blob: d64bae02f356cafbea82d433bc430a1c26a381b4 [file] [log] [blame]
/*
**************************************************************************
* Copyright (c) 2014,2016,2018, 2020 The Linux Foundation. All rights reserved.
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all copies.
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
**************************************************************************
*/
/*
* qsdk/qca/src/qca-nss-drv/profiler/profile.c
*
* Implementation for NetAP Profiler
*/
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/export.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/fs.h>
#include <linux/page-flags.h>
#include <linux/sched.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include <asm/thread_info.h>
#include <linux/ctype.h>
#include <nss_api_if.h>
#include "profilenode.h"
#include "profpkt.h"
/*
* This is the driver for the NetAP Core profiler. The system interface to the driver is
* profile_register_performance_counter(), defined in <asm/profile.>
* a set of proc files (proc/profile/<*>), used by the profiler daemon
*
* communication between the profiler components is described in a set of header files.
* There are multiple versions of these files that must be kept synchronized:
* in nss/source/pkg/profile
* in tools/profiler
* in qsdk/qca/src/qca-nss-drv/profiler
*
* profilesample.h specifies the sample format used by pkg/profile, profile driver, and ip3kprof (two versions)
* profilenode.h specifies the driver node communication between NetAP and the profile driver. (two versions)
* profpkt.h specifies the network packet format between the profile driver, profile daemon, and ip3kprof (two versions)
*
*
* NSS profile sampler:
* pkg/profile/src/profile.c
* pkg/profile/include/profilenode.h
* pkg/profile/include/profilesample.h
*
* profile driver: this code
* qsdk/qca/src/qca-nss-drv/profiler
*
* profilerd: the user daemon that sends data to the tool
* qsdk/qca/feeds/qca/utils/profilerd
*
* ubicom32-prof: the Windows tool
* tools/profiler/src/(many files)
*
*/
#ifdef PROFILE_DEBUG
#define profileDebug(s, ...) pr_debug("%s[%d]: " s, __func__, __LINE__, ##__VA_ARGS__)
#define profileInfo(s, ...) pr_info("%s[%d]: " s, __func__, __LINE__, ##__VA_ARGS__)
#else
#define profileDebug(s, ...)
#define profileInfo(s, ...)
#endif
#define profileWarn(s, ...) pr_warn("%s[%d]: " s, __func__, __LINE__, ##__VA_ARGS__)
static void profiler_handle_reply(struct nss_ctx_instance *nss_ctx, struct nss_cmn_msg *ncm);
/*
* LINUX and Ultra counters must all fit in one packet
*/
#define PROFILE_LINUX_MAX_COUNTERS 40
#define PROFILE_STS_EVENT_COUNTERS 8
#define PROFILE_STS_EVENT_THREAD_BITS 5
static int profile_num_counters = 0;
static volatile unsigned int *profile_counter[PROFILE_LINUX_MAX_COUNTERS];
static char profile_name[PROFILE_LINUX_MAX_COUNTERS][PROFILE_COUNTER_NAME_LENGTH];
/*
* internal function to check if @name has been registered before
* return the found index, or -1 otherwise
*/
static int __profile_find_entry(char *name)
{
int i;
for (i = 0; i < profile_num_counters; i++) {
if (!strncasecmp(name, profile_name[i], PROFILE_COUNTER_NAME_LENGTH)) {
return i;
}
}
return -1;
}
/*
* profile_register_performance_counter - register @counter into profile tracking list by key @name
* @counter: pointer of the counter variable
* @name: identifier of this counter
*
* Returns zero if total entries exceeding PROFILE_LINUX_MAX_COUNTERS
* non-zero otherwise.
*
* Each @name gives unique entry for @counter, by allocating a new array slot or just use existing one.
* No need of de-registration API, since a loadable module's new insmod, will replace the
* @counter's * new address at the same profile_counter[] slot.
*/
int profile_register_performance_counter(volatile unsigned int *counter, char *name)
{
int i;
if (profile_num_counters >= PROFILE_LINUX_MAX_COUNTERS) {
return 0;
}
i = __profile_find_entry(name);
if (i < 0) {
i = profile_num_counters++;
}
profile_counter[i] = counter;
strlcpy(profile_name[i], name, PROFILE_COUNTER_NAME_LENGTH);
profile_name[i][PROFILE_COUNTER_NAME_LENGTH - 1] = 0;
return 1;
}
/*
* profile_make_data_packet
* Make a packet full of sample data
*/
static int profile_make_data_packet(char *buf, int blen, struct profile_io *pn)
{
int sp_samples = 0; /* separated samples if any */
int ns; /* number of samples requested */
struct profile_header ph;
struct nss_profile_sample_ctrl *psc_hd = &pn->pnc.pn2h->psc_header;
if (blen < sizeof(ph) + sizeof(struct nss_profile_sample)) {
return -EINVAL;
}
profileInfo("%px stat %x cnt %d %px\n", pn->pnc.pn2h, pn->pnc.pn2h->mh.md_type, psc_hd->ps_count, pn->ccl);
if (pn->pnc.pn2h->mh.md_type == PINGPONG_EMPTY || psc_hd->ps_count < 1) {
struct nss_profile_n2h_sample_buf *nsb;
ns = (pn->ccl_read + 1) & (CCL_SIZE-1);
nsb = pn->ccl + ns;
if (ns == pn->ccl_write || nsb->mh.md_type != PINGPONG_FULL) {
profileInfo("waiting more data %x %px : ns %d rd %d wr %d\n", nsb->mh.md_type, nsb, ns, pn->ccl_read, pn->ccl_write);
return -EAGAIN;
}
pn->ccl_read = ns;
profileInfo("sp %px => %px rd %d %px\n", pn->pnc.samples, nsb->samples, ns, nsb);
psc_hd = &nsb->psc_header;
pn->pnc.pn2h = nsb;
pn->pnc.samples = nsb->samples;
pn->pnc.cur = 0;
}
pn->pnc.pn2h->mh.md_type = PINGPONG_INUSE;
/*
* fill in the packet header
*/
memset(&ph, 0, sizeof(ph));
ph.pph.magic = htons(PROF_MAGIC + PROFILE_VERSION);
ph.pph.header_size = sizeof(ph);
ph.pph.profile_instructions = 0;
ph.pph.clock_freq = pn->pnc.un.cpu_freq;
ph.pph.ddr_freq = pn->pnc.un.ddr_freq;
ph.pph.cpu_id = pn->pnc.un.cpu_id;
ph.pph.seq_num = htonl(pn->profile_sequence_num);
ph.pph.sample_stack_words = NSS_PROFILE_STACK_WORDS;
ns = (blen - sizeof(ph)) / sizeof(struct nss_profile_sample);
profileInfo("%X: blen %d ns = %d psc_hd count %d ssets %d phs %zu pss %zu\n",
pn->profile_sequence_num, blen, ns, psc_hd->ps_count,
psc_hd->ex_hd.sample_sets, sizeof(ph), sizeof(struct nss_profile_sample));
if (ns > psc_hd->ps_count)
ns = psc_hd->ps_count;
if (ns == 0) {
printk("NS should not be 0: rlen %d hd cnt %d\n", blen, psc_hd->ps_count);
return 0;
}
/*
* if buf cannot hold all samples, then samples must be separated by set.
*/
if (ns < psc_hd->ps_count) {
ph.exh.sets_map = psc_hd->ex_hd.sets_map; /* save for separating sets */
do {
sp_samples += psc_hd->ex_hd.sets_map & 0x0F;
psc_hd->ex_hd.sets_map >>= 4; /* remove the last set */
psc_hd->ex_hd.sample_sets--;
ph.exh.sample_sets++; /* save for restore later */
} while ((psc_hd->ps_count - sp_samples) > ns);
ns = psc_hd->ps_count - sp_samples;
}
ph.pph.sample_count = ns;
if (copy_to_user(buf, &ph.pph, sizeof(ph.pph)) != 0) {
return -EFAULT;
}
buf += sizeof(ph.pph);
/*
* ph.exh is unused dummy; and psc_hd->ex_hd is used directly to avoid double mem copy
*/
if (copy_to_user(buf, &psc_hd->ex_hd, sizeof(psc_hd->ex_hd)) != 0) {
return -EFAULT;
}
buf += sizeof(psc_hd->ex_hd);
blen = ns * sizeof(struct nss_profile_sample);
profileDebug("-profile_make_data_packet %px slen %d cur %d dcped %zd + %zd\n",
pn->pnc.samples, blen, pn->pnc.cur, sizeof(ph.pph), sizeof(psc_hd->ex_hd));
if (copy_to_user(buf, &pn->pnc.samples[pn->pnc.cur], blen) != 0) {
return -EFAULT;
}
pn->pnc.cur += ns;
psc_hd->ps_count -= ns;
if (psc_hd->ps_count < 1)
pn->pnc.pn2h->mh.md_type = PINGPONG_EMPTY;
/*
* restore left over sample counts; 0s for no one
*/
if (sp_samples) {
profileDebug("%d sps %d %d: sets %d : %d map %x <> %x\n", psc_hd->ps_count, ns, sp_samples, psc_hd->ex_hd.sample_sets, ph.exh.sample_sets, psc_hd->ex_hd.sets_map, ph.exh.sets_map);
psc_hd->ex_hd.sample_sets = ph.exh.sample_sets;
psc_hd->ex_hd.sets_map = ph.exh.sets_map;
}
pn->profile_sequence_num++;
blen += sizeof(ph);
profileDebug("+profile_make_data_packet %d phd len %zd nsp %px rd %d cnt %d\n", blen, sizeof(ph), pn->pnc.pn2h, pn->ccl_read, psc_hd->ps_count);
return blen;
}
static void *profiler_get_dma(struct nss_ctx_instance *nss_ctx, struct profile_io *pn)
{
struct nss_profile_sdma_producer *dma;
void *kaddr = nss_profiler_alloc_dma(nss_ctx, &dma);
pn->pnc.un.sram_start = dma->desc_ring;
return kaddr;
}
/*
* This is no longer needed due to NetAP and Linux use different CPUs, and profile is NetAP only.
* All related code will be removed after corresponging code in visual tool is corrected; otherwise
* visual tool will mis-behave
*/
struct profile_counter profile_builtin_stats[] =
{
{
"Free memory(KB)", 0
},
{
"Max free Block(KB)", 0
}
};
/*
* profile_make_stats_packet
* make a packet full of performance counters (software)
*/
static int profile_make_stats_packet(char *buf, int bytes, struct profile_io *pn)
{
static char prof_pkt[NSS_PROFILE_MAX_PACKET_SIZE];
char *ptr;
int n;
struct profile_counter *counter_ptr;
struct profile_header_counters *hdr = (struct profile_header_counters *)prof_pkt;
struct nss_profile_sample_ctrl *psc_hd = &pn->pnc.pn2h->psc_header;
if (bytes > NSS_PROFILE_MAX_PACKET_SIZE) {
bytes = NSS_PROFILE_MAX_PACKET_SIZE;
}
n = sizeof(profile_builtin_stats) + (pn->pnc.un.num_counters + profile_num_counters) * sizeof(*counter_ptr);
if ((bytes - sizeof(hdr)) < n) {
profileWarn("room too small %d for cnts %d\n", bytes, n);
return 0;
}
hdr->magic = htons(PROF_MAGIC_COUNTERS);
hdr->ultra_count = htons(pn->pnc.un.num_counters);
hdr->linux_count = htonl(profile_num_counters + sizeof(profile_builtin_stats) / sizeof(*counter_ptr));
hdr->ultra_sample_time = psc_hd->ex_hd.clocks;
hdr->linux_sample_time = psc_hd->ex_hd.clocks; /* QSDK has no time func */
n = pn->pnc.un.num_counters; /* copy NSS counters */
n *= sizeof(pn->pnc.un.counters[0]);
ptr = (char*) (hdr + 1);
memcpy(ptr, (void *)(pn->pnc.un.counters), n);
ptr += n;
counter_ptr = (struct profile_counter *)ptr;
for (n = 0; n < profile_num_counters; ++n) {
counter_ptr->value = htonl(*profile_counter[n]);
strlcpy(counter_ptr->name, profile_name[n],
PROFILE_COUNTER_NAME_LENGTH);
counter_ptr++;
}
ptr = (char*)counter_ptr;
/*
* built in statistics
profile_get_memory_stats(&total_free, &max_free);
*/
profile_builtin_stats[0].value = 0;
profile_builtin_stats[1].value = 0;
memcpy(ptr, (void *)profile_builtin_stats, sizeof(profile_builtin_stats));
ptr += sizeof(profile_builtin_stats);
n = ptr - prof_pkt;
if (copy_to_user(buf, prof_pkt, n) != 0) {
return -EFAULT;
}
return n;
}
/*
* space for all memory blocks so we can hold locks for short time when walking tables
*/
static struct profile_io *node[NSS_MAX_CORES];
/*
* profile_open
* open function of system call
*/
static int profile_open(struct inode *inode, struct file *filp)
{
int n;
struct profile_io *pn;
if (filp->private_data)
profileWarn("%s: %px\n", filp->f_path.dentry->d_iname, filp->private_data);
n = filp->f_path.dentry->d_iname[strlen(filp->f_path.dentry->d_iname) - 1] - '0';
if (n < 0 || n >= NSS_MAX_CORES)
n = 0;
pn = node[n];
if (!pn) {
return -ENOENT;
}
profileInfo("_open: mode %x flag %x\n", filp->f_mode, filp->f_flags);
if (!pn->pnc.enabled && nss_get_state(pn->ctx) == NSS_STATE_INITIALIZED) {
/*
* sw_ksp_ptr is used as event flag. NULL means normal I/O
*/
pn->sw_ksp_ptr = NULL;
pn->pnc.enabled = 1;
pn->profile_first_packet = 1;
/*
* If profiler is opened in read only mode, it is done by START_MSG
* via debug interface (IF), which reads NSS-FW all registered NSS
* variables.
* Do not start engine (no sampling required) for debug IF.
*/
if (FMODE_READ & filp->f_mode) {
nss_tx_status_t ret;
pn->pnc.un.hd_magic = NSS_PROFILE_HD_MAGIC | NSS_PROFILER_START_MSG;
ret = nss_profiler_if_tx_buf(pn->ctx, &pn->pnc.un,
sizeof(pn->pnc.un), profiler_handle_reply, pn);
profileInfo("%s: %d -- %px: ccl %px sp %px\n", __func__, ret,
pn, pn->ccl, pn->pnc.samples);
}
filp->private_data = pn;
return 0;
}
profileWarn("profile ena %d nss stat %x\n", pn->pnc.enabled,
nss_get_state(pn->ctx));
return -EBUSY;
}
/*
* profile_read
* read syscall
*
* return a udp packet ready to send to the profiler tool
* when there are no packets left to make, return 0
*/
static ssize_t profile_read(struct file *filp, char *buf, size_t count, loff_t *f_pos)
{
int result = 0;
int slen = 0;
struct profile_io *pn = (struct profile_io *)filp->private_data;
if (!pn) {
return -ENOENT;
}
if (!pn->pnc.enabled) {
return -EPERM;
}
if (pn->sw_ksp_ptr) {
struct debug_box *db = (struct debug_box *) pn->sw_ksp_ptr;
if ((void*)db != (void*)pn) {
profileWarn("%px: hwe data not ready %px\n", pn, db);
return -EAGAIN;
}
profileWarn("dbda %px: %x %x %x %x %x\n", db->data,
db->data[0], db->data[2], db->data[4], db->data[6], db->data[7]);
slen = (PROFILE_STS_EVENT_COUNTERS + 1) * sizeof(db->data[0]);
if (copy_to_user(buf, db->data, slen))
return -EFAULT;
profileInfo("%px: sw_ksp_ptr %px slen %d\n", pn, pn->sw_ksp_ptr, slen);
return slen;
}
if (!pn->pnc.samples) {
profileWarn("DEBUG %px: NULL samples\n", pn);
return -ENOMEM;
}
if (pn->profile_first_packet) {
result = profile_make_stats_packet(buf, count, pn);
pn->profile_first_packet = 0;
profileInfo("%d profile_make_stats_packet %zd\n", result, count);
#ifdef PROFILE_SEP_STAT
/*
* currectly, stat and sample data are combined in one pkt for efficient;
* but this is harder to debug and required remote tool to handle
* packet in all-in-one method instead of individual handler.
*/
return result;
#endif
}
if (result > 0) {
buf += result;
count -= result;
slen = result;
}
result = profile_make_data_packet(buf, count, pn);
if (result == 0) {
pn->profile_first_packet = 1;
}
profileInfo("%d: profile_make_data_packet %zd %d\n", result, count, slen);
profileInfo("%d: read\n", pn->pnc.enabled);
if (pn->pnc.enabled < 0) {
nss_tx_status_t ret;
pn->pnc.enabled = 1;
pn->pnc.un.hd_magic = NSS_PROFILE_HD_MAGIC | NSS_PROFILER_START_MSG;
ret = nss_profiler_if_tx_buf(pn->ctx, &pn->pnc.un, sizeof(pn->pnc.un),
profiler_handle_reply, pn);
profileWarn("%s: restart %d -- %px: ccl %px sp %px\n", __func__,
ret, pn, pn->ccl, pn->pnc.samples);
}
return result + slen;
}
/*
* profile_release
* the close syscall paired with profiler_open
*/
static int profile_release(struct inode *inode, struct file *filp)
{
struct profile_io *pn = (struct profile_io *)filp->private_data;
if (!pn) {
return -ENOENT;
}
if (pn->pnc.enabled) {
nss_tx_status_t ret;
pn->sw_ksp_ptr = NULL;
pn->pnc.enabled = 0;
pn->pnc.un.hd_magic = NSS_PROFILE_HD_MAGIC | NSS_PROFILER_STOP_MSG;
ret = nss_profiler_if_tx_buf(pn->ctx, &pn->pnc.un,
sizeof(pn->pnc.un), profiler_handle_reply, pn);
profileInfo("%s: %px %d\n", __func__, pn, ret);
return 0;
}
profileWarn("%s: attempt closing non-open dev %px\n", __func__, pn);
pn->profile_first_packet = 1;
return -EBADF;
}
#ifndef __aarch64__
/*
* counter_rate_by_uint32
* helper function for handling 64-bit calculation in 32-bit mode
*
* 32-bit kernel does not have 64-bit div function;
* to avoid overflow and underflow, use if branch
* to overcome this problem: slower bur more accurate.
*/
static void counter_rate_by_uint32(struct nss_profile_common *pnc)
{
static uint32_t prev_cnts[32];
static uint32_t last_uclk;
uint32_t mclk, uclk, ubi32_freq;
int n = pnc->un.num_counters;
ubi32_freq = htonl(pnc->un.cpu_freq) / 1000000;
uclk = pnc->un.rate - last_uclk;
last_uclk = pnc->un.rate;
printk("%d nss counters: clk dif %u freq %u\n", n, uclk, ubi32_freq);
/*
* exactly 4G? make it maximum
*/
if (!uclk)
uclk--;
while (n--) {
uint32_t v_dif;
uint32_t v = ntohl(pnc->un.counters[n].value);
uint32_t pv = prev_cnts[n];
prev_cnts[n] = v;
v_dif = v - pv;
/*
* threshold = MAX_UINT32 / MAX_Ubi32CPU_CLK (MHz)
* if counter diff is less then this threshold,
* 32-bit calculation can be directly applied w/o o/u flow;
* otherwise, tick diff (uclk) adjust needs to be done before
* calculating the rate to avoid over/under flow.
*/
if (v_dif < (UINT_MAX / ubi32_freq)) {
v_dif = (v_dif * ubi32_freq) / (uclk / 1000000);
} else {
/*
* assume fast polling is 200ms, @ 500MHz, the minimum
* uclk value is 0.5M * 200 = 10M, so reduce by 1M
* it will still have value in 10, not zero (0).
* in 2.3GHz and 1 sec interval, the residual is 2300.
* The maximum polling interval is 2 sec for 2.3GHz,
* and 3 sec for 1.7GHz.
*/
if (uclk > 1000000) {
mclk = uclk / 1000000;
v_dif = (v_dif / mclk) * ubi32_freq;
} else {
mclk = uclk / 1000;
v_dif = (v_dif / mclk) * ubi32_freq * 1000;
}
}
printk("%-32s 0x%08X %10u : %u/s\n",
pnc->un.counters[n].name, v, v, v_dif);
}
}
#endif
/*
* profiler_handle_counter_event_reply()
* get reply from firmware for current FW stat event counter configurations
*
* Based on firmware CPU clock (cpu_freq), calculate the counter change rate in
* second and print both counter value and its rate.
*/
static void profiler_handle_counter_event_reply(struct nss_ctx_instance *nss_ctx,
struct nss_cmn_msg *ncm)
{
struct profile_io *pio = (struct profile_io *) ncm->app_data;
struct nss_profile_common *pnc = &pio->pnc;
#ifndef __aarch64__
counter_rate_by_uint32(pnc);
#else
static uint32_t prev_cnts[32];
static uint32_t last_uclk;
uint32_t ubi32_freq;
uint32_t uclk;
int n = pnc->un.num_counters;
ubi32_freq = htonl(pnc->un.cpu_freq);
uclk = pnc->un.rate - last_uclk;
last_uclk = pnc->un.rate;
printk("%d nss counters: clk dif %u freq %u\n", n, uclk, ubi32_freq);
while (n--) {
uint32_t v = ntohl(pnc->un.counters[n].value);
uint32_t pv = prev_cnts[n];
prev_cnts[n] = v;
printk("%-32s 0x%08X %10u : %llu/s\n",
pnc->un.counters[n].name, v, v,
(uint64_t)(v - pv) * ubi32_freq / uclk);
}
#endif
}
/*
* parseDbgCmd()
* process debugging command(s).
*
* Currently supported command:
* "=show-nss-counter" display all values of nss variables registered
* by profile_register_performance_counter(&v, name)
*/
#define SHOW_COUNTER_CMD "show-nss-counter"
static int parseDbgCmd(const char *buf, size_t count,
struct debug_box *db, struct profile_io *pio)
{
int result;
if (strncmp(buf, SHOW_COUNTER_CMD, min(sizeof(SHOW_COUNTER_CMD)-1, count))) {
printk(KERN_ERR "%s: unsupported cmd %s %zu\n",
__func__, buf, strlen(buf));
return -EINVAL;
}
db->hd_magic = NSS_PROFILE_HD_MAGIC | NSS_PROFILER_COUNTERS_MSG;
result = nss_profiler_if_tx_buf(pio->ctx, &pio->pnc.un,
sizeof(pio->pnc.un),
profiler_handle_counter_event_reply, pio);
profileInfo("%s: %d\n", __func__, result);
return result == NSS_TX_SUCCESS ? count : -EFAULT;
}
/*
* profiler_handle_stat_event_reply()
* print current FW stat event counter configurations
*/
static void profiler_handle_stat_event_reply(struct nss_ctx_instance *nss_ctx,
struct nss_cmn_msg *ncm)
{
struct profile_io *pio = (struct profile_io *) ncm->app_data;
struct debug_box *pdb = (struct debug_box *) &pio->pnc;
struct debug_box *db = (struct debug_box *) &ncm[1];
int i, thrds;
for (i = 0; i < db->dlen; i++)
printk("stat counter %d: %x\n", i, db->data[i]);
thrds = db->data[i];
i = (1 << PROFILE_STS_EVENT_THREAD_BITS) - 1;
profileInfo("%d: event end mark %x, ThrA %d ThrB %d\n",
ncm->len, thrds, (thrds & i) + 1,
((thrds >> PROFILE_STS_EVENT_THREAD_BITS) & i) + 1);
/*
* save data for read()
*/
memcpy(pdb->data, db->data, (db->dlen + 1) * sizeof(db->data[0]));
pio->sw_ksp_ptr = (uint32_t *)pdb;
}
/*
* parse_sys_stat_event_req()
* process FW stat events request: event#1 index#1 event#2 index#2 ...
*/
static int parse_sys_stat_event_req(const char *buf, size_t count,
struct debug_box *db, struct profile_io *pio)
{
char *cp;
int result;
printk("%zd cmd buf %s\n", count, buf);
if (count < 19) /* minimum data for sys_stat_event request */
return -EINVAL;
if (strncmp(buf, "get-sys-stat-events", 19) == 0) {
db->hd_magic = NSS_PROFILE_HD_MAGIC | NSS_PROFILER_GET_SYS_STAT_EVENT;
result = nss_profiler_if_tx_buf(pio->ctx, &pio->pnc.un,
sizeof(pio->pnc.un),
profiler_handle_stat_event_reply, pio);
profileInfo("get_sys_stat_events: %d\n", result);
return result == NSS_TX_SUCCESS ? count : -EFAULT;
}
if (strncmp(buf, "set-sys-stat-events", 19)) {
printk("unknow event: %s\n", buf);
return -EINVAL;
}
db->dlen = sizeof(pio->pnc.un);
memset(db->data, 0, PROFILE_STS_EVENT_COUNTERS * sizeof(db->data[0]));
cp = strchr(buf, ' ');
if (!cp) {
printk("no enough paramters %s\n", buf);
return -EINVAL;
}
do {
unsigned long idx;
int event, e5x;
char *kstrp;
while (isspace(*cp))
cp++;
kstrp = strchr(cp, ' ');
if (!kstrp) {
printk(KERN_ERR "%px missing index %px %s\n", buf, cp, cp);
return -EINVAL;
}
kstrp[0] = 0;
/*
* kstrtoul bugs:
* it does not use white space for delimiter.
* it cannot use base 0, thus base 10 only.
*/
event = kstrtoul(cp, 10, &idx);
if (event) {
printk(KERN_ERR "kstrtoul %d: %s\n", event, cp);
return -EINVAL;
}
event = idx;
/*
* Processing thread specific events, which requires hex values.
* Because kstrtoul cannot use base 0, it makes this task harder
* in user space. Users need to convert hex value to decimal, then
* pass them in userland command event-counter.
*/
e5x = event >> 16;
if (e5x) {
if ((event & 0x1FF) < 50) {
printk(KERN_INFO "thr ID (%d) ignored for event %d\n",
e5x, event & 0x1FF);
} else if (e5x > 12) {
if ((e5x >>= 5) > 12) {
printk(KERN_INFO "tID %d too big [1..12]\n", e5x);
return -E2BIG;
}
}
}
cp = kstrp + 1;
while (isspace(*cp))
cp++;
kstrp = strchr(cp, ' ');
if (kstrp) {
kstrp[0] = 0;
kstrp++;
}
if (kstrtoul(cp, 10, &idx) || idx < 0 || idx > 7) {
printk(KERN_ERR "bad index %ld [0..7]\n", idx);
return -ERANGE;
}
printk(KERN_INFO "%px: e %d i %ld\n", db, event, idx);
db->data[idx] = event;
cp = kstrp;
} while (cp);
db->hd_magic = NSS_PROFILE_HD_MAGIC | NSS_PROFILER_SET_SYS_STAT_EVENT;
result = nss_profiler_if_tx_buf(pio->ctx, &pio->pnc.un, sizeof(pio->pnc.un),
profiler_handle_stat_event_reply, pio);
profileInfo("%px: %zd send cmd %x to FW ret %d\n",
db, count, db->hd_magic, result);
return count;
}
/*
* parseDbgData()
* parsing debug requests: base_address [options] cmd length
*
* cmd is either read or write
* option is one of mio, moveio, h [heap security verify], etc.
*/
static int parseDbgData(const char *buf, size_t count, struct debug_box *db)
{
char *cp;
int n;
printk("%px %px: buf (%s) cnt %zd\n", db, buf, buf, count);
if (sscanf(buf, "%x", (uint32_t *)&db->base_addr) != 1) {
printk("%s: cannot get base addr\n", __func__);
return -EINVAL;
}
cp = strchr(buf, ' ');
if (!cp) {
noea: printk("%s: no enough arguments\n", __func__);
return -EFAULT;
}
while (isspace(*cp)) cp++;
if (!strncmp(cp, "mio", 3) || !strncmp(cp, "moveio", 6)) {
printk("%px: cp (%s)\n", cp, cp);
cp = strchr(cp, ' ');
if (!cp) {
goto noea;
}
db->opts |= DEBUG_OPT_MOVEIO;
}
while (isspace(*cp)) cp++;
printk("base addr %X -- %s", db->base_addr, cp);
if (!strncmp(cp, "read", 4)) {
cp = strchr(cp, ' ');
if (cp) {
while (isspace(*cp)) cp++;
sscanf(cp, "%x", &db->dlen);
}
return 0;
}
n = 0;
do {
while (isspace(*cp)) cp++;
if (sscanf(cp, "%x", db->data+n) != 1) {
printk("n %d : %s\n", n, cp);
break;
}
printk("write %x to off %zx\n", db->data[n], n * sizeof(db->data[0]));
n++;
cp = strchr(cp, ' ');
} while (cp && n < MAX_DB_WR);
return n;
}
/*
* debug_if_show
* display memory content read from Phy addr
*/
static void debug_if_show(struct debug_box *db, int buf_len)
{
int i;
for (i=0; i < db->dlen; i++) {
if ((i & 3) == 0)
printk("\n%zX: ", db->base_addr + i * sizeof(db->base_addr));
printk("%9x", db->data[i]);
}
printk("\ndumped %d (extra 1) blen %d\n", db->dlen, buf_len);
}
/*
* profiler_handle_debug_reply
* show debug message we requested from NSS
*/
static void profiler_handle_debug_reply(struct nss_ctx_instance *nss_ctx, struct nss_cmn_msg *ncm)
{
debug_if_show((struct debug_box*)&ncm[1], ncm->len);
}
/*
* debug_if
* a generic Krait <--> NSS debug interface
*/
static ssize_t debug_if(struct file *filp,
const char __user *ubuf, size_t count, loff_t *f_pos)
{
char *buf;
int result;
struct debug_box *db;
struct profile_io *pio = (struct profile_io *)filp->private_data;
if (!pio) {
return -ENOENT;
}
if (!pio->pnc.enabled) {
return -EPERM;
}
buf = kmalloc(count, GFP_KERNEL);
if (!buf)
return -ENOMEM;
if (copy_from_user(buf, ubuf, count)) {
kfree(buf);
printk(KERN_ERR "copy_from_user\n");
return -EIO;
}
buf[count-1] = 0;
db = (struct debug_box *) &pio->pnc;
db->dlen = db->opts = 0;
/*
* process possible commands
*/
if (buf[0] == '=') {
result = parseDbgCmd(buf+1, count, db, pio);
kfree(buf);
return result;
}
/*
* process stat_event request: display/change
*/
if (!isdigit(buf[0])) {
result = parse_sys_stat_event_req(buf, count, db, pio);
kfree(buf);
if ((result > 0) && (filp->f_flags & O_RDWR)) {
/*
* set flag so event-counter can read the data from FW
*/
pio->sw_ksp_ptr = db->data;
}
return result;
}
/*
* process memory I/O for debug
*/
result = parseDbgData(buf, count, db);
kfree(buf);
if (result < 0) {
return result;
}
if (!result) {
db->hd_magic = NSS_PROFILE_HD_MAGIC | NSS_PROFILER_DEBUG_RD_MSG;
} else {
db->hd_magic = NSS_PROFILE_HD_MAGIC | NSS_PROFILER_DEBUG_WR_MSG;
db->dlen = result;
}
result = nss_profiler_if_tx_buf(pio->ctx, &pio->pnc.un,
sizeof(pio->pnc.un), profiler_handle_debug_reply, pio);
printk("dbg res %d dlen = %d opt %x\n", result, db->dlen, db->opts);
return count;
}
static const struct file_operations profile_fops = {
.open = profile_open,
.read = profile_read,
.release = profile_release,
.write = debug_if,
};
/*
* showing sample status on Linux console
*/
static int profile_rate_show(struct seq_file *m, void *v)
{
struct profile_io *pn = node[0];
if (pn) {
struct nss_profile_sample_ctrl *psc_hd = &pn->pnc.pn2h->psc_header;
seq_printf(m, "%d samples per second. %d ultra, %d linux virtual counters. %d dropped samples. %d queued of %d max sampels. %d sent packets.\n",
pn->pnc.un.rate, pn->pnc.un.num_counters, profile_num_counters, psc_hd->ps_dropped, psc_hd->ps_count, psc_hd->ps_max_samples, pn->profile_sequence_num);
} else {
seq_printf(m, "Profiler is not initialized.\n");
}
return 0;
}
static int profile_rate_open(struct inode *inode, struct file *filp)
{
return single_open(filp, profile_rate_show, NULL);
}
static ssize_t profile_rate_write(struct file *filp, const char *buf, size_t len, loff_t *off)
{
*off = 0;
return 0;
}
static const struct file_operations profile_rate_fops = {
.open = profile_rate_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = profile_rate_write,
};
/*
* hexdump
* hex dump for debug
*/
static void kxdump(void *buf, int len, const char *who)
{
int32_t *ip = (int32_t *) buf;
int lns = len >> 5; /* 32-B each line */
if (lns > 8)
lns = 8;
printk("%px: kxdump %s: len %d\n", buf, who, len);
do {
printk("%x %x %x %x %x %x %x %x\n", ip[0], ip[1], ip[2], ip[3], ip[4], ip[5], ip[6], ip[7]);
ip += 8;
} while (lns--);
}
/*
* profiler_magic_verify
* check magic # and detect Endian.
*
* negtive return means failure.
* return 1 means need to ntoh swap.
*/
static int profiler_magic_verify(struct nss_profile_sample_ctrl *psc_hd, int buf_len)
{
int swap = 0;
if ((psc_hd->psc_magic & NSS_PROFILE_HD_MMASK) != NSS_PROFILE_HD_MAGIC) {
if ((psc_hd->psc_magic & NSS_PROFILE_HD_MMASK_REV) != NSS_PROFILE_HD_MAGIC_REV) {
kxdump(psc_hd, buf_len, "bad profile packet");
printk("bad profile HD magic 0x%x : %d\n",
psc_hd->psc_magic, buf_len);
return -1;
}
profileDebug("Profile data in different Endian type %x\n", psc_hd->psc_magic);
swap = 1;
psc_hd->psc_magic = ntohl(psc_hd->psc_magic);
}
return swap;
}
/*
* profile_handle_nss_data
* process profile sample data from NSS
*/
static void profile_handle_nss_data(void *arg, struct nss_profiler_msg *npm)
{
int buf_len = npm->cm.len;
void *buf = &npm->payload;
struct profile_io *pn;
struct nss_profile_n2h_sample_buf *nsb;
struct nss_profile_sample_ctrl *psc_hd = (struct nss_profile_sample_ctrl *)buf;
int ret, wr;
int swap = 0; /* only for header and info data, not samples */
if (buf_len < (sizeof(struct nss_profile_session) - sizeof(struct profile_counter) * (PROFILE_MAX_APP_COUNTERS))) {
profileWarn("%px: profile data packet is too small to be useful %d %x psc_hd %px\n",
npm, buf_len, npm->cm.interface, psc_hd);
return;
}
swap = profiler_magic_verify(psc_hd, buf_len);
if (swap < 0) {
return;
}
pn = (struct profile_io *)arg;
profileDebug("PN %px CM msg %d len %d\n", pn, npm->cm.type, buf_len);
profileInfo("%s: dlen %d swap %d cmd %x - %d\n", __func__, buf_len, swap, npm->cm.type, (pn->ccl_read - pn->ccl_write) & (CCL_SIZE-1));
//kxdump(buf, buf_len, "process profile packet");
if (npm->cm.type == NSS_PROFILER_FIXED_INFO_MSG) {
struct nss_profile_session *pTx = (struct nss_profile_session *)buf;
if (swap) {
pn->pnc.un.rate = ntohl(pTx->rate);
pn->pnc.un.cpu_id = ntohl(pTx->cpu_id);
pn->pnc.un.cpu_freq = ntohl(pTx->cpu_freq);
pn->pnc.un.ddr_freq = ntohl(pTx->ddr_freq);
pn->pnc.un.num_counters = pTx->num_counters;
} else {
pn->pnc.un = *pTx;
}
memcpy(pn->pnc.un.counters, pTx->counters, pn->pnc.un.num_counters * sizeof(pn->pnc.un.counters[0]));
pn->profile_first_packet = 1;
return;
}
wr = (pn->ccl_write + 1) & (CCL_SIZE-1);
nsb = pn->ccl + wr;
swap = (pn->ccl_read - wr) & (CCL_SIZE-1); /* PROFILER_FLOWCTRL */
if (nsb->mh.md_type != PINGPONG_EMPTY || (swap && swap < 5)) {
if (pn->pnc.enabled > 0) {
pn->pnc.enabled = -1;
pn->pnc.un.hd_magic = NSS_PROFILE_HD_MAGIC | NSS_PROFILER_STOP_MSG;
ret = nss_profiler_if_tx_buf(pn->ctx,
&pn->pnc.un, sizeof(pn->pnc.un),
profiler_handle_reply, pn);
profileWarn("%d temp stop sampling engine %d\n", swap, ret);
}
if (swap < 3) {
profileWarn("w%px.%d: %d no room for new profile samples r%px.%d\n", nsb, wr, swap, pn->ccl+pn->ccl_read, pn->ccl_read);
return; /* -EMSGSIZE */
}
}
pn->ccl_write = wr;
/*
* sampling data -- hdr NBO swap is done at NSS side via SWAPB.
*/
memcpy(&nsb->psc_header, buf, buf_len); /* pn->pnc.pn2h->psc_header = *psc_hd; maybe faster, but take more memory */
nsb->mh.md_type = PINGPONG_FULL;
/*
* ask for perf_counters (software counters) update every 32 samples
*/
if (!wr) {
pn->pnc.un.hd_magic = NSS_PROFILE_HD_MAGIC | NSS_PROFILER_COUNTERS_MSG;
ret = nss_profiler_if_tx_buf(pn->ctx, &pn->pnc.un,
sizeof(pn->pnc.un), profiler_handle_reply, pn);
if (ret == NSS_TX_FAILURE)
printk("req counters Cmd failed %d %d\n", ret, wr);
}
profileInfo("filled %px %px wr %d\n", nsb, nsb->samples, pn->ccl_write);
}
/*
* profiler_dma_handler
* Handle DMA interrupt, and map DMA to N2H to minimize changes
* in profile_handle_nss_data.
*/
static void profiler_dma_handler(void *arg)
{
int cri, idx, widx;
struct nss_profiler_msg *npm;
struct nss_profile_sdma_consumer *cbc;
struct nss_profile_sdma_producer *dma;
struct profile_io *pn = (struct profile_io *)arg;
struct nss_profile_sdma_ctrl *ctrl = nss_profile_dma_get_ctrl(pn->ctx);
if (!ctrl) {
profileWarn("%px: cannot get dma ctrl block\n", pn->ctx);
return;
}
dma = ctrl->producer;
cbc = ctrl->consumer;
cri = ctrl->cur_ring;
idx = ctrl->cidx[cri];
widx = ctrl->pidx[cri];
if (idx == widx) {
profileInfo("%px: dma[%d]%d %px sz %d no more profile data %px (%zd)\n",
ctrl, cri, idx, dma, dma->buf_size,
cbc->ring.kp + idx * dma->buf_size, sizeof(*ctrl));
return;
}
do {
npm = cbc->ring.kp + idx * dma->buf_size;
dmac_inv_range(npm, &npm->payload);
dsb(sy);
dmac_inv_range(&npm->payload, (void *)&npm->payload + npm->cm.len);
dsb(sy);
profile_handle_nss_data(pn, npm);
idx = (idx + 1) & (dma->num_bufs - 1);
} while (idx != widx);
ctrl->cidx[cri] = idx;
profileInfo("flush %px %px r %d w %d(%d)\n", cbc, cbc->ring.kp, idx, widx, ctrl->pidx[cri]);
dmac_clean_range(ctrl->cidx + cri, ctrl->cidx + cri + 1);
dsb(sy);
}
/*
* profiler_handle_reply
* process N2H reply for message we sent to NSS
*/
static void profiler_handle_reply(struct nss_ctx_instance *nss_ctx, struct nss_cmn_msg *ncm)
{
switch (ncm->response) {
default:
if (ncm->error == PROFILE_ERROR_NO_DMA) {
struct nss_profile_sdma_consumer *cbc;
struct nss_profile_sdma_ctrl *ctrl;
struct profile_io *pn = node[0];
if (!pn || pn->ctx != nss_ctx) {
pn = node[1];
if (!pn || pn->ctx != nss_ctx)
return;
}
ctrl = nss_profile_dma_get_ctrl(nss_ctx);
if (!ctrl) {
profileWarn("%px: profiler can't get DMA\n", nss_ctx);
return;
}
cbc = ctrl->consumer;
cbc->ring.kp = profiler_get_dma(nss_ctx, pn);
if (cbc->ring.kp) {
pn->pnc.un.hd_magic = NSS_PROFILE_HD_MAGIC | NSS_PROFILER_START_MSG;
if (nss_profiler_if_tx_buf(pn->ctx, &pn->pnc.un,
sizeof(pn->pnc.un), profiler_handle_reply, pn)
== NSS_TX_SUCCESS)
return;
}
}
profileWarn("%px: profiler had error response %d\n", nss_ctx, ncm->response);
/*
* fail through -- no plan to do anything yet
*/
case NSS_CMN_RESPONSE_ACK:
return;
}
}
/*
* profile_prepare_dma()
* Allocate DMA for profile if no DMA allocated; then register
* callback to handle interrupt for reading samples.
*/
static bool profile_prepare_dma(struct profile_io *node)
{
struct nss_profile_sdma_ctrl *ctrl = nss_profile_dma_get_ctrl(node->ctx);
if (!ctrl)
return 0;
if (!ctrl->consumer[0].ring.kp)
ctrl->consumer[0].ring.kp = profiler_get_dma(node->ctx, node);
/*
* register_noncd_cb will not fail since (!ctrl) has been checked above.
* The ctrl is allocated in driver side, so even in impossible event to
* cause register_noncd_cb failed, no need to release dma since calling
* this function will not allocate another DMA if a DMA alerady exists.
*/
return (bool)nss_profile_dma_register_cb(node->ctx, 0, profiler_dma_handler, (void*)node);
}
/*
* profile_init
* initialize basic profile data structure
*/
static void profile_init(struct profile_io *node)
{
int n;
memset(&node->pnc, 0, sizeof(node->pnc));
node->ccl_read = 0;
node->ccl_write = -1;
node->pnc.pn2h = node->ccl;
node->pnc.samples = node->ccl->samples;
for (n = 0; n < CCL_SIZE; n++) {
node->ccl[n].mh.md_type = PINGPONG_EMPTY;
node->ccl[n].psc_header.ps_count = 0;
}
/*
* sw_ksp is an array of pointers to struct thread_info,
* the current task executing for each linux virtual processor
node->sw_ksp_ptr = sw_ksp;
*/
node->sw_ksp_ptr = NULL;
/*
* Old profile info: unused by now
* node->task_offset = offsetof(struct thread_info, task);
* node->pid_offset = offsetof(struct task_struct, tgid);
*/
}
static struct proc_dir_entry *pdir;
/*
* netap_profile_release_resource
* init_module cannot call exit_MODULE, so use this wrapper
*/
void netap_profile_release_resource(void)
{
if (pdir) {
remove_proc_entry("rate", pdir);
remove_proc_entry("data", pdir);
remove_proc_entry("data1", pdir);
}
nss_profile_dma_deregister_cb(node[0]->ctx, 0);
nss_profile_dma_deregister_cb(node[1]->ctx, 0);
nss_profiler_release_dma(node[1]->ctx);
nss_profiler_release_dma(node[0]->ctx);
kfree(node[0]->ccl);
kfree(node[0]);
node[0] = NULL;
}
/*
* netap_profile_init_module
* kernel module entry
*/
int __init netap_profile_init_module(void)
{
#ifdef CONFIG_OF
/*
* If the node is not compatible, don't do anything.
*/
if (!of_find_node_by_name(NULL, "nss-common")) {
return 0;
}
#endif
/*
* we need N nodes, not one node + N ctx, for N cores
*/
node[0] = kmalloc(sizeof(*node[0]) * NSS_MAX_CORES, GFP_KERNEL);
if (!node[0]) {
profileWarn("Profiler CTRL kmalloc failed.\n");
return -ENOMEM;
}
node[0]->ccl = kmalloc(sizeof(*node[0]->ccl) * CCL_SIZE * NSS_MAX_CORES, GFP_KERNEL);
if (!node[0]->ccl) {
profileWarn("Profiler n2h_sample_buf kmalloc failed.\n");
kfree(node[0]);
node[0] = NULL;
return -ENOMEM;
}
/*
* connect to the file system
*/
pdir = proc_mkdir("profile", NULL);
if (!pdir ||
!proc_create("data", 0, pdir, &profile_fops) ||
!proc_create("data1", 0, pdir, &profile_fops) ||
!proc_create("rate", 0, pdir, &profile_rate_fops)) {
netap_profile_release_resource();
return -ENOMEM;
}
profile_init(node[0]);
/*
* attatch the device callback to N2H channel for CPU 0
*/
node[0]->ctx = nss_profiler_notify_register(NSS_CORE_0, profile_handle_nss_data, node[0]);
if (!node[0]->ctx) {
netap_profile_release_resource();
return -ENXIO;
}
profile_prepare_dma(node[0]);
#if NSS_MAX_CORES > 1
node[1] = node[0] + 1;
node[1]->ccl = node[0]->ccl + CCL_SIZE;
profile_init(node[1]);
node[1]->ctx = nss_profiler_notify_register(NSS_CORE_1, profile_handle_nss_data, node[1]);
profile_prepare_dma(node[1]);
profile_register_performance_counter(&node[1]->profile_sequence_num, "Profile1 DRV data packets");
#endif
profile_register_performance_counter(&node[0]->profile_sequence_num, "Profile0 DRV data packets");
return 0;
}
/*
* netap_profile_exit_module
* kernel module exit
*/
void __exit netap_profile_exit_module(void)
{
#ifdef CONFIG_OF
/*
* If the node is not compatible, don't do anything.
*/
if (!of_find_node_by_name(NULL, "nss-common")) {
return;
}
#endif
nss_profiler_notify_unregister(NSS_CORE_0);
#if NSS_MAX_CORES > 1
nss_profiler_notify_unregister(NSS_CORE_1);
#endif
netap_profile_release_resource();
}
module_init(netap_profile_init_module);
module_exit(netap_profile_exit_module);
MODULE_LICENSE("Dual BSD/GPL");