Denys Vlasenko | f18a1fd | 2021-04-26 13:25:56 +0200 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2021 Denys Vlasenko |
| 3 | * |
| 4 | * Licensed under GPLv2, see file LICENSE in this source tree. |
| 5 | */ |
| 6 | #include "tls.h" |
| 7 | |
| 8 | #define SP_DEBUG 0 |
| 9 | #define FIXED_SECRET 0 |
| 10 | #define FIXED_PEER_PUBKEY 0 |
| 11 | |
| 12 | #if SP_DEBUG |
| 13 | # define dbg(...) fprintf(stderr, __VA_ARGS__) |
| 14 | static void dump_hex(const char *fmt, const void *vp, int len) |
| 15 | { |
| 16 | char hexbuf[32 * 1024 + 4]; |
| 17 | const uint8_t *p = vp; |
| 18 | |
| 19 | bin2hex(hexbuf, (void*)p, len)[0] = '\0'; |
| 20 | dbg(fmt, hexbuf); |
| 21 | } |
| 22 | #else |
| 23 | # define dbg(...) ((void)0) |
| 24 | # define dump_hex(...) ((void)0) |
| 25 | #endif |
| 26 | |
| 27 | #undef DIGIT_BIT |
| 28 | #define DIGIT_BIT 32 |
| 29 | typedef int32_t sp_digit; |
| 30 | |
| 31 | /* The code below is taken from parts of |
| 32 | * wolfssl-3.15.3/wolfcrypt/src/sp_c32.c |
| 33 | * and heavily modified. |
| 34 | * Header comment is kept intact: |
| 35 | */ |
| 36 | |
| 37 | /* sp.c |
| 38 | * |
| 39 | * Copyright (C) 2006-2018 wolfSSL Inc. |
| 40 | * |
| 41 | * This file is part of wolfSSL. |
| 42 | * |
| 43 | * wolfSSL is free software; you can redistribute it and/or modify |
| 44 | * it under the terms of the GNU General Public License as published by |
| 45 | * the Free Software Foundation; either version 2 of the License, or |
| 46 | * (at your option) any later version. |
| 47 | * |
| 48 | * wolfSSL is distributed in the hope that it will be useful, |
| 49 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 50 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 51 | * GNU General Public License for more details. |
| 52 | * |
| 53 | * You should have received a copy of the GNU General Public License |
| 54 | * along with this program; if not, write to the Free Software |
| 55 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA |
| 56 | */ |
| 57 | |
| 58 | /* Implementation by Sean Parkinson. */ |
| 59 | |
| 60 | /* Point structure to use. */ |
| 61 | typedef struct sp_point { |
| 62 | sp_digit x[2 * 10]; |
| 63 | sp_digit y[2 * 10]; |
| 64 | sp_digit z[2 * 10]; |
| 65 | int infinity; |
| 66 | } sp_point; |
| 67 | |
| 68 | /* The modulus (prime) of the curve P256. */ |
| 69 | static const sp_digit p256_mod[10] = { |
| 70 | 0x3ffffff,0x3ffffff,0x3ffffff,0x003ffff,0x0000000, |
| 71 | 0x0000000,0x0000000,0x0000400,0x3ff0000,0x03fffff, |
| 72 | }; |
| 73 | |
| 74 | #define p256_mp_mod ((sp_digit)0x000001) |
| 75 | |
| 76 | /* Mask for address to obfuscate which of the two address will be used. */ |
| 77 | static const size_t addr_mask[2] = { 0, (size_t)-1 }; |
| 78 | |
| 79 | /* The base point of curve P256. */ |
| 80 | static const sp_point p256_base = { |
| 81 | /* X ordinate */ |
| 82 | { 0x098c296,0x04e5176,0x33a0f4a,0x204b7ac,0x277037d,0x0e9103c,0x3ce6e56,0x1091fe2,0x1f2e12c,0x01ac5f4 }, |
| 83 | /* Y ordinate */ |
| 84 | { 0x3bf51f5,0x1901a0d,0x1ececbb,0x15dacc5,0x22bce33,0x303e785,0x27eb4a7,0x1fe6e3b,0x2e2fe1a,0x013f8d0 }, |
| 85 | /* Z ordinate */ |
| 86 | { 0x0000001,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000 }, |
| 87 | /* infinity */ |
| 88 | 0 |
| 89 | }; |
| 90 | |
| 91 | /* Write r as big endian to byte aray. |
| 92 | * Fixed length number of bytes written: 32 |
| 93 | * |
| 94 | * r A single precision integer. |
| 95 | * a Byte array. |
| 96 | */ |
| 97 | static void sp_256_to_bin(sp_digit* r, uint8_t* a) |
| 98 | { |
| 99 | int i, j, s = 0, b; |
| 100 | |
| 101 | for (i = 0; i < 9; i++) { |
| 102 | r[i+1] += r[i] >> 26; |
| 103 | r[i] &= 0x3ffffff; |
| 104 | } |
| 105 | j = 256 / 8 - 1; |
| 106 | a[j] = 0; |
| 107 | for (i=0; i<10 && j>=0; i++) { |
| 108 | b = 0; |
| 109 | a[j--] |= r[i] << s; b += 8 - s; |
| 110 | if (j < 0) |
| 111 | break; |
| 112 | while (b < 26) { |
| 113 | a[j--] = r[i] >> b; b += 8; |
| 114 | if (j < 0) |
| 115 | break; |
| 116 | } |
| 117 | s = 8 - (b - 26); |
| 118 | if (j >= 0) |
| 119 | a[j] = 0; |
| 120 | if (s != 0) |
| 121 | j++; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | /* Read big endian unsigned byte aray into r. |
| 126 | * |
| 127 | * r A single precision integer. |
| 128 | * a Byte array. |
| 129 | * n Number of bytes in array to read. |
| 130 | */ |
| 131 | static void sp_256_from_bin(sp_digit* r, int max, const uint8_t* a, int n) |
| 132 | { |
| 133 | int i, j = 0, s = 0; |
| 134 | |
| 135 | r[0] = 0; |
| 136 | for (i = n-1; i >= 0; i--) { |
| 137 | r[j] |= ((sp_digit)a[i]) << s; |
| 138 | if (s >= 18) { |
| 139 | r[j] &= 0x3ffffff; |
| 140 | s = 26 - s; |
| 141 | if (j + 1 >= max) |
| 142 | break; |
| 143 | r[++j] = a[i] >> s; |
| 144 | s = 8 - s; |
| 145 | } |
| 146 | else |
| 147 | s += 8; |
| 148 | } |
| 149 | |
| 150 | for (j++; j < max; j++) |
| 151 | r[j] = 0; |
| 152 | } |
| 153 | |
| 154 | /* Convert a point of big-endian 32-byte x,y pair to type sp_point. */ |
| 155 | static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32) |
| 156 | { |
| 157 | memset(p, 0, sizeof(*p)); |
| 158 | /*p->infinity = 0;*/ |
| 159 | sp_256_from_bin(p->x, 2 * 10, bin2x32, 32); |
| 160 | sp_256_from_bin(p->y, 2 * 10, bin2x32 + 32, 32); |
| 161 | //static const uint8_t one[1] = { 1 }; |
| 162 | //sp_256_from_bin(p->z, 2 * 10, one, 1); |
| 163 | p->z[0] = 1; |
| 164 | } |
| 165 | |
| 166 | /* Compare a with b in constant time. |
| 167 | * |
| 168 | * a A single precision integer. |
| 169 | * b A single precision integer. |
| 170 | * return -ve, 0 or +ve if a is less than, equal to or greater than b |
| 171 | * respectively. |
| 172 | */ |
| 173 | static sp_digit sp_256_cmp_10(const sp_digit* a, const sp_digit* b) |
| 174 | { |
| 175 | sp_digit r = 0; |
| 176 | int i; |
| 177 | for (i = 9; i >= 0; i--) |
| 178 | r |= (a[i] - b[i]) & (0 - !r); |
| 179 | return r; |
| 180 | } |
| 181 | |
| 182 | /* Compare two numbers to determine if they are equal. |
| 183 | * |
| 184 | * a First number to compare. |
| 185 | * b Second number to compare. |
| 186 | * return 1 when equal and 0 otherwise. |
| 187 | */ |
| 188 | static int sp_256_cmp_equal_10(const sp_digit* a, const sp_digit* b) |
| 189 | { |
| 190 | #if 1 |
| 191 | sp_digit r = 0; |
| 192 | int i; |
| 193 | for (i = 0; i < 10; i++) |
| 194 | r |= (a[i] ^ b[i]); |
| 195 | return r == 0; |
| 196 | #else |
| 197 | return sp_256_cmp_10(a, b) == 0; |
| 198 | #endif |
| 199 | } |
| 200 | |
| 201 | /* Normalize the values in each word to 26. |
| 202 | * |
| 203 | * a Array of sp_digit to normalize. |
| 204 | */ |
| 205 | static void sp_256_norm_10(sp_digit* a) |
| 206 | { |
| 207 | int i; |
| 208 | for (i = 0; i < 9; i++) { |
| 209 | a[i+1] += a[i] >> 26; |
| 210 | a[i] &= 0x3ffffff; |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | /* Add b to a into r. (r = a + b) |
| 215 | * |
| 216 | * r A single precision integer. |
| 217 | * a A single precision integer. |
| 218 | * b A single precision integer. |
| 219 | */ |
| 220 | static void sp_256_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b) |
| 221 | { |
| 222 | int i; |
| 223 | for (i = 0; i < 10; i++) |
| 224 | r[i] = a[i] + b[i]; |
| 225 | } |
| 226 | |
| 227 | /* Conditionally add a and b using the mask m. |
| 228 | * m is -1 to add and 0 when not. |
| 229 | * |
| 230 | * r A single precision number representing conditional add result. |
| 231 | * a A single precision number to add with. |
| 232 | * b A single precision number to add. |
| 233 | * m Mask value to apply. |
| 234 | */ |
| 235 | static void sp_256_cond_add_10(sp_digit* r, const sp_digit* a, |
| 236 | const sp_digit* b, const sp_digit m) |
| 237 | { |
| 238 | int i; |
| 239 | for (i = 0; i < 10; i++) |
| 240 | r[i] = a[i] + (b[i] & m); |
| 241 | } |
| 242 | |
| 243 | /* Conditionally subtract b from a using the mask m. |
| 244 | * m is -1 to subtract and 0 when not. |
| 245 | * |
| 246 | * r A single precision number representing condition subtract result. |
| 247 | * a A single precision number to subtract from. |
| 248 | * b A single precision number to subtract. |
| 249 | * m Mask value to apply. |
| 250 | */ |
| 251 | static void sp_256_cond_sub_10(sp_digit* r, const sp_digit* a, |
| 252 | const sp_digit* b, const sp_digit m) |
| 253 | { |
| 254 | int i; |
| 255 | for (i = 0; i < 10; i++) |
| 256 | r[i] = a[i] - (b[i] & m); |
| 257 | } |
| 258 | |
| 259 | /* Add 1 to a. (a = a + 1) |
| 260 | * |
| 261 | * r A single precision integer. |
| 262 | * a A single precision integer. |
| 263 | */ |
| 264 | static void sp_256_add_one_10(sp_digit* a) |
| 265 | { |
| 266 | a[0]++; |
| 267 | sp_256_norm_10(a); |
| 268 | } |
| 269 | |
| 270 | /* Shift number left one bit. |
| 271 | * Bottom bit is lost. |
| 272 | * |
| 273 | * r Result of shift. |
| 274 | * a Number to shift. |
| 275 | */ |
| 276 | static void sp_256_rshift1_10(sp_digit* r, sp_digit* a) |
| 277 | { |
| 278 | int i; |
| 279 | for (i = 0; i < 9; i++) |
| 280 | r[i] = ((a[i] >> 1) | (a[i + 1] << 25)) & 0x3ffffff; |
| 281 | r[9] = a[9] >> 1; |
| 282 | } |
| 283 | |
| 284 | /* Multiply a number by Montogmery normalizer mod modulus (prime). |
| 285 | * |
| 286 | * r The resulting Montgomery form number. |
| 287 | * a The number to convert. |
| 288 | */ |
| 289 | static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a) |
| 290 | { |
| 291 | int64_t t[8]; |
| 292 | int64_t a32[8]; |
| 293 | int64_t o; |
| 294 | |
| 295 | a32[0] = a[0]; |
| 296 | a32[0] |= a[1] << 26; |
| 297 | a32[0] &= 0xffffffff; |
| 298 | a32[1] = (sp_digit)(a[1] >> 6); |
| 299 | a32[1] |= a[2] << 20; |
| 300 | a32[1] &= 0xffffffff; |
| 301 | a32[2] = (sp_digit)(a[2] >> 12); |
| 302 | a32[2] |= a[3] << 14; |
| 303 | a32[2] &= 0xffffffff; |
| 304 | a32[3] = (sp_digit)(a[3] >> 18); |
| 305 | a32[3] |= a[4] << 8; |
| 306 | a32[3] &= 0xffffffff; |
| 307 | a32[4] = (sp_digit)(a[4] >> 24); |
| 308 | a32[4] |= a[5] << 2; |
| 309 | a32[4] |= a[6] << 28; |
| 310 | a32[4] &= 0xffffffff; |
| 311 | a32[5] = (sp_digit)(a[6] >> 4); |
| 312 | a32[5] |= a[7] << 22; |
| 313 | a32[5] &= 0xffffffff; |
| 314 | a32[6] = (sp_digit)(a[7] >> 10); |
| 315 | a32[6] |= a[8] << 16; |
| 316 | a32[6] &= 0xffffffff; |
| 317 | a32[7] = (sp_digit)(a[8] >> 16); |
| 318 | a32[7] |= a[9] << 10; |
| 319 | a32[7] &= 0xffffffff; |
| 320 | |
| 321 | /* 1 1 0 -1 -1 -1 -1 0 */ |
| 322 | t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6]; |
| 323 | /* 0 1 1 0 -1 -1 -1 -1 */ |
| 324 | t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7]; |
| 325 | /* 0 0 1 1 0 -1 -1 -1 */ |
| 326 | t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7]; |
| 327 | /* -1 -1 0 2 2 1 0 -1 */ |
| 328 | t[3] = 0 - a32[0] - a32[1] + 2 * a32[3] + 2 * a32[4] + a32[5] - a32[7]; |
| 329 | /* 0 -1 -1 0 2 2 1 0 */ |
| 330 | t[4] = 0 - a32[1] - a32[2] + 2 * a32[4] + 2 * a32[5] + a32[6]; |
| 331 | /* 0 0 -1 -1 0 2 2 1 */ |
| 332 | t[5] = 0 - a32[2] - a32[3] + 2 * a32[5] + 2 * a32[6] + a32[7]; |
| 333 | /* -1 -1 0 0 0 1 3 2 */ |
| 334 | t[6] = 0 - a32[0] - a32[1] + a32[5] + 3 * a32[6] + 2 * a32[7]; |
| 335 | /* 1 0 -1 -1 -1 -1 0 3 */ |
| 336 | t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3 * a32[7]; |
| 337 | |
| 338 | t[1] += t[0] >> 32; t[0] &= 0xffffffff; |
| 339 | t[2] += t[1] >> 32; t[1] &= 0xffffffff; |
| 340 | t[3] += t[2] >> 32; t[2] &= 0xffffffff; |
| 341 | t[4] += t[3] >> 32; t[3] &= 0xffffffff; |
| 342 | t[5] += t[4] >> 32; t[4] &= 0xffffffff; |
| 343 | t[6] += t[5] >> 32; t[5] &= 0xffffffff; |
| 344 | t[7] += t[6] >> 32; t[6] &= 0xffffffff; |
| 345 | o = t[7] >> 32; t[7] &= 0xffffffff; |
| 346 | t[0] += o; |
| 347 | t[3] -= o; |
| 348 | t[6] -= o; |
| 349 | t[7] += o; |
| 350 | t[1] += t[0] >> 32; t[0] &= 0xffffffff; |
| 351 | t[2] += t[1] >> 32; t[1] &= 0xffffffff; |
| 352 | t[3] += t[2] >> 32; t[2] &= 0xffffffff; |
| 353 | t[4] += t[3] >> 32; t[3] &= 0xffffffff; |
| 354 | t[5] += t[4] >> 32; t[4] &= 0xffffffff; |
| 355 | t[6] += t[5] >> 32; t[5] &= 0xffffffff; |
| 356 | t[7] += t[6] >> 32; t[6] &= 0xffffffff; |
| 357 | |
| 358 | r[0] = (sp_digit)(t[0]) & 0x3ffffff; |
| 359 | r[1] = (sp_digit)(t[0] >> 26); |
| 360 | r[1] |= t[1] << 6; |
| 361 | r[1] &= 0x3ffffff; |
| 362 | r[2] = (sp_digit)(t[1] >> 20); |
| 363 | r[2] |= t[2] << 12; |
| 364 | r[2] &= 0x3ffffff; |
| 365 | r[3] = (sp_digit)(t[2] >> 14); |
| 366 | r[3] |= t[3] << 18; |
| 367 | r[3] &= 0x3ffffff; |
| 368 | r[4] = (sp_digit)(t[3] >> 8); |
| 369 | r[4] |= t[4] << 24; |
| 370 | r[4] &= 0x3ffffff; |
| 371 | r[5] = (sp_digit)(t[4] >> 2) & 0x3ffffff; |
| 372 | r[6] = (sp_digit)(t[4] >> 28); |
| 373 | r[6] |= t[5] << 4; |
| 374 | r[6] &= 0x3ffffff; |
| 375 | r[7] = (sp_digit)(t[5] >> 22); |
| 376 | r[7] |= t[6] << 10; |
| 377 | r[7] &= 0x3ffffff; |
| 378 | r[8] = (sp_digit)(t[6] >> 16); |
| 379 | r[8] |= t[7] << 16; |
| 380 | r[8] &= 0x3ffffff; |
| 381 | r[9] = (sp_digit)(t[7] >> 10); |
| 382 | } |
| 383 | |
| 384 | /* Mul a by scalar b and add into r. (r += a * b) |
| 385 | * |
| 386 | * r A single precision integer. |
| 387 | * a A single precision integer. |
| 388 | * b A scalar. |
| 389 | */ |
| 390 | static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, |
| 391 | const sp_digit b) |
| 392 | { |
| 393 | int64_t tb = b; |
| 394 | int64_t t = 0; |
| 395 | int i; |
| 396 | |
| 397 | for (i = 0; i < 10; i++) { |
| 398 | t += (tb * a[i]) + r[i]; |
| 399 | r[i] = t & 0x3ffffff; |
| 400 | t >>= 26; |
| 401 | } |
| 402 | r[10] += t; |
| 403 | } |
| 404 | |
| 405 | /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) |
| 406 | * |
| 407 | * r Result of division by 2. |
| 408 | * a Number to divide. |
| 409 | * m Modulus (prime). |
| 410 | */ |
| 411 | static void sp_256_div2_10(sp_digit* r, const sp_digit* a, const sp_digit* m) |
| 412 | { |
| 413 | sp_256_cond_add_10(r, a, m, 0 - (a[0] & 1)); |
| 414 | sp_256_norm_10(r); |
| 415 | sp_256_rshift1_10(r, r); |
| 416 | } |
| 417 | |
| 418 | /* Shift the result in the high 256 bits down to the bottom. |
| 419 | * |
| 420 | * r A single precision number. |
| 421 | * a A single precision number. |
| 422 | */ |
| 423 | static void sp_256_mont_shift_10(sp_digit* r, const sp_digit* a) |
| 424 | { |
| 425 | int i; |
| 426 | sp_digit n, s; |
| 427 | |
| 428 | s = a[10]; |
| 429 | n = a[9] >> 22; |
| 430 | for (i = 0; i < 9; i++) { |
| 431 | n += (s & 0x3ffffff) << 4; |
| 432 | r[i] = n & 0x3ffffff; |
| 433 | n >>= 26; |
| 434 | s = a[11 + i] + (s >> 26); |
| 435 | } |
| 436 | n += s << 4; |
| 437 | r[9] = n; |
| 438 | memset(&r[10], 0, sizeof(*r) * 10); |
| 439 | } |
| 440 | |
| 441 | /* Add two Montgomery form numbers (r = a + b % m). |
| 442 | * |
| 443 | * r Result of addition. |
| 444 | * a First number to add in Montogmery form. |
| 445 | * b Second number to add in Montogmery form. |
| 446 | * m Modulus (prime). |
| 447 | */ |
| 448 | static void sp_256_mont_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b, |
| 449 | const sp_digit* m) |
| 450 | { |
| 451 | sp_256_add_10(r, a, b); |
| 452 | sp_256_norm_10(r); |
| 453 | sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); |
| 454 | sp_256_norm_10(r); |
| 455 | } |
| 456 | |
| 457 | /* Double a Montgomery form number (r = a + a % m). |
| 458 | * |
| 459 | * r Result of doubling. |
| 460 | * a Number to double in Montogmery form. |
| 461 | * m Modulus (prime). |
| 462 | */ |
| 463 | static void sp_256_mont_dbl_10(sp_digit* r, const sp_digit* a, const sp_digit* m) |
| 464 | { |
| 465 | sp_256_add_10(r, a, a); |
| 466 | sp_256_norm_10(r); |
| 467 | sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); |
| 468 | sp_256_norm_10(r); |
| 469 | } |
| 470 | |
| 471 | /* Triple a Montgomery form number (r = a + a + a % m). |
| 472 | * |
| 473 | * r Result of Tripling. |
| 474 | * a Number to triple in Montogmery form. |
| 475 | * m Modulus (prime). |
| 476 | */ |
| 477 | static void sp_256_mont_tpl_10(sp_digit* r, const sp_digit* a, const sp_digit* m) |
| 478 | { |
| 479 | sp_256_add_10(r, a, a); |
| 480 | sp_256_norm_10(r); |
| 481 | sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); |
| 482 | sp_256_norm_10(r); |
| 483 | sp_256_add_10(r, r, a); |
| 484 | sp_256_norm_10(r); |
| 485 | sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); |
| 486 | sp_256_norm_10(r); |
| 487 | } |
| 488 | |
| 489 | /* Sub b from a into r. (r = a - b) |
| 490 | * |
| 491 | * r A single precision integer. |
| 492 | * a A single precision integer. |
| 493 | * b A single precision integer. |
| 494 | */ |
| 495 | static void sp_256_sub_10(sp_digit* r, const sp_digit* a, |
| 496 | const sp_digit* b) |
| 497 | { |
| 498 | int i; |
| 499 | for (i = 0; i < 10; i++) |
| 500 | r[i] = a[i] - b[i]; |
| 501 | } |
| 502 | |
| 503 | /* Subtract two Montgomery form numbers (r = a - b % m). |
| 504 | * |
| 505 | * r Result of subtration. |
| 506 | * a Number to subtract from in Montogmery form. |
| 507 | * b Number to subtract with in Montogmery form. |
| 508 | * m Modulus (prime). |
| 509 | */ |
| 510 | static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b, |
| 511 | const sp_digit* m) |
| 512 | { |
| 513 | sp_256_sub_10(r, a, b); |
| 514 | sp_256_cond_add_10(r, r, m, r[9] >> 22); |
| 515 | sp_256_norm_10(r); |
| 516 | } |
| 517 | |
| 518 | /* Reduce the number back to 256 bits using Montgomery reduction. |
| 519 | * |
| 520 | * a A single precision number to reduce in place. |
| 521 | * m The single precision number representing the modulus. |
| 522 | * mp The digit representing the negative inverse of m mod 2^n. |
| 523 | */ |
| 524 | static void sp_256_mont_reduce_10(sp_digit* a, const sp_digit* m, sp_digit mp) |
| 525 | { |
| 526 | int i; |
| 527 | sp_digit mu; |
| 528 | |
| 529 | if (mp != 1) { |
| 530 | for (i = 0; i < 9; i++) { |
| 531 | mu = (a[i] * mp) & 0x3ffffff; |
| 532 | sp_256_mul_add_10(a+i, m, mu); |
| 533 | a[i+1] += a[i] >> 26; |
| 534 | } |
| 535 | mu = (a[i] * mp) & 0x3fffffl; |
| 536 | sp_256_mul_add_10(a+i, m, mu); |
| 537 | a[i+1] += a[i] >> 26; |
| 538 | a[i] &= 0x3ffffff; |
| 539 | } |
| 540 | else { |
| 541 | for (i = 0; i < 9; i++) { |
| 542 | mu = a[i] & 0x3ffffff; |
| 543 | sp_256_mul_add_10(a+i, p256_mod, mu); |
| 544 | a[i+1] += a[i] >> 26; |
| 545 | } |
| 546 | mu = a[i] & 0x3fffffl; |
| 547 | sp_256_mul_add_10(a+i, p256_mod, mu); |
| 548 | a[i+1] += a[i] >> 26; |
| 549 | a[i] &= 0x3ffffff; |
| 550 | } |
| 551 | |
| 552 | sp_256_mont_shift_10(a, a); |
| 553 | sp_256_cond_sub_10(a, a, m, 0 - ((a[9] >> 22) > 0)); |
| 554 | sp_256_norm_10(a); |
| 555 | } |
| 556 | |
| 557 | /* Multiply a and b into r. (r = a * b) |
| 558 | * |
| 559 | * r A single precision integer. |
| 560 | * a A single precision integer. |
| 561 | * b A single precision integer. |
| 562 | */ |
| 563 | static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b) |
| 564 | { |
| 565 | int i, j, k; |
| 566 | int64_t c; |
| 567 | |
| 568 | c = ((int64_t)a[9]) * b[9]; |
| 569 | r[19] = (sp_digit)(c >> 26); |
| 570 | c = (c & 0x3ffffff) << 26; |
| 571 | for (k = 17; k >= 0; k--) { |
| 572 | for (i = 9; i >= 0; i--) { |
| 573 | j = k - i; |
| 574 | if (j >= 10) |
| 575 | break; |
| 576 | if (j < 0) |
| 577 | continue; |
| 578 | c += ((int64_t)a[i]) * b[j]; |
| 579 | } |
| 580 | r[k + 2] += c >> 52; |
| 581 | r[k + 1] = (c >> 26) & 0x3ffffff; |
| 582 | c = (c & 0x3ffffff) << 26; |
| 583 | } |
| 584 | r[0] = (sp_digit)(c >> 26); |
| 585 | } |
| 586 | |
| 587 | /* Multiply two Montogmery form numbers mod the modulus (prime). |
| 588 | * (r = a * b mod m) |
| 589 | * |
| 590 | * r Result of multiplication. |
| 591 | * a First number to multiply in Montogmery form. |
| 592 | * b Second number to multiply in Montogmery form. |
| 593 | * m Modulus (prime). |
| 594 | * mp Montogmery mulitplier. |
| 595 | */ |
| 596 | static void sp_256_mont_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b, |
| 597 | const sp_digit* m, sp_digit mp) |
| 598 | { |
| 599 | sp_256_mul_10(r, a, b); |
| 600 | sp_256_mont_reduce_10(r, m, mp); |
| 601 | } |
| 602 | |
| 603 | /* Square a and put result in r. (r = a * a) |
| 604 | * |
| 605 | * r A single precision integer. |
| 606 | * a A single precision integer. |
| 607 | */ |
| 608 | static void sp_256_sqr_10(sp_digit* r, const sp_digit* a) |
| 609 | { |
| 610 | int i, j, k; |
| 611 | int64_t c; |
| 612 | |
| 613 | c = ((int64_t)a[9]) * a[9]; |
| 614 | r[19] = (sp_digit)(c >> 26); |
| 615 | c = (c & 0x3ffffff) << 26; |
| 616 | for (k = 17; k >= 0; k--) { |
| 617 | for (i = 9; i >= 0; i--) { |
| 618 | j = k - i; |
| 619 | if (j >= 10 || i <= j) |
| 620 | break; |
| 621 | if (j < 0) |
| 622 | continue; |
| 623 | |
| 624 | c += ((int64_t)a[i]) * a[j] * 2; |
| 625 | } |
| 626 | if (i == j) |
| 627 | c += ((int64_t)a[i]) * a[i]; |
| 628 | |
| 629 | r[k + 2] += c >> 52; |
| 630 | r[k + 1] = (c >> 26) & 0x3ffffff; |
| 631 | c = (c & 0x3ffffff) << 26; |
| 632 | } |
| 633 | r[0] = (sp_digit)(c >> 26); |
| 634 | } |
| 635 | |
| 636 | /* Square the Montgomery form number. (r = a * a mod m) |
| 637 | * |
| 638 | * r Result of squaring. |
| 639 | * a Number to square in Montogmery form. |
| 640 | * m Modulus (prime). |
| 641 | * mp Montogmery mulitplier. |
| 642 | */ |
| 643 | static void sp_256_mont_sqr_10(sp_digit* r, const sp_digit* a, const sp_digit* m, |
| 644 | sp_digit mp) |
| 645 | { |
| 646 | sp_256_sqr_10(r, a); |
| 647 | sp_256_mont_reduce_10(r, m, mp); |
| 648 | } |
| 649 | |
| 650 | /* Invert the number, in Montgomery form, modulo the modulus (prime) of the |
| 651 | * P256 curve. (r = 1 / a mod m) |
| 652 | * |
| 653 | * r Inverse result. |
| 654 | * a Number to invert. |
| 655 | * td Temporary data. |
| 656 | */ |
| 657 | /* Mod-2 for the P256 curve. */ |
| 658 | static const uint32_t p256_mod_2[8] = { |
| 659 | 0xfffffffd,0xffffffff,0xffffffff,0x00000000, |
| 660 | 0x00000000,0x00000000,0x00000001,0xffffffff, |
| 661 | }; |
| 662 | static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a, sp_digit* td) |
| 663 | { |
| 664 | sp_digit* t = td; |
| 665 | int i; |
| 666 | |
| 667 | memcpy(t, a, sizeof(sp_digit) * 10); |
| 668 | for (i = 254; i >= 0; i--) { |
| 669 | sp_256_mont_sqr_10(t, t, p256_mod, p256_mp_mod); |
| 670 | if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32))) |
| 671 | sp_256_mont_mul_10(t, t, a, p256_mod, p256_mp_mod); |
| 672 | } |
| 673 | memcpy(r, t, sizeof(sp_digit) * 10); |
| 674 | } |
| 675 | |
| 676 | /* Map the Montgomery form projective co-ordinate point to an affine point. |
| 677 | * |
| 678 | * r Resulting affine co-ordinate point. |
| 679 | * p Montgomery form projective co-ordinate point. |
| 680 | * t Temporary ordinate data. |
| 681 | */ |
| 682 | static void sp_256_map_10(sp_point* r, sp_point* p, sp_digit* t) |
| 683 | { |
| 684 | sp_digit* t1 = t; |
| 685 | sp_digit* t2 = t + 2*10; |
| 686 | int32_t n; |
| 687 | |
| 688 | sp_256_mont_inv_10(t1, p->z, t + 2*10); |
| 689 | |
| 690 | sp_256_mont_sqr_10(t2, t1, p256_mod, p256_mp_mod); |
| 691 | sp_256_mont_mul_10(t1, t2, t1, p256_mod, p256_mp_mod); |
| 692 | |
| 693 | /* x /= z^2 */ |
| 694 | sp_256_mont_mul_10(r->x, p->x, t2, p256_mod, p256_mp_mod); |
| 695 | memset(r->x + 10, 0, sizeof(r->x) / 2); |
| 696 | sp_256_mont_reduce_10(r->x, p256_mod, p256_mp_mod); |
| 697 | /* Reduce x to less than modulus */ |
| 698 | n = sp_256_cmp_10(r->x, p256_mod); |
| 699 | sp_256_cond_sub_10(r->x, r->x, p256_mod, 0 - (n >= 0)); |
| 700 | sp_256_norm_10(r->x); |
| 701 | |
| 702 | /* y /= z^3 */ |
| 703 | sp_256_mont_mul_10(r->y, p->y, t1, p256_mod, p256_mp_mod); |
| 704 | memset(r->y + 10, 0, sizeof(r->y) / 2); |
| 705 | sp_256_mont_reduce_10(r->y, p256_mod, p256_mp_mod); |
| 706 | /* Reduce y to less than modulus */ |
| 707 | n = sp_256_cmp_10(r->y, p256_mod); |
| 708 | sp_256_cond_sub_10(r->y, r->y, p256_mod, 0 - (n >= 0)); |
| 709 | sp_256_norm_10(r->y); |
| 710 | |
| 711 | memset(r->z, 0, sizeof(r->z)); |
| 712 | r->z[0] = 1; |
| 713 | } |
| 714 | |
| 715 | /* Double the Montgomery form projective point p. |
| 716 | * |
| 717 | * r Result of doubling point. |
| 718 | * p Point to double. |
| 719 | * t Temporary ordinate data. |
| 720 | */ |
| 721 | static void sp_256_proj_point_dbl_10(sp_point* r, sp_point* p, sp_digit* t) |
| 722 | { |
| 723 | sp_point *rp[2]; |
| 724 | sp_point tp; |
| 725 | sp_digit* t1 = t; |
| 726 | sp_digit* t2 = t + 2*10; |
| 727 | sp_digit* x; |
| 728 | sp_digit* y; |
| 729 | sp_digit* z; |
| 730 | int i; |
| 731 | |
| 732 | /* When infinity don't double point passed in - constant time. */ |
| 733 | rp[0] = r; |
| 734 | rp[1] = &tp; |
| 735 | x = rp[p->infinity]->x; |
| 736 | y = rp[p->infinity]->y; |
| 737 | z = rp[p->infinity]->z; |
| 738 | /* Put point to double into result - good for infinity. */ |
| 739 | if (r != p) { |
| 740 | for (i = 0; i < 10; i++) |
| 741 | r->x[i] = p->x[i]; |
| 742 | for (i = 0; i < 10; i++) |
| 743 | r->y[i] = p->y[i]; |
| 744 | for (i = 0; i < 10; i++) |
| 745 | r->z[i] = p->z[i]; |
| 746 | r->infinity = p->infinity; |
| 747 | } |
| 748 | |
| 749 | /* T1 = Z * Z */ |
| 750 | sp_256_mont_sqr_10(t1, z, p256_mod, p256_mp_mod); |
| 751 | /* Z = Y * Z */ |
| 752 | sp_256_mont_mul_10(z, y, z, p256_mod, p256_mp_mod); |
| 753 | /* Z = 2Z */ |
| 754 | sp_256_mont_dbl_10(z, z, p256_mod); |
| 755 | /* T2 = X - T1 */ |
| 756 | sp_256_mont_sub_10(t2, x, t1, p256_mod); |
| 757 | /* T1 = X + T1 */ |
| 758 | sp_256_mont_add_10(t1, x, t1, p256_mod); |
| 759 | /* T2 = T1 * T2 */ |
| 760 | sp_256_mont_mul_10(t2, t1, t2, p256_mod, p256_mp_mod); |
| 761 | /* T1 = 3T2 */ |
| 762 | sp_256_mont_tpl_10(t1, t2, p256_mod); |
| 763 | /* Y = 2Y */ |
| 764 | sp_256_mont_dbl_10(y, y, p256_mod); |
| 765 | /* Y = Y * Y */ |
| 766 | sp_256_mont_sqr_10(y, y, p256_mod, p256_mp_mod); |
| 767 | /* T2 = Y * Y */ |
| 768 | sp_256_mont_sqr_10(t2, y, p256_mod, p256_mp_mod); |
| 769 | /* T2 = T2/2 */ |
| 770 | sp_256_div2_10(t2, t2, p256_mod); |
| 771 | /* Y = Y * X */ |
| 772 | sp_256_mont_mul_10(y, y, x, p256_mod, p256_mp_mod); |
| 773 | /* X = T1 * T1 */ |
| 774 | sp_256_mont_mul_10(x, t1, t1, p256_mod, p256_mp_mod); |
| 775 | /* X = X - Y */ |
| 776 | sp_256_mont_sub_10(x, x, y, p256_mod); |
| 777 | /* X = X - Y */ |
| 778 | sp_256_mont_sub_10(x, x, y, p256_mod); |
| 779 | /* Y = Y - X */ |
| 780 | sp_256_mont_sub_10(y, y, x, p256_mod); |
| 781 | /* Y = Y * T1 */ |
| 782 | sp_256_mont_mul_10(y, y, t1, p256_mod, p256_mp_mod); |
| 783 | /* Y = Y - T2 */ |
| 784 | sp_256_mont_sub_10(y, y, t2, p256_mod); |
| 785 | } |
| 786 | |
| 787 | /* Add two Montgomery form projective points. |
| 788 | * |
| 789 | * r Result of addition. |
| 790 | * p Frist point to add. |
| 791 | * q Second point to add. |
| 792 | * t Temporary ordinate data. |
| 793 | */ |
| 794 | static void sp_256_proj_point_add_10(sp_point* r, sp_point* p, sp_point* q, |
| 795 | sp_digit* t) |
| 796 | { |
| 797 | sp_point *ap[2]; |
| 798 | sp_point *rp[2]; |
| 799 | sp_point tp; |
| 800 | sp_digit* t1 = t; |
| 801 | sp_digit* t2 = t + 2*10; |
| 802 | sp_digit* t3 = t + 4*10; |
| 803 | sp_digit* t4 = t + 6*10; |
| 804 | sp_digit* t5 = t + 8*10; |
| 805 | sp_digit* x; |
| 806 | sp_digit* y; |
| 807 | sp_digit* z; |
| 808 | int i; |
| 809 | |
| 810 | /* Ensure only the first point is the same as the result. */ |
| 811 | if (q == r) { |
| 812 | sp_point* a = p; |
| 813 | p = q; |
| 814 | q = a; |
| 815 | } |
| 816 | |
| 817 | /* Check double */ |
| 818 | sp_256_sub_10(t1, p256_mod, q->y); |
| 819 | sp_256_norm_10(t1); |
| 820 | if (sp_256_cmp_equal_10(p->x, q->x) |
| 821 | & sp_256_cmp_equal_10(p->z, q->z) |
| 822 | & (sp_256_cmp_equal_10(p->y, q->y) | sp_256_cmp_equal_10(p->y, t1)) |
| 823 | ) { |
| 824 | sp_256_proj_point_dbl_10(r, p, t); |
| 825 | } |
| 826 | else { |
| 827 | rp[0] = r; |
| 828 | rp[1] = &tp; |
| 829 | memset(&tp, 0, sizeof(tp)); |
| 830 | x = rp[p->infinity | q->infinity]->x; |
| 831 | y = rp[p->infinity | q->infinity]->y; |
| 832 | z = rp[p->infinity | q->infinity]->z; |
| 833 | |
| 834 | ap[0] = p; |
| 835 | ap[1] = q; |
| 836 | for (i=0; i<10; i++) |
| 837 | r->x[i] = ap[p->infinity]->x[i]; |
| 838 | for (i=0; i<10; i++) |
| 839 | r->y[i] = ap[p->infinity]->y[i]; |
| 840 | for (i=0; i<10; i++) |
| 841 | r->z[i] = ap[p->infinity]->z[i]; |
| 842 | r->infinity = ap[p->infinity]->infinity; |
| 843 | |
| 844 | /* U1 = X1*Z2^2 */ |
| 845 | sp_256_mont_sqr_10(t1, q->z, p256_mod, p256_mp_mod); |
| 846 | sp_256_mont_mul_10(t3, t1, q->z, p256_mod, p256_mp_mod); |
| 847 | sp_256_mont_mul_10(t1, t1, x, p256_mod, p256_mp_mod); |
| 848 | /* U2 = X2*Z1^2 */ |
| 849 | sp_256_mont_sqr_10(t2, z, p256_mod, p256_mp_mod); |
| 850 | sp_256_mont_mul_10(t4, t2, z, p256_mod, p256_mp_mod); |
| 851 | sp_256_mont_mul_10(t2, t2, q->x, p256_mod, p256_mp_mod); |
| 852 | /* S1 = Y1*Z2^3 */ |
| 853 | sp_256_mont_mul_10(t3, t3, y, p256_mod, p256_mp_mod); |
| 854 | /* S2 = Y2*Z1^3 */ |
| 855 | sp_256_mont_mul_10(t4, t4, q->y, p256_mod, p256_mp_mod); |
| 856 | /* H = U2 - U1 */ |
| 857 | sp_256_mont_sub_10(t2, t2, t1, p256_mod); |
| 858 | /* R = S2 - S1 */ |
| 859 | sp_256_mont_sub_10(t4, t4, t3, p256_mod); |
| 860 | /* Z3 = H*Z1*Z2 */ |
| 861 | sp_256_mont_mul_10(z, z, q->z, p256_mod, p256_mp_mod); |
| 862 | sp_256_mont_mul_10(z, z, t2, p256_mod, p256_mp_mod); |
| 863 | /* X3 = R^2 - H^3 - 2*U1*H^2 */ |
| 864 | sp_256_mont_sqr_10(x, t4, p256_mod, p256_mp_mod); |
| 865 | sp_256_mont_sqr_10(t5, t2, p256_mod, p256_mp_mod); |
| 866 | sp_256_mont_mul_10(y, t1, t5, p256_mod, p256_mp_mod); |
| 867 | sp_256_mont_mul_10(t5, t5, t2, p256_mod, p256_mp_mod); |
| 868 | sp_256_mont_sub_10(x, x, t5, p256_mod); |
| 869 | sp_256_mont_dbl_10(t1, y, p256_mod); |
| 870 | sp_256_mont_sub_10(x, x, t1, p256_mod); |
| 871 | /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */ |
| 872 | sp_256_mont_sub_10(y, y, x, p256_mod); |
| 873 | sp_256_mont_mul_10(y, y, t4, p256_mod, p256_mp_mod); |
| 874 | sp_256_mont_mul_10(t5, t5, t3, p256_mod, p256_mp_mod); |
| 875 | sp_256_mont_sub_10(y, y, t5, p256_mod); |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | /* Multiply the point by the scalar and return the result. |
| 880 | * If map is true then convert result to affine co-ordinates. |
| 881 | * |
| 882 | * r Resulting point. |
| 883 | * g Point to multiply. |
| 884 | * k Scalar to multiply by. |
| 885 | */ |
| 886 | static void sp_256_ecc_mulmod_10(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/) |
| 887 | { |
| 888 | enum { map = 1 }; /* we always convert result to affine coordinates */ |
| 889 | sp_point td[3]; |
| 890 | sp_point* t[3]; |
| 891 | sp_digit tmp[2 * 10 * 5]; |
| 892 | sp_digit n; |
| 893 | int i; |
| 894 | int c, y; |
| 895 | |
| 896 | memset(td, 0, sizeof(td)); |
| 897 | |
| 898 | t[0] = &td[0]; |
| 899 | t[1] = &td[1]; |
| 900 | t[2] = &td[2]; |
| 901 | |
| 902 | /* t[0] = {0, 0, 1} * norm */ |
| 903 | t[0]->infinity = 1; |
| 904 | /* t[1] = {g->x, g->y, g->z} * norm */ |
| 905 | sp_256_mod_mul_norm_10(t[1]->x, g->x); |
| 906 | sp_256_mod_mul_norm_10(t[1]->y, g->y); |
| 907 | sp_256_mod_mul_norm_10(t[1]->z, g->z); |
| 908 | |
| 909 | i = 9; |
| 910 | c = 22; |
| 911 | n = k[i--] << (26 - c); |
| 912 | for (; ; c--) { |
| 913 | if (c == 0) { |
| 914 | if (i == -1) |
| 915 | break; |
| 916 | |
| 917 | n = k[i--]; |
| 918 | c = 26; |
| 919 | } |
| 920 | |
| 921 | y = (n >> 25) & 1; |
| 922 | n <<= 1; |
| 923 | |
| 924 | sp_256_proj_point_add_10(t[y^1], t[0], t[1], tmp); |
| 925 | ///FIXME type (or rewrite - get rid of t[] array) |
| 926 | memcpy(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) + |
| 927 | ((size_t)t[1] & addr_mask[y])), |
| 928 | sizeof(sp_point)); |
| 929 | sp_256_proj_point_dbl_10(t[2], t[2], tmp); |
| 930 | memcpy((void*)(((size_t)t[0] & addr_mask[y^1]) + |
| 931 | ((size_t)t[1] & addr_mask[y])), t[2], |
| 932 | sizeof(sp_point)); |
| 933 | } |
| 934 | |
| 935 | if (map) |
| 936 | sp_256_map_10(r, t[0], tmp); |
| 937 | else |
| 938 | memcpy(r, t[0], sizeof(sp_point)); |
| 939 | |
| 940 | memset(tmp, 0, sizeof(tmp)); |
| 941 | memset(td, 0, sizeof(td)); |
| 942 | } |
| 943 | |
| 944 | /* Multiply the base point of P256 by the scalar and return the result. |
| 945 | * If map is true then convert result to affine co-ordinates. |
| 946 | * |
| 947 | * r Resulting point. |
| 948 | * k Scalar to multiply by. |
| 949 | */ |
| 950 | static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/) |
| 951 | { |
| 952 | sp_256_ecc_mulmod_10(r, &p256_base, k /*, map*/); |
| 953 | } |
| 954 | |
| 955 | /* Multiply the point by the scalar and serialize the X ordinate. |
| 956 | * The number is 0 padded to maximum size on output. |
| 957 | * |
| 958 | * priv Scalar to multiply the point by. |
| 959 | * peerkey2x32 Point to multiply. |
| 960 | * out Buffer to hold X ordinate. |
| 961 | */ |
| 962 | static void sp_ecc_secret_gen_256(sp_digit priv[10], const uint8_t *peerkey2x32, uint8_t* out32) |
| 963 | { |
| 964 | sp_point point[1]; |
| 965 | |
| 966 | #if FIXED_PEER_PUBKEY |
| 967 | memset((void*)peerkey32, 0x55, 64); |
| 968 | #endif |
| 969 | dump_hex("peerkey32 %s\n", peerkey2x32, 32); |
| 970 | dump_hex(" %s\n", peerkey2x32 + 32, 32); |
| 971 | |
| 972 | sp_256_point_from_bin2x32(point, peerkey2x32); |
| 973 | dump_hex("point->x %s\n", point->x, sizeof(point->x)); |
| 974 | dump_hex("point->y %s\n", point->y, sizeof(point->y)); |
| 975 | |
| 976 | sp_256_ecc_mulmod_10(point, point, priv); |
| 977 | |
| 978 | sp_256_to_bin(point->x, out32); |
| 979 | dump_hex("out32: %s\n", out32, 32); |
| 980 | } |
| 981 | |
| 982 | /* Generates a scalar that is in the range 1..order-1. |
| 983 | * |
| 984 | * rng Random number generator. |
| 985 | * k Scalar value. |
| 986 | */ |
| 987 | static void sp_256_ecc_gen_k_10(sp_digit k[10]) |
| 988 | { |
| 989 | #define SIMPLIFY 1 |
| 990 | #if !SIMPLIFY |
| 991 | /* The order of the curve P256 minus 2. */ |
| 992 | static const sp_digit p256_order2[10] = { |
| 993 | 0x063254f,0x272b0bf,0x1e84f3b,0x2b69c5e,0x3bce6fa, |
| 994 | 0x3ffffff,0x3ffffff,0x00003ff,0x3ff0000,0x03fffff, |
| 995 | }; |
| 996 | #endif |
| 997 | uint8_t buf[32]; |
| 998 | |
| 999 | for (;;) { |
| 1000 | tls_get_random(buf, sizeof(buf)); |
| 1001 | #if FIXED_SECRET |
| 1002 | memset(buf, 0x77, sizeof(buf)); |
| 1003 | #endif |
| 1004 | sp_256_from_bin(k, 10, buf, sizeof(buf)); |
| 1005 | #if !SIMPLIFY |
| 1006 | if (sp_256_cmp_10(k, p256_order2) < 0) |
| 1007 | break; |
| 1008 | #else |
| 1009 | /* non-loopy version (and not needing p256_order2[]): |
| 1010 | * if most-significant word seems that it can be larger |
| 1011 | * than p256_order2, fix it up: |
| 1012 | */ |
| 1013 | if (k[9] >= 0x03fffff) |
| 1014 | k[9] = 0x03ffffe; |
| 1015 | break; |
| 1016 | #endif |
| 1017 | } |
| 1018 | sp_256_add_one_10(k); |
| 1019 | #undef SIMPLIFY |
| 1020 | } |
| 1021 | |
| 1022 | /* Makes a random EC key pair. |
| 1023 | * |
| 1024 | * priv Generated private value. |
| 1025 | * pubkey Generated public point. |
| 1026 | */ |
| 1027 | static void sp_ecc_make_key_256(sp_digit k[10], uint8_t *pubkey) |
| 1028 | { |
| 1029 | sp_point point[1]; |
| 1030 | |
| 1031 | sp_256_ecc_gen_k_10(k); |
| 1032 | sp_256_ecc_mulmod_base_10(point, k); |
| 1033 | sp_256_to_bin(point->x, pubkey); |
| 1034 | sp_256_to_bin(point->y, pubkey + 32); |
| 1035 | |
| 1036 | memset(point, 0, sizeof(point)); //paranoia |
| 1037 | } |
| 1038 | |
| 1039 | void FAST_FUNC curve_P256_compute_pubkey_and_premaster( |
| 1040 | uint8_t *pubkey, uint8_t *premaster32, |
| 1041 | const uint8_t *peerkey2x32) |
| 1042 | { |
| 1043 | sp_digit privkey[10]; |
| 1044 | |
| 1045 | sp_ecc_make_key_256(privkey, pubkey); |
| 1046 | dump_hex("pubkey: %s\n", pubkey, 32); |
| 1047 | dump_hex(" %s\n", pubkey + 32, 32); |
| 1048 | |
| 1049 | /* Combine our privkey and peerkey32 to generate premaster */ |
| 1050 | sp_ecc_secret_gen_256(privkey, /*x,y:*/peerkey2x32, premaster32); |
| 1051 | dump_hex("premaster: %s\n", premaster32, 32); |
| 1052 | } |