blob: 92e2723a50653eefa3dd6fcef628b2dd966f54fc [file] [log] [blame]
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001/*
2 * NTP client/server, based on OpenNTPD 3.9p1
3 *
4 * Author: Adam Tkac <vonsch@gmail.com>
5 *
6 * Licensed under GPLv2, see file LICENSE in this tarball for details.
7 *
8 * Parts of OpenNTPD clock syncronization code is replaced by
Denys Vlasenkobfc2a322010-01-01 18:12:06 +01009 * code which is based on ntp-4.2.6, whuch carries the following
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010010 * copyright notice:
11 *
12 ***********************************************************************
13 * *
14 * Copyright (c) University of Delaware 1992-2009 *
15 * *
16 * Permission to use, copy, modify, and distribute this software and *
17 * its documentation for any purpose with or without fee is hereby *
18 * granted, provided that the above copyright notice appears in all *
19 * copies and that both the copyright notice and this permission *
20 * notice appear in supporting documentation, and that the name *
21 * University of Delaware not be used in advertising or publicity *
22 * pertaining to distribution of the software without specific, *
23 * written prior permission. The University of Delaware makes no *
24 * representations about the suitability this software for any *
25 * purpose. It is provided "as is" without express or implied *
26 * warranty. *
27 * *
28 ***********************************************************************
29 */
30#include "libbb.h"
31#include <math.h>
32#include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */
33#include <sys/timex.h>
34#ifndef IPTOS_LOWDELAY
35# define IPTOS_LOWDELAY 0x10
36#endif
37#ifndef IP_PKTINFO
38# error "Sorry, your kernel has to support IP_PKTINFO"
39#endif
40
41
Denys Vlasenkobfc2a322010-01-01 18:12:06 +010042/* Verbosity control (max level of -dddd options accepted).
43 * max 5 is very talkative (and bloated). 2 is non-bloated,
44 * production level setting.
45 */
Denys Vlasenko61313112010-01-01 19:56:16 +010046#define MAX_VERBOSE 2
Denys Vlasenkobfc2a322010-01-01 18:12:06 +010047
48
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010049#define RETRY_INTERVAL 5 /* on error, retry in N secs */
50#define QUERYTIME_MAX 15 /* wait for reply up to N secs */
51
Denys Vlasenko61313112010-01-01 19:56:16 +010052#define FREQ_TOLERANCE 0.000015 /* % frequency tolerance (15 PPM) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010053#define MINPOLL 4 /* % minimum poll interval (6: 64 s) */
54#define MAXPOLL 12 /* % maximum poll interval (12: 1.1h, 17: 36.4h) (was 17) */
55#define MINDISP 0.01 /* % minimum dispersion (s) */
56#define MAXDISP 16 /* maximum dispersion (s) */
57#define MAXSTRAT 16 /* maximum stratum (infinity metric) */
58#define MAXDIST 1 /* % distance threshold (s) */
59#define MIN_SELECTED 1 /* % minimum intersection survivors */
60#define MIN_CLUSTERED 3 /* % minimum cluster survivors */
61
Denys Vlasenko61313112010-01-01 19:56:16 +010062#define MAXDRIFT 0.000500 /* frequency drift we can correct (500 PPM) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010063
64/* Clock discipline parameters and constants */
65#define STEP_THRESHOLD 0.128 /* step threshold (s) */
Denys Vlasenko61313112010-01-01 19:56:16 +010066#define WATCH_THRESHOLD 150 /* stepout threshold (s). std ntpd uses 900 (11 mins (!)) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010067/* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
68#define PANIC_THRESHOLD 1000 /* panic threshold (s) */
69
70/* Poll-adjust threshold.
71 * When we see that offset is small enough compared to discipline jitter,
Denys Vlasenkobfc2a322010-01-01 18:12:06 +010072 * we grow a counter: += MINPOLL. When it goes over POLLADJ_LIMIT,
Denys Vlasenko61313112010-01-01 19:56:16 +010073 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
74 * and when it goes below -POLLADJ_LIMIT, we poll_exp--
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010075 */
Denys Vlasenko61313112010-01-01 19:56:16 +010076#define POLLADJ_LIMIT 30
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010077/* If offset < POLLADJ_GATE * discipline_jitter, then we can increase
78 * poll interval (we think we can't improve timekeeping
79 * by staying at smaller poll).
80 */
Denys Vlasenko61313112010-01-01 19:56:16 +010081#define POLLADJ_GATE 4
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010082/* Compromise Allan intercept (s). doc uses 1500, std ntpd uses 512 */
Denys Vlasenko61313112010-01-01 19:56:16 +010083#define ALLAN 512
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010084/* PLL loop gain */
Denys Vlasenko61313112010-01-01 19:56:16 +010085#define PLL 65536
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010086/* FLL loop gain [why it depends on MAXPOLL??] */
Denys Vlasenko61313112010-01-01 19:56:16 +010087#define FLL (MAXPOLL + 1)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010088/* Parameter averaging constant */
Denys Vlasenko61313112010-01-01 19:56:16 +010089#define AVG 4
90
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010091
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010092enum {
93 NTP_VERSION = 4,
94 NTP_MAXSTRATUM = 15,
95
96 NTP_DIGESTSIZE = 16,
97 NTP_MSGSIZE_NOAUTH = 48,
98 NTP_MSGSIZE = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),
99
100 /* Status Masks */
101 MODE_MASK = (7 << 0),
102 VERSION_MASK = (7 << 3),
103 VERSION_SHIFT = 3,
104 LI_MASK = (3 << 6),
105
106 /* Leap Second Codes (high order two bits of m_status) */
107 LI_NOWARNING = (0 << 6), /* no warning */
108 LI_PLUSSEC = (1 << 6), /* add a second (61 seconds) */
109 LI_MINUSSEC = (2 << 6), /* minus a second (59 seconds) */
110 LI_ALARM = (3 << 6), /* alarm condition */
111
112 /* Mode values */
113 MODE_RES0 = 0, /* reserved */
114 MODE_SYM_ACT = 1, /* symmetric active */
115 MODE_SYM_PAS = 2, /* symmetric passive */
116 MODE_CLIENT = 3, /* client */
117 MODE_SERVER = 4, /* server */
118 MODE_BROADCAST = 5, /* broadcast */
119 MODE_RES1 = 6, /* reserved for NTP control message */
120 MODE_RES2 = 7, /* reserved for private use */
121};
122
123//TODO: better base selection
124#define OFFSET_1900_1970 2208988800UL /* 1970 - 1900 in seconds */
125
126#define NUM_DATAPOINTS 8
127
128typedef struct {
129 uint32_t int_partl;
130 uint32_t fractionl;
131} l_fixedpt_t;
132
133typedef struct {
134 uint16_t int_parts;
135 uint16_t fractions;
136} s_fixedpt_t;
137
138typedef struct {
139 uint8_t m_status; /* status of local clock and leap info */
140 uint8_t m_stratum;
141 uint8_t m_ppoll; /* poll value */
142 int8_t m_precision_exp;
143 s_fixedpt_t m_rootdelay;
144 s_fixedpt_t m_rootdisp;
145 uint32_t m_refid;
146 l_fixedpt_t m_reftime;
147 l_fixedpt_t m_orgtime;
148 l_fixedpt_t m_rectime;
149 l_fixedpt_t m_xmttime;
150 uint32_t m_keyid;
151 uint8_t m_digest[NTP_DIGESTSIZE];
152} msg_t;
153
154typedef struct {
155 double d_recv_time;
156 double d_offset;
157 double d_dispersion;
158} datapoint_t;
159
160typedef struct {
161 len_and_sockaddr *p_lsa;
162 char *p_dotted;
163 /* when to send new query (if p_fd == -1)
164 * or when receive times out (if p_fd >= 0): */
165 time_t next_action_time;
166 int p_fd;
167 int datapoint_idx;
168 uint32_t lastpkt_refid;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100169 uint8_t lastpkt_status;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100170 uint8_t lastpkt_stratum;
171 uint8_t p_reachable_bits;
172 double p_xmttime;
173 double lastpkt_recv_time;
174 double lastpkt_delay;
175 double lastpkt_rootdelay;
176 double lastpkt_rootdisp;
177 /* produced by filter algorithm: */
178 double filter_offset;
179 double filter_dispersion;
180 double filter_jitter;
181 datapoint_t filter_datapoint[NUM_DATAPOINTS];
182 /* last sent packet: */
183 msg_t p_xmt_msg;
184} peer_t;
185
186
187enum {
188 OPT_n = (1 << 0),
189 OPT_q = (1 << 1),
190 OPT_N = (1 << 2),
191 OPT_x = (1 << 3),
192 /* Insert new options above this line. */
193 /* Non-compat options: */
194 OPT_p = (1 << 4),
195 OPT_l = (1 << 5) * ENABLE_FEATURE_NTPD_SERVER,
196};
197
198struct globals {
199 /* total round trip delay to currently selected reference clock */
200 double rootdelay;
201 /* reference timestamp: time when the system clock was last set or corrected */
202 double reftime;
203 /* total dispersion to currently selected reference clock */
204 double rootdisp;
205 llist_t *ntp_peers;
206#if ENABLE_FEATURE_NTPD_SERVER
207 int listen_fd;
208#endif
209 unsigned verbose;
210 unsigned peer_cnt;
211 /* refid: 32-bit code identifying the particular server or reference clock
212 * in stratum 0 packets this is a four-character ASCII string,
213 * called the kiss code, used for debugging and monitoring
214 * in stratum 1 packets this is a four-character ASCII string
215 * assigned to the reference clock by IANA. Example: "GPS "
216 * in stratum 2+ packets, it's IPv4 address or 4 first bytes of MD5 hash of IPv6
217 */
218 uint32_t refid;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100219 uint8_t ntp_status;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100220 /* precision is defined as the larger of the resolution and time to
221 * read the clock, in log2 units. For instance, the precision of a
222 * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
223 * system clock hardware representation is to the nanosecond.
224 *
225 * Delays, jitters of various kinds are clamper down to precision.
226 *
227 * If precision_sec is too large, discipline_jitter gets clamped to it
228 * and if offset is much smaller than discipline_jitter, poll interval
229 * grows even though we really can benefit from staying at smaller one,
230 * collecting non-lagged datapoits and correcting the offset.
231 * (Lagged datapoits exist when poll_exp is large but we still have
232 * systematic offset error - the time distance between datapoints
233 * is significat and older datapoints have smaller offsets.
234 * This makes our offset estimation a bit smaller than reality)
235 * Due to this effect, setting G_precision_sec close to
236 * STEP_THRESHOLD isn't such a good idea - offsets may grow
237 * too big and we will step. I observed it with -6.
238 *
239 * OTOH, setting precision too small would result in futile attempts
240 * to syncronize to the unachievable precision.
241 *
242 * -6 is 1/64 sec, -7 is 1/128 sec and so on.
243 */
244#define G_precision_exp -8
245#define G_precision_sec (1.0 / (1 << (- G_precision_exp)))
246 uint8_t stratum;
247 /* Bool. After set to 1, never goes back to 0: */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100248 uint8_t adjtimex_was_done;
249
250 uint8_t discipline_state; // doc calls it c.state
251 uint8_t poll_exp; // s.poll
252 int polladj_count; // c.count
Denys Vlasenko61313112010-01-01 19:56:16 +0100253 long kernel_freq_drift;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100254 double last_update_offset; // c.last
Denys Vlasenko61313112010-01-01 19:56:16 +0100255 double last_update_recv_time; // s.t
256 double discipline_jitter; // c.jitter
257//TODO: add s.jitter - grep for it here and see clock_combine() in doc
258#define USING_KERNEL_PLL_LOOP 1
259#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100260 double discipline_freq_drift; // c.freq
261//TODO: conditionally calculate wander? it's used only for logging
262 double discipline_wander; // c.wander
Denys Vlasenko61313112010-01-01 19:56:16 +0100263#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100264};
265#define G (*ptr_to_globals)
266
267static const int const_IPTOS_LOWDELAY = IPTOS_LOWDELAY;
268
269
Denys Vlasenkobfc2a322010-01-01 18:12:06 +0100270#define VERB1 if (MAX_VERBOSE && G.verbose)
271#define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
272#define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
273#define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
274#define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
275
276
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100277static double LOG2D(int a)
278{
279 if (a < 0)
280 return 1.0 / (1UL << -a);
281 return 1UL << a;
282}
283static ALWAYS_INLINE double SQUARE(double x)
284{
285 return x * x;
286}
287static ALWAYS_INLINE double MAXD(double a, double b)
288{
289 if (a > b)
290 return a;
291 return b;
292}
293static ALWAYS_INLINE double MIND(double a, double b)
294{
295 if (a < b)
296 return a;
297 return b;
298}
299#define SQRT(x) (sqrt(x))
300
301static double
302gettime1900d(void)
303{
304 struct timeval tv;
305 gettimeofday(&tv, NULL); /* never fails */
306 return (tv.tv_sec + 1.0e-6 * tv.tv_usec + OFFSET_1900_1970);
307}
308
309static void
310d_to_tv(double d, struct timeval *tv)
311{
312 tv->tv_sec = (long)d;
313 tv->tv_usec = (d - tv->tv_sec) * 1000000;
314}
315
316static double
317lfp_to_d(l_fixedpt_t lfp)
318{
319 double ret;
320 lfp.int_partl = ntohl(lfp.int_partl);
321 lfp.fractionl = ntohl(lfp.fractionl);
322 ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
323 return ret;
324}
325static double
326sfp_to_d(s_fixedpt_t sfp)
327{
328 double ret;
329 sfp.int_parts = ntohs(sfp.int_parts);
330 sfp.fractions = ntohs(sfp.fractions);
331 ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
332 return ret;
333}
334#if ENABLE_FEATURE_NTPD_SERVER
335static l_fixedpt_t
336d_to_lfp(double d)
337{
338 l_fixedpt_t lfp;
339 lfp.int_partl = (uint32_t)d;
340 lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
341 lfp.int_partl = htonl(lfp.int_partl);
342 lfp.fractionl = htonl(lfp.fractionl);
343 return lfp;
344}
345static s_fixedpt_t
346d_to_sfp(double d)
347{
348 s_fixedpt_t sfp;
349 sfp.int_parts = (uint16_t)d;
350 sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
351 sfp.int_parts = htons(sfp.int_parts);
352 sfp.fractions = htons(sfp.fractions);
353 return sfp;
354}
355#endif
356
357static double
358dispersion(const datapoint_t *dp, double t)
359{
360 return dp->d_dispersion + FREQ_TOLERANCE * (t - dp->d_recv_time);
361}
362
363static double
364root_distance(peer_t *p, double t)
365{
366 /* The root synchronization distance is the maximum error due to
367 * all causes of the local clock relative to the primary server.
368 * It is defined as half the total delay plus total dispersion
369 * plus peer jitter.
370 */
371 return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
372 + p->lastpkt_rootdisp
373 + p->filter_dispersion
374 + FREQ_TOLERANCE * (t - p->lastpkt_recv_time)
375 + p->filter_jitter;
376}
377
378static void
379set_next(peer_t *p, unsigned t)
380{
381 p->next_action_time = time(NULL) + t;
382}
383
384/*
385 * Peer clock filter and its helpers
386 */
387static void
388filter_datapoints(peer_t *p, double t)
389{
390 int i, idx;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100391 int got_newest;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100392 double minoff, maxoff, wavg, sum, w;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100393 double x = x; /* for compiler */
394 double oldest_off = oldest_off;
395 double oldest_age = oldest_age;
396 double newest_off = newest_off;
397 double newest_age = newest_age;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100398
399 minoff = maxoff = p->filter_datapoint[0].d_offset;
400 for (i = 1; i < NUM_DATAPOINTS; i++) {
401 if (minoff > p->filter_datapoint[i].d_offset)
402 minoff = p->filter_datapoint[i].d_offset;
403 if (maxoff < p->filter_datapoint[i].d_offset)
404 maxoff = p->filter_datapoint[i].d_offset;
405 }
406
407 idx = p->datapoint_idx; /* most recent datapoint */
408 /* Average offset:
409 * Drop two outliers and take weighted average of the rest:
410 * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
411 * we use older6/32, not older6/64 since sum of weights should be 1:
412 * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
413 */
414 wavg = 0;
415 w = 0.5;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100416 /* n-1
417 * --- dispersion(i)
418 * filter_dispersion = \ -------------
419 * / (i+1)
420 * --- 2
421 * i=0
422 */
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100423 got_newest = 0;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100424 sum = 0;
425 for (i = 0; i < NUM_DATAPOINTS; i++) {
426 VERB4 {
427 bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
428 i,
429 p->filter_datapoint[idx].d_offset,
430 p->filter_datapoint[idx].d_dispersion, dispersion(&p->filter_datapoint[idx], t),
431 t - p->filter_datapoint[idx].d_recv_time,
432 (minoff == p->filter_datapoint[idx].d_offset || maxoff == p->filter_datapoint[idx].d_offset)
433 ? " (outlier by offset)" : ""
434 );
435 }
436
437 sum += dispersion(&p->filter_datapoint[idx], t) / (2 << i);
438
439 if (minoff == p->filter_datapoint[idx].d_offset) {
Denys Vlasenkoe4844b82010-01-01 21:59:49 +0100440 minoff -= 1; /* so that we don't match it ever again */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100441 } else
442 if (maxoff == p->filter_datapoint[idx].d_offset) {
443 maxoff += 1;
444 } else {
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100445 oldest_off = p->filter_datapoint[idx].d_offset;
446 oldest_age = t - p->filter_datapoint[idx].d_recv_time;
447 if (!got_newest) {
448 got_newest = 1;
449 newest_off = oldest_off;
450 newest_age = oldest_age;
451 }
452 x = oldest_off * w;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100453 wavg += x;
454 w /= 2;
455 }
456
457 idx = (idx - 1) & (NUM_DATAPOINTS - 1);
458 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100459 p->filter_dispersion = sum;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100460 wavg += x; /* add another older6/64 to form older6/32 */
461 /* Fix systematic underestimation with large poll intervals.
462 * Imagine that we still have a bit of uncorrected drift,
463 * and poll interval is big (say, 100 sec). Offsets form a progression:
464 * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
465 * The algorithm above drops 0.0 and 0.7 as outliers,
466 * and then we have this estimation, ~25% off from 0.7:
467 * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
468 */
469 x = newest_age / (oldest_age - newest_age); /* in above example, 100 / (600 - 100) */
470 if (x < 1) {
471 x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
472 wavg += x;
473 }
474 p->filter_offset = wavg;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100475
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100476 /* +----- -----+ ^ 1/2
477 * | n-1 |
478 * | --- |
479 * | 1 \ 2 |
480 * filter_jitter = | --- * / (avg-offset_j) |
481 * | n --- |
482 * | j=0 |
483 * +----- -----+
484 * where n is the number of valid datapoints in the filter (n > 1);
485 * if filter_jitter < precision then filter_jitter = precision
486 */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100487 sum = 0;
488 for (i = 0; i < NUM_DATAPOINTS; i++) {
489 sum += SQUARE(wavg - p->filter_datapoint[i].d_offset);
490 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100491 sum = SQRT(sum / NUM_DATAPOINTS);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100492 p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
493
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100494 VERB3 bb_error_msg("filter offset:%f(corr:%e) disp:%f jitter:%f",
495 p->filter_offset, x,
496 p->filter_dispersion,
497 p->filter_jitter);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100498
499}
500
501static void
502reset_peer_stats(peer_t *p, double t, double offset)
503{
504 int i;
505 for (i = 0; i < NUM_DATAPOINTS; i++) {
506 if (offset < 16 * STEP_THRESHOLD) {
507 p->filter_datapoint[i].d_recv_time -= offset;
508 if (p->filter_datapoint[i].d_offset != 0) {
509 p->filter_datapoint[i].d_offset -= offset;
510 }
511 } else {
512 p->filter_datapoint[i].d_recv_time = t;
513 p->filter_datapoint[i].d_offset = 0;
514 p->filter_datapoint[i].d_dispersion = MAXDISP;
515 }
516 }
517 if (offset < 16 * STEP_THRESHOLD) {
518 p->lastpkt_recv_time -= offset;
519 } else {
520 p->p_reachable_bits = 0;
521 p->lastpkt_recv_time = t;
522 }
523 filter_datapoints(p, t); /* recalc p->filter_xxx */
524 p->next_action_time -= (time_t)offset;
525 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
526}
527
528static void
529add_peers(char *s)
530{
531 peer_t *p;
532
533 p = xzalloc(sizeof(*p));
534 p->p_lsa = xhost2sockaddr(s, 123);
535 p->p_dotted = xmalloc_sockaddr2dotted_noport(&p->p_lsa->u.sa);
536 p->p_fd = -1;
537 p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
538 p->next_action_time = time(NULL); /* = set_next(p, 0); */
539 reset_peer_stats(p, gettime1900d(), 16 * STEP_THRESHOLD);
540 /* Speed up initial sync: with small offsets from peers,
541 * 3 samples will sync
542 */
543 p->filter_datapoint[6].d_dispersion = 0;
544 p->filter_datapoint[7].d_dispersion = 0;
545
546 llist_add_to(&G.ntp_peers, p);
547 G.peer_cnt++;
548}
549
550static int
551do_sendto(int fd,
552 const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
553 msg_t *msg, ssize_t len)
554{
555 ssize_t ret;
556
557 errno = 0;
558 if (!from) {
559 ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
560 } else {
561 ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
562 }
563 if (ret != len) {
564 bb_perror_msg("send failed");
565 return -1;
566 }
567 return 0;
568}
569
570static int
571send_query_to_peer(peer_t *p)
572{
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100573 /* Why do we need to bind()?
574 * See what happens when we don't bind:
575 *
576 * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
577 * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
578 * gettimeofday({1259071266, 327885}, NULL) = 0
579 * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
580 * ^^^ we sent it from some source port picked by kernel.
581 * time(NULL) = 1259071266
582 * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
583 * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
584 * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
585 * ^^^ this recv will receive packets to any local port!
586 *
587 * Uncomment this and use strace to see it in action:
588 */
589#define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100590
591 if (p->p_fd == -1) {
592 int fd, family;
593 len_and_sockaddr *local_lsa;
594
595 family = p->p_lsa->u.sa.sa_family;
596 p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
597 /* local_lsa has "null" address and port 0 now.
598 * bind() ensures we have a *particular port* selected by kernel
599 * and remembered in p->p_fd, thus later recv(p->p_fd)
600 * receives only packets sent to this port.
601 */
602 PROBE_LOCAL_ADDR
603 xbind(fd, &local_lsa->u.sa, local_lsa->len);
604 PROBE_LOCAL_ADDR
605#if ENABLE_FEATURE_IPV6
606 if (family == AF_INET)
607#endif
608 setsockopt(fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
609 free(local_lsa);
610 }
611
612 /*
613 * Send out a random 64-bit number as our transmit time. The NTP
614 * server will copy said number into the originate field on the
615 * response that it sends us. This is totally legal per the SNTP spec.
616 *
617 * The impact of this is two fold: we no longer send out the current
618 * system time for the world to see (which may aid an attacker), and
619 * it gives us a (not very secure) way of knowing that we're not
620 * getting spoofed by an attacker that can't capture our traffic
621 * but can spoof packets from the NTP server we're communicating with.
622 *
623 * Save the real transmit timestamp locally.
624 */
625 p->p_xmt_msg.m_xmttime.int_partl = random();
626 p->p_xmt_msg.m_xmttime.fractionl = random();
627 p->p_xmttime = gettime1900d();
628
629 if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
630 &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
631 ) {
632 close(p->p_fd);
633 p->p_fd = -1;
634 set_next(p, RETRY_INTERVAL);
635 return -1;
636 }
637
638 p->p_reachable_bits <<= 1;
639 VERB1 bb_error_msg("sent query to %s", p->p_dotted);
640 set_next(p, QUERYTIME_MAX);
641
642 return 0;
643}
644
645
646static void
647step_time(double offset)
648{
649 double dtime;
650 struct timeval tv;
651 char buf[80];
652 time_t tval;
653
654 gettimeofday(&tv, NULL); /* never fails */
655 dtime = offset + tv.tv_sec;
656 dtime += 1.0e-6 * tv.tv_usec;
657 d_to_tv(dtime, &tv);
658
659 if (settimeofday(&tv, NULL) == -1)
660 bb_perror_msg_and_die("settimeofday");
661
662 tval = tv.tv_sec;
663 strftime(buf, sizeof(buf), "%a %b %e %H:%M:%S %Z %Y", localtime(&tval));
664
665 bb_error_msg("setting clock to %s (offset %fs)", buf, offset);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100666}
667
668
669/*
670 * Selection and clustering, and their helpers
671 */
672typedef struct {
673 peer_t *p;
674 int type;
675 double edge;
676} point_t;
677static int
678compare_point_edge(const void *aa, const void *bb)
679{
680 const point_t *a = aa;
681 const point_t *b = bb;
682 if (a->edge < b->edge) {
683 return -1;
684 }
685 return (a->edge > b->edge);
686}
687typedef struct {
688 peer_t *p;
689 double metric;
690} survivor_t;
691static int
692compare_survivor_metric(const void *aa, const void *bb)
693{
694 const survivor_t *a = aa;
695 const survivor_t *b = bb;
696 if (a->metric < b->metric)
697 return -1;
698 return (a->metric > b->metric);
699}
700static int
701fit(peer_t *p, double rd)
702{
703 if (p->p_reachable_bits == 0) {
704 VERB3 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
705 return 0;
706 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100707#if 0 /* we filter out such packets earlier */
708 if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100709 || p->lastpkt_stratum >= MAXSTRAT
710 ) {
711 VERB3 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
712 return 0;
713 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100714#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100715 /* rd is root_distance(p, t) */
716 if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
717 VERB3 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
718 return 0;
719 }
720//TODO
721// /* Do we have a loop? */
722// if (p->refid == p->dstaddr || p->refid == s.refid)
723// return 0;
724 return 1;
725}
726static peer_t*
727select_and_cluster(double t)
728{
729 llist_t *item;
730 int i, j;
731 int size = 3 * G.peer_cnt;
732 /* for selection algorithm */
733 point_t point[size];
734 unsigned num_points, num_candidates;
735 double low, high;
736 unsigned num_falsetickers;
737 /* for cluster algorithm */
738 survivor_t survivor[size];
739 unsigned num_survivors;
740
741 /* Selection */
742
743 num_points = 0;
744 item = G.ntp_peers;
745 while (item != NULL) {
746 peer_t *p = (peer_t *) item->data;
747 double rd = root_distance(p, t);
748 double offset = p->filter_offset;
749
750 if (!fit(p, rd)) {
751 item = item->link;
752 continue;
753 }
754
755 VERB4 bb_error_msg("interval: [%f %f %f] %s",
756 offset - rd,
757 offset,
758 offset + rd,
759 p->p_dotted
760 );
761 point[num_points].p = p;
762 point[num_points].type = -1;
763 point[num_points].edge = offset - rd;
764 num_points++;
765 point[num_points].p = p;
766 point[num_points].type = 0;
767 point[num_points].edge = offset;
768 num_points++;
769 point[num_points].p = p;
770 point[num_points].type = 1;
771 point[num_points].edge = offset + rd;
772 num_points++;
773 item = item->link;
774 }
775 num_candidates = num_points / 3;
776 if (num_candidates == 0) {
777 VERB3 bb_error_msg("no valid datapoints, no peer selected");
778 return NULL; /* never happers? */
779 }
780//TODO: sorting does not seem to be done in reference code
781 qsort(point, num_points, sizeof(point[0]), compare_point_edge);
782
783 /* Start with the assumption that there are no falsetickers.
784 * Attempt to find a nonempty intersection interval containing
785 * the midpoints of all truechimers.
786 * If a nonempty interval cannot be found, increase the number
787 * of assumed falsetickers by one and try again.
788 * If a nonempty interval is found and the number of falsetickers
789 * is less than the number of truechimers, a majority has been found
790 * and the midpoint of each truechimer represents
791 * the candidates available to the cluster algorithm.
792 */
793 num_falsetickers = 0;
794 while (1) {
795 int c;
796 unsigned num_midpoints = 0;
797
798 low = 1 << 9;
799 high = - (1 << 9);
800 c = 0;
801 for (i = 0; i < num_points; i++) {
802 /* We want to do:
803 * if (point[i].type == -1) c++;
804 * if (point[i].type == 1) c--;
805 * and it's simpler to do it this way:
806 */
807 c -= point[i].type;
808 if (c >= num_candidates - num_falsetickers) {
809 /* If it was c++ and it got big enough... */
810 low = point[i].edge;
811 break;
812 }
813 if (point[i].type == 0)
814 num_midpoints++;
815 }
816 c = 0;
817 for (i = num_points-1; i >= 0; i--) {
818 c += point[i].type;
819 if (c >= num_candidates - num_falsetickers) {
820 high = point[i].edge;
821 break;
822 }
823 if (point[i].type == 0)
824 num_midpoints++;
825 }
826 /* If the number of midpoints is greater than the number
827 * of allowed falsetickers, the intersection contains at
828 * least one truechimer with no midpoint - bad.
829 * Also, interval should be nonempty.
830 */
831 if (num_midpoints <= num_falsetickers && low < high)
832 break;
833 num_falsetickers++;
834 if (num_falsetickers * 2 >= num_candidates) {
835 VERB3 bb_error_msg("too many falsetickers:%d (candidates:%d), no peer selected",
836 num_falsetickers, num_candidates);
837 return NULL;
838 }
839 }
840 VERB3 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
841 low, high, num_candidates, num_falsetickers);
842
843 /* Clustering */
844
845 /* Construct a list of survivors (p, metric)
846 * from the chime list, where metric is dominated
847 * first by stratum and then by root distance.
848 * All other things being equal, this is the order of preference.
849 */
850 num_survivors = 0;
851 for (i = 0; i < num_points; i++) {
852 peer_t *p;
853
854 if (point[i].edge < low || point[i].edge > high)
855 continue;
856 p = point[i].p;
857 survivor[num_survivors].p = p;
858//TODO: save root_distance in point_t and reuse here?
859 survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + root_distance(p, t);
860 VERB4 bb_error_msg("survivor[%d] metric:%f peer:%s",
861 num_survivors, survivor[num_survivors].metric, p->p_dotted);
862 num_survivors++;
863 }
864 /* There must be at least MIN_SELECTED survivors to satisfy the
865 * correctness assertions. Ordinarily, the Byzantine criteria
866 * require four survivors, but for the demonstration here, one
867 * is acceptable.
868 */
869 if (num_survivors < MIN_SELECTED) {
870 VERB3 bb_error_msg("num_survivors %d < %d, no peer selected",
871 num_survivors, MIN_SELECTED);
872 return NULL;
873 }
874
875//looks like this is ONLY used by the fact that later we pick survivor[0].
876//we can avoid sorting then, just find the minimum once!
877 qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
878
879 /* For each association p in turn, calculate the selection
880 * jitter p->sjitter as the square root of the sum of squares
881 * (p->offset - q->offset) over all q associations. The idea is
882 * to repeatedly discard the survivor with maximum selection
883 * jitter until a termination condition is met.
884 */
885 while (1) {
886 unsigned max_idx = max_idx;
887 double max_selection_jitter = max_selection_jitter;
888 double min_jitter = min_jitter;
889
890 if (num_survivors <= MIN_CLUSTERED) {
891 bb_error_msg("num_survivors %d <= %d, not discarding more",
892 num_survivors, MIN_CLUSTERED);
893 break;
894 }
895
896 /* To make sure a few survivors are left
897 * for the clustering algorithm to chew on,
898 * we stop if the number of survivors
899 * is less than or equal to MIN_CLUSTERED (3).
900 */
901 for (i = 0; i < num_survivors; i++) {
902 double selection_jitter_sq;
903 peer_t *p = survivor[i].p;
904
905 if (i == 0 || p->filter_jitter < min_jitter)
906 min_jitter = p->filter_jitter;
907
908 selection_jitter_sq = 0;
909 for (j = 0; j < num_survivors; j++) {
910 peer_t *q = survivor[j].p;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100911 selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
912 }
913 if (i == 0 || selection_jitter_sq > max_selection_jitter) {
914 max_selection_jitter = selection_jitter_sq;
915 max_idx = i;
916 }
917 VERB5 bb_error_msg("survivor %d selection_jitter^2:%f",
918 i, selection_jitter_sq);
919 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100920 max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100921 VERB4 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
922 max_idx, max_selection_jitter, min_jitter);
923
924 /* If the maximum selection jitter is less than the
925 * minimum peer jitter, then tossing out more survivors
926 * will not lower the minimum peer jitter, so we might
927 * as well stop.
928 */
929 if (max_selection_jitter < min_jitter) {
930 VERB3 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
931 max_selection_jitter, min_jitter, num_survivors);
932 break;
933 }
934
935 /* Delete survivor[max_idx] from the list
936 * and go around again.
937 */
938 VERB5 bb_error_msg("dropping survivor %d", max_idx);
939 num_survivors--;
940 while (max_idx < num_survivors) {
941 survivor[max_idx] = survivor[max_idx + 1];
942 max_idx++;
943 }
944 }
945
946 /* Pick the best clock. If the old system peer is on the list
947 * and at the same stratum as the first survivor on the list,
948 * then don't do a clock hop. Otherwise, select the first
949 * survivor on the list as the new system peer.
950 */
951//TODO - see clock_combine()
952 VERB3 bb_error_msg("selected peer %s filter_offset:%f age:%f",
953 survivor[0].p->p_dotted,
954 survivor[0].p->filter_offset,
955 t - survivor[0].p->lastpkt_recv_time
956 );
957 return survivor[0].p;
958}
959
960
961/*
962 * Local clock discipline and its helpers
963 */
964static void
965set_new_values(int disc_state, double offset, double recv_time)
966{
967 /* Enter new state and set state variables. Note we use the time
968 * of the last clock filter sample, which must be earlier than
969 * the current time.
970 */
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100971 VERB3 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100972 disc_state, offset, recv_time);
973 G.discipline_state = disc_state;
974 G.last_update_offset = offset;
975 G.last_update_recv_time = recv_time;
976}
977/* Clock state definitions */
978#define STATE_NSET 0 /* initial state, "nothing is set" */
979#define STATE_FSET 1 /* frequency set from file */
980#define STATE_SPIK 2 /* spike detected */
981#define STATE_FREQ 3 /* initial frequency */
982#define STATE_SYNC 4 /* clock synchronized (normal operation) */
983/* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
984static int
985update_local_clock(peer_t *p, double t)
986{
987 int rc;
988 long old_tmx_offset;
989 struct timex tmx;
990 double offset = p->filter_offset;
991 double recv_time = p->lastpkt_recv_time;
992 double abs_offset;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100993#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100994 double freq_drift;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100995#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100996 double since_last_update;
997 double etemp, dtemp;
998
999 abs_offset = fabs(offset);
1000
1001 /* If the offset is too large, give up and go home */
1002 if (abs_offset > PANIC_THRESHOLD) {
1003 bb_error_msg_and_die("offset %f far too big, exiting", offset);
1004 }
1005
1006 /* If this is an old update, for instance as the result
1007 * of a system peer change, avoid it. We never use
1008 * an old sample or the same sample twice.
1009 */
1010 if (recv_time <= G.last_update_recv_time) {
1011 VERB3 bb_error_msg("same or older datapoint: %f >= %f, not using it",
1012 G.last_update_recv_time, recv_time);
1013 return 0; /* "leave poll interval as is" */
1014 }
1015
1016 /* Clock state machine transition function. This is where the
1017 * action is and defines how the system reacts to large time
1018 * and frequency errors.
1019 */
1020 since_last_update = recv_time - G.reftime;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001021#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001022 freq_drift = 0;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001023#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001024 if (G.discipline_state == STATE_FREQ) {
1025 /* Ignore updates until the stepout threshold */
1026 if (since_last_update < WATCH_THRESHOLD) {
1027 VERB3 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1028 WATCH_THRESHOLD - since_last_update);
1029 return 0; /* "leave poll interval as is" */
1030 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001031#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001032 freq_drift = (offset - G.last_update_offset) / since_last_update;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001033#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001034 }
1035
1036 /* There are two main regimes: when the
1037 * offset exceeds the step threshold and when it does not.
1038 */
1039 if (abs_offset > STEP_THRESHOLD) {
1040 llist_t *item;
1041
1042 switch (G.discipline_state) {
1043 case STATE_SYNC:
1044 /* The first outlyer: ignore it, switch to SPIK state */
1045 VERB3 bb_error_msg("offset:%f - spike detected", offset);
1046 G.discipline_state = STATE_SPIK;
1047 return -1; /* "decrease poll interval" */
1048
1049 case STATE_SPIK:
1050 /* Ignore succeeding outlyers until either an inlyer
1051 * is found or the stepout threshold is exceeded.
1052 */
1053 if (since_last_update < WATCH_THRESHOLD) {
1054 VERB3 bb_error_msg("spike detected, datapoint ignored, %f sec remains",
1055 WATCH_THRESHOLD - since_last_update);
1056 return -1; /* "decrease poll interval" */
1057 }
1058 /* fall through: we need to step */
1059 } /* switch */
1060
1061 /* Step the time and clamp down the poll interval.
1062 *
1063 * In NSET state an initial frequency correction is
1064 * not available, usually because the frequency file has
1065 * not yet been written. Since the time is outside the
1066 * capture range, the clock is stepped. The frequency
1067 * will be set directly following the stepout interval.
1068 *
1069 * In FSET state the initial frequency has been set
1070 * from the frequency file. Since the time is outside
1071 * the capture range, the clock is stepped immediately,
1072 * rather than after the stepout interval. Guys get
1073 * nervous if it takes 17 minutes to set the clock for
1074 * the first time.
1075 *
1076 * In SPIK state the stepout threshold has expired and
1077 * the phase is still above the step threshold. Note
1078 * that a single spike greater than the step threshold
1079 * is always suppressed, even at the longer poll
1080 * intervals.
1081 */
1082 VERB3 bb_error_msg("stepping time by %f; poll_exp=MINPOLL", offset);
1083 step_time(offset);
1084 if (option_mask32 & OPT_q) {
1085 /* We were only asked to set time once. Done. */
1086 exit(0);
1087 }
1088
1089 G.polladj_count = 0;
1090 G.poll_exp = MINPOLL;
1091 G.stratum = MAXSTRAT;
1092 for (item = G.ntp_peers; item != NULL; item = item->link) {
1093 peer_t *pp = (peer_t *) item->data;
1094 reset_peer_stats(pp, t, offset);
1095 }
1096 if (G.discipline_state == STATE_NSET) {
1097 set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1098 return 1; /* "ok to increase poll interval" */
1099 }
1100 set_new_values(STATE_SYNC, /*offset:*/ 0, recv_time);
1101
1102 } else { /* abs_offset <= STEP_THRESHOLD */
1103
1104 if (G.poll_exp < MINPOLL) {
1105 VERB3 bb_error_msg("saw small offset %f, disabling burst mode", offset);
1106 G.poll_exp = MINPOLL;
1107 }
1108
1109 /* Compute the clock jitter as the RMS of exponentially
1110 * weighted offset differences. Used by the poll adjust code.
1111 */
1112 etemp = SQUARE(G.discipline_jitter);
1113 dtemp = SQUARE(MAXD(fabs(offset - G.last_update_offset), G_precision_sec));
1114 G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1115 VERB3 bb_error_msg("discipline jitter=%f", G.discipline_jitter);
1116
1117 switch (G.discipline_state) {
1118 case STATE_NSET:
1119 if (option_mask32 & OPT_q) {
1120 /* We were only asked to set time once.
1121 * The clock is precise enough, no need to step.
1122 */
1123 exit(0);
1124 }
1125 /* This is the first update received and the frequency
1126 * has not been initialized. The first thing to do
1127 * is directly measure the oscillator frequency.
1128 */
1129 set_new_values(STATE_FREQ, offset, recv_time);
1130 VERB3 bb_error_msg("transitioning to FREQ, datapoint ignored");
1131 return -1; /* "decrease poll interval" */
1132
1133#if 0 /* this is dead code for now */
1134 case STATE_FSET:
1135 /* This is the first update and the frequency
1136 * has been initialized. Adjust the phase, but
1137 * don't adjust the frequency until the next update.
1138 */
1139 set_new_values(STATE_SYNC, offset, recv_time);
1140 /* freq_drift remains 0 */
1141 break;
1142#endif
1143
1144 case STATE_FREQ:
1145 /* since_last_update >= WATCH_THRESHOLD, we waited enough.
1146 * Correct the phase and frequency and switch to SYNC state.
1147 * freq_drift was already estimated (see code above)
1148 */
1149 set_new_values(STATE_SYNC, offset, recv_time);
1150 break;
1151
1152 default:
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001153#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001154 /* Compute freq_drift due to PLL and FLL contributions.
1155 *
1156 * The FLL and PLL frequency gain constants
1157 * depend on the poll interval and Allan
1158 * intercept. The FLL is not used below one-half
1159 * the Allan intercept. Above that the loop gain
1160 * increases in steps to 1 / AVG.
1161 */
1162 if ((1 << G.poll_exp) > ALLAN / 2) {
1163 etemp = FLL - G.poll_exp;
1164 if (etemp < AVG)
1165 etemp = AVG;
1166 freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1167 }
1168 /* For the PLL the integration interval
1169 * (numerator) is the minimum of the update
1170 * interval and poll interval. This allows
1171 * oversampling, but not undersampling.
1172 */
1173 etemp = MIND(since_last_update, (1 << G.poll_exp));
1174 dtemp = (4 * PLL) << G.poll_exp;
1175 freq_drift += offset * etemp / SQUARE(dtemp);
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001176#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001177 set_new_values(STATE_SYNC, offset, recv_time);
1178 break;
1179 }
1180 G.stratum = p->lastpkt_stratum + 1;
1181 }
1182
1183 G.reftime = t;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001184 G.ntp_status = p->lastpkt_status;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001185 G.refid = p->lastpkt_refid;
1186 G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
1187 dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(s.jitter));
1188 dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (t - p->lastpkt_recv_time) + abs_offset, MINDISP);
1189 G.rootdisp = p->lastpkt_rootdisp + dtemp;
1190 VERB3 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1191
1192 /* We are in STATE_SYNC now, but did not do adjtimex yet.
1193 * (Any other state does not reach this, they all return earlier)
1194 * By this time, freq_drift and G.last_update_offset are set
1195 * to values suitable for adjtimex.
Denys Vlasenko61313112010-01-01 19:56:16 +01001196 */
1197#if !USING_KERNEL_PLL_LOOP
1198 /* Calculate the new frequency drift and frequency stability (wander).
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001199 * Compute the clock wander as the RMS of exponentially weighted
1200 * frequency differences. This is not used directly, but can,
1201 * along with the jitter, be a highly useful monitoring and
1202 * debugging tool.
1203 */
1204 dtemp = G.discipline_freq_drift + freq_drift;
Denys Vlasenko61313112010-01-01 19:56:16 +01001205 G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001206 etemp = SQUARE(G.discipline_wander);
1207 dtemp = SQUARE(dtemp);
1208 G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1209
Denys Vlasenko61313112010-01-01 19:56:16 +01001210 VERB3 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1211 G.discipline_freq_drift,
1212 (long)(G.discipline_freq_drift * 65536e6),
1213 freq_drift,
1214 G.discipline_wander);
1215#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001216 VERB3 {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001217 memset(&tmx, 0, sizeof(tmx));
1218 if (adjtimex(&tmx) < 0)
1219 bb_perror_msg_and_die("adjtimex");
1220 VERB3 bb_error_msg("p adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1221 tmx.freq, tmx.offset, tmx.constant, tmx.status);
1222 }
1223
1224 old_tmx_offset = 0;
1225 if (!G.adjtimex_was_done) {
1226 G.adjtimex_was_done = 1;
1227 /* When we use adjtimex for the very first time,
1228 * we need to ADD to pre-existing tmx.offset - it may be !0
1229 */
1230 memset(&tmx, 0, sizeof(tmx));
1231 if (adjtimex(&tmx) < 0)
1232 bb_perror_msg_and_die("adjtimex");
1233 old_tmx_offset = tmx.offset;
1234 }
1235 memset(&tmx, 0, sizeof(tmx));
1236#if 0
Denys Vlasenko61313112010-01-01 19:56:16 +01001237//doesn't work, offset remains 0 (!) in kernel:
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001238//ntpd: set adjtimex freq:1786097 tmx.offset:77487
1239//ntpd: prev adjtimex freq:1786097 tmx.offset:0
1240//ntpd: cur adjtimex freq:1786097 tmx.offset:0
1241 tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1242 /* 65536 is one ppm */
1243 tmx.freq = G.discipline_freq_drift * 65536e6;
1244 tmx.offset = G.last_update_offset * 1000000; /* usec */
1245#endif
1246 tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
1247 tmx.offset = (G.last_update_offset * 1000000) /* usec */
1248 /* + (G.last_update_offset < 0 ? -0.5 : 0.5) - too small to bother */
1249 + old_tmx_offset; /* almost always 0 */
1250 tmx.status = STA_PLL;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001251 if (G.ntp_status & LI_PLUSSEC)
1252 tmx.status |= STA_INS;
1253 if (G.ntp_status & LI_MINUSSEC)
1254 tmx.status |= STA_DEL;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001255 tmx.constant = G.poll_exp - 4;
1256 //tmx.esterror = (u_int32)(clock_jitter * 1e6);
1257 //tmx.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001258 rc = adjtimex(&tmx);
1259 if (rc < 0)
1260 bb_perror_msg_and_die("adjtimex");
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001261 /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1262 * Not sure why. Perhaps it is normal.
1263 */
1264 VERB3 bb_error_msg("adjtimex:%d freq:%ld offset:%ld constant:%ld status:0x%x",
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001265 rc, tmx.freq, tmx.offset, tmx.constant, tmx.status);
Denys Vlasenko61313112010-01-01 19:56:16 +01001266#if 0
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001267 VERB3 {
Denys Vlasenko61313112010-01-01 19:56:16 +01001268 /* always gives the same output as above msg */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001269 memset(&tmx, 0, sizeof(tmx));
1270 if (adjtimex(&tmx) < 0)
1271 bb_perror_msg_and_die("adjtimex");
1272 VERB3 bb_error_msg("c adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1273 tmx.freq, tmx.offset, tmx.constant, tmx.status);
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001274 }
Denys Vlasenko61313112010-01-01 19:56:16 +01001275#endif
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001276 if (G.kernel_freq_drift != tmx.freq / 65536) {
1277 G.kernel_freq_drift = tmx.freq / 65536;
1278 VERB2 bb_error_msg("kernel clock drift: %ld ppm", G.kernel_freq_drift);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001279 }
1280// #define STA_MODE 0x4000 /* mode (0 = PLL, 1 = FLL) (ro) */ - ?
1281// it appeared after a while:
1282//ntpd: p adjtimex freq:-14545653 offset:-5396 constant:10 status:0x41
1283//ntpd: c adjtimex freq:-14547835 offset:-8307 constant:10 status:0x1
1284//ntpd: p adjtimex freq:-14547835 offset:-6398 constant:10 status:0x41
1285//ntpd: c adjtimex freq:-14550486 offset:-10158 constant:10 status:0x1
1286//ntpd: p adjtimex freq:-14550486 offset:-6132 constant:10 status:0x41
1287//ntpd: c adjtimex freq:-14636129 offset:-10158 constant:10 status:0x4001
1288//ntpd: p adjtimex freq:-14636129 offset:-10002 constant:10 status:0x4041
1289//ntpd: c adjtimex freq:-14636245 offset:-7497 constant:10 status:0x1
1290//ntpd: p adjtimex freq:-14636245 offset:-4573 constant:10 status:0x41
1291//ntpd: c adjtimex freq:-14642034 offset:-11715 constant:10 status:0x1
1292//ntpd: p adjtimex freq:-14642034 offset:-4098 constant:10 status:0x41
1293//ntpd: c adjtimex freq:-14699112 offset:-11746 constant:10 status:0x4001
1294//ntpd: p adjtimex freq:-14699112 offset:-4239 constant:10 status:0x4041
1295//ntpd: c adjtimex freq:-14762330 offset:-12786 constant:10 status:0x4001
1296//ntpd: p adjtimex freq:-14762330 offset:-4434 constant:10 status:0x4041
1297//ntpd: b adjtimex freq:0 offset:-9669 constant:8 status:0x1
1298//ntpd: adjtimex:0 freq:-14809095 offset:-9669 constant:10 status:0x4001
1299//ntpd: c adjtimex freq:-14809095 offset:-9669 constant:10 status:0x4001
1300
1301 return 1; /* "ok to increase poll interval" */
1302}
1303
1304
1305/*
1306 * We've got a new reply packet from a peer, process it
1307 * (helpers first)
1308 */
1309static unsigned
1310retry_interval(void)
1311{
1312 /* Local problem, want to retry soon */
1313 unsigned interval, r;
1314 interval = RETRY_INTERVAL;
1315 r = random();
1316 interval += r % (unsigned)(RETRY_INTERVAL / 4);
1317 VERB3 bb_error_msg("chose retry interval:%u", interval);
1318 return interval;
1319}
1320static unsigned
1321poll_interval(int exponent) /* exp is always -1 or 0 */
1322{
1323 /* Want to send next packet at (1 << G.poll_exp) + small random value */
1324 unsigned interval, r;
1325 exponent += G.poll_exp; /* G.poll_exp is always > 0 */
1326 /* never true: if (exp < 0) exp = 0; */
1327 interval = 1 << exponent;
1328 r = random();
1329 interval += ((r & (interval-1)) >> 4) + ((r >> 8) & 1); /* + 1/16 of interval, max */
1330 VERB3 bb_error_msg("chose poll interval:%u (poll_exp:%d exp:%d)", interval, G.poll_exp, exponent);
1331 return interval;
1332}
1333static void
1334recv_and_process_peer_pkt(peer_t *p)
1335{
1336 int rc;
1337 ssize_t size;
1338 msg_t msg;
1339 double T1, T2, T3, T4;
1340 unsigned interval;
1341 datapoint_t *datapoint;
1342 peer_t *q;
1343
1344 /* We can recvfrom here and check from.IP, but some multihomed
1345 * ntp servers reply from their *other IP*.
1346 * TODO: maybe we should check at least what we can: from.port == 123?
1347 */
1348 size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1349 if (size == -1) {
1350 bb_perror_msg("recv(%s) error", p->p_dotted);
1351 if (errno == EHOSTUNREACH || errno == EHOSTDOWN
1352 || errno == ENETUNREACH || errno == ENETDOWN
1353 || errno == ECONNREFUSED || errno == EADDRNOTAVAIL
1354 || errno == EAGAIN
1355 ) {
1356//TODO: always do this?
1357 set_next(p, retry_interval());
1358 goto close_sock;
1359 }
1360 xfunc_die();
1361 }
1362
1363 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1364 bb_error_msg("malformed packet received from %s", p->p_dotted);
1365 goto bail;
1366 }
1367
1368 if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1369 || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1370 ) {
1371 goto bail;
1372 }
1373
1374 if ((msg.m_status & LI_ALARM) == LI_ALARM
1375 || msg.m_stratum == 0
1376 || msg.m_stratum > NTP_MAXSTRATUM
1377 ) {
1378// TODO: stratum 0 responses may have commands in 32-bit m_refid field:
1379// "DENY", "RSTR" - peer does not like us at all
1380// "RATE" - peer is overloaded, reduce polling freq
1381 interval = poll_interval(0);
1382 bb_error_msg("reply from %s: not synced, next query in %us", p->p_dotted, interval);
1383 goto close_sock;
1384 }
1385
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001386// /* Verify valid root distance */
1387// if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1388// return; /* invalid header values */
1389
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001390 p->lastpkt_status = msg.m_status;
1391 p->lastpkt_stratum = msg.m_stratum;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001392 p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
1393 p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
1394 p->lastpkt_refid = msg.m_refid;
1395
1396 /*
1397 * From RFC 2030 (with a correction to the delay math):
1398 *
1399 * Timestamp Name ID When Generated
1400 * ------------------------------------------------------------
1401 * Originate Timestamp T1 time request sent by client
1402 * Receive Timestamp T2 time request received by server
1403 * Transmit Timestamp T3 time reply sent by server
1404 * Destination Timestamp T4 time reply received by client
1405 *
1406 * The roundtrip delay and local clock offset are defined as
1407 *
1408 * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1409 */
1410 T1 = p->p_xmttime;
1411 T2 = lfp_to_d(msg.m_rectime);
1412 T3 = lfp_to_d(msg.m_xmttime);
1413 T4 = gettime1900d();
1414
1415 p->lastpkt_recv_time = T4;
1416
1417 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
1418 p->datapoint_idx = p->p_reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
1419 datapoint = &p->filter_datapoint[p->datapoint_idx];
1420 datapoint->d_recv_time = T4;
1421 datapoint->d_offset = ((T2 - T1) + (T3 - T4)) / 2;
1422 /* The delay calculation is a special case. In cases where the
1423 * server and client clocks are running at different rates and
1424 * with very fast networks, the delay can appear negative. In
1425 * order to avoid violating the Principle of Least Astonishment,
1426 * the delay is clamped not less than the system precision.
1427 */
1428 p->lastpkt_delay = (T4 - T1) - (T3 - T2);
Denys Vlasenkoa9aaeda2010-01-01 22:23:27 +01001429 if (p->lastpkt_delay < G_precision_sec)
1430 p->lastpkt_delay = G_precision_sec;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001431 datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
1432 if (!p->p_reachable_bits) {
1433 /* 1st datapoint ever - replicate offset in every element */
1434 int i;
1435 for (i = 1; i < NUM_DATAPOINTS; i++) {
1436 p->filter_datapoint[i].d_offset = datapoint->d_offset;
1437 }
1438 }
1439
1440 p->p_reachable_bits |= 1;
1441 VERB1 {
1442 bb_error_msg("reply from %s: reach 0x%02x offset %f delay %f",
1443 p->p_dotted,
1444 p->p_reachable_bits,
1445 datapoint->d_offset, p->lastpkt_delay);
1446 }
1447
1448 /* Muck with statictics and update the clock */
1449 filter_datapoints(p, T4);
1450 q = select_and_cluster(T4);
1451 rc = -1;
1452 if (q)
1453 rc = update_local_clock(q, T4);
1454
1455 if (rc != 0) {
1456 /* Adjust the poll interval by comparing the current offset
1457 * with the clock jitter. If the offset is less than
1458 * the clock jitter times a constant, then the averaging interval
1459 * is increased, otherwise it is decreased. A bit of hysteresis
1460 * helps calm the dance. Works best using burst mode.
1461 */
1462 VERB4 if (rc > 0) {
1463 bb_error_msg("offset:%f POLLADJ_GATE*discipline_jitter:%f poll:%s",
1464 q->filter_offset, POLLADJ_GATE * G.discipline_jitter,
1465 fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter
1466 ? "grows" : "falls"
1467 );
1468 }
1469 if (rc > 0 && fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter) {
Denys Vlasenkobfc2a322010-01-01 18:12:06 +01001470 /* was += G.poll_exp but it is a bit
1471 * too optimistic for my taste at high poll_exp's */
1472 G.polladj_count += MINPOLL;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001473 if (G.polladj_count > POLLADJ_LIMIT) {
1474 G.polladj_count = 0;
1475 if (G.poll_exp < MAXPOLL) {
1476 G.poll_exp++;
1477 VERB3 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1478 G.discipline_jitter, G.poll_exp);
1479 }
1480 } else {
1481 VERB3 bb_error_msg("polladj: incr:%d", G.polladj_count);
1482 }
1483 } else {
1484 G.polladj_count -= G.poll_exp * 2;
1485 if (G.polladj_count < -POLLADJ_LIMIT) {
1486 G.polladj_count = 0;
1487 if (G.poll_exp > MINPOLL) {
Denys Vlasenko2e36eb82010-01-02 01:50:16 +01001488 llist_t *item;
1489
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001490 G.poll_exp--;
Denys Vlasenko2e36eb82010-01-02 01:50:16 +01001491 /* Correct p->next_action_time in each peer
1492 * which waits for sending, so that they send earlier.
1493 * Old pp->next_action_time are on the order
1494 * of t + (1 << old_poll_exp) + small_random,
1495 * we simply need to subtract ~half of that.
1496 */
1497 for (item = G.ntp_peers; item != NULL; item = item->link) {
1498 peer_t *pp = (peer_t *) item->data;
1499 if (pp->p_fd < 0)
1500 pp->next_action_time -= (1 << G.poll_exp);
1501 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001502 VERB3 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1503 G.discipline_jitter, G.poll_exp);
1504 }
1505 } else {
1506 VERB3 bb_error_msg("polladj: decr:%d", G.polladj_count);
1507 }
1508 }
1509 }
1510
1511 /* Decide when to send new query for this peer */
1512 interval = poll_interval(0);
1513 set_next(p, interval);
1514
1515 close_sock:
1516 /* We do not expect any more packets from this peer for now.
1517 * Closing the socket informs kernel about it.
1518 * We open a new socket when we send a new query.
1519 */
1520 close(p->p_fd);
1521 p->p_fd = -1;
1522 bail:
1523 return;
1524}
1525
1526#if ENABLE_FEATURE_NTPD_SERVER
1527static void
1528recv_and_process_client_pkt(void /*int fd*/)
1529{
1530 ssize_t size;
1531 uint8_t version;
1532 double rectime;
1533 len_and_sockaddr *to;
1534 struct sockaddr *from;
1535 msg_t msg;
1536 uint8_t query_status;
1537 l_fixedpt_t query_xmttime;
1538
1539 to = get_sock_lsa(G.listen_fd);
1540 from = xzalloc(to->len);
1541
1542 size = recv_from_to(G.listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
1543 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1544 char *addr;
1545 if (size < 0) {
1546 if (errno == EAGAIN)
1547 goto bail;
1548 bb_perror_msg_and_die("recv");
1549 }
1550 addr = xmalloc_sockaddr2dotted_noport(from);
1551 bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
1552 free(addr);
1553 goto bail;
1554 }
1555
1556 query_status = msg.m_status;
1557 query_xmttime = msg.m_xmttime;
1558
1559 /* Build a reply packet */
1560 memset(&msg, 0, sizeof(msg));
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001561 msg.m_status = G.stratum < MAXSTRAT ? G.ntp_status : LI_ALARM;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001562 msg.m_status |= (query_status & VERSION_MASK);
1563 msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
1564 MODE_SERVER : MODE_SYM_PAS;
1565 msg.m_stratum = G.stratum;
1566 msg.m_ppoll = G.poll_exp;
1567 msg.m_precision_exp = G_precision_exp;
1568 rectime = gettime1900d();
1569 msg.m_xmttime = msg.m_rectime = d_to_lfp(rectime);
1570 msg.m_reftime = d_to_lfp(G.reftime);
1571 msg.m_orgtime = query_xmttime;
1572 msg.m_rootdelay = d_to_sfp(G.rootdelay);
1573//simple code does not do this, fix simple code!
1574 msg.m_rootdisp = d_to_sfp(G.rootdisp);
1575 version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
1576 msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
1577
1578 /* We reply from the local address packet was sent to,
1579 * this makes to/from look swapped here: */
1580 do_sendto(G.listen_fd,
1581 /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
1582 &msg, size);
1583
1584 bail:
1585 free(to);
1586 free(from);
1587}
1588#endif
1589
1590/* Upstream ntpd's options:
1591 *
1592 * -4 Force DNS resolution of host names to the IPv4 namespace.
1593 * -6 Force DNS resolution of host names to the IPv6 namespace.
1594 * -a Require cryptographic authentication for broadcast client,
1595 * multicast client and symmetric passive associations.
1596 * This is the default.
1597 * -A Do not require cryptographic authentication for broadcast client,
1598 * multicast client and symmetric passive associations.
1599 * This is almost never a good idea.
1600 * -b Enable the client to synchronize to broadcast servers.
1601 * -c conffile
1602 * Specify the name and path of the configuration file,
1603 * default /etc/ntp.conf
1604 * -d Specify debugging mode. This option may occur more than once,
1605 * with each occurrence indicating greater detail of display.
1606 * -D level
1607 * Specify debugging level directly.
1608 * -f driftfile
1609 * Specify the name and path of the frequency file.
1610 * This is the same operation as the "driftfile FILE"
1611 * configuration command.
1612 * -g Normally, ntpd exits with a message to the system log
1613 * if the offset exceeds the panic threshold, which is 1000 s
1614 * by default. This option allows the time to be set to any value
1615 * without restriction; however, this can happen only once.
1616 * If the threshold is exceeded after that, ntpd will exit
1617 * with a message to the system log. This option can be used
1618 * with the -q and -x options. See the tinker command for other options.
1619 * -i jaildir
1620 * Chroot the server to the directory jaildir. This option also implies
1621 * that the server attempts to drop root privileges at startup
1622 * (otherwise, chroot gives very little additional security).
1623 * You may need to also specify a -u option.
1624 * -k keyfile
1625 * Specify the name and path of the symmetric key file,
1626 * default /etc/ntp/keys. This is the same operation
1627 * as the "keys FILE" configuration command.
1628 * -l logfile
1629 * Specify the name and path of the log file. The default
1630 * is the system log file. This is the same operation as
1631 * the "logfile FILE" configuration command.
1632 * -L Do not listen to virtual IPs. The default is to listen.
1633 * -n Don't fork.
1634 * -N To the extent permitted by the operating system,
1635 * run the ntpd at the highest priority.
1636 * -p pidfile
1637 * Specify the name and path of the file used to record the ntpd
1638 * process ID. This is the same operation as the "pidfile FILE"
1639 * configuration command.
1640 * -P priority
1641 * To the extent permitted by the operating system,
1642 * run the ntpd at the specified priority.
1643 * -q Exit the ntpd just after the first time the clock is set.
1644 * This behavior mimics that of the ntpdate program, which is
1645 * to be retired. The -g and -x options can be used with this option.
1646 * Note: The kernel time discipline is disabled with this option.
1647 * -r broadcastdelay
1648 * Specify the default propagation delay from the broadcast/multicast
1649 * server to this client. This is necessary only if the delay
1650 * cannot be computed automatically by the protocol.
1651 * -s statsdir
1652 * Specify the directory path for files created by the statistics
1653 * facility. This is the same operation as the "statsdir DIR"
1654 * configuration command.
1655 * -t key
1656 * Add a key number to the trusted key list. This option can occur
1657 * more than once.
1658 * -u user[:group]
1659 * Specify a user, and optionally a group, to switch to.
1660 * -v variable
1661 * -V variable
1662 * Add a system variable listed by default.
1663 * -x Normally, the time is slewed if the offset is less than the step
1664 * threshold, which is 128 ms by default, and stepped if above
1665 * the threshold. This option sets the threshold to 600 s, which is
1666 * well within the accuracy window to set the clock manually.
1667 * Note: since the slew rate of typical Unix kernels is limited
1668 * to 0.5 ms/s, each second of adjustment requires an amortization
1669 * interval of 2000 s. Thus, an adjustment as much as 600 s
1670 * will take almost 14 days to complete. This option can be used
1671 * with the -g and -q options. See the tinker command for other options.
1672 * Note: The kernel time discipline is disabled with this option.
1673 */
1674
1675/* By doing init in a separate function we decrease stack usage
1676 * in main loop.
1677 */
1678static NOINLINE void ntp_init(char **argv)
1679{
1680 unsigned opts;
1681 llist_t *peers;
1682
1683 srandom(getpid());
1684
1685 if (getuid())
1686 bb_error_msg_and_die(bb_msg_you_must_be_root);
1687
1688 /* Set some globals */
1689#if 0
1690 /* With constant b = 100, G.precision_exp is also constant -6.
1691 * Uncomment this to verify.
1692 */
1693 {
1694 int prec = 0;
1695 int b;
1696# if 0
1697 struct timespec tp;
1698 /* We can use sys_clock_getres but assuming 10ms tick should be fine */
1699 clock_getres(CLOCK_REALTIME, &tp);
1700 tp.tv_sec = 0;
1701 tp.tv_nsec = 10000000;
1702 b = 1000000000 / tp.tv_nsec; /* convert to Hz */
1703# else
1704 b = 100; /* b = 1000000000/10000000 = 100 */
1705# endif
1706 while (b > 1)
1707 prec--, b >>= 1;
1708 /*G.precision_exp = prec;*/
1709 /*G.precision_sec = (1.0 / (1 << (- prec)));*/
1710 bb_error_msg("G.precision_exp:%d sec:%f", prec, G_precision_sec); /* -6 */
1711 }
1712#endif
1713 G.stratum = MAXSTRAT;
1714 G.poll_exp = 1; /* should use MINPOLL, but 1 speeds up initial sync */
1715 G.reftime = G.last_update_recv_time = gettime1900d();
1716
1717 /* Parse options */
1718 peers = NULL;
1719 opt_complementary = "dd:p::"; /* d: counter, p: list */
1720 opts = getopt32(argv,
1721 "nqNx" /* compat */
1722 "p:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
1723 "d" /* compat */
1724 "46aAbgL", /* compat, ignored */
1725 &peers, &G.verbose);
1726 if (!(opts & (OPT_p|OPT_l)))
1727 bb_show_usage();
1728// if (opts & OPT_x) /* disable stepping, only slew is allowed */
1729// G.time_was_stepped = 1;
1730 while (peers)
1731 add_peers(llist_pop(&peers));
1732 if (!(opts & OPT_n)) {
1733 bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
1734 logmode = LOGMODE_NONE;
1735 }
1736#if ENABLE_FEATURE_NTPD_SERVER
1737 G.listen_fd = -1;
1738 if (opts & OPT_l) {
1739 G.listen_fd = create_and_bind_dgram_or_die(NULL, 123);
1740 socket_want_pktinfo(G.listen_fd);
1741 setsockopt(G.listen_fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
1742 }
1743#endif
1744 /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
1745 if (opts & OPT_N)
1746 setpriority(PRIO_PROCESS, 0, -15);
1747
1748 bb_signals((1 << SIGTERM) | (1 << SIGINT), record_signo);
1749 bb_signals((1 << SIGPIPE) | (1 << SIGHUP), SIG_IGN);
1750}
1751
1752int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
1753int ntpd_main(int argc UNUSED_PARAM, char **argv)
1754{
1755 struct globals g;
1756 struct pollfd *pfd;
1757 peer_t **idx2peer;
1758
1759 memset(&g, 0, sizeof(g));
1760 SET_PTR_TO_GLOBALS(&g);
1761
1762 ntp_init(argv);
1763
1764 {
1765 /* if ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
1766 unsigned cnt = g.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
1767 idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
1768 pfd = xzalloc(sizeof(pfd[0]) * cnt);
1769 }
1770
1771 while (!bb_got_signal) {
1772 llist_t *item;
1773 unsigned i, j;
1774 unsigned sent_cnt, trial_cnt;
1775 int nfds, timeout;
1776 time_t cur_time, nextaction;
1777
1778 /* Nothing between here and poll() blocks for any significant time */
1779
1780 cur_time = time(NULL);
1781 nextaction = cur_time + 3600;
1782
1783 i = 0;
1784#if ENABLE_FEATURE_NTPD_SERVER
1785 if (g.listen_fd != -1) {
1786 pfd[0].fd = g.listen_fd;
1787 pfd[0].events = POLLIN;
1788 i++;
1789 }
1790#endif
1791 /* Pass over peer list, send requests, time out on receives */
1792 sent_cnt = trial_cnt = 0;
1793 for (item = g.ntp_peers; item != NULL; item = item->link) {
1794 peer_t *p = (peer_t *) item->data;
1795
1796 /* Overflow-safe "if (p->next_action_time <= cur_time) ..." */
1797 if ((int)(cur_time - p->next_action_time) >= 0) {
1798 if (p->p_fd == -1) {
1799 /* Time to send new req */
1800 trial_cnt++;
1801 if (send_query_to_peer(p) == 0)
1802 sent_cnt++;
1803 } else {
1804 /* Timed out waiting for reply */
1805 close(p->p_fd);
1806 p->p_fd = -1;
1807 timeout = poll_interval(-1); /* try a bit faster */
1808 bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
1809 p->p_dotted, p->p_reachable_bits, timeout);
1810 set_next(p, timeout);
1811 }
1812 }
1813
1814 if (p->next_action_time < nextaction)
1815 nextaction = p->next_action_time;
1816
1817 if (p->p_fd >= 0) {
1818 /* Wait for reply from this peer */
1819 pfd[i].fd = p->p_fd;
1820 pfd[i].events = POLLIN;
1821 idx2peer[i] = p;
1822 i++;
1823 }
1824 }
1825
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001826 timeout = nextaction - cur_time;
1827 if (timeout < 1)
1828 timeout = 1;
1829
1830 /* Here we may block */
1831 VERB2 bb_error_msg("poll %us, sockets:%u", timeout, i);
1832 nfds = poll(pfd, i, timeout * 1000);
1833 if (nfds <= 0)
1834 continue;
1835
1836 /* Process any received packets */
1837 j = 0;
1838#if ENABLE_FEATURE_NTPD_SERVER
1839 if (g.listen_fd != -1) {
1840 if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
1841 nfds--;
1842 recv_and_process_client_pkt(/*g.listen_fd*/);
1843 }
1844 j = 1;
1845 }
1846#endif
1847 for (; nfds != 0 && j < i; j++) {
1848 if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
1849 nfds--;
1850 recv_and_process_peer_pkt(idx2peer[j]);
1851 }
1852 }
1853 } /* while (!bb_got_signal) */
1854
1855 kill_myself_with_sig(bb_got_signal);
1856}
1857
1858
1859
1860
1861
1862
1863/*** openntpd-4.6 uses only adjtime, not adjtimex ***/
1864
1865/*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
1866
1867#if 0
1868static double
1869direct_freq(double fp_offset)
1870{
1871
1872#ifdef KERNEL_PLL
1873 /*
1874 * If the kernel is enabled, we need the residual offset to
1875 * calculate the frequency correction.
1876 */
1877 if (pll_control && kern_enable) {
1878 memset(&ntv, 0, sizeof(ntv));
1879 ntp_adjtime(&ntv);
1880#ifdef STA_NANO
1881 clock_offset = ntv.offset / 1e9;
1882#else /* STA_NANO */
1883 clock_offset = ntv.offset / 1e6;
1884#endif /* STA_NANO */
1885 drift_comp = FREQTOD(ntv.freq);
1886 }
1887#endif /* KERNEL_PLL */
1888 set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
1889 wander_resid = 0;
1890 return drift_comp;
1891}
1892
1893static void
1894set_freq(double freq) /* frequency update */
1895{
1896 char tbuf[80];
1897
1898 drift_comp = freq;
1899
1900#ifdef KERNEL_PLL
1901 /*
1902 * If the kernel is enabled, update the kernel frequency.
1903 */
1904 if (pll_control && kern_enable) {
1905 memset(&ntv, 0, sizeof(ntv));
1906 ntv.modes = MOD_FREQUENCY;
1907 ntv.freq = DTOFREQ(drift_comp);
1908 ntp_adjtime(&ntv);
1909 snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
1910 report_event(EVNT_FSET, NULL, tbuf);
1911 } else {
1912 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
1913 report_event(EVNT_FSET, NULL, tbuf);
1914 }
1915#else /* KERNEL_PLL */
1916 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
1917 report_event(EVNT_FSET, NULL, tbuf);
1918#endif /* KERNEL_PLL */
1919}
1920
1921...
1922...
1923...
1924
1925#ifdef KERNEL_PLL
1926 /*
1927 * This code segment works when clock adjustments are made using
1928 * precision time kernel support and the ntp_adjtime() system
1929 * call. This support is available in Solaris 2.6 and later,
1930 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
1931 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
1932 * DECstation 5000/240 and Alpha AXP, additional kernel
1933 * modifications provide a true microsecond clock and nanosecond
1934 * clock, respectively.
1935 *
1936 * Important note: The kernel discipline is used only if the
1937 * step threshold is less than 0.5 s, as anything higher can
1938 * lead to overflow problems. This might occur if some misguided
1939 * lad set the step threshold to something ridiculous.
1940 */
1941 if (pll_control && kern_enable) {
1942
1943#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
1944
1945 /*
1946 * We initialize the structure for the ntp_adjtime()
1947 * system call. We have to convert everything to
1948 * microseconds or nanoseconds first. Do not update the
1949 * system variables if the ext_enable flag is set. In
1950 * this case, the external clock driver will update the
1951 * variables, which will be read later by the local
1952 * clock driver. Afterwards, remember the time and
1953 * frequency offsets for jitter and stability values and
1954 * to update the frequency file.
1955 */
1956 memset(&ntv, 0, sizeof(ntv));
1957 if (ext_enable) {
1958 ntv.modes = MOD_STATUS;
1959 } else {
1960#ifdef STA_NANO
1961 ntv.modes = MOD_BITS | MOD_NANO;
1962#else /* STA_NANO */
1963 ntv.modes = MOD_BITS;
1964#endif /* STA_NANO */
1965 if (clock_offset < 0)
1966 dtemp = -.5;
1967 else
1968 dtemp = .5;
1969#ifdef STA_NANO
1970 ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
1971 ntv.constant = sys_poll;
1972#else /* STA_NANO */
1973 ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
1974 ntv.constant = sys_poll - 4;
1975#endif /* STA_NANO */
1976 ntv.esterror = (u_int32)(clock_jitter * 1e6);
1977 ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
1978 ntv.status = STA_PLL;
1979
1980 /*
1981 * Enable/disable the PPS if requested.
1982 */
1983 if (pps_enable) {
1984 if (!(pll_status & STA_PPSTIME))
1985 report_event(EVNT_KERN,
1986 NULL, "PPS enabled");
1987 ntv.status |= STA_PPSTIME | STA_PPSFREQ;
1988 } else {
1989 if (pll_status & STA_PPSTIME)
1990 report_event(EVNT_KERN,
1991 NULL, "PPS disabled");
1992 ntv.status &= ~(STA_PPSTIME |
1993 STA_PPSFREQ);
1994 }
1995 if (sys_leap == LEAP_ADDSECOND)
1996 ntv.status |= STA_INS;
1997 else if (sys_leap == LEAP_DELSECOND)
1998 ntv.status |= STA_DEL;
1999 }
2000
2001 /*
2002 * Pass the stuff to the kernel. If it squeals, turn off
2003 * the pps. In any case, fetch the kernel offset,
2004 * frequency and jitter.
2005 */
2006 if (ntp_adjtime(&ntv) == TIME_ERROR) {
2007 if (!(ntv.status & STA_PPSSIGNAL))
2008 report_event(EVNT_KERN, NULL,
2009 "PPS no signal");
2010 }
2011 pll_status = ntv.status;
2012#ifdef STA_NANO
2013 clock_offset = ntv.offset / 1e9;
2014#else /* STA_NANO */
2015 clock_offset = ntv.offset / 1e6;
2016#endif /* STA_NANO */
2017 clock_frequency = FREQTOD(ntv.freq);
2018
2019 /*
2020 * If the kernel PPS is lit, monitor its performance.
2021 */
2022 if (ntv.status & STA_PPSTIME) {
2023#ifdef STA_NANO
2024 clock_jitter = ntv.jitter / 1e9;
2025#else /* STA_NANO */
2026 clock_jitter = ntv.jitter / 1e6;
2027#endif /* STA_NANO */
2028 }
2029
2030#if defined(STA_NANO) && NTP_API == 4
2031 /*
2032 * If the TAI changes, update the kernel TAI.
2033 */
2034 if (loop_tai != sys_tai) {
2035 loop_tai = sys_tai;
2036 ntv.modes = MOD_TAI;
2037 ntv.constant = sys_tai;
2038 ntp_adjtime(&ntv);
2039 }
2040#endif /* STA_NANO */
2041 }
2042#endif /* KERNEL_PLL */
2043#endif