blob: 09162b51f6ff551f5a045db00c1c5fccc8b19c6a [file] [log] [blame]
Denys Vlasenko602ce692010-05-30 03:35:18 +02001/*
2 * Branch/Call/Jump (BCJ) filter decoders
3 *
4 * Authors: Lasse Collin <lasse.collin@tukaani.org>
5 * Igor Pavlov <http://7-zip.org/>
6 *
7 * This file has been put into the public domain.
8 * You can do whatever you want with this file.
9 */
10
11#include "xz_private.h"
12
Denys Vlasenko716f3f62010-06-01 14:41:39 +020013/*
14 * The rest of the file is inside this ifdef. It makes things a little more
15 * convenient when building without support for any BCJ filters.
16 */
17#ifdef XZ_DEC_BCJ
18
Denys Vlasenko602ce692010-05-30 03:35:18 +020019struct xz_dec_bcj {
20 /* Type of the BCJ filter being used */
21 enum {
22 BCJ_X86 = 4, /* x86 or x86-64 */
23 BCJ_POWERPC = 5, /* Big endian only */
24 BCJ_IA64 = 6, /* Big or little endian */
25 BCJ_ARM = 7, /* Little endian only */
26 BCJ_ARMTHUMB = 8, /* Little endian only */
27 BCJ_SPARC = 9 /* Big or little endian */
28 } type;
29
30 /*
31 * Return value of the next filter in the chain. We need to preserve
32 * this information across calls, because we must not call the next
33 * filter anymore once it has returned XZ_STREAM_END.
34 */
35 enum xz_ret ret;
36
37 /* True if we are operating in single-call mode. */
38 bool single_call;
39
40 /*
41 * Absolute position relative to the beginning of the uncompressed
42 * data (in a single .xz Block). We care only about the lowest 32
43 * bits so this doesn't need to be uint64_t even with big files.
44 */
45 uint32_t pos;
46
47 /* x86 filter state */
48 uint32_t x86_prev_mask;
49
50 /* Temporary space to hold the variables from struct xz_buf */
51 uint8_t *out;
52 size_t out_pos;
53 size_t out_size;
54
55 struct {
56 /* Amount of already filtered data in the beginning of buf */
57 size_t filtered;
58
59 /* Total amount of data currently stored in buf */
60 size_t size;
61
62 /*
63 * Buffer to hold a mix of filtered and unfiltered data. This
64 * needs to be big enough to hold Alignment + 2 * Look-ahead:
65 *
66 * Type Alignment Look-ahead
67 * x86 1 4
68 * PowerPC 4 0
69 * IA-64 16 0
70 * ARM 4 0
71 * ARM-Thumb 2 2
72 * SPARC 4 0
73 */
74 uint8_t buf[16];
75 } temp;
76};
77
78#ifdef XZ_DEC_X86
79/*
80 * This is macro used to test the most significant byte of a memory address
81 * in an x86 instruction.
82 */
83#define bcj_x86_test_msbyte(b) ((b) == 0x00 || (b) == 0xFF)
84
85static noinline_for_stack size_t XZ_FUNC bcj_x86(
86 struct xz_dec_bcj *s, uint8_t *buf, size_t size)
87{
88 static const bool mask_to_allowed_status[8]
89 = { true, true, true, false, true, false, false, false };
90
91 static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
92
93 size_t i;
94 size_t prev_pos = (size_t)-1;
95 uint32_t prev_mask = s->x86_prev_mask;
96 uint32_t src;
97 uint32_t dest;
98 uint32_t j;
99 uint8_t b;
100
101 if (size <= 4)
102 return 0;
103
104 size -= 4;
105 for (i = 0; i < size; ++i) {
106 if ((buf[i] & 0xFE) != 0xE8)
107 continue;
108
109 prev_pos = i - prev_pos;
110 if (prev_pos > 3) {
111 prev_mask = 0;
112 } else {
113 prev_mask = (prev_mask << (prev_pos - 1)) & 7;
114 if (prev_mask != 0) {
115 b = buf[i + 4 - mask_to_bit_num[prev_mask]];
116 if (!mask_to_allowed_status[prev_mask]
117 || bcj_x86_test_msbyte(b)) {
118 prev_pos = i;
119 prev_mask = (prev_mask << 1) | 1;
120 continue;
121 }
122 }
123 }
124
125 prev_pos = i;
126
127 if (bcj_x86_test_msbyte(buf[i + 4])) {
128 src = get_unaligned_le32(buf + i + 1);
129 while (true) {
130 dest = src - (s->pos + (uint32_t)i + 5);
131 if (prev_mask == 0)
132 break;
133
134 j = mask_to_bit_num[prev_mask] * 8;
135 b = (uint8_t)(dest >> (24 - j));
136 if (!bcj_x86_test_msbyte(b))
137 break;
138
139 src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
140 }
141
142 dest &= 0x01FFFFFF;
143 dest |= (uint32_t)0 - (dest & 0x01000000);
144 put_unaligned_le32(dest, buf + i + 1);
145 i += 4;
146 } else {
147 prev_mask = (prev_mask << 1) | 1;
148 }
149 }
150
151 prev_pos = i - prev_pos;
152 s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
153 return i;
154}
155#endif
156
157#ifdef XZ_DEC_POWERPC
158static noinline_for_stack size_t XZ_FUNC bcj_powerpc(
159 struct xz_dec_bcj *s, uint8_t *buf, size_t size)
160{
161 size_t i;
162 uint32_t instr;
163
164 for (i = 0; i + 4 <= size; i += 4) {
165 instr = get_unaligned_be32(buf + i);
166 if ((instr & 0xFC000003) == 0x48000001) {
167 instr &= 0x03FFFFFC;
168 instr -= s->pos + (uint32_t)i;
169 instr &= 0x03FFFFFC;
170 instr |= 0x48000001;
171 put_unaligned_be32(instr, buf + i);
172 }
173 }
174
175 return i;
176}
177#endif
178
179#ifdef XZ_DEC_IA64
180static noinline_for_stack size_t XZ_FUNC bcj_ia64(
181 struct xz_dec_bcj *s, uint8_t *buf, size_t size)
182{
183 static const uint8_t branch_table[32] = {
184 0, 0, 0, 0, 0, 0, 0, 0,
185 0, 0, 0, 0, 0, 0, 0, 0,
186 4, 4, 6, 6, 0, 0, 7, 7,
187 4, 4, 0, 0, 4, 4, 0, 0
188 };
189
190 /*
191 * The local variables take a little bit stack space, but it's less
192 * than what LZMA2 decoder takes, so it doesn't make sense to reduce
193 * stack usage here without doing that for the LZMA2 decoder too.
194 */
195
196 /* Loop counters */
197 size_t i;
198 size_t j;
199
200 /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
201 uint32_t slot;
202
203 /* Bitwise offset of the instruction indicated by slot */
204 uint32_t bit_pos;
205
206 /* bit_pos split into byte and bit parts */
207 uint32_t byte_pos;
208 uint32_t bit_res;
209
210 /* Address part of an instruction */
211 uint32_t addr;
212
213 /* Mask used to detect which instructions to convert */
214 uint32_t mask;
215
216 /* 41-bit instruction stored somewhere in the lowest 48 bits */
217 uint64_t instr;
218
219 /* Instruction normalized with bit_res for easier manipulation */
220 uint64_t norm;
221
222 for (i = 0; i + 16 <= size; i += 16) {
223 mask = branch_table[buf[i] & 0x1F];
224 for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
225 if (((mask >> slot) & 1) == 0)
226 continue;
227
228 byte_pos = bit_pos >> 3;
229 bit_res = bit_pos & 7;
230 instr = 0;
231 for (j = 0; j < 6; ++j)
232 instr |= (uint64_t)(buf[i + j + byte_pos])
233 << (8 * j);
234
235 norm = instr >> bit_res;
236
237 if (((norm >> 37) & 0x0F) == 0x05
238 && ((norm >> 9) & 0x07) == 0) {
239 addr = (norm >> 13) & 0x0FFFFF;
240 addr |= ((uint32_t)(norm >> 36) & 1) << 20;
241 addr <<= 4;
242 addr -= s->pos + (uint32_t)i;
243 addr >>= 4;
244
245 norm &= ~((uint64_t)0x8FFFFF << 13);
246 norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
247 norm |= (uint64_t)(addr & 0x100000)
248 << (36 - 20);
249
250 instr &= (1 << bit_res) - 1;
251 instr |= norm << bit_res;
252
253 for (j = 0; j < 6; j++)
254 buf[i + j + byte_pos]
255 = (uint8_t)(instr >> (8 * j));
256 }
257 }
258 }
259
260 return i;
261}
262#endif
263
264#ifdef XZ_DEC_ARM
265static noinline_for_stack size_t XZ_FUNC bcj_arm(
266 struct xz_dec_bcj *s, uint8_t *buf, size_t size)
267{
268 size_t i;
269 uint32_t addr;
270
271 for (i = 0; i + 4 <= size; i += 4) {
272 if (buf[i + 3] == 0xEB) {
273 addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
274 | ((uint32_t)buf[i + 2] << 16);
275 addr <<= 2;
276 addr -= s->pos + (uint32_t)i + 8;
277 addr >>= 2;
278 buf[i] = (uint8_t)addr;
279 buf[i + 1] = (uint8_t)(addr >> 8);
280 buf[i + 2] = (uint8_t)(addr >> 16);
281 }
282 }
283
284 return i;
285}
286#endif
287
288#ifdef XZ_DEC_ARMTHUMB
289static noinline_for_stack size_t XZ_FUNC bcj_armthumb(
290 struct xz_dec_bcj *s, uint8_t *buf, size_t size)
291{
292 size_t i;
293 uint32_t addr;
294
295 for (i = 0; i + 4 <= size; i += 2) {
296 if ((buf[i + 1] & 0xF8) == 0xF0
297 && (buf[i + 3] & 0xF8) == 0xF8) {
298 addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
299 | ((uint32_t)buf[i] << 11)
300 | (((uint32_t)buf[i + 3] & 0x07) << 8)
301 | (uint32_t)buf[i + 2];
302 addr <<= 1;
303 addr -= s->pos + (uint32_t)i + 4;
304 addr >>= 1;
305 buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
306 buf[i] = (uint8_t)(addr >> 11);
307 buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
308 buf[i + 2] = (uint8_t)addr;
309 i += 2;
310 }
311 }
312
313 return i;
314}
315#endif
316
317#ifdef XZ_DEC_SPARC
318static noinline_for_stack size_t XZ_FUNC bcj_sparc(
319 struct xz_dec_bcj *s, uint8_t *buf, size_t size)
320{
321 size_t i;
322 uint32_t instr;
323
324 for (i = 0; i + 4 <= size; i += 4) {
325 instr = get_unaligned_be32(buf + i);
326 if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
327 instr <<= 2;
328 instr -= s->pos + (uint32_t)i;
329 instr >>= 2;
330 instr = ((uint32_t)0x40000000 - (instr & 0x400000))
331 | 0x40000000 | (instr & 0x3FFFFF);
332 put_unaligned_be32(instr, buf + i);
333 }
334 }
335
336 return i;
337}
338#endif
339
Denys Vlasenko602ce692010-05-30 03:35:18 +0200340/*
341 * Apply the selected BCJ filter. Update *pos and s->pos to match the amount
342 * of data that got filtered.
343 *
344 * NOTE: This is implemented as a switch statement to avoid using function
345 * pointers, which could be problematic in the kernel boot code, which must
346 * avoid pointers to static data (at least on x86).
347 */
348static void XZ_FUNC bcj_apply(struct xz_dec_bcj *s,
349 uint8_t *buf, size_t *pos, size_t size)
350{
351 size_t filtered;
352
353 buf += *pos;
354 size -= *pos;
355
356 switch (s->type) {
357#ifdef XZ_DEC_X86
358 case BCJ_X86:
359 filtered = bcj_x86(s, buf, size);
360 break;
361#endif
362#ifdef XZ_DEC_POWERPC
363 case BCJ_POWERPC:
364 filtered = bcj_powerpc(s, buf, size);
365 break;
366#endif
367#ifdef XZ_DEC_IA64
368 case BCJ_IA64:
369 filtered = bcj_ia64(s, buf, size);
370 break;
371#endif
372#ifdef XZ_DEC_ARM
373 case BCJ_ARM:
374 filtered = bcj_arm(s, buf, size);
375 break;
376#endif
377#ifdef XZ_DEC_ARMTHUMB
378 case BCJ_ARMTHUMB:
379 filtered = bcj_armthumb(s, buf, size);
380 break;
381#endif
382#ifdef XZ_DEC_SPARC
383 case BCJ_SPARC:
384 filtered = bcj_sparc(s, buf, size);
385 break;
386#endif
387 default:
388 /* Never reached but silence compiler warnings. */
389 filtered = 0;
390 break;
391 }
392
393 *pos += filtered;
394 s->pos += filtered;
395}
Denys Vlasenko602ce692010-05-30 03:35:18 +0200396
Denys Vlasenko602ce692010-05-30 03:35:18 +0200397/*
398 * Flush pending filtered data from temp to the output buffer.
399 * Move the remaining mixture of possibly filtered and unfiltered
400 * data to the beginning of temp.
401 */
402static void XZ_FUNC bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
403{
404 size_t copy_size;
405
406 copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
407 memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
408 b->out_pos += copy_size;
409
410 s->temp.filtered -= copy_size;
411 s->temp.size -= copy_size;
412 memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
413}
414
415/*
416 * The BCJ filter functions are primitive in sense that they process the
417 * data in chunks of 1-16 bytes. To hide this issue, this function does
418 * some buffering.
419 */
420XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_bcj_run(struct xz_dec_bcj *s,
421 struct xz_dec_lzma2 *lzma2, struct xz_buf *b)
422{
423 size_t out_start;
424
425 /*
426 * Flush pending already filtered data to the output buffer. Return
427 * immediatelly if we couldn't flush everything, or if the next
428 * filter in the chain had already returned XZ_STREAM_END.
429 */
430 if (s->temp.filtered > 0) {
431 bcj_flush(s, b);
432 if (s->temp.filtered > 0)
433 return XZ_OK;
434
435 if (s->ret == XZ_STREAM_END)
436 return XZ_STREAM_END;
437 }
438
439 /*
440 * If we have more output space than what is currently pending in
441 * temp, copy the unfiltered data from temp to the output buffer
442 * and try to fill the output buffer by decoding more data from the
443 * next filter in the chain. Apply the BCJ filter on the new data
444 * in the output buffer. If everything cannot be filtered, copy it
445 * to temp and rewind the output buffer position accordingly.
446 */
447 if (s->temp.size < b->out_size - b->out_pos) {
448 out_start = b->out_pos;
449 memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
450 b->out_pos += s->temp.size;
451
452 s->ret = xz_dec_lzma2_run(lzma2, b);
453 if (s->ret != XZ_STREAM_END
454 && (s->ret != XZ_OK || s->single_call))
455 return s->ret;
456
457 bcj_apply(s, b->out, &out_start, b->out_pos);
458
459 /*
460 * As an exception, if the next filter returned XZ_STREAM_END,
461 * we can do that too, since the last few bytes that remain
462 * unfiltered are meant to remain unfiltered.
463 */
464 if (s->ret == XZ_STREAM_END)
465 return XZ_STREAM_END;
466
467 s->temp.size = b->out_pos - out_start;
468 b->out_pos -= s->temp.size;
469 memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
470 }
471
472 /*
473 * If we have unfiltered data in temp, try to fill by decoding more
474 * data from the next filter. Apply the BCJ filter on temp. Then we
475 * hopefully can fill the actual output buffer by copying filtered
476 * data from temp. A mix of filtered and unfiltered data may be left
477 * in temp; it will be taken care on the next call to this function.
478 */
479 if (s->temp.size > 0) {
480 /* Make b->out{,_pos,_size} temporarily point to s->temp. */
481 s->out = b->out;
482 s->out_pos = b->out_pos;
483 s->out_size = b->out_size;
484 b->out = s->temp.buf;
485 b->out_pos = s->temp.size;
486 b->out_size = sizeof(s->temp.buf);
487
488 s->ret = xz_dec_lzma2_run(lzma2, b);
489
490 s->temp.size = b->out_pos;
491 b->out = s->out;
492 b->out_pos = s->out_pos;
493 b->out_size = s->out_size;
494
495 if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
496 return s->ret;
497
498 bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
499
500 /*
501 * If the next filter returned XZ_STREAM_END, we mark that
502 * everything is filtered, since the last unfiltered bytes
503 * of the stream are meant to be left as is.
504 */
505 if (s->ret == XZ_STREAM_END)
506 s->temp.filtered = s->temp.size;
507
508 bcj_flush(s, b);
509 if (s->temp.filtered > 0)
510 return XZ_OK;
511 }
512
513 return s->ret;
514}
515
516XZ_EXTERN struct xz_dec_bcj * XZ_FUNC xz_dec_bcj_create(bool single_call)
517{
518 struct xz_dec_bcj *s = kmalloc(sizeof(*s), GFP_KERNEL);
519 if (s != NULL)
520 s->single_call = single_call;
521
522 return s;
523}
524
525XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_bcj_reset(
526 struct xz_dec_bcj *s, uint8_t id)
527{
528 switch (id) {
529#ifdef XZ_DEC_X86
530 case BCJ_X86:
531#endif
532#ifdef XZ_DEC_POWERPC
533 case BCJ_POWERPC:
534#endif
535#ifdef XZ_DEC_IA64
536 case BCJ_IA64:
537#endif
538#ifdef XZ_DEC_ARM
539 case BCJ_ARM:
540#endif
541#ifdef XZ_DEC_ARMTHUMB
542 case BCJ_ARMTHUMB:
543#endif
544#ifdef XZ_DEC_SPARC
545 case BCJ_SPARC:
546#endif
547 break;
548
549 default:
550 /* Unsupported Filter ID */
551 return XZ_OPTIONS_ERROR;
552 }
553
554 s->type = id;
555 s->ret = XZ_OK;
556 s->pos = 0;
557 s->x86_prev_mask = 0;
558 s->temp.filtered = 0;
559 s->temp.size = 0;
560
561 return XZ_OK;
562}
Denys Vlasenko716f3f62010-06-01 14:41:39 +0200563
Denys Vlasenko602ce692010-05-30 03:35:18 +0200564#endif