"Robert P. J. Day" | 63fc1a9 | 2006-07-02 19:47:05 +0000 | [diff] [blame] | 1 | /* vi: set sw=4 ts=4: */ |
Rob Landley | 5cf7c2d | 2006-02-21 06:44:43 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Based on shasum from http://www.netsw.org/crypto/hash/ |
| 4 | * Majorly hacked up to use Dr Brian Gladman's sha1 code |
| 5 | * |
| 6 | * Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. |
| 7 | * Copyright (C) 2003 Glenn L. McGrath |
| 8 | * Copyright (C) 2003 Erik Andersen |
| 9 | * |
"Robert P. J. Day" | 5d8843e | 2006-07-10 11:41:19 +0000 | [diff] [blame] | 10 | * Licensed under GPLv2 or later, see file LICENSE in this tarball for details. |
Rob Landley | 5cf7c2d | 2006-02-21 06:44:43 +0000 | [diff] [blame] | 11 | * |
Rob Landley | 5cf7c2d | 2006-02-21 06:44:43 +0000 | [diff] [blame] | 12 | * --------------------------------------------------------------------------- |
| 13 | * Issue Date: 10/11/2002 |
| 14 | * |
| 15 | * This is a byte oriented version of SHA1 that operates on arrays of bytes |
| 16 | * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor |
| 17 | */ |
| 18 | |
| 19 | #include <fcntl.h> |
| 20 | #include <limits.h> |
| 21 | #include <stdio.h> |
| 22 | #include <stdint.h> |
| 23 | #include <stdlib.h> |
| 24 | #include <string.h> |
| 25 | #include <unistd.h> |
| 26 | |
Bernhard Reutner-Fischer | 421d9e5 | 2006-04-03 16:39:31 +0000 | [diff] [blame] | 27 | #include "libbb.h" |
Rob Landley | 5cf7c2d | 2006-02-21 06:44:43 +0000 | [diff] [blame] | 28 | |
| 29 | # define SHA1_BLOCK_SIZE 64 |
| 30 | # define SHA1_DIGEST_SIZE 20 |
| 31 | # define SHA1_HASH_SIZE SHA1_DIGEST_SIZE |
| 32 | # define SHA2_GOOD 0 |
| 33 | # define SHA2_BAD 1 |
| 34 | |
| 35 | # define rotl32(x,n) (((x) << n) | ((x) >> (32 - n))) |
| 36 | |
| 37 | # define SHA1_MASK (SHA1_BLOCK_SIZE - 1) |
| 38 | |
| 39 | /* reverse byte order in 32-bit words */ |
| 40 | #define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) |
| 41 | #define parity(x,y,z) ((x) ^ (y) ^ (z)) |
| 42 | #define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y)))) |
| 43 | |
| 44 | /* A normal version as set out in the FIPS. This version uses */ |
| 45 | /* partial loop unrolling and is optimised for the Pentium 4 */ |
| 46 | # define rnd(f,k) \ |
| 47 | t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \ |
| 48 | e = d; d = c; c = rotl32(b, 30); b = t |
| 49 | |
| 50 | |
| 51 | static void sha1_compile(sha1_ctx_t *ctx) |
| 52 | { |
| 53 | uint32_t w[80], i, a, b, c, d, e, t; |
| 54 | |
| 55 | /* note that words are compiled from the buffer into 32-bit */ |
| 56 | /* words in big-endian order so an order reversal is needed */ |
| 57 | /* here on little endian machines */ |
| 58 | for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i) |
| 59 | w[i] = htonl(ctx->wbuf[i]); |
| 60 | |
| 61 | for (i = SHA1_BLOCK_SIZE / 4; i < 80; ++i) |
| 62 | w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1); |
| 63 | |
| 64 | a = ctx->hash[0]; |
| 65 | b = ctx->hash[1]; |
| 66 | c = ctx->hash[2]; |
| 67 | d = ctx->hash[3]; |
| 68 | e = ctx->hash[4]; |
| 69 | |
| 70 | for (i = 0; i < 20; ++i) { |
| 71 | rnd(ch, 0x5a827999); |
| 72 | } |
| 73 | |
| 74 | for (i = 20; i < 40; ++i) { |
| 75 | rnd(parity, 0x6ed9eba1); |
| 76 | } |
| 77 | |
| 78 | for (i = 40; i < 60; ++i) { |
| 79 | rnd(maj, 0x8f1bbcdc); |
| 80 | } |
| 81 | |
| 82 | for (i = 60; i < 80; ++i) { |
| 83 | rnd(parity, 0xca62c1d6); |
| 84 | } |
| 85 | |
| 86 | ctx->hash[0] += a; |
| 87 | ctx->hash[1] += b; |
| 88 | ctx->hash[2] += c; |
| 89 | ctx->hash[3] += d; |
| 90 | ctx->hash[4] += e; |
| 91 | } |
| 92 | |
| 93 | void sha1_begin(sha1_ctx_t *ctx) |
| 94 | { |
| 95 | ctx->count[0] = ctx->count[1] = 0; |
| 96 | ctx->hash[0] = 0x67452301; |
| 97 | ctx->hash[1] = 0xefcdab89; |
| 98 | ctx->hash[2] = 0x98badcfe; |
| 99 | ctx->hash[3] = 0x10325476; |
| 100 | ctx->hash[4] = 0xc3d2e1f0; |
| 101 | } |
| 102 | |
| 103 | /* SHA1 hash data in an array of bytes into hash buffer and call the */ |
| 104 | /* hash_compile function as required. */ |
| 105 | void sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx) |
| 106 | { |
| 107 | uint32_t pos = (uint32_t) (ctx->count[0] & SHA1_MASK); |
| 108 | uint32_t freeb = SHA1_BLOCK_SIZE - pos; |
| 109 | const unsigned char *sp = data; |
| 110 | |
| 111 | if ((ctx->count[0] += length) < length) |
| 112 | ++(ctx->count[1]); |
| 113 | |
| 114 | while (length >= freeb) { /* tranfer whole blocks while possible */ |
| 115 | memcpy(((unsigned char *) ctx->wbuf) + pos, sp, freeb); |
| 116 | sp += freeb; |
| 117 | length -= freeb; |
| 118 | freeb = SHA1_BLOCK_SIZE; |
| 119 | pos = 0; |
| 120 | sha1_compile(ctx); |
| 121 | } |
| 122 | |
| 123 | memcpy(((unsigned char *) ctx->wbuf) + pos, sp, length); |
| 124 | } |
| 125 | |
| 126 | void *sha1_end(void *resbuf, sha1_ctx_t *ctx) |
| 127 | { |
| 128 | /* SHA1 Final padding and digest calculation */ |
Mike Frysinger | f885513 | 2006-03-28 02:35:56 +0000 | [diff] [blame] | 129 | #if BB_BIG_ENDIAN |
| 130 | static uint32_t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 }; |
| 131 | static uint32_t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 }; |
| 132 | #else |
| 133 | static uint32_t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff }; |
| 134 | static uint32_t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 }; |
Rob Landley | 2c39eee | 2006-05-05 16:54:40 +0000 | [diff] [blame] | 135 | #endif |
Rob Landley | 5cf7c2d | 2006-02-21 06:44:43 +0000 | [diff] [blame] | 136 | |
| 137 | uint8_t *hval = resbuf; |
| 138 | uint32_t i, cnt = (uint32_t) (ctx->count[0] & SHA1_MASK); |
| 139 | |
| 140 | /* mask out the rest of any partial 32-bit word and then set */ |
| 141 | /* the next byte to 0x80. On big-endian machines any bytes in */ |
| 142 | /* the buffer will be at the top end of 32 bit words, on little */ |
| 143 | /* endian machines they will be at the bottom. Hence the AND */ |
| 144 | /* and OR masks above are reversed for little endian systems */ |
| 145 | ctx->wbuf[cnt >> 2] = |
| 146 | (ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3]; |
| 147 | |
| 148 | /* we need 9 or more empty positions, one for the padding byte */ |
| 149 | /* (above) and eight for the length count. If there is not */ |
| 150 | /* enough space pad and empty the buffer */ |
| 151 | if (cnt > SHA1_BLOCK_SIZE - 9) { |
| 152 | if (cnt < 60) |
| 153 | ctx->wbuf[15] = 0; |
| 154 | sha1_compile(ctx); |
| 155 | cnt = 0; |
| 156 | } else /* compute a word index for the empty buffer positions */ |
| 157 | cnt = (cnt >> 2) + 1; |
| 158 | |
| 159 | while (cnt < 14) /* and zero pad all but last two positions */ |
| 160 | ctx->wbuf[cnt++] = 0; |
| 161 | |
| 162 | /* assemble the eight byte counter in the buffer in big-endian */ |
| 163 | /* format */ |
| 164 | |
| 165 | ctx->wbuf[14] = htonl((ctx->count[1] << 3) | (ctx->count[0] >> 29)); |
| 166 | ctx->wbuf[15] = htonl(ctx->count[0] << 3); |
| 167 | |
| 168 | sha1_compile(ctx); |
| 169 | |
| 170 | /* extract the hash value as bytes in case the hash buffer is */ |
| 171 | /* misaligned for 32-bit words */ |
| 172 | |
| 173 | for (i = 0; i < SHA1_DIGEST_SIZE; ++i) |
| 174 | hval[i] = (unsigned char) (ctx->hash[i >> 2] >> 8 * (~i & 3)); |
| 175 | |
| 176 | return resbuf; |
| 177 | } |
| 178 | |
| 179 | |