blob: f0d952f84a14299cd909d6297e715d21ecc059e3 [file] [log] [blame]
Rob Landley5cf7c2d2006-02-21 06:44:43 +00001/*
2 * Based on shasum from http://www.netsw.org/crypto/hash/
3 * Majorly hacked up to use Dr Brian Gladman's sha1 code
4 *
5 * Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
6 * Copyright (C) 2003 Glenn L. McGrath
7 * Copyright (C) 2003 Erik Andersen
8 *
9 * LICENSE TERMS
10 *
11 * The free distribution and use of this software in both source and binary
12 * form is allowed (with or without changes) provided that:
13 *
14 * 1. distributions of this source code include the above copyright
15 * notice, this list of conditions and the following disclaimer;
16 *
17 * 2. distributions in binary form include the above copyright
18 * notice, this list of conditions and the following disclaimer
19 * in the documentation and/or other associated materials;
20 *
21 * 3. the copyright holder's name is not used to endorse products
22 * built using this software without specific written permission.
23 *
24 * ALTERNATIVELY, provided that this notice is retained in full, this product
25 * may be distributed under the terms of the GNU General Public License (GPL),
26 * in which case the provisions of the GPL apply INSTEAD OF those given above.
27 *
28 * DISCLAIMER
29 *
30 * This software is provided 'as is' with no explicit or implied warranties
31 * in respect of its properties, including, but not limited to, correctness
32 * and/or fitness for purpose.
33 * ---------------------------------------------------------------------------
34 * Issue Date: 10/11/2002
35 *
36 * This is a byte oriented version of SHA1 that operates on arrays of bytes
37 * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
38 */
39
40#include <fcntl.h>
41#include <limits.h>
42#include <stdio.h>
43#include <stdint.h>
44#include <stdlib.h>
45#include <string.h>
46#include <unistd.h>
47
48#include "busybox.h"
49
50# define SHA1_BLOCK_SIZE 64
51# define SHA1_DIGEST_SIZE 20
52# define SHA1_HASH_SIZE SHA1_DIGEST_SIZE
53# define SHA2_GOOD 0
54# define SHA2_BAD 1
55
56# define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
57
58# define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
59
60/* reverse byte order in 32-bit words */
61#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
62#define parity(x,y,z) ((x) ^ (y) ^ (z))
63#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
64
65/* A normal version as set out in the FIPS. This version uses */
66/* partial loop unrolling and is optimised for the Pentium 4 */
67# define rnd(f,k) \
68 t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \
69 e = d; d = c; c = rotl32(b, 30); b = t
70
71
72static void sha1_compile(sha1_ctx_t *ctx)
73{
74 uint32_t w[80], i, a, b, c, d, e, t;
75
76 /* note that words are compiled from the buffer into 32-bit */
77 /* words in big-endian order so an order reversal is needed */
78 /* here on little endian machines */
79 for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i)
80 w[i] = htonl(ctx->wbuf[i]);
81
82 for (i = SHA1_BLOCK_SIZE / 4; i < 80; ++i)
83 w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1);
84
85 a = ctx->hash[0];
86 b = ctx->hash[1];
87 c = ctx->hash[2];
88 d = ctx->hash[3];
89 e = ctx->hash[4];
90
91 for (i = 0; i < 20; ++i) {
92 rnd(ch, 0x5a827999);
93 }
94
95 for (i = 20; i < 40; ++i) {
96 rnd(parity, 0x6ed9eba1);
97 }
98
99 for (i = 40; i < 60; ++i) {
100 rnd(maj, 0x8f1bbcdc);
101 }
102
103 for (i = 60; i < 80; ++i) {
104 rnd(parity, 0xca62c1d6);
105 }
106
107 ctx->hash[0] += a;
108 ctx->hash[1] += b;
109 ctx->hash[2] += c;
110 ctx->hash[3] += d;
111 ctx->hash[4] += e;
112}
113
114void sha1_begin(sha1_ctx_t *ctx)
115{
116 ctx->count[0] = ctx->count[1] = 0;
117 ctx->hash[0] = 0x67452301;
118 ctx->hash[1] = 0xefcdab89;
119 ctx->hash[2] = 0x98badcfe;
120 ctx->hash[3] = 0x10325476;
121 ctx->hash[4] = 0xc3d2e1f0;
122}
123
124/* SHA1 hash data in an array of bytes into hash buffer and call the */
125/* hash_compile function as required. */
126void sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx)
127{
128 uint32_t pos = (uint32_t) (ctx->count[0] & SHA1_MASK);
129 uint32_t freeb = SHA1_BLOCK_SIZE - pos;
130 const unsigned char *sp = data;
131
132 if ((ctx->count[0] += length) < length)
133 ++(ctx->count[1]);
134
135 while (length >= freeb) { /* tranfer whole blocks while possible */
136 memcpy(((unsigned char *) ctx->wbuf) + pos, sp, freeb);
137 sp += freeb;
138 length -= freeb;
139 freeb = SHA1_BLOCK_SIZE;
140 pos = 0;
141 sha1_compile(ctx);
142 }
143
144 memcpy(((unsigned char *) ctx->wbuf) + pos, sp, length);
145}
146
147void *sha1_end(void *resbuf, sha1_ctx_t *ctx)
148{
149 /* SHA1 Final padding and digest calculation */
150 #if BB_BIG_ENDIAN
151 static uint32_t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 };
152 static uint32_t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 };
153 #else
154 static uint32_t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff };
155 static uint32_t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 };
156 #endif /* __BYTE_ORDER */
157
158 uint8_t *hval = resbuf;
159 uint32_t i, cnt = (uint32_t) (ctx->count[0] & SHA1_MASK);
160
161 /* mask out the rest of any partial 32-bit word and then set */
162 /* the next byte to 0x80. On big-endian machines any bytes in */
163 /* the buffer will be at the top end of 32 bit words, on little */
164 /* endian machines they will be at the bottom. Hence the AND */
165 /* and OR masks above are reversed for little endian systems */
166 ctx->wbuf[cnt >> 2] =
167 (ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3];
168
169 /* we need 9 or more empty positions, one for the padding byte */
170 /* (above) and eight for the length count. If there is not */
171 /* enough space pad and empty the buffer */
172 if (cnt > SHA1_BLOCK_SIZE - 9) {
173 if (cnt < 60)
174 ctx->wbuf[15] = 0;
175 sha1_compile(ctx);
176 cnt = 0;
177 } else /* compute a word index for the empty buffer positions */
178 cnt = (cnt >> 2) + 1;
179
180 while (cnt < 14) /* and zero pad all but last two positions */
181 ctx->wbuf[cnt++] = 0;
182
183 /* assemble the eight byte counter in the buffer in big-endian */
184 /* format */
185
186 ctx->wbuf[14] = htonl((ctx->count[1] << 3) | (ctx->count[0] >> 29));
187 ctx->wbuf[15] = htonl(ctx->count[0] << 3);
188
189 sha1_compile(ctx);
190
191 /* extract the hash value as bytes in case the hash buffer is */
192 /* misaligned for 32-bit words */
193
194 for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
195 hval[i] = (unsigned char) (ctx->hash[i >> 2] >> 8 * (~i & 3));
196
197 return resbuf;
198}
199
200