.prog.hexb);
bc_num_ten(&G.prog.hexb);
G.prog.hexb.num[0] = 6;
#if ENABLE_DC
bc_num_init_DEF_SIZE(&G.prog.strmb);
bc_num_ulong2num(&G.prog.strmb, UCHAR_MAX + 1);
#endif
bc_num_init_DEF_SIZE(&G.prog.last);
//bc_num_zero(&G.prog.last); - already is
bc_num_init_DEF_SIZE(&G.prog.zero);
//bc_num_zero(&G.prog.zero); - already is
bc_num_init_DEF_SIZE(&G.prog.one);
bc_num_one(&G.prog.one);
bc_vec_init(&G.prog.fns, sizeof(BcFunc), bc_func_free);
bc_vec_init(&G.prog.fn_map, sizeof(BcId), bc_id_free);
bc_program_addFunc(xstrdup("(main)"), &idx);
bc_program_addFunc(xstrdup("(read)"), &idx);
bc_vec_init(&G.prog.vars, sizeof(BcVec), bc_vec_free);
bc_vec_init(&G.prog.var_map, sizeof(BcId), bc_id_free);
bc_vec_init(&G.prog.arrs, sizeof(BcVec), bc_vec_free);
bc_vec_init(&G.prog.arr_map, sizeof(BcId), bc_id_free);
bc_vec_init(&G.prog.strs, sizeof(char *), bc_string_free);
bc_vec_init(&G.prog.consts, sizeof(char *), bc_string_free);
bc_vec_init(&G.prog.results, sizeof(BcResult), bc_result_free);
bc_vec_init(&G.prog.stack, sizeof(BcInstPtr), NULL);
bc_vec_push(&G.prog.stack, &ip);
bc_char_vec_init(&G.stdin_buffer);
}
static int bc_vm_init(const char *env_len)
{
#if ENABLE_FEATURE_EDITING
G.line_input_state = new_line_input_t(DO_HISTORY);
#endif
G.prog.len = bc_vm_envLen(env_len);
bc_vec_init(&G.files, sizeof(char *), NULL);
IF_BC(if (IS_BC) bc_vm_envArgs();)
bc_program_init();
bc_parse_create(&G.prs, BC_PROG_MAIN);
//TODO: in GNU bc, the check is (isatty(0) && isatty(1)),
//-i option unconditionally enables this regardless of isatty():
if (isatty(0)) {
#if ENABLE_FEATURE_BC_SIGNALS
G_ttyin = 1;
// With SA_RESTART, most system calls will restart
// (IOW: they won't fail with EINTR).
// In particular, this means ^C won't cause
// stdout to get into "error state" if SIGINT hits
// within write() syscall.
//
// The downside is that ^C while tty input is taken
// will only be handled after [Enter] since read()
// from stdin is not interrupted by ^C either,
// it restarts, thus fgetc() does not return on ^C.
// (This problem manifests only if line editing is disabled)
signal_SA_RESTART_empty_mask(SIGINT, record_signo);
// Without SA_RESTART, this exhibits a bug:
// "while (1) print 1" and try ^C-ing it.
// Intermittently, instead of returning to input line,
// you'll get "output error: Interrupted system call"
// and exit.
//signal_no_SA_RESTART_empty_mask(SIGINT, record_signo);
#endif
return 1; // "tty"
}
return 0; // "not a tty"
}
static BcStatus bc_vm_run(void)
{
BcStatus st = zbc_vm_exec();
#if ENABLE_FEATURE_CLEAN_UP
if (G_exiting) // it was actually "halt" or "quit"
st = EXIT_SUCCESS;
bc_vm_free();
# if ENABLE_FEATURE_EDITING
free_line_input_t(G.line_input_state);
# endif
FREE_G();
#endif
dbg_exec("exiting with exitcode %d", st);
return st;
}
#if ENABLE_BC
int bc_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
int bc_main(int argc UNUSED_PARAM, char **argv)
{
int is_tty;
INIT_G();
is_tty = bc_vm_init("BC_LINE_LENGTH");
bc_args(argv);
if (is_tty && !(option_mask32 & BC_FLAG_Q))
bc_vm_info();
return bc_vm_run();
}
#endif
#if ENABLE_DC
int dc_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
int dc_main(int argc UNUSED_PARAM, char **argv)
{
int noscript;
INIT_G();
// TODO: dc (GNU bc 1.07.1) 1.4.1 seems to use width
// 1 char wider than bc from the same package.
// Both default width, and xC_LINE_LENGTH=N are wider:
// "DC_LINE_LENGTH=5 dc -e'123456 p'" prints:
// |1234\ |
// |56 |
// "echo '123456' | BC_LINE_LENGTH=5 bc" prints:
// |123\ |
// |456 |
// Do the same, or it's a bug?
bc_vm_init("DC_LINE_LENGTH");
// Run -e'SCRIPT' and -fFILE in order of appearance, then handle FILEs
noscript = BC_FLAG_I;
for (;;) {
int n = getopt(argc, argv, "e:f:x");
if (n <= 0)
break;
switch (n) {
case 'e':
noscript = 0;
n = zbc_vm_process(optarg);
if (n) return n;
break;
case 'f':
noscript = 0;
n = zbc_vm_file(optarg);
if (n) return n;
break;
case 'x':
option_mask32 |= DC_FLAG_X;
break;
default:
bb_show_usage();
}
}
argv += optind;
while (*argv) {
noscript = 0;
bc_vec_push(&G.files, argv++);
}
option_mask32 |= noscript; // set BC_FLAG_I if we need to interpret stdin
return bc_vm_run();
}
#endif
#endif // not DC_SMALL