| /* |
| * Copyright (C) 2021 Denys Vlasenko |
| * |
| * Licensed under GPLv2, see file LICENSE in this source tree. |
| */ |
| #include "tls.h" |
| |
| #define SP_DEBUG 0 |
| #define FIXED_SECRET 0 |
| #define FIXED_PEER_PUBKEY 0 |
| |
| #define ALLOW_ASM 1 |
| |
| #if SP_DEBUG |
| # define dbg(...) fprintf(stderr, __VA_ARGS__) |
| static void dump_hex(const char *fmt, const void *vp, int len) |
| { |
| char hexbuf[32 * 1024 + 4]; |
| const uint8_t *p = vp; |
| |
| bin2hex(hexbuf, (void*)p, len)[0] = '\0'; |
| dbg(fmt, hexbuf); |
| } |
| #else |
| # define dbg(...) ((void)0) |
| # define dump_hex(...) ((void)0) |
| #endif |
| |
| typedef uint32_t sp_digit; |
| typedef int32_t signed_sp_digit; |
| |
| /* 64-bit optimizations: |
| * if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff, |
| * then loads and stores can be done in 64-bit chunks. |
| * |
| * A narrower case is when arch is also little-endian (such as x86_64), |
| * then "LSW first", uint32[8] and uint64[4] representations are equivalent, |
| * and arithmetic can be done in 64 bits too. |
| */ |
| #if defined(__GNUC__) && defined(__x86_64__) |
| # define UNALIGNED_LE_64BIT 1 |
| #else |
| # define UNALIGNED_LE_64BIT 0 |
| #endif |
| |
| /* The code below is taken from parts of |
| * wolfssl-3.15.3/wolfcrypt/src/sp_c32.c |
| * and heavily modified. |
| */ |
| |
| typedef struct sp_point { |
| sp_digit x[8] |
| #if ULONG_MAX > 0xffffffff |
| /* Make sp_point[] arrays to not be 64-bit misaligned */ |
| ALIGNED(8) |
| #endif |
| ; |
| sp_digit y[8]; |
| sp_digit z[8]; |
| int infinity; |
| } sp_point; |
| |
| /* The modulus (prime) of the curve P256. */ |
| static const sp_digit p256_mod[8] ALIGNED(8) = { |
| 0xffffffff,0xffffffff,0xffffffff,0x00000000, |
| 0x00000000,0x00000000,0x00000001,0xffffffff, |
| }; |
| |
| #define p256_mp_mod ((sp_digit)0x000001) |
| |
| /* Write r as big endian to byte array. |
| * Fixed length number of bytes written: 32 |
| * |
| * r A single precision integer. |
| * a Byte array. |
| */ |
| #if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff |
| static void sp_256_to_bin_8(const sp_digit* rr, uint8_t* a) |
| { |
| int i; |
| const uint64_t* r = (void*)rr; |
| |
| r += 4; |
| for (i = 0; i < 4; i++) { |
| r--; |
| move_to_unaligned64(a, SWAP_BE64(*r)); |
| a += 8; |
| } |
| } |
| #else |
| static void sp_256_to_bin_8(const sp_digit* r, uint8_t* a) |
| { |
| int i; |
| |
| r += 8; |
| for (i = 0; i < 8; i++) { |
| r--; |
| move_to_unaligned32(a, SWAP_BE32(*r)); |
| a += 4; |
| } |
| } |
| #endif |
| |
| /* Read big endian unsigned byte array into r. |
| * |
| * r A single precision integer. |
| * a Byte array. |
| * n Number of bytes in array to read. |
| */ |
| #if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff |
| static void sp_256_from_bin_8(sp_digit* rr, const uint8_t* a) |
| { |
| int i; |
| uint64_t* r = (void*)rr; |
| |
| r += 4; |
| for (i = 0; i < 4; i++) { |
| uint64_t v; |
| move_from_unaligned64(v, a); |
| *--r = SWAP_BE64(v); |
| a += 8; |
| } |
| } |
| #else |
| static void sp_256_from_bin_8(sp_digit* r, const uint8_t* a) |
| { |
| int i; |
| |
| r += 8; |
| for (i = 0; i < 8; i++) { |
| sp_digit v; |
| move_from_unaligned32(v, a); |
| *--r = SWAP_BE32(v); |
| a += 4; |
| } |
| } |
| #endif |
| |
| #if SP_DEBUG |
| static void dump_256(const char *fmt, const sp_digit* r) |
| { |
| uint8_t b32[32]; |
| sp_256_to_bin_8(r, b32); |
| dump_hex(fmt, b32, 32); |
| } |
| static void dump_512(const char *fmt, const sp_digit* r) |
| { |
| uint8_t b64[64]; |
| sp_256_to_bin_8(r, b64 + 32); |
| sp_256_to_bin_8(r+8, b64); |
| dump_hex(fmt, b64, 64); |
| } |
| #else |
| # define dump_256(...) ((void)0) |
| # define dump_512(...) ((void)0) |
| #endif |
| |
| /* Convert a point of big-endian 32-byte x,y pair to type sp_point. */ |
| static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32) |
| { |
| memset(p, 0, sizeof(*p)); |
| /*p->infinity = 0;*/ |
| sp_256_from_bin_8(p->x, bin2x32); |
| sp_256_from_bin_8(p->y, bin2x32 + 32); |
| p->z[0] = 1; /* p->z = 1 */ |
| } |
| |
| /* Compare a with b. |
| * |
| * return -ve, 0 or +ve if a is less than, equal to or greater than b |
| * respectively. |
| */ |
| #if UNALIGNED_LE_64BIT |
| static signed_sp_digit sp_256_cmp_8(const sp_digit* aa, const sp_digit* bb) |
| { |
| const uint64_t* a = (void*)aa; |
| const uint64_t* b = (void*)bb; |
| int i; |
| for (i = 3; i >= 0; i--) { |
| if (a[i] == b[i]) |
| continue; |
| return (a[i] > b[i]) * 2 - 1; |
| } |
| return 0; |
| } |
| #else |
| static signed_sp_digit sp_256_cmp_8(const sp_digit* a, const sp_digit* b) |
| { |
| int i; |
| for (i = 7; i >= 0; i--) { |
| /* signed_sp_digit r = a[i] - b[i]; |
| * if (r != 0) |
| * return r; |
| * does not work: think about a[i]=0, b[i]=0xffffffff |
| */ |
| if (a[i] == b[i]) |
| continue; |
| return (a[i] > b[i]) * 2 - 1; |
| } |
| return 0; |
| } |
| #endif |
| |
| /* Compare two numbers to determine if they are equal. |
| * |
| * return 1 when equal and 0 otherwise. |
| */ |
| static int sp_256_cmp_equal_8(const sp_digit* a, const sp_digit* b) |
| { |
| return sp_256_cmp_8(a, b) == 0; |
| } |
| |
| /* Add b to a into r. (r = a + b). Return !0 on overflow */ |
| static int sp_256_add_8(sp_digit* r, const sp_digit* a, const sp_digit* b) |
| { |
| #if ALLOW_ASM && defined(__GNUC__) && defined(__i386__) |
| sp_digit reg; |
| asm volatile ( |
| "\n movl (%0), %3" |
| "\n addl (%1), %3" |
| "\n movl %3, (%2)" |
| "\n" |
| "\n movl 1*4(%0), %3" |
| "\n adcl 1*4(%1), %3" |
| "\n movl %3, 1*4(%2)" |
| "\n" |
| "\n movl 2*4(%0), %3" |
| "\n adcl 2*4(%1), %3" |
| "\n movl %3, 2*4(%2)" |
| "\n" |
| "\n movl 3*4(%0), %3" |
| "\n adcl 3*4(%1), %3" |
| "\n movl %3, 3*4(%2)" |
| "\n" |
| "\n movl 4*4(%0), %3" |
| "\n adcl 4*4(%1), %3" |
| "\n movl %3, 4*4(%2)" |
| "\n" |
| "\n movl 5*4(%0), %3" |
| "\n adcl 5*4(%1), %3" |
| "\n movl %3, 5*4(%2)" |
| "\n" |
| "\n movl 6*4(%0), %3" |
| "\n adcl 6*4(%1), %3" |
| "\n movl %3, 6*4(%2)" |
| "\n" |
| "\n movl 7*4(%0), %3" |
| "\n adcl 7*4(%1), %3" |
| "\n movl %3, 7*4(%2)" |
| "\n" |
| "\n sbbl %3, %3" |
| "\n" |
| : "=r" (a), "=r" (b), "=r" (r), "=r" (reg) |
| : "0" (a), "1" (b), "2" (r) |
| : "memory" |
| ); |
| return reg; |
| #elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__) |
| uint64_t reg; |
| asm volatile ( |
| "\n movq (%0), %3" |
| "\n addq (%1), %3" |
| "\n movq %3, (%2)" |
| "\n" |
| "\n movq 1*8(%0), %3" |
| "\n adcq 1*8(%1), %3" |
| "\n movq %3, 1*8(%2)" |
| "\n" |
| "\n movq 2*8(%0), %3" |
| "\n adcq 2*8(%1), %3" |
| "\n movq %3, 2*8(%2)" |
| "\n" |
| "\n movq 3*8(%0), %3" |
| "\n adcq 3*8(%1), %3" |
| "\n movq %3, 3*8(%2)" |
| "\n" |
| "\n sbbq %3, %3" |
| "\n" |
| : "=r" (a), "=r" (b), "=r" (r), "=r" (reg) |
| : "0" (a), "1" (b), "2" (r) |
| : "memory" |
| ); |
| return reg; |
| #else |
| int i; |
| sp_digit carry; |
| |
| carry = 0; |
| for (i = 0; i < 8; i++) { |
| sp_digit w, v; |
| w = b[i] + carry; |
| v = a[i]; |
| if (w != 0) { |
| v = a[i] + w; |
| carry = (v < a[i]); |
| /* hope compiler detects above as "carry flag set" */ |
| } |
| /* else: b + carry == 0, two cases: |
| * b:ffffffff, carry:1 |
| * b:00000000, carry:0 |
| * in either case, r[i] = a[i] and carry remains unchanged |
| */ |
| r[i] = v; |
| } |
| return carry; |
| #endif |
| } |
| |
| /* Sub b from a into r. (r = a - b). Return !0 on underflow */ |
| static int sp_256_sub_8(sp_digit* r, const sp_digit* a, const sp_digit* b) |
| { |
| #if ALLOW_ASM && defined(__GNUC__) && defined(__i386__) |
| sp_digit reg; |
| asm volatile ( |
| "\n movl (%0), %3" |
| "\n subl (%1), %3" |
| "\n movl %3, (%2)" |
| "\n" |
| "\n movl 1*4(%0), %3" |
| "\n sbbl 1*4(%1), %3" |
| "\n movl %3, 1*4(%2)" |
| "\n" |
| "\n movl 2*4(%0), %3" |
| "\n sbbl 2*4(%1), %3" |
| "\n movl %3, 2*4(%2)" |
| "\n" |
| "\n movl 3*4(%0), %3" |
| "\n sbbl 3*4(%1), %3" |
| "\n movl %3, 3*4(%2)" |
| "\n" |
| "\n movl 4*4(%0), %3" |
| "\n sbbl 4*4(%1), %3" |
| "\n movl %3, 4*4(%2)" |
| "\n" |
| "\n movl 5*4(%0), %3" |
| "\n sbbl 5*4(%1), %3" |
| "\n movl %3, 5*4(%2)" |
| "\n" |
| "\n movl 6*4(%0), %3" |
| "\n sbbl 6*4(%1), %3" |
| "\n movl %3, 6*4(%2)" |
| "\n" |
| "\n movl 7*4(%0), %3" |
| "\n sbbl 7*4(%1), %3" |
| "\n movl %3, 7*4(%2)" |
| "\n" |
| "\n sbbl %3, %3" |
| "\n" |
| : "=r" (a), "=r" (b), "=r" (r), "=r" (reg) |
| : "0" (a), "1" (b), "2" (r) |
| : "memory" |
| ); |
| return reg; |
| #elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__) |
| uint64_t reg; |
| asm volatile ( |
| "\n movq (%0), %3" |
| "\n subq (%1), %3" |
| "\n movq %3, (%2)" |
| "\n" |
| "\n movq 1*8(%0), %3" |
| "\n sbbq 1*8(%1), %3" |
| "\n movq %3, 1*8(%2)" |
| "\n" |
| "\n movq 2*8(%0), %3" |
| "\n sbbq 2*8(%1), %3" |
| "\n movq %3, 2*8(%2)" |
| "\n" |
| "\n movq 3*8(%0), %3" |
| "\n sbbq 3*8(%1), %3" |
| "\n movq %3, 3*8(%2)" |
| "\n" |
| "\n sbbq %3, %3" |
| "\n" |
| : "=r" (a), "=r" (b), "=r" (r), "=r" (reg) |
| : "0" (a), "1" (b), "2" (r) |
| : "memory" |
| ); |
| return reg; |
| #else |
| int i; |
| sp_digit borrow; |
| |
| borrow = 0; |
| for (i = 0; i < 8; i++) { |
| sp_digit w, v; |
| w = b[i] + borrow; |
| v = a[i]; |
| if (w != 0) { |
| v = a[i] - w; |
| borrow = (v > a[i]); |
| /* hope compiler detects above as "carry flag set" */ |
| } |
| /* else: b + borrow == 0, two cases: |
| * b:ffffffff, borrow:1 |
| * b:00000000, borrow:0 |
| * in either case, r[i] = a[i] and borrow remains unchanged |
| */ |
| r[i] = v; |
| } |
| return borrow; |
| #endif |
| } |
| |
| /* Sub p256_mod from r. (r = r - p256_mod). */ |
| #if ALLOW_ASM && defined(__GNUC__) && defined(__i386__) |
| static void sp_256_sub_8_p256_mod(sp_digit* r) |
| { |
| //p256_mod[7..0] = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff |
| asm volatile ( |
| "\n subl $0xffffffff, (%0)" |
| "\n sbbl $0xffffffff, 1*4(%0)" |
| "\n sbbl $0xffffffff, 2*4(%0)" |
| "\n sbbl $0, 3*4(%0)" |
| "\n sbbl $0, 4*4(%0)" |
| "\n sbbl $0, 5*4(%0)" |
| "\n sbbl $1, 6*4(%0)" |
| "\n sbbl $0xffffffff, 7*4(%0)" |
| "\n" |
| : "=r" (r) |
| : "0" (r) |
| : "memory" |
| ); |
| } |
| #elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__) |
| static void sp_256_sub_8_p256_mod(sp_digit* r) |
| { |
| uint64_t reg; |
| uint64_t ooff; |
| //p256_mod[3..0] = ffffffff00000001 0000000000000000 00000000ffffffff ffffffffffffffff |
| asm volatile ( |
| "\n addq $1, (%0)" // adding 1 is the same as subtracting ffffffffffffffff |
| "\n cmc" // only carry bit needs inverting |
| "\n" |
| "\n sbbq %1, 1*8(%0)" // %1 holds 00000000ffffffff |
| "\n" |
| "\n sbbq $0, 2*8(%0)" |
| "\n" |
| "\n movq 3*8(%0), %2" |
| "\n sbbq $0, %2" // adding 00000000ffffffff (in %1) |
| "\n addq %1, %2" // is the same as subtracting ffffffff00000001 |
| "\n movq %2, 3*8(%0)" |
| "\n" |
| : "=r" (r), "=r" (ooff), "=r" (reg) |
| : "0" (r), "1" (0x00000000ffffffff) |
| : "memory" |
| ); |
| } |
| #else |
| static void sp_256_sub_8_p256_mod(sp_digit* r) |
| { |
| sp_256_sub_8(r, r, p256_mod); |
| } |
| #endif |
| |
| /* Multiply a and b into r. (r = a * b) |
| * r should be [16] array (512 bits), and must not coincide with a or b. |
| */ |
| static void sp_256to512_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b) |
| { |
| #if ALLOW_ASM && defined(__GNUC__) && defined(__i386__) |
| int k; |
| uint32_t accl; |
| uint32_t acch; |
| |
| acch = accl = 0; |
| for (k = 0; k < 15; k++) { |
| int i, j; |
| uint32_t acc_hi; |
| i = k - 7; |
| if (i < 0) |
| i = 0; |
| j = k - i; |
| acc_hi = 0; |
| do { |
| //////////////////////// |
| // uint64_t m = ((uint64_t)a[i]) * b[j]; |
| // acc_hi:acch:accl += m; |
| asm volatile ( |
| // a[i] is already loaded in %%eax |
| "\n mull %7" |
| "\n addl %%eax, %0" |
| "\n adcl %%edx, %1" |
| "\n adcl $0, %2" |
| : "=rm" (accl), "=rm" (acch), "=rm" (acc_hi) |
| : "0" (accl), "1" (acch), "2" (acc_hi), "a" (a[i]), "m" (b[j]) |
| : "cc", "dx" |
| ); |
| //////////////////////// |
| j--; |
| i++; |
| } while (i != 8 && i <= k); |
| r[k] = accl; |
| accl = acch; |
| acch = acc_hi; |
| } |
| r[15] = accl; |
| #elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__) |
| const uint64_t* aa = (const void*)a; |
| const uint64_t* bb = (const void*)b; |
| uint64_t* rr = (void*)r; |
| int k; |
| uint64_t accl; |
| uint64_t acch; |
| |
| acch = accl = 0; |
| for (k = 0; k < 7; k++) { |
| int i, j; |
| uint64_t acc_hi; |
| i = k - 3; |
| if (i < 0) |
| i = 0; |
| j = k - i; |
| acc_hi = 0; |
| do { |
| //////////////////////// |
| // uint128_t m = ((uint128_t)a[i]) * b[j]; |
| // acc_hi:acch:accl += m; |
| asm volatile ( |
| // aa[i] is already loaded in %%rax |
| "\n mulq %7" |
| "\n addq %%rax, %0" |
| "\n adcq %%rdx, %1" |
| "\n adcq $0, %2" |
| : "=rm" (accl), "=rm" (acch), "=rm" (acc_hi) |
| : "0" (accl), "1" (acch), "2" (acc_hi), "a" (aa[i]), "m" (bb[j]) |
| : "cc", "dx" |
| ); |
| //////////////////////// |
| j--; |
| i++; |
| } while (i != 4 && i <= k); |
| rr[k] = accl; |
| accl = acch; |
| acch = acc_hi; |
| } |
| rr[7] = accl; |
| #elif 0 |
| //TODO: arm assembly (untested) |
| asm volatile ( |
| "\n mov r5, #0" |
| "\n mov r6, #0" |
| "\n mov r7, #0" |
| "\n mov r8, #0" |
| "\n 1:" |
| "\n subs r3, r5, #28" |
| "\n movcc r3, #0" |
| "\n sub r4, r5, r3" |
| "\n 2:" |
| "\n ldr r14, [%[a], r3]" |
| "\n ldr r12, [%[b], r4]" |
| "\n umull r9, r10, r14, r12" |
| "\n adds r6, r6, r9" |
| "\n adcs r7, r7, r10" |
| "\n adc r8, r8, #0" |
| "\n add r3, r3, #4" |
| "\n sub r4, r4, #4" |
| "\n cmp r3, #32" |
| "\n beq 3f" |
| "\n cmp r3, r5" |
| "\n ble 2b" |
| "\n 3:" |
| "\n str r6, [%[r], r5]" |
| "\n mov r6, r7" |
| "\n mov r7, r8" |
| "\n mov r8, #0" |
| "\n add r5, r5, #4" |
| "\n cmp r5, #56" |
| "\n ble 1b" |
| "\n str r6, [%[r], r5]" |
| : [r] "r" (r), [a] "r" (a), [b] "r" (b) |
| : "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r12", "r14" |
| ); |
| #else |
| int i, j, k; |
| uint64_t acc; |
| |
| acc = 0; |
| for (k = 0; k < 15; k++) { |
| uint32_t acc_hi; |
| i = k - 7; |
| if (i < 0) |
| i = 0; |
| j = k - i; |
| acc_hi = 0; |
| do { |
| uint64_t m = ((uint64_t)a[i]) * b[j]; |
| acc += m; |
| if (acc < m) |
| acc_hi++; |
| j--; |
| i++; |
| } while (i != 8 && i <= k); |
| r[k] = acc; |
| acc = (acc >> 32) | ((uint64_t)acc_hi << 32); |
| } |
| r[15] = acc; |
| #endif |
| } |
| |
| /* Shift number right one bit. Bottom bit is lost. */ |
| #if UNALIGNED_LE_64BIT |
| static void sp_256_rshift1_8(sp_digit* rr, uint64_t carry) |
| { |
| uint64_t *r = (void*)rr; |
| int i; |
| |
| carry = (((uint64_t)!!carry) << 63); |
| for (i = 3; i >= 0; i--) { |
| uint64_t c = r[i] << 63; |
| r[i] = (r[i] >> 1) | carry; |
| carry = c; |
| } |
| } |
| #else |
| static void sp_256_rshift1_8(sp_digit* r, sp_digit carry) |
| { |
| int i; |
| |
| carry = (((sp_digit)!!carry) << 31); |
| for (i = 7; i >= 0; i--) { |
| sp_digit c = r[i] << 31; |
| r[i] = (r[i] >> 1) | carry; |
| carry = c; |
| } |
| } |
| #endif |
| |
| /* Divide the number by 2 mod the modulus (prime). (r = (r / 2) % m) */ |
| static void sp_256_div2_8(sp_digit* r /*, const sp_digit* m*/) |
| { |
| const sp_digit* m = p256_mod; |
| |
| int carry = 0; |
| if (r[0] & 1) |
| carry = sp_256_add_8(r, r, m); |
| sp_256_rshift1_8(r, carry); |
| } |
| |
| /* Add two Montgomery form numbers (r = a + b % m) */ |
| static void sp_256_mont_add_8(sp_digit* r, const sp_digit* a, const sp_digit* b |
| /*, const sp_digit* m*/) |
| { |
| // const sp_digit* m = p256_mod; |
| |
| int carry = sp_256_add_8(r, a, b); |
| if (carry) { |
| sp_256_sub_8_p256_mod(r); |
| } |
| } |
| |
| /* Subtract two Montgomery form numbers (r = a - b % m) */ |
| static void sp_256_mont_sub_8(sp_digit* r, const sp_digit* a, const sp_digit* b |
| /*, const sp_digit* m*/) |
| { |
| const sp_digit* m = p256_mod; |
| |
| int borrow; |
| borrow = sp_256_sub_8(r, a, b); |
| if (borrow) { |
| sp_256_add_8(r, r, m); |
| } |
| } |
| |
| /* Double a Montgomery form number (r = a + a % m) */ |
| static void sp_256_mont_dbl_8(sp_digit* r, const sp_digit* a /*, const sp_digit* m*/) |
| { |
| // const sp_digit* m = p256_mod; |
| |
| int carry = sp_256_add_8(r, a, a); |
| if (carry) |
| sp_256_sub_8_p256_mod(r); |
| } |
| |
| /* Triple a Montgomery form number (r = a + a + a % m) */ |
| static void sp_256_mont_tpl_8(sp_digit* r, const sp_digit* a /*, const sp_digit* m*/) |
| { |
| // const sp_digit* m = p256_mod; |
| |
| int carry = sp_256_add_8(r, a, a); |
| if (carry) { |
| sp_256_sub_8_p256_mod(r); |
| } |
| carry = sp_256_add_8(r, r, a); |
| if (carry) { |
| sp_256_sub_8_p256_mod(r); |
| } |
| } |
| |
| /* Shift the result in the high 256 bits down to the bottom. */ |
| static void sp_512to256_mont_shift_8(sp_digit* r, sp_digit* a) |
| { |
| memcpy(r, a + 8, sizeof(*r) * 8); |
| } |
| |
| #if UNALIGNED_LE_64BIT |
| /* 64-bit little-endian optimized version. |
| * See generic 32-bit version below for explanation. |
| * The benefit of this version is: even though r[3] calculation is atrocious, |
| * we call sp_256_mul_add_4() four times, not 8. |
| * Measured run time improvement of curve_P256_compute_pubkey_and_premaster() |
| * call on x86-64: from ~1500us to ~900us. Code size +32 bytes. |
| */ |
| static int sp_256_mul_add_4(uint64_t *r /*, const uint64_t* a, uint64_t b*/) |
| { |
| uint64_t b = r[0]; |
| |
| # if 0 |
| const uint64_t* a = (const void*)p256_mod; |
| //a[3..0] = ffffffff00000001 0000000000000000 00000000ffffffff ffffffffffffffff |
| uint128_t t; |
| int i; |
| t = 0; |
| for (i = 0; i < 4; i++) { |
| uint32_t t_hi; |
| uint128_t m = ((uint128_t)b * a[i]) + r[i]; |
| t += m; |
| t_hi = (t < m); |
| r[i] = (uint64_t)t; |
| t = (t >> 64) | ((uint128_t)t_hi << 64); |
| } |
| r[4] += (uint64_t)t; |
| return (r[4] < (uint64_t)t); /* 1 if addition overflowed */ |
| # else |
| // Unroll, then optimize the above loop: |
| //uint32_t t_hi; |
| //uint128_t m; |
| uint64_t t64, t64u; |
| |
| //m = ((uint128_t)b * a[0]) + r[0]; |
| // Since b is r[0] and a[0] is ffffffffffffffff, the above optimizes to: |
| // m = r[0] * ffffffffffffffff + r[0] = (r[0] << 64 - r[0]) + r[0] = r[0] << 64; |
| //t += m; |
| // t = r[0] << 64 = b << 64; |
| //t_hi = (t < m); |
| // t_hi = 0; |
| //r[0] = (uint64_t)t; |
| // r[0] = 0; |
| //the store can be eliminated since caller won't look at lower 256 bits of the result |
| //t = (t >> 64) | ((uint128_t)t_hi << 64); |
| // t = b; |
| |
| //m = ((uint128_t)b * a[1]) + r[1]; |
| // Since a[1] is 00000000ffffffff, the above optimizes to: |
| // m = b * ffffffff + r[1] = (b * 100000000 - b) + r[1] = (b << 32) - b + r[1]; |
| //t += m; |
| // t = b + (b << 32) - b + r[1] = (b << 32) + r[1]; |
| //t_hi = (t < m); |
| // t_hi = 0; |
| //r[1] = (uint64_t)t; |
| r[1] += (b << 32); |
| //t = (t >> 64) | ((uint128_t)t_hi << 64); |
| t64 = (r[1] < (b << 32)); |
| t64 += (b >> 32); |
| |
| //m = ((uint128_t)b * a[2]) + r[2]; |
| // Since a[2] is 0000000000000000, the above optimizes to: |
| // m = b * 0 + r[2] = r[2]; |
| //t += m; |
| // t = t64 + r[2]; |
| //t_hi = (t < m); |
| // t_hi = 0; |
| //r[2] = (uint64_t)t; |
| r[2] += t64; |
| //t = (t >> 64) | ((uint128_t)t_hi << 64); |
| t64 = (r[2] < t64); |
| |
| //m = ((uint128_t)b * a[3]) + r[3]; |
| // Since a[3] is ffffffff00000001, the above optimizes to: |
| // m = b * ffffffff00000001 + r[3]; |
| // m = b + b*ffffffff00000000 + r[3] |
| // m = b + (b*ffffffff << 32) + r[3] |
| // m = b + (((b<<32) - b) << 32) + r[3] |
| //t += m; |
| // t = t64 + (uint128_t)b + ((((uint128_t)b << 32) - b) << 32) + r[3]; |
| t64 += b; |
| t64u = (t64 < b); |
| t64 += r[3]; |
| t64u += (t64 < r[3]); |
| { // add ((((uint128_t)b << 32) - b) << 32): |
| uint64_t lo, hi; |
| //lo = (((b << 32) - b) << 32 |
| //hi = (((uint128_t)b << 32) - b) >> 32 |
| //but without uint128_t: |
| hi = (b << 32) - b; /* make lower 32 bits of "hi", part 1 */ |
| b = (b >> 32) - (/*borrowed above?*/(b << 32) < b); /* upper 32 bits of "hi" are in b */ |
| lo = hi << 32; /* (use "hi" value to calculate "lo",... */ |
| t64 += lo; /* ...consume... */ |
| t64u += (t64 < lo); /* ..."lo") */ |
| hi >>= 32; /* make lower 32 bits of "hi", part 2 */ |
| hi |= (b << 32); /* combine lower and upper 32 bits */ |
| t64u += hi; /* consume "hi" */ |
| } |
| //t_hi = (t < m); |
| // t_hi = 0; |
| //r[3] = (uint64_t)t; |
| r[3] = t64; |
| //t = (t >> 64) | ((uint128_t)t_hi << 64); |
| // t = t64u; |
| |
| r[4] += t64u; |
| return (r[4] < t64u); /* 1 if addition overflowed */ |
| # endif |
| } |
| |
| static void sp_512to256_mont_reduce_8(sp_digit* r, sp_digit* aa/*, const sp_digit* m, sp_digit mp*/) |
| { |
| // const sp_digit* m = p256_mod; |
| int i; |
| uint64_t *a = (void*)aa; |
| |
| sp_digit carry = 0; |
| for (i = 0; i < 4; i++) { |
| // mu = a[i]; |
| if (sp_256_mul_add_4(a+i /*, m, mu*/)) { |
| int j = i + 4; |
| inc_next_word: |
| if (++j > 7) { /* a[8] array has no more words? */ |
| carry++; |
| continue; |
| } |
| if (++a[j] == 0) /* did this overflow too? */ |
| goto inc_next_word; |
| } |
| } |
| sp_512to256_mont_shift_8(r, aa); |
| if (carry != 0) |
| sp_256_sub_8_p256_mod(r); |
| } |
| |
| #else /* Generic 32-bit version */ |
| |
| /* Mul a by scalar b and add into r. (r += a * b) |
| * a = p256_mod |
| * b = r[0] |
| */ |
| static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/) |
| { |
| sp_digit b = r[0]; |
| uint64_t t; |
| |
| # if 0 |
| const sp_digit* a = p256_mod; |
| //a[7..0] = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff |
| int i; |
| t = 0; |
| for (i = 0; i < 8; i++) { |
| uint32_t t_hi; |
| uint64_t m = ((uint64_t)b * a[i]) + r[i]; |
| t += m; |
| t_hi = (t < m); |
| r[i] = (sp_digit)t; |
| t = (t >> 32) | ((uint64_t)t_hi << 32); |
| } |
| r[8] += (sp_digit)t; |
| return (r[8] < (sp_digit)t); /* 1 if addition overflowed */ |
| # else |
| // Unroll, then optimize the above loop: |
| //uint32_t t_hi; |
| uint64_t m; |
| uint32_t t32; |
| |
| //m = ((uint64_t)b * a[0]) + r[0]; |
| // Since b is r[0] and a[0] is ffffffff, the above optimizes to: |
| // m = r[0] * ffffffff + r[0] = (r[0] * 100000000 - r[0]) + r[0] = r[0] << 32; |
| //t += m; |
| // t = r[0] << 32 = b << 32; |
| //t_hi = (t < m); |
| // t_hi = 0; |
| //r[0] = (sp_digit)t; |
| // r[0] = 0; |
| //the store can be eliminated since caller won't look at lower 256 bits of the result |
| //t = (t >> 32) | ((uint64_t)t_hi << 32); |
| // t = b; |
| |
| //m = ((uint64_t)b * a[1]) + r[1]; |
| // Since a[1] is ffffffff, the above optimizes to: |
| // m = b * ffffffff + r[1] = (b * 100000000 - b) + r[1] = (b << 32) - b + r[1]; |
| //t += m; |
| // t = b + (b << 32) - b + r[1] = (b << 32) + r[1]; |
| //t_hi = (t < m); |
| // t_hi = 0; |
| //r[1] = (sp_digit)t; |
| // r[1] = r[1]; |
| //t = (t >> 32) | ((uint64_t)t_hi << 32); |
| // t = b; |
| |
| //m = ((uint64_t)b * a[2]) + r[2]; |
| // Since a[2] is ffffffff, the above optimizes to: |
| // m = b * ffffffff + r[2] = (b * 100000000 - b) + r[2] = (b << 32) - b + r[2]; |
| //t += m; |
| // t = b + (b << 32) - b + r[2] = (b << 32) + r[2] |
| //t_hi = (t < m); |
| // t_hi = 0; |
| //r[2] = (sp_digit)t; |
| // r[2] = r[2]; |
| //t = (t >> 32) | ((uint64_t)t_hi << 32); |
| // t = b; |
| |
| //m = ((uint64_t)b * a[3]) + r[3]; |
| // Since a[3] is 00000000, the above optimizes to: |
| // m = b * 0 + r[3] = r[3]; |
| //t += m; |
| // t = b + r[3]; |
| //t_hi = (t < m); |
| // t_hi = 0; |
| //r[3] = (sp_digit)t; |
| r[3] = r[3] + b; |
| //t = (t >> 32) | ((uint64_t)t_hi << 32); |
| t32 = (r[3] < b); // 0 or 1 |
| |
| //m = ((uint64_t)b * a[4]) + r[4]; |
| // Since a[4] is 00000000, the above optimizes to: |
| // m = b * 0 + r[4] = r[4]; |
| //t += m; |
| // t = t32 + r[4]; |
| //t_hi = (t < m); |
| // t_hi = 0; |
| //r[4] = (sp_digit)t; |
| //t = (t >> 32) | ((uint64_t)t_hi << 32); |
| if (t32 != 0) { |
| r[4]++; |
| t32 = (r[4] == 0); // 0 or 1 |
| |
| //m = ((uint64_t)b * a[5]) + r[5]; |
| // Since a[5] is 00000000, the above optimizes to: |
| // m = b * 0 + r[5] = r[5]; |
| //t += m; |
| // t = t32 + r[5]; (t32 is 0 or 1) |
| //t_hi = (t < m); |
| // t_hi = 0; |
| //r[5] = (sp_digit)t; |
| //t = (t >> 32) | ((uint64_t)t_hi << 32); |
| if (t32 != 0) { |
| r[5]++; |
| t32 = (r[5] == 0); // 0 or 1 |
| } |
| } |
| |
| //m = ((uint64_t)b * a[6]) + r[6]; |
| // Since a[6] is 00000001, the above optimizes to: |
| // m = (uint64_t)b + r[6]; // 33 bits at most |
| //t += m; |
| t = t32 + (uint64_t)b + r[6]; |
| //t_hi = (t < m); |
| // t_hi = 0; |
| r[6] = (sp_digit)t; |
| //t = (t >> 32) | ((uint64_t)t_hi << 32); |
| t = (t >> 32); |
| |
| //m = ((uint64_t)b * a[7]) + r[7]; |
| // Since a[7] is ffffffff, the above optimizes to: |
| // m = b * ffffffff + r[7] = (b * 100000000 - b) + r[7] |
| m = ((uint64_t)b << 32) - b + r[7]; |
| t += m; |
| //t_hi = (t < m); |
| // t_hi in fact is always 0 here (256bit * 32bit can't have more than 32 bits of overflow) |
| r[7] = (sp_digit)t; |
| //t = (t >> 32) | ((uint64_t)t_hi << 32); |
| t = (t >> 32); |
| |
| r[8] += (sp_digit)t; |
| return (r[8] < (sp_digit)t); /* 1 if addition overflowed */ |
| # endif |
| } |
| |
| /* Reduce the number back to 256 bits using Montgomery reduction. |
| * Note: the result is NOT guaranteed to be less than p256_mod! |
| * (it is only guaranteed to fit into 256 bits). |
| * |
| * r Result. |
| * a Double-wide number to reduce. Clobbered. |
| * m The single precision number representing the modulus. |
| * mp The digit representing the negative inverse of m mod 2^n. |
| * |
| * Montgomery reduction on multiprecision integers: |
| * Montgomery reduction requires products modulo R. |
| * When R is a power of B [in our case R=2^128, B=2^32], there is a variant |
| * of Montgomery reduction which requires products only of machine word sized |
| * integers. T is stored as an little-endian word array a[0..n]. The algorithm |
| * reduces it one word at a time. First an appropriate multiple of modulus |
| * is added to make T divisible by B. [In our case, it is p256_mp_mod * a[0].] |
| * Then a multiple of modulus is added to make T divisible by B^2. |
| * [In our case, it is (p256_mp_mod * a[1]) << 32.] |
| * And so on. Eventually T is divisible by R, and after division by R |
| * the algorithm is in the same place as the usual Montgomery reduction. |
| */ |
| static void sp_512to256_mont_reduce_8(sp_digit* r, sp_digit* a/*, const sp_digit* m, sp_digit mp*/) |
| { |
| // const sp_digit* m = p256_mod; |
| sp_digit mp = p256_mp_mod; |
| |
| int i; |
| // sp_digit mu; |
| |
| if (mp != 1) { |
| sp_digit word16th = 0; |
| for (i = 0; i < 8; i++) { |
| // mu = (sp_digit)(a[i] * mp); |
| if (sp_256_mul_add_8(a+i /*, m, mu*/)) { |
| int j = i + 8; |
| inc_next_word0: |
| if (++j > 15) { /* a[16] array has no more words? */ |
| word16th++; |
| continue; |
| } |
| if (++a[j] == 0) /* did this overflow too? */ |
| goto inc_next_word0; |
| } |
| } |
| sp_512to256_mont_shift_8(r, a); |
| if (word16th != 0) |
| sp_256_sub_8_p256_mod(r); |
| } |
| else { /* Same code for explicit mp == 1 (which is always the case for P256) */ |
| sp_digit word16th = 0; |
| for (i = 0; i < 8; i++) { |
| // mu = a[i]; |
| if (sp_256_mul_add_8(a+i /*, m, mu*/)) { |
| int j = i + 8; |
| inc_next_word: |
| if (++j > 15) { /* a[16] array has no more words? */ |
| word16th++; |
| continue; |
| } |
| if (++a[j] == 0) /* did this overflow too? */ |
| goto inc_next_word; |
| } |
| } |
| sp_512to256_mont_shift_8(r, a); |
| if (word16th != 0) |
| sp_256_sub_8_p256_mod(r); |
| } |
| } |
| #endif |
| |
| /* Multiply two Montogmery form numbers mod the modulus (prime). |
| * (r = a * b mod m) |
| * |
| * r Result of multiplication. |
| * a First number to multiply in Montogmery form. |
| * b Second number to multiply in Montogmery form. |
| * m Modulus (prime). |
| * mp Montogmery multiplier. |
| */ |
| static void sp_256_mont_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b |
| /*, const sp_digit* m, sp_digit mp*/) |
| { |
| //const sp_digit* m = p256_mod; |
| //sp_digit mp = p256_mp_mod; |
| sp_digit t[2 * 8]; |
| sp_256to512_mul_8(t, a, b); |
| sp_512to256_mont_reduce_8(r, t /*, m, mp*/); |
| } |
| |
| /* Square the Montgomery form number. (r = a * a mod m) |
| * |
| * r Result of squaring. |
| * a Number to square in Montogmery form. |
| * m Modulus (prime). |
| * mp Montogmery multiplier. |
| */ |
| static void sp_256_mont_sqr_8(sp_digit* r, const sp_digit* a |
| /*, const sp_digit* m, sp_digit mp*/) |
| { |
| //const sp_digit* m = p256_mod; |
| //sp_digit mp = p256_mp_mod; |
| sp_256_mont_mul_8(r, a, a /*, m, mp*/); |
| } |
| |
| static NOINLINE void sp_256_mont_mul_and_reduce_8(sp_digit* r, |
| const sp_digit* a, const sp_digit* b |
| /*, const sp_digit* m, sp_digit mp*/) |
| { |
| sp_digit rr[2 * 8]; |
| |
| sp_256_mont_mul_8(rr, a, b /*, p256_mod, p256_mp_mod*/); |
| memset(rr + 8, 0, sizeof(rr) / 2); |
| sp_512to256_mont_reduce_8(r, rr /*, p256_mod, p256_mp_mod*/); |
| } |
| |
| /* Invert the number, in Montgomery form, modulo the modulus (prime) of the |
| * P256 curve. (r = 1 / a mod m) |
| * |
| * r Inverse result. Must not coincide with a. |
| * a Number to invert. |
| */ |
| static void sp_256_mont_inv_8(sp_digit* r, sp_digit* a) |
| { |
| int i; |
| |
| memcpy(r, a, sizeof(sp_digit) * 8); |
| for (i = 254; i >= 0; i--) { |
| sp_256_mont_sqr_8(r, r /*, p256_mod, p256_mp_mod*/); |
| /* p256_mod - 2: |
| * ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff - 2 |
| * Bit pattern: |
| * 2 2 2 2 2 2 2 1...1 |
| * 5 5 4 3 2 1 0 9...0 9...1 |
| * 543210987654321098765432109876543210987654321098765432109876543210...09876543210...09876543210 |
| * 111111111111111111111111111111110000000000000000000000000000000100...00000111111...11111111101 |
| */ |
| /*if (p256_mod_minus_2[i / 32] & ((sp_digit)1 << (i % 32)))*/ |
| if (i >= 224 || i == 192 || (i <= 95 && i != 1)) |
| sp_256_mont_mul_8(r, r, a /*, p256_mod, p256_mp_mod*/); |
| } |
| } |
| |
| /* Multiply a number by Montogmery normalizer mod modulus (prime). |
| * |
| * r The resulting Montgomery form number. |
| * a The number to convert. |
| */ |
| static void sp_256_mod_mul_norm_8(sp_digit* r, const sp_digit* a) |
| { |
| int64_t t[8]; |
| int32_t o; |
| |
| #define A(n) ((uint64_t)a[n]) |
| /* 1 1 0 -1 -1 -1 -1 0 */ |
| t[0] = 0 + A(0) + A(1) - A(3) - A(4) - A(5) - A(6); |
| /* 0 1 1 0 -1 -1 -1 -1 */ |
| t[1] = 0 + A(1) + A(2) - A(4) - A(5) - A(6) - A(7); |
| /* 0 0 1 1 0 -1 -1 -1 */ |
| t[2] = 0 + A(2) + A(3) - A(5) - A(6) - A(7); |
| /* -1 -1 0 2 2 1 0 -1 */ |
| t[3] = 0 - A(0) - A(1) + 2 * A(3) + 2 * A(4) + A(5) - A(7); |
| /* 0 -1 -1 0 2 2 1 0 */ |
| t[4] = 0 - A(1) - A(2) + 2 * A(4) + 2 * A(5) + A(6); |
| /* 0 0 -1 -1 0 2 2 1 */ |
| t[5] = 0 - A(2) - A(3) + 2 * A(5) + 2 * A(6) + A(7); |
| /* -1 -1 0 0 0 1 3 2 */ |
| t[6] = 0 - A(0) - A(1) + A(5) + 3 * A(6) + 2 * A(7); |
| /* 1 0 -1 -1 -1 -1 0 3 */ |
| t[7] = 0 + A(0) - A(2) - A(3) - A(4) - A(5) + 3 * A(7); |
| #undef A |
| |
| t[1] += t[0] >> 32; t[0] &= 0xffffffff; |
| t[2] += t[1] >> 32; t[1] &= 0xffffffff; |
| t[3] += t[2] >> 32; t[2] &= 0xffffffff; |
| t[4] += t[3] >> 32; t[3] &= 0xffffffff; |
| t[5] += t[4] >> 32; t[4] &= 0xffffffff; |
| t[6] += t[5] >> 32; t[5] &= 0xffffffff; |
| t[7] += t[6] >> 32; t[6] &= 0xffffffff; |
| o = t[7] >> 32; //t[7] &= 0xffffffff; |
| t[0] += o; |
| t[3] -= o; |
| t[6] -= o; |
| t[7] += o; |
| r[0] = (sp_digit)t[0]; |
| t[1] += t[0] >> 32; |
| r[1] = (sp_digit)t[1]; |
| t[2] += t[1] >> 32; |
| r[2] = (sp_digit)t[2]; |
| t[3] += t[2] >> 32; |
| r[3] = (sp_digit)t[3]; |
| t[4] += t[3] >> 32; |
| r[4] = (sp_digit)t[4]; |
| t[5] += t[4] >> 32; |
| r[5] = (sp_digit)t[5]; |
| t[6] += t[5] >> 32; |
| r[6] = (sp_digit)t[6]; |
| // t[7] += t[6] >> 32; |
| // r[7] = (sp_digit)t[7]; |
| r[7] = (sp_digit)t[7] + (sp_digit)(t[6] >> 32); |
| } |
| |
| /* Map the Montgomery form projective co-ordinate point to an affine point. |
| * |
| * r Resulting affine co-ordinate point. |
| * p Montgomery form projective co-ordinate point. |
| */ |
| static void sp_256_map_8(sp_point* r, sp_point* p) |
| { |
| sp_digit t1[8]; |
| sp_digit t2[8]; |
| |
| sp_256_mont_inv_8(t1, p->z); |
| |
| sp_256_mont_sqr_8(t2, t1 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_8(t1, t2, t1 /*, p256_mod, p256_mp_mod*/); |
| |
| /* x /= z^2 */ |
| sp_256_mont_mul_and_reduce_8(r->x, p->x, t2 /*, p256_mod, p256_mp_mod*/); |
| /* Reduce x to less than modulus */ |
| if (sp_256_cmp_8(r->x, p256_mod) >= 0) |
| sp_256_sub_8_p256_mod(r->x); |
| |
| /* y /= z^3 */ |
| sp_256_mont_mul_and_reduce_8(r->y, p->y, t1 /*, p256_mod, p256_mp_mod*/); |
| /* Reduce y to less than modulus */ |
| if (sp_256_cmp_8(r->y, p256_mod) >= 0) |
| sp_256_sub_8_p256_mod(r->y); |
| |
| memset(r->z, 0, sizeof(r->z)); |
| r->z[0] = 1; |
| } |
| |
| /* Double the Montgomery form projective point p. |
| * |
| * r Result of doubling point. |
| * p Point to double. |
| */ |
| static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p) |
| { |
| sp_digit t1[8]; |
| sp_digit t2[8]; |
| |
| /* Put point to double into result */ |
| if (r != p) |
| *r = *p; /* struct copy */ |
| |
| if (r->infinity) |
| return; |
| |
| /* T1 = Z * Z */ |
| sp_256_mont_sqr_8(t1, r->z /*, p256_mod, p256_mp_mod*/); |
| /* Z = Y * Z */ |
| sp_256_mont_mul_8(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/); |
| /* Z = 2Z */ |
| sp_256_mont_dbl_8(r->z, r->z /*, p256_mod*/); |
| /* T2 = X - T1 */ |
| sp_256_mont_sub_8(t2, r->x, t1 /*, p256_mod*/); |
| /* T1 = X + T1 */ |
| sp_256_mont_add_8(t1, r->x, t1 /*, p256_mod*/); |
| /* T2 = T1 * T2 */ |
| sp_256_mont_mul_8(t2, t1, t2 /*, p256_mod, p256_mp_mod*/); |
| /* T1 = 3T2 */ |
| sp_256_mont_tpl_8(t1, t2 /*, p256_mod*/); |
| /* Y = 2Y */ |
| sp_256_mont_dbl_8(r->y, r->y /*, p256_mod*/); |
| /* Y = Y * Y */ |
| sp_256_mont_sqr_8(r->y, r->y /*, p256_mod, p256_mp_mod*/); |
| /* T2 = Y * Y */ |
| sp_256_mont_sqr_8(t2, r->y /*, p256_mod, p256_mp_mod*/); |
| /* T2 = T2/2 */ |
| sp_256_div2_8(t2 /*, p256_mod*/); |
| /* Y = Y * X */ |
| sp_256_mont_mul_8(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/); |
| /* X = T1 * T1 */ |
| sp_256_mont_mul_8(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/); |
| /* X = X - Y */ |
| sp_256_mont_sub_8(r->x, r->x, r->y /*, p256_mod*/); |
| /* X = X - Y */ |
| sp_256_mont_sub_8(r->x, r->x, r->y /*, p256_mod*/); |
| /* Y = Y - X */ |
| sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/); |
| /* Y = Y * T1 */ |
| sp_256_mont_mul_8(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/); |
| /* Y = Y - T2 */ |
| sp_256_mont_sub_8(r->y, r->y, t2 /*, p256_mod*/); |
| dump_512("y2 %s\n", r->y); |
| } |
| |
| /* Add two Montgomery form projective points. |
| * |
| * r Result of addition. |
| * p Frist point to add. |
| * q Second point to add. |
| */ |
| static NOINLINE void sp_256_proj_point_add_8(sp_point* r, sp_point* p, sp_point* q) |
| { |
| sp_digit t1[8]; |
| sp_digit t2[8]; |
| sp_digit t3[8]; |
| sp_digit t4[8]; |
| sp_digit t5[8]; |
| |
| /* Ensure only the first point is the same as the result. */ |
| if (q == r) { |
| sp_point* a = p; |
| p = q; |
| q = a; |
| } |
| |
| /* Check double */ |
| sp_256_sub_8(t1, p256_mod, q->y); |
| if (sp_256_cmp_equal_8(p->x, q->x) |
| && sp_256_cmp_equal_8(p->z, q->z) |
| && (sp_256_cmp_equal_8(p->y, q->y) || sp_256_cmp_equal_8(p->y, t1)) |
| ) { |
| sp_256_proj_point_dbl_8(r, p); |
| return; |
| } |
| |
| if (p->infinity || q->infinity) { |
| *r = p->infinity ? *q : *p; /* struct copy */ |
| return; |
| } |
| |
| /* U1 = X1*Z2^2 */ |
| sp_256_mont_sqr_8(t1, q->z /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_8(t3, t1, q->z /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_8(t1, t1, r->x /*, p256_mod, p256_mp_mod*/); |
| /* U2 = X2*Z1^2 */ |
| sp_256_mont_sqr_8(t2, r->z /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_8(t4, t2, r->z /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_8(t2, t2, q->x /*, p256_mod, p256_mp_mod*/); |
| /* S1 = Y1*Z2^3 */ |
| sp_256_mont_mul_8(t3, t3, r->y /*, p256_mod, p256_mp_mod*/); |
| /* S2 = Y2*Z1^3 */ |
| sp_256_mont_mul_8(t4, t4, q->y /*, p256_mod, p256_mp_mod*/); |
| /* H = U2 - U1 */ |
| sp_256_mont_sub_8(t2, t2, t1 /*, p256_mod*/); |
| /* R = S2 - S1 */ |
| sp_256_mont_sub_8(t4, t4, t3 /*, p256_mod*/); |
| /* Z3 = H*Z1*Z2 */ |
| sp_256_mont_mul_8(r->z, r->z, q->z /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_8(r->z, r->z, t2 /*, p256_mod, p256_mp_mod*/); |
| /* X3 = R^2 - H^3 - 2*U1*H^2 */ |
| sp_256_mont_sqr_8(r->x, t4 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_sqr_8(t5, t2 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_8(r->y, t1, t5 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_8(t5, t5, t2 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_sub_8(r->x, r->x, t5 /*, p256_mod*/); |
| sp_256_mont_dbl_8(t1, r->y /*, p256_mod*/); |
| sp_256_mont_sub_8(r->x, r->x, t1 /*, p256_mod*/); |
| /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */ |
| sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/); |
| sp_256_mont_mul_8(r->y, r->y, t4 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_mul_8(t5, t5, t3 /*, p256_mod, p256_mp_mod*/); |
| sp_256_mont_sub_8(r->y, r->y, t5 /*, p256_mod*/); |
| } |
| |
| /* Multiply the point by the scalar and return the result. |
| * If map is true then convert result to affine co-ordinates. |
| * |
| * r Resulting point. |
| * g Point to multiply. |
| * k Scalar to multiply by. |
| * map Indicates whether to convert result to affine. |
| */ |
| static void sp_256_ecc_mulmod_8(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/) |
| { |
| enum { map = 1 }; /* we always convert result to affine coordinates */ |
| sp_point t[3]; |
| sp_digit n = n; /* for compiler */ |
| int c, y; |
| |
| memset(t, 0, sizeof(t)); |
| |
| /* t[0] = {0, 0, 1} * norm */ |
| t[0].infinity = 1; |
| /* t[1] = {g->x, g->y, g->z} * norm */ |
| sp_256_mod_mul_norm_8(t[1].x, g->x); |
| sp_256_mod_mul_norm_8(t[1].y, g->y); |
| sp_256_mod_mul_norm_8(t[1].z, g->z); |
| |
| /* For every bit, starting from most significant... */ |
| k += 7; |
| c = 256; |
| for (;;) { |
| if ((c & 0x1f) == 0) { |
| if (c == 0) |
| break; |
| n = *k--; |
| } |
| |
| y = (n >> 31); |
| dbg("y:%d t[%d] = t[0]+t[1]\n", y, y^1); |
| sp_256_proj_point_add_8(&t[y^1], &t[0], &t[1]); |
| dump_512("t[0].x %s\n", t[0].x); |
| dump_512("t[0].y %s\n", t[0].y); |
| dump_512("t[0].z %s\n", t[0].z); |
| dump_512("t[1].x %s\n", t[1].x); |
| dump_512("t[1].y %s\n", t[1].y); |
| dump_512("t[1].z %s\n", t[1].z); |
| dbg("t[2] = t[%d]\n", y); |
| t[2] = t[y]; /* struct copy */ |
| dbg("t[2] *= 2\n"); |
| sp_256_proj_point_dbl_8(&t[2], &t[2]); |
| dump_512("t[2].x %s\n", t[2].x); |
| dump_512("t[2].y %s\n", t[2].y); |
| dump_512("t[2].z %s\n", t[2].z); |
| t[y] = t[2]; /* struct copy */ |
| |
| n <<= 1; |
| c--; |
| } |
| |
| if (map) |
| sp_256_map_8(r, &t[0]); |
| else |
| *r = t[0]; /* struct copy */ |
| |
| memset(t, 0, sizeof(t)); //paranoia |
| } |
| |
| /* Multiply the base point of P256 by the scalar and return the result. |
| * If map is true then convert result to affine co-ordinates. |
| * |
| * r Resulting point. |
| * k Scalar to multiply by. |
| * map Indicates whether to convert result to affine. |
| */ |
| static void sp_256_ecc_mulmod_base_8(sp_point* r, sp_digit* k /*, int map*/) |
| { |
| /* Since this function is called only once, save space: |
| * don't have "static const sp_point p256_base = {...}". |
| */ |
| static const uint8_t p256_base_bin[] = { |
| /* x (big-endian) */ |
| 0x6b,0x17,0xd1,0xf2,0xe1,0x2c,0x42,0x47,0xf8,0xbc,0xe6,0xe5,0x63,0xa4,0x40,0xf2, |
| 0x77,0x03,0x7d,0x81,0x2d,0xeb,0x33,0xa0,0xf4,0xa1,0x39,0x45,0xd8,0x98,0xc2,0x96, |
| /* y */ |
| 0x4f,0xe3,0x42,0xe2,0xfe,0x1a,0x7f,0x9b,0x8e,0xe7,0xeb,0x4a,0x7c,0x0f,0x9e,0x16, |
| 0x2b,0xce,0x33,0x57,0x6b,0x31,0x5e,0xce,0xcb,0xb6,0x40,0x68,0x37,0xbf,0x51,0xf5, |
| /* z will be set to 1, infinity flag to "false" */ |
| }; |
| sp_point p256_base; |
| |
| sp_256_point_from_bin2x32(&p256_base, p256_base_bin); |
| |
| sp_256_ecc_mulmod_8(r, &p256_base, k /*, map*/); |
| } |
| |
| /* Multiply the point by the scalar and serialize the X ordinate. |
| * The number is 0 padded to maximum size on output. |
| * |
| * priv Scalar to multiply the point by. |
| * pub2x32 Point to multiply. |
| * out32 Buffer to hold X ordinate. |
| */ |
| static void sp_ecc_secret_gen_256(const sp_digit priv[8], const uint8_t *pub2x32, uint8_t* out32) |
| { |
| sp_point point[1]; |
| |
| #if FIXED_PEER_PUBKEY |
| memset((void*)pub2x32, 0x55, 64); |
| #endif |
| dump_hex("peerkey %s\n", pub2x32, 32); /* in TLS, this is peer's public key */ |
| dump_hex(" %s\n", pub2x32 + 32, 32); |
| |
| sp_256_point_from_bin2x32(point, pub2x32); |
| dump_512("point->x %s\n", point->x); |
| dump_512("point->y %s\n", point->y); |
| |
| sp_256_ecc_mulmod_8(point, point, priv); |
| |
| sp_256_to_bin_8(point->x, out32); |
| dump_hex("out32: %s\n", out32, 32); |
| } |
| |
| /* Generates a random scalar in [1..order-1] range. */ |
| static void sp_256_ecc_gen_k_8(sp_digit k[8]) |
| { |
| /* Since 32-bit words are "dense", no need to use |
| * sp_256_from_bin_8(k, buf) to convert random stream |
| * to sp_digit array - just store random bits there directly. |
| */ |
| tls_get_random(k, 8 * sizeof(k[0])); |
| #if FIXED_SECRET |
| memset(k, 0x77, 8 * sizeof(k[0])); |
| #endif |
| |
| // If scalar is too large, try again (pseudo-code) |
| // if (k >= 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 - 1) // order of P256 |
| // goto pick_another_random; |
| // k++; // ensure non-zero |
| /* Simpler alternative, at the cost of not choosing some valid |
| * random values, and slightly non-uniform distribution */ |
| if (k[0] == 0) |
| k[0] = 1; |
| if (k[7] >= 0xffffffff) |
| k[7] = 0xfffffffe; |
| } |
| |
| /* Makes a random EC key pair. */ |
| static void sp_ecc_make_key_256(sp_digit privkey[8], uint8_t *pubkey) |
| { |
| sp_point point[1]; |
| |
| sp_256_ecc_gen_k_8(privkey); |
| dump_256("privkey %s\n", privkey); |
| sp_256_ecc_mulmod_base_8(point, privkey); |
| dump_512("point->x %s\n", point->x); |
| dump_512("point->y %s\n", point->y); |
| sp_256_to_bin_8(point->x, pubkey); |
| sp_256_to_bin_8(point->y, pubkey + 32); |
| |
| memset(point, 0, sizeof(point)); //paranoia |
| } |
| |
| void FAST_FUNC curve_P256_compute_pubkey_and_premaster( |
| uint8_t *pubkey2x32, uint8_t *premaster32, |
| const uint8_t *peerkey2x32) |
| { |
| sp_digit privkey[8]; |
| |
| dump_hex("peerkey2x32: %s\n", peerkey2x32, 64); |
| sp_ecc_make_key_256(privkey, pubkey2x32); |
| dump_hex("pubkey: %s\n", pubkey2x32, 32); |
| dump_hex(" %s\n", pubkey2x32 + 32, 32); |
| |
| /* Combine our privkey and peer's public key to generate premaster */ |
| sp_ecc_secret_gen_256(privkey, /*x,y:*/peerkey2x32, premaster32); |
| dump_hex("premaster: %s\n", premaster32, 32); |
| } |