Denys Vlasenko | bddb654 | 2018-11-13 02:16:24 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2018 Denys Vlasenko |
| 3 | * |
| 4 | * Licensed under GPLv2, see file LICENSE in this source tree. |
| 5 | */ |
| 6 | #include "tls.h" |
| 7 | |
| 8 | typedef uint8_t byte; |
| 9 | typedef uint16_t word16; |
| 10 | typedef uint32_t word32; |
| 11 | #define XMEMSET memset |
| 12 | |
| 13 | #define F25519_SIZE CURVE25519_KEYSIZE |
| 14 | |
| 15 | /* The code below is taken from wolfssl-3.15.3/wolfcrypt/src/fe_low_mem.c |
| 16 | * Header comment is kept intact: |
| 17 | */ |
| 18 | |
| 19 | /* fe_low_mem.c |
| 20 | * |
| 21 | * Copyright (C) 2006-2017 wolfSSL Inc. |
| 22 | * |
| 23 | * This file is part of wolfSSL. |
| 24 | * |
| 25 | * wolfSSL is free software; you can redistribute it and/or modify |
| 26 | * it under the terms of the GNU General Public License as published by |
| 27 | * the Free Software Foundation; either version 2 of the License, or |
| 28 | * (at your option) any later version. |
| 29 | * |
| 30 | * wolfSSL is distributed in the hope that it will be useful, |
| 31 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 32 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 33 | * GNU General Public License for more details. |
| 34 | * |
| 35 | * You should have received a copy of the GNU General Public License |
| 36 | * along with this program; if not, write to the Free Software |
| 37 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA |
| 38 | */ |
| 39 | |
| 40 | |
| 41 | /* Based from Daniel Beer's public domain work. */ |
| 42 | |
| 43 | #if 0 //UNUSED |
| 44 | static void fprime_copy(byte *x, const byte *a) |
| 45 | { |
| 46 | int i; |
| 47 | for (i = 0; i < F25519_SIZE; i++) |
| 48 | x[i] = a[i]; |
| 49 | } |
| 50 | #endif |
| 51 | |
| 52 | static void lm_copy(byte* x, const byte* a) |
| 53 | { |
| 54 | int i; |
| 55 | for (i = 0; i < F25519_SIZE; i++) |
| 56 | x[i] = a[i]; |
| 57 | } |
| 58 | |
| 59 | #if 0 //UNUSED |
| 60 | static void fprime_select(byte *dst, const byte *zero, const byte *one, byte condition) |
| 61 | { |
| 62 | const byte mask = -condition; |
| 63 | int i; |
| 64 | |
| 65 | for (i = 0; i < F25519_SIZE; i++) |
| 66 | dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i])); |
| 67 | } |
| 68 | #endif |
| 69 | |
| 70 | static void fe_select(byte *dst, |
| 71 | const byte *zero, const byte *one, |
| 72 | byte condition) |
| 73 | { |
| 74 | const byte mask = -condition; |
| 75 | int i; |
| 76 | |
| 77 | for (i = 0; i < F25519_SIZE; i++) |
| 78 | dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i])); |
| 79 | } |
| 80 | |
| 81 | #if 0 //UNUSED |
| 82 | static void raw_add(byte *x, const byte *p) |
| 83 | { |
| 84 | word16 c = 0; |
| 85 | int i; |
| 86 | |
| 87 | for (i = 0; i < F25519_SIZE; i++) { |
| 88 | c += ((word16)x[i]) + ((word16)p[i]); |
| 89 | x[i] = (byte)c; |
| 90 | c >>= 8; |
| 91 | } |
| 92 | } |
| 93 | #endif |
| 94 | |
| 95 | #if 0 //UNUSED |
| 96 | static void raw_try_sub(byte *x, const byte *p) |
| 97 | { |
| 98 | byte minusp[F25519_SIZE]; |
| 99 | word16 c = 0; |
| 100 | int i; |
| 101 | |
| 102 | for (i = 0; i < F25519_SIZE; i++) { |
| 103 | c = ((word16)x[i]) - ((word16)p[i]) - c; |
| 104 | minusp[i] = (byte)c; |
| 105 | c = (c >> 8) & 1; |
| 106 | } |
| 107 | |
| 108 | fprime_select(x, minusp, x, (byte)c); |
| 109 | } |
| 110 | #endif |
| 111 | |
| 112 | #if 0 //UNUSED |
| 113 | static int prime_msb(const byte *p) |
| 114 | { |
| 115 | int i; |
| 116 | byte x; |
| 117 | int shift = 1; |
| 118 | int z = F25519_SIZE - 1; |
| 119 | |
| 120 | /* |
| 121 | Test for any hot bits. |
| 122 | As soon as one instance is encountered set shift to 0. |
| 123 | */ |
| 124 | for (i = F25519_SIZE - 1; i >= 0; i--) { |
| 125 | shift &= ((shift ^ ((-p[i] | p[i]) >> 7)) & 1); |
| 126 | z -= shift; |
| 127 | } |
| 128 | x = p[z]; |
| 129 | z <<= 3; |
| 130 | shift = 1; |
| 131 | for (i = 0; i < 8; i++) { |
| 132 | shift &= ((-(x >> i) | (x >> i)) >> (7 - i) & 1); |
| 133 | z += shift; |
| 134 | } |
| 135 | |
| 136 | return z - 1; |
| 137 | } |
| 138 | #endif |
| 139 | |
| 140 | #if 0 //UNUSED |
| 141 | static void fprime_add(byte *r, const byte *a, const byte *modulus) |
| 142 | { |
| 143 | raw_add(r, a); |
| 144 | raw_try_sub(r, modulus); |
| 145 | } |
| 146 | #endif |
| 147 | |
| 148 | #if 0 //UNUSED |
| 149 | static void fprime_sub(byte *r, const byte *a, const byte *modulus) |
| 150 | { |
| 151 | raw_add(r, modulus); |
| 152 | raw_try_sub(r, a); |
| 153 | raw_try_sub(r, modulus); |
| 154 | } |
| 155 | #endif |
| 156 | |
| 157 | #if 0 //UNUSED |
| 158 | static void fprime_mul(byte *r, const byte *a, const byte *b, |
| 159 | const byte *modulus) |
| 160 | { |
| 161 | word16 c = 0; |
| 162 | int i,j; |
| 163 | |
| 164 | XMEMSET(r, 0, F25519_SIZE); |
| 165 | |
| 166 | for (i = prime_msb(modulus); i >= 0; i--) { |
| 167 | const byte bit = (b[i >> 3] >> (i & 7)) & 1; |
| 168 | byte plusa[F25519_SIZE]; |
| 169 | |
| 170 | for (j = 0; j < F25519_SIZE; j++) { |
| 171 | c |= ((word16)r[j]) << 1; |
| 172 | r[j] = (byte)c; |
| 173 | c >>= 8; |
| 174 | } |
| 175 | raw_try_sub(r, modulus); |
| 176 | |
| 177 | fprime_copy(plusa, r); |
| 178 | fprime_add(plusa, a, modulus); |
| 179 | |
| 180 | fprime_select(r, r, plusa, bit); |
| 181 | } |
| 182 | } |
| 183 | #endif |
| 184 | |
| 185 | #if 0 //UNUSED |
| 186 | static void fe_load(byte *x, word32 c) |
| 187 | { |
| 188 | word32 i; |
| 189 | |
| 190 | for (i = 0; i < sizeof(c); i++) { |
| 191 | x[i] = c; |
| 192 | c >>= 8; |
| 193 | } |
| 194 | |
| 195 | for (; i < F25519_SIZE; i++) |
| 196 | x[i] = 0; |
| 197 | } |
| 198 | #endif |
| 199 | |
| 200 | static void fe_normalize(byte *x) |
| 201 | { |
| 202 | byte minusp[F25519_SIZE]; |
| 203 | word16 c; |
| 204 | int i; |
| 205 | |
| 206 | /* Reduce using 2^255 = 19 mod p */ |
| 207 | c = (x[31] >> 7) * 19; |
| 208 | x[31] &= 127; |
| 209 | |
| 210 | for (i = 0; i < F25519_SIZE; i++) { |
| 211 | c += x[i]; |
| 212 | x[i] = (byte)c; |
| 213 | c >>= 8; |
| 214 | } |
| 215 | |
| 216 | /* The number is now less than 2^255 + 18, and therefore less than |
| 217 | * 2p. Try subtracting p, and conditionally load the subtracted |
| 218 | * value if underflow did not occur. |
| 219 | */ |
| 220 | c = 19; |
| 221 | |
| 222 | for (i = 0; i + 1 < F25519_SIZE; i++) { |
| 223 | c += x[i]; |
| 224 | minusp[i] = (byte)c; |
| 225 | c >>= 8; |
| 226 | } |
| 227 | |
| 228 | c += ((word16)x[i]) - 128; |
| 229 | minusp[31] = (byte)c; |
| 230 | |
| 231 | /* Load x-p if no underflow */ |
| 232 | fe_select(x, minusp, x, (c >> 15) & 1); |
| 233 | } |
| 234 | |
| 235 | static void lm_add(byte* r, const byte* a, const byte* b) |
| 236 | { |
| 237 | word16 c = 0; |
| 238 | int i; |
| 239 | |
| 240 | /* Add */ |
| 241 | for (i = 0; i < F25519_SIZE; i++) { |
| 242 | c >>= 8; |
| 243 | c += ((word16)a[i]) + ((word16)b[i]); |
| 244 | r[i] = (byte)c; |
| 245 | } |
| 246 | |
| 247 | /* Reduce with 2^255 = 19 mod p */ |
| 248 | r[31] &= 127; |
| 249 | c = (c >> 7) * 19; |
| 250 | |
| 251 | for (i = 0; i < F25519_SIZE; i++) { |
| 252 | c += r[i]; |
| 253 | r[i] = (byte)c; |
| 254 | c >>= 8; |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | static void lm_sub(byte* r, const byte* a, const byte* b) |
| 259 | { |
| 260 | word32 c = 0; |
| 261 | int i; |
| 262 | |
| 263 | /* Calculate a + 2p - b, to avoid underflow */ |
| 264 | c = 218; |
| 265 | for (i = 0; i + 1 < F25519_SIZE; i++) { |
| 266 | c += 65280 + ((word32)a[i]) - ((word32)b[i]); |
| 267 | r[i] = c; |
| 268 | c >>= 8; |
| 269 | } |
| 270 | |
| 271 | c += ((word32)a[31]) - ((word32)b[31]); |
| 272 | r[31] = c & 127; |
| 273 | c = (c >> 7) * 19; |
| 274 | |
| 275 | for (i = 0; i < F25519_SIZE; i++) { |
| 276 | c += r[i]; |
| 277 | r[i] = c; |
| 278 | c >>= 8; |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | #if 0 //UNUSED |
| 283 | static void lm_neg(byte* r, const byte* a) |
| 284 | { |
| 285 | word32 c = 0; |
| 286 | int i; |
| 287 | |
| 288 | /* Calculate 2p - a, to avoid underflow */ |
| 289 | c = 218; |
| 290 | for (i = 0; i + 1 < F25519_SIZE; i++) { |
| 291 | c += 65280 - ((word32)a[i]); |
| 292 | r[i] = c; |
| 293 | c >>= 8; |
| 294 | } |
| 295 | |
| 296 | c -= ((word32)a[31]); |
| 297 | r[31] = c & 127; |
| 298 | c = (c >> 7) * 19; |
| 299 | |
| 300 | for (i = 0; i < F25519_SIZE; i++) { |
| 301 | c += r[i]; |
| 302 | r[i] = c; |
| 303 | c >>= 8; |
| 304 | } |
| 305 | } |
| 306 | #endif |
| 307 | |
| 308 | static void fe_mul__distinct(byte *r, const byte *a, const byte *b) |
| 309 | { |
| 310 | word32 c = 0; |
| 311 | int i; |
| 312 | |
| 313 | for (i = 0; i < F25519_SIZE; i++) { |
| 314 | int j; |
| 315 | |
| 316 | c >>= 8; |
| 317 | for (j = 0; j <= i; j++) |
| 318 | c += ((word32)a[j]) * ((word32)b[i - j]); |
| 319 | |
| 320 | for (; j < F25519_SIZE; j++) |
| 321 | c += ((word32)a[j]) * |
| 322 | ((word32)b[i + F25519_SIZE - j]) * 38; |
| 323 | |
| 324 | r[i] = c; |
| 325 | } |
| 326 | |
| 327 | r[31] &= 127; |
| 328 | c = (c >> 7) * 19; |
| 329 | |
| 330 | for (i = 0; i < F25519_SIZE; i++) { |
| 331 | c += r[i]; |
| 332 | r[i] = c; |
| 333 | c >>= 8; |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | #if 0 //UNUSED |
| 338 | static void lm_mul(byte *r, const byte* a, const byte *b) |
| 339 | { |
| 340 | byte tmp[F25519_SIZE]; |
| 341 | |
| 342 | fe_mul__distinct(tmp, a, b); |
| 343 | lm_copy(r, tmp); |
| 344 | } |
| 345 | #endif |
| 346 | |
| 347 | static void fe_mul_c(byte *r, const byte *a, word32 b) |
| 348 | { |
| 349 | word32 c = 0; |
| 350 | int i; |
| 351 | |
| 352 | for (i = 0; i < F25519_SIZE; i++) { |
| 353 | c >>= 8; |
| 354 | c += b * ((word32)a[i]); |
| 355 | r[i] = c; |
| 356 | } |
| 357 | |
| 358 | r[31] &= 127; |
| 359 | c >>= 7; |
| 360 | c *= 19; |
| 361 | |
| 362 | for (i = 0; i < F25519_SIZE; i++) { |
| 363 | c += r[i]; |
| 364 | r[i] = c; |
| 365 | c >>= 8; |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | static void fe_inv__distinct(byte *r, const byte *x) |
| 370 | { |
| 371 | byte s[F25519_SIZE]; |
| 372 | int i; |
| 373 | |
| 374 | /* This is a prime field, so by Fermat's little theorem: |
| 375 | * |
| 376 | * x^(p-1) = 1 mod p |
| 377 | * |
| 378 | * Therefore, raise to (p-2) = 2^255-21 to get a multiplicative |
| 379 | * inverse. |
| 380 | * |
| 381 | * This is a 255-bit binary number with the digits: |
| 382 | * |
| 383 | * 11111111... 01011 |
| 384 | * |
| 385 | * We compute the result by the usual binary chain, but |
| 386 | * alternate between keeping the accumulator in r and s, so as |
| 387 | * to avoid copying temporaries. |
| 388 | */ |
| 389 | |
| 390 | /* 1 1 */ |
| 391 | fe_mul__distinct(s, x, x); |
| 392 | fe_mul__distinct(r, s, x); |
| 393 | |
| 394 | /* 1 x 248 */ |
| 395 | for (i = 0; i < 248; i++) { |
| 396 | fe_mul__distinct(s, r, r); |
| 397 | fe_mul__distinct(r, s, x); |
| 398 | } |
| 399 | |
| 400 | /* 0 */ |
| 401 | fe_mul__distinct(s, r, r); |
| 402 | |
| 403 | /* 1 */ |
| 404 | fe_mul__distinct(r, s, s); |
| 405 | fe_mul__distinct(s, r, x); |
| 406 | |
| 407 | /* 0 */ |
| 408 | fe_mul__distinct(r, s, s); |
| 409 | |
| 410 | /* 1 */ |
| 411 | fe_mul__distinct(s, r, r); |
| 412 | fe_mul__distinct(r, s, x); |
| 413 | |
| 414 | /* 1 */ |
| 415 | fe_mul__distinct(s, r, r); |
| 416 | fe_mul__distinct(r, s, x); |
| 417 | } |
| 418 | |
| 419 | #if 0 //UNUSED |
| 420 | static void lm_invert(byte *r, const byte *x) |
| 421 | { |
| 422 | byte tmp[F25519_SIZE]; |
| 423 | |
| 424 | fe_inv__distinct(tmp, x); |
| 425 | lm_copy(r, tmp); |
| 426 | } |
| 427 | #endif |
| 428 | |
| 429 | #if 0 //UNUSED |
| 430 | /* Raise x to the power of (p-5)/8 = 2^252-3, using s for temporary |
| 431 | * storage. |
| 432 | */ |
| 433 | static void exp2523(byte *r, const byte *x, byte *s) |
| 434 | { |
| 435 | int i; |
| 436 | |
| 437 | /* This number is a 252-bit number with the binary expansion: |
| 438 | * |
| 439 | * 111111... 01 |
| 440 | */ |
| 441 | |
| 442 | /* 1 1 */ |
| 443 | fe_mul__distinct(r, x, x); |
| 444 | fe_mul__distinct(s, r, x); |
| 445 | |
| 446 | /* 1 x 248 */ |
| 447 | for (i = 0; i < 248; i++) { |
| 448 | fe_mul__distinct(r, s, s); |
| 449 | fe_mul__distinct(s, r, x); |
| 450 | } |
| 451 | |
| 452 | /* 0 */ |
| 453 | fe_mul__distinct(r, s, s); |
| 454 | |
| 455 | /* 1 */ |
| 456 | fe_mul__distinct(s, r, r); |
| 457 | fe_mul__distinct(r, s, x); |
| 458 | } |
| 459 | #endif |
| 460 | |
| 461 | #if 0 //UNUSED |
| 462 | static void fe_sqrt(byte *r, const byte *a) |
| 463 | { |
| 464 | byte v[F25519_SIZE]; |
| 465 | byte i[F25519_SIZE]; |
| 466 | byte x[F25519_SIZE]; |
| 467 | byte y[F25519_SIZE]; |
| 468 | |
| 469 | /* v = (2a)^((p-5)/8) [x = 2a] */ |
| 470 | fe_mul_c(x, a, 2); |
| 471 | exp2523(v, x, y); |
| 472 | |
| 473 | /* i = 2av^2 - 1 */ |
| 474 | fe_mul__distinct(y, v, v); |
| 475 | fe_mul__distinct(i, x, y); |
| 476 | fe_load(y, 1); |
| 477 | lm_sub(i, i, y); |
| 478 | |
| 479 | /* r = avi */ |
| 480 | fe_mul__distinct(x, v, a); |
| 481 | fe_mul__distinct(r, x, i); |
| 482 | } |
| 483 | #endif |
| 484 | |
| 485 | /* Differential addition */ |
| 486 | static void xc_diffadd(byte *x5, byte *z5, |
| 487 | const byte *x1, const byte *z1, |
| 488 | const byte *x2, const byte *z2, |
| 489 | const byte *x3, const byte *z3) |
| 490 | { |
| 491 | /* Explicit formulas database: dbl-1987-m3 |
| 492 | * |
| 493 | * source 1987 Montgomery "Speeding the Pollard and elliptic curve |
| 494 | * methods of factorization", page 261, fifth display, plus |
| 495 | * common-subexpression elimination |
| 496 | * compute A = X2+Z2 |
| 497 | * compute B = X2-Z2 |
| 498 | * compute C = X3+Z3 |
| 499 | * compute D = X3-Z3 |
| 500 | * compute DA = D A |
| 501 | * compute CB = C B |
| 502 | * compute X5 = Z1(DA+CB)^2 |
| 503 | * compute Z5 = X1(DA-CB)^2 |
| 504 | */ |
| 505 | byte da[F25519_SIZE]; |
| 506 | byte cb[F25519_SIZE]; |
| 507 | byte a[F25519_SIZE]; |
| 508 | byte b[F25519_SIZE]; |
| 509 | |
| 510 | lm_add(a, x2, z2); |
| 511 | lm_sub(b, x3, z3); /* D */ |
| 512 | fe_mul__distinct(da, a, b); |
| 513 | |
| 514 | lm_sub(b, x2, z2); |
| 515 | lm_add(a, x3, z3); /* C */ |
| 516 | fe_mul__distinct(cb, a, b); |
| 517 | |
| 518 | lm_add(a, da, cb); |
| 519 | fe_mul__distinct(b, a, a); |
| 520 | fe_mul__distinct(x5, z1, b); |
| 521 | |
| 522 | lm_sub(a, da, cb); |
| 523 | fe_mul__distinct(b, a, a); |
| 524 | fe_mul__distinct(z5, x1, b); |
| 525 | } |
| 526 | |
| 527 | /* Double an X-coordinate */ |
| 528 | static void xc_double(byte *x3, byte *z3, |
| 529 | const byte *x1, const byte *z1) |
| 530 | { |
| 531 | /* Explicit formulas database: dbl-1987-m |
| 532 | * |
| 533 | * source 1987 Montgomery "Speeding the Pollard and elliptic |
| 534 | * curve methods of factorization", page 261, fourth display |
| 535 | * compute X3 = (X1^2-Z1^2)^2 |
| 536 | * compute Z3 = 4 X1 Z1 (X1^2 + a X1 Z1 + Z1^2) |
| 537 | */ |
| 538 | byte x1sq[F25519_SIZE]; |
| 539 | byte z1sq[F25519_SIZE]; |
| 540 | byte x1z1[F25519_SIZE]; |
| 541 | byte a[F25519_SIZE]; |
| 542 | |
| 543 | fe_mul__distinct(x1sq, x1, x1); |
| 544 | fe_mul__distinct(z1sq, z1, z1); |
| 545 | fe_mul__distinct(x1z1, x1, z1); |
| 546 | |
| 547 | lm_sub(a, x1sq, z1sq); |
| 548 | fe_mul__distinct(x3, a, a); |
| 549 | |
| 550 | fe_mul_c(a, x1z1, 486662); |
| 551 | lm_add(a, x1sq, a); |
| 552 | lm_add(a, z1sq, a); |
| 553 | fe_mul__distinct(x1sq, x1z1, a); |
| 554 | fe_mul_c(z3, x1sq, 4); |
| 555 | } |
| 556 | |
Denys Vlasenko | 83e5c62 | 2018-11-23 17:21:38 +0100 | [diff] [blame^] | 557 | void FAST_FUNC curve25519(byte *result, const byte *e, const byte *q) |
Denys Vlasenko | bddb654 | 2018-11-13 02:16:24 +0100 | [diff] [blame] | 558 | { |
Denys Vlasenko | bddb654 | 2018-11-13 02:16:24 +0100 | [diff] [blame] | 559 | int i; |
| 560 | |
Denys Vlasenko | 375fc78 | 2018-11-13 03:15:15 +0100 | [diff] [blame] | 561 | struct { |
| 562 | /* from wolfssl-3.15.3/wolfssl/wolfcrypt/fe_operations.h */ |
| 563 | /*static const*/ byte f25519_one[F25519_SIZE]; // = {1}; |
| 564 | |
| 565 | /* Current point: P_m */ |
| 566 | byte xm[F25519_SIZE]; |
| 567 | byte zm[F25519_SIZE]; // = {1}; |
| 568 | /* Predecessor: P_(m-1) */ |
| 569 | byte xm1[F25519_SIZE]; // = {1}; |
| 570 | byte zm1[F25519_SIZE]; // = {0}; |
| 571 | } z; |
| 572 | #define f25519_one z.f25519_one |
| 573 | #define xm z.xm |
| 574 | #define zm z.zm |
| 575 | #define xm1 z.xm1 |
| 576 | #define zm1 z.zm1 |
| 577 | memset(&z, 0, sizeof(z)); |
| 578 | f25519_one[0] = 1; |
| 579 | zm[0] = 1; |
| 580 | xm1[0] = 1; |
| 581 | |
Denys Vlasenko | bddb654 | 2018-11-13 02:16:24 +0100 | [diff] [blame] | 582 | /* Note: bit 254 is assumed to be 1 */ |
| 583 | lm_copy(xm, q); |
| 584 | |
| 585 | for (i = 253; i >= 0; i--) { |
| 586 | const int bit = (e[i >> 3] >> (i & 7)) & 1; |
| 587 | byte xms[F25519_SIZE]; |
| 588 | byte zms[F25519_SIZE]; |
| 589 | |
| 590 | /* From P_m and P_(m-1), compute P_(2m) and P_(2m-1) */ |
| 591 | xc_diffadd(xm1, zm1, q, f25519_one, xm, zm, xm1, zm1); |
| 592 | xc_double(xm, zm, xm, zm); |
| 593 | |
| 594 | /* Compute P_(2m+1) */ |
| 595 | xc_diffadd(xms, zms, xm1, zm1, xm, zm, q, f25519_one); |
| 596 | |
| 597 | /* Select: |
| 598 | * bit = 1 --> (P_(2m+1), P_(2m)) |
| 599 | * bit = 0 --> (P_(2m), P_(2m-1)) |
| 600 | */ |
| 601 | fe_select(xm1, xm1, xm, bit); |
| 602 | fe_select(zm1, zm1, zm, bit); |
| 603 | fe_select(xm, xm, xms, bit); |
| 604 | fe_select(zm, zm, zms, bit); |
| 605 | } |
| 606 | |
| 607 | /* Freeze out of projective coordinates */ |
| 608 | fe_inv__distinct(zm1, zm); |
| 609 | fe_mul__distinct(result, zm1, xm); |
| 610 | fe_normalize(result); |
| 611 | } |