blob: e5bb8133eea2a3eda81db712444400139bd60eb7 [file] [log] [blame]
/*
* FILE NAME cpmodem_shim.c
*
* BRIEF MODULE DESCRIPTION
* Frankendriver - USB to ethernet, ip or PPP controlled via a block driver.
*
* Author: CradlePoint Technology, Inc. <source@cradlepoint.com>
* Ben Kendall <benk@cradlepoint.com>
* Cory Atkin <catkin@cradlepoint.com>
*
* Copyright 2012, CradlePoint Technology, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to:
* Free Software Foundation
* 51 Franklin Street, Fifth Floor
* Boston, MA 02111-1301 USA
*/
// Necessary includes for device drivers
#include <linux/module.h> // Needed by all modules
#include <linux/kernel.h> // Needed for KERN_xxxx
#include <linux/init.h> // Needed for the macros
#include <linux/cdev.h>
#include <linux/slab.h> // kmalloc()
#include <linux/fs.h> // everything...
#include <linux/poll.h>
#include <linux/errno.h> // error codes
#include <linux/types.h> // size_t
#include <linux/proc_fs.h>
#include <linux/fcntl.h>
#include <linux/skbuff.h>
#include <linux/list.h>
#include <linux/if_ether.h>
#include <linux/if_arp.h>
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/inetdevice.h>
#include <linux/ip.h>
#include <net/addrconf.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/spinlock.h>
#include <linux/ktime.h>
/* #include <asm/system.h> // cli(), *_flags */
#include <asm/uaccess.h> // copy_from/to_user
#include <linux/usb.h>
#include <linux/version.h> // LINUX_VERSION_CODE
#include <cpmodem_shim.h>
#include <cpmodem_wrapper.h>
//#define KERNEL_2_6_21 // comment this out for 3.0.29 kernel
/*********************************************** logging and debug ************************************************/
#define RUNTIME_DEBUG_TRACE (1 << 0)
#define RUNTIME_DEBUG_INFO (1 << 1)
#define RUNTIME_DEBUG_WARN (1 << 2)
#define RUNTIME_DEBUG_ERROR (1 << 3)
#define RUNTIME_LOG 0
#define RUNTIME_ASSERT -1
//#undef RUNTIME_DEBUG
//#define RUNTIME_DEBUG ( /*RUNTIME_DEBUG_TRACE |*/ RUNTIME_DEBUG_INFO | RUNTIME_DEBUG_WARN | RUNTIME_DEBUG_ERROR )
static int cp_lkm_log_level = 0;
#ifdef RUNTIME_DEBUG
static const char *cp_lkm_shim_runtime_debug_level_str[] = {
"ASSERT",
"TRACE",
"INFO",
"WARN",
"ERROR",
};
#else
static const char *cp_lkm_shim_debug_log_level_str[] = {
"ASSERT",
"ERROR",
"WARN",
"INFO",
"TRACE",
"PRINTF"
};
#endif
static int cp_out_get_level_index(int level)
{
int level_index = 0;
while (level) {
level = level >> 1;
level_index++;
}
return level_index;
}
static void cp_out(int level, const char * file, int line, const char *fmt, ...)
{
int file_str_len = 0;
char *file_pos = (char *)file;
char *fmt1;
va_list arg;
int level_index = 0;
const char *level_str = NULL;
const char *kernel_lvl_str = NULL;
if (level>0) { // level of 0 is LOG and -1 is ASSERT - always output
level_index = cp_out_get_level_index(level);
#ifdef RUNTIME_DEBUG
if (!(RUNTIME_DEBUG & level)) {
return;
}
level_str = cp_lkm_shim_runtime_debug_level_str[level_index];
#else
if (!(cp_lkm_log_level & level)) {
return;
}
level_str = cp_lkm_shim_debug_log_level_str[level_index];
#endif
}
switch(level) {
case RUNTIME_DEBUG_TRACE:
kernel_lvl_str = KERN_INFO;
break;
case RUNTIME_DEBUG_INFO:
kernel_lvl_str = KERN_INFO;
break;
case RUNTIME_DEBUG_WARN:
kernel_lvl_str = KERN_WARNING;
break;
case RUNTIME_DEBUG_ERROR:
kernel_lvl_str = KERN_ERR;
break;
case RUNTIME_LOG:
kernel_lvl_str = KERN_INFO;
break;
case RUNTIME_ASSERT:
kernel_lvl_str = KERN_ERR;
break;
default:
kernel_lvl_str = KERN_INFO;
break;
}
va_start(arg, fmt);
if (file) {
char *pos = (char *)file;
while ((pos = strchr(pos, '/'))) {
pos++;
file_pos = pos;
}
file_str_len = strlen(file_pos);
}
fmt1 = kmalloc(strlen(fmt) + file_str_len + 12 + 6 + 2, GFP_ATOMIC); // +6 for debug type indication, +2 for linux syslog level
if (!fmt1) {
return;
}
if (level_str) {
if (file) {
sprintf(fmt1, "%s%6s %s(%4d):%s\n", kernel_lvl_str, level_str, file_pos, line, fmt);
} else {
sprintf(fmt1, "%s%6s %s\n", kernel_lvl_str, level_str, fmt);
}
} else {
if (file) {
sprintf(fmt1, "%s%s(%4d):%s\n", kernel_lvl_str, file_pos, line, fmt);
} else {
sprintf(fmt1, "%s%s\n", kernel_lvl_str, fmt);
}
}
vprintk(fmt1, arg);
kfree(fmt1);
va_end(arg);
}
#ifdef RUNTIME_DEBUG
// assert is always defined if RUNTIME_DEBUG is defined
// bad idea to kill things in kernel, so we just print the assert msg and keep going
#define DEBUG_ASSERT(a, args...) \
if (!(a)) { \
printk(KERN_ERR "\n!!! CPMODEM_SHIM ASSERT !!!\n"); \
cp_out(RUNTIME_ASSERT, __FILE__, __LINE__, args); \
dump_stack(); \
}
#define DEBUG_TRACE(args...) cp_out(RUNTIME_DEBUG_TRACE, __FILE__, __LINE__, args)
#define DEBUG_INFO(args...) cp_out(RUNTIME_DEBUG_INFO, __FILE__, __LINE__, args)
#define DEBUG_WARN(args...) cp_out(RUNTIME_DEBUG_WARN, __FILE__, __LINE__, args)
#define DEBUG_ERROR(args...) cp_out(RUNTIME_DEBUG_ERROR, __FILE__, __LINE__, args)
#else
#define DEBUG_ASSERT(a, args...)
#define DEBUG_TRACE(args...) cp_out(LOG_DEBUG_LEVEL_TRACE, __FILE__, __LINE__, args)
#define DEBUG_INFO(args...) cp_out(LOG_DEBUG_LEVEL_INFO, __FILE__, __LINE__, args)
#define DEBUG_WARN(args...) cp_out(LOG_DEBUG_LEVEL_WARN, __FILE__, __LINE__, args)
#define DEBUG_ERROR(args...) cp_out(LOG_DEBUG_LEVEL_ERROR, __FILE__, __LINE__, args)
#define DEBUG_PRINTF(args...) cp_out(LOG_DEBUG_LEVEL_PRINTF, __FILE__, __LINE__, args)
#endif
#define LOG(args...) cp_out(RUNTIME_LOG, NULL, 0, args)
/*********************************************** general definitions and helper functions *************************/
// Buffer to store data
struct cp_lkm_read_msg {
struct cp_lkm_msg_hdr hdr;
struct sk_buff *skb;
struct list_head list;
};
struct cp_lkm_common_ctx {
u8 open_cnt;
// read operation members
wait_queue_head_t inq;
struct list_head read_list;
spinlock_t read_list_lock;
bool reading_data;
bool q_waiting;
// write operation members
struct sk_buff *write_skb;
int (*open)(struct cp_lkm_common_ctx *ctx); // called at open
int (*close)(struct cp_lkm_common_ctx *ctx); // called at close
int (*handle_msg)(struct cp_lkm_common_ctx *ctx, struct cp_lkm_msg_hdr *hdr, struct sk_buff *skb); // called at write
int (*handle_ioctl)(struct cp_lkm_common_ctx *ctx, int cmd, void *k_argp); // called at ioctl
};
int cp_lkm_open(struct inode *inode, struct file *filp);
int cp_lkm_release(struct inode *inode, struct file *filp);
ssize_t cp_lkm_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos);
ssize_t cp_lkm_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos);
#ifdef KERNEL_2_6_21
int cp_lkm_ioctl (struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg);
#else
long cp_lkm_ioctl (struct file *filp, unsigned int cmd, unsigned long arg);
#endif
unsigned int cp_lkm_poll(struct file *filp, struct poll_table_struct *);
static void cp_lkm_common_ctx_init(struct cp_lkm_common_ctx *common);
static void cp_lkm_cleanup_msg_list(struct cp_lkm_common_ctx *common);
static int cp_lkm_post_message(struct cp_lkm_common_ctx *mgr, struct cp_lkm_msg_hdr* hdr, struct sk_buff *skb);
/* Structure that declares the usual file
access functions */
struct file_operations cp_lkm_fops = {
.owner = THIS_MODULE,
.read = cp_lkm_read,
.write = cp_lkm_write,
#ifdef KERNEL_2_6_21
.ioctl = cp_lkm_ioctl,
#else
.unlocked_ioctl = cp_lkm_ioctl,
#endif
.open = cp_lkm_open,
.poll = cp_lkm_poll,
.release = cp_lkm_release
};
static int major;
static struct device *cp_lkm_dev[2];
static struct class *cp_lkm_class;
#define CP_LKM_USB_MGR_MINOR 0
#define CP_LKM_PM_MGR_MINOR 1
#define CP_LKM_ITER 3000 //CP_LIM_ITER * CP_LKM_TIMEOUT_MS = 30000 or 30 seconds
#define CP_LKM_TIMEOUT_MS 10
typedef int (*cp_lkm_data_transfer_t)(void *ctx, struct sk_buff *skb);
typedef void (*cp_lkm_data_hdr_size_t)(void *ctx, int wrapper_hdr_size, int *hdr_size, int* hdr_offset);
typedef int (*cp_lkm_poll_t)(void *ctx, int budget);
typedef void (*cp_lkm_schedule_t)(void *ctx);
typedef void (*cp_lkm_complete_t)(void *ctx);
typedef int (*cp_lkm_msg_t)(void *ctx);
struct cp_lkm_edi {
//values provided by usb side, called by pm side
cp_lkm_data_transfer_t usb_send;
void *usb_send_ctx;
//value provided by pm side, called by usb side
cp_lkm_msg_t pm_send_pause; //called by usb to pause the network q
cp_lkm_msg_t pm_send_resume; //called by usb to resume the network q
cp_lkm_data_transfer_t pm_recv;
cp_lkm_data_hdr_size_t pm_get_hdr_size; //ask pm how much space it needs for headers
void *pm_recv_ctx;
void *pm_stats64_ctx;
};
static int cp_lkm_pm_usb_link(struct cp_lkm_edi *edi, int pm_unique_id, int link);
struct cp_lkm_pm_stats64 {
u64 rx_packets;
u64 tx_packets;
u64 rx_bytes;
u64 tx_bytes;
u64 rx_errors;
u64 tx_errors;
u64 rx_dropped;
u64 tx_dropped;
u64 rx_over_errors;
struct u64_stats_sync syncp;
};
struct cp_lkm_pm_common {
int unique_id;
u32 attached;
cp_lkm_pm_type_t type;
struct net_device *net_dev;
struct cp_lkm_edi *edi;
struct list_head filter_list;
u32 filter_drop_cnt;
// keep these in pm context so dual sim hidden unplug/plug do not affect the stats
struct cp_lkm_pm_stats64 *pcpu_stats64;
int pm_link_count; //token used to prevent xmit and poll from being called if we are linking or unlinking, -1 = unlinking so block xmit and poll,
spinlock_t pm_link_lock; //lock to protect getting and releasing the pm_link_count token
struct list_head list;
};
//static void cp_lkm_pm_update_stats64(struct cp_lkm_pm_stats64 *stats, u64 *field, u64 incr);
#define UPDATE_STATS(stats_ctx, field, incr) if (stats_ctx) { \
struct cp_lkm_pm_stats64 *stats = this_cpu_ptr(((struct cp_lkm_pm_common *)stats_ctx)->pcpu_stats64); \
if (stats) { \
u64_stats_update_begin(&stats->syncp); \
stats->field += incr; \
u64_stats_update_end(&stats->syncp); \
} \
}
//Keep these commented out for release
//static int dbg_memleak_timer_started = 0;
//static struct timer_list dbg_memleak_timer;
//static spinlock_t dbg_state_lock;
//static int dbg_state_init = 0;
//static int g_dbg_memalloc_cnt = 0;
//static int g_stuck_cnt = 0;
//static int g_stuck_chk = 0;
//static int g_unlink_cnt = 0;
typedef size_t ref_t;
typedef void (*memref_final_method_t)(void *buf);
struct memref {
memref_final_method_t mfree;
atomic_t refs;
};
void *memref_alloc(size_t size, memref_final_method_t mfree)
{
struct memref *ptr;
ptr = (struct memref *)kmalloc(sizeof(struct memref) + size, GFP_ATOMIC);
if (!ptr) {
return NULL;
}
//g_dbg_memalloc_cnt++;
ptr->mfree = mfree;
atomic_set(&ptr->refs, 1);
return (ptr + 1);
}
void *memref_alloc_and_zero(size_t size, memref_final_method_t mfree)
{
void *ptr;
ptr = memref_alloc(size, mfree);
if (!ptr) {
return NULL;
}
memset(ptr, 0x00, size);
return ptr;
}
static void *memref_ref(void *buf)
{
struct memref *mb;
if (!buf) {
return NULL;
}
mb = (struct memref *)(buf) - 1;
// if (0 == atomic_read(&mb->refs)) {
// DEBUG_INFO("%s() !refs", __FUNCTION__);
// return NULL;
// }
atomic_inc(&mb->refs);
return buf;
}
#if 0
static ref_t memref_cnt(void *buf)
{
struct memref *mb;
if (!buf) {
return 0;
}
mb = (struct memref *)(buf) - 1;
return atomic_read(&mb->refs);
}
#endif
static ref_t memref_deref(void *buf)
{
struct memref *mb;
if (!buf) {
return 0;
}
mb = (struct memref *)(buf) - 1;
// if (0 == atomic_read(&mb->refs)) {
// DEBUG_INFO("%s() !refs", __FUNCTION__);
// return NULL;
// }
if (atomic_dec_and_test(&mb->refs)) {
//g_dbg_memalloc_cnt--;
if (mb->mfree) {
mb->mfree(buf);
}
kfree(mb);
return 0;
}
return atomic_read(&mb->refs);
}
/*
* Generic function to repeatedly call a function until it either succeeds or the delay and iters
* have been exhausted. Optionally it can throw a kernel panic on failure.
*
* ctxt - the ctxt to pass into do_fun
* do_fun - the function to call until it returns success
* delay_ms - the amount of time to delay between calls to do_fun on failure
* iter - the number of times to call do_fun
* die_str - if should panic on failure, then pass in the die_str to display
*
* if die_str provided, this function will not exit on failure.
* else it will exit with the result of the call to do_fun
* Note: total wait time is delay_ms * iter
*/
typedef bool (*do_function_t)(void* ctx1, void* ctx2);
bool cp_lkm_do_or_die(void* ctx1, void*ctx2, do_function_t do_fun, u32 delay_ms, u32 iter, const char* die_str)
{
bool done = false;
//set_current_state(TASK_UNINTERRUPTIBLE);
while (!done && iter) {
iter--;
done = do_fun(ctx1,ctx2);
if (!done) {
msleep(delay_ms);
//schedule_timeout(msecs_to_jiffies(delay_ms));
//set_current_state(TASK_UNINTERRUPTIBLE);
}
}
if(!done && die_str) {
panic(die_str);
//BUG_ON()
}
//set_current_state(TASK_RUNNING);
return done;
}
/******************************* kernel module USB/Wrapper functionality *********************************
*
* The shim has multiple entry points. It can be pumped by hw interrupts, software interrupts, or threads.
* The trick to getting the shim to work properly is knowing from which contexts the different functions can be called
* and what you can do in that context.
*
* The biggest concern is to make sure we aren't nulling out a function or instance pointer in one context while another
* context is using it. Pointers are changed when linking or unlinking to the protocol manager or when the device unplugs.
* For link/unlink or unplug, we need to make sure all other processing has been blocked or stopped. We use a combination of
* tokens and spinlocks to achieve this.
*
* Another complexity is dealing with multi-core processors such as we have in some routers. With multi-core you can have
* a hw interrupt, software interrupt or thread running on one core and a hw interrupt, soft interrupt, or thread running on
* another at the same time. In addition, the same soft interrupt code can run on both cores at the same time.
* With single core, the hw int would block the thread. The shim was orginally designed with a single-core system, so a lot of work
* has been put into verifying multi-core works.
*
* Single core: We can be pumped by:
* Hardware interrupt - all interrupts disabled, can't be preempted
* Software interrupt - hw interrupts not disabled, can be preempted by hw interrupt
* Thread or other process - can be preempted by hw or sw interrupt.
*
* Multi core: all bets are off. Everything can run at the same time so you have to be very careful with locks and tokens to not corrupt
* variables and to not run funtions reentrantly.
*
* Here are the specific contexts (threads, processes)that pump us:
* 1. USB on a hardware interrupt context. This happens on tx and rx done (all interrupts disabled, schedule callbacks and get out fast)
* 2. USB on the hub thread. This happens on unplug (can sleep or pause, but be careful because it stops all USB system hub processing)
* 3. Kernel workqueue thread (our own callback, can sleep or pause, but be careful, it stops all the kernel workqueue processing)
* 4. tasklet or timer soft interrupt context (our own callbacks on sw interrupt, hw interrupts enabled, can't sleep or do pause)
* 5. ioctl or device write on a kernel thread (this is cpusb in app space talking to us, runs on a thread, can be prempted in multi-core)
* 6. network (send from network side, runs as a software interrupt)
*
* Which functions are called in which contexts and what they do:
* #1 - cp_lkm_usb_xmit_complete - called by usb layer when transmit is done in hw interrupt context
* throw transfer in done q, on success, schedule tasklet or NAPI poll (#4) by calling
* cp_lkm_usb_done_and_defer_data() for data packets or cp_lkm_usb_done_and_defer_other() for non-data pkts.
* On error schedule kevent (#3) by calling cp_lkm_usb_defer_kevent()
* cp_lkm_usb_recv_complete - called by usb layer when recv is done in hw interrupt context
* throw transfer in done q, schedule tasklet or NAPI poll (#4), on error schedule kevent (#3)
*
* #2 - cp_lkm_usb_probe - called when the usb hub layer detects a plug, called on hub thread context
* cp_lkm_usb_disconnect - called when the usb hub layer detects an unplug, called on hub thread context
* schedule mgr_kevent to clean up
*
* #3 - cp_lkm_usb_kevent - scheduled by tx and rx complete (#1) on USB halt errors or out of memory failure. Is a workqueue thread
* clears the halts, sees if memory available. On success, schedules the tasklet or NAPI poll(#4)
*
* #4 - cp_lkm_usb_process_data_done_tasklet - Scheduled by rx or tx complete (#1). Runs in soft int context. This function is used when we
* are using a non-NAPI compliant protocol manager (i.e. PPP). It processes recv'd pkts and sends
* them onto the protocol manager, frees all sent skb's and restock more recv urbs to the USB layer.
* cp_lkm_usb_process_other_done_tasklet -Same as first one except is it scheduled anytime we recv a pkt that needs to go to the common
* modem stack instead of to the network stack (ctrl, status or diagnostics pkt)
*
* #5 - cp_lkm_usb_handle_ioctl - ioctl mux function called by the kernel when the app ioctl is called
* calls the appropriate mux function
* cp_lkm_usb_plug_intf - called by ioctl mux to register a device. Register a usb driver to catch
* the plug event from the usb stack
* cp_lkm_usb_open_intf - called by ioctl mux indicate the data channel is active. This causes us to
* mux all data packets to the network stack instead of up to cpusb in app space
* cp_lkm_usb_close_intf - called by ioctl mux to indicate the data connection has gone down.
* This causes us to mux all packets up to cpusb in app space instead of to network
*
* cp_lkm_usb_unplug_intf - called by ioctl mux. Releases the interface, deregisters the usb driver, cleans up memory
* cp_lkm_usb_handle_msg - called by the device driver write function. This is how cpusb sends us usb packets that
* we need to send to usb
* #6 - cp_lkm_usb_start_xmit - called by the network interface
* sends a transmit to the usb layer
*/
struct cp_lkm_usb_dev;
struct cp_lkm_usb_base_dev;
/* we record the state for each of our queued skbs */
enum skb_state {
illegal = 0,
out_start, // start a data or other transmit
out_done, // data or other transmit done
in_data_start, // start a recv (either data or other)
in_data_done, // recv data done
in_data_cleanup,
in_other_start,
in_other_done, // recv other done
in_other_cleanup,
ctrl_start, // start a usb ctrl transfer
ctrl_done, // usb ctrl transfer finished
unlink_start // telling usb to give our urb back
};
#define EVENT_TX_HALT 0
#define EVENT_RX_HALT 1
#define EVENT_RX_MEMORY 2
#define EVENT_STS_SPLIT 3
#define EVENT_LINK_RESET 4
//These are standard USB defines
#define UE_BULK 0x02
#define UE_INTERRUPT 0x03
#define MAX_INTF_EPS 10
#define CP_LKM_USB_RECV 0x01
#define CP_LKM_USB_LISTEN 0x02
struct cp_lkm_base_ep
{
struct list_head list; // for inserting in the cpbdev list of base endpoints
struct list_head eps; // list of cloned endpoints based off this one
struct cp_lkm_usb_base_dev* cpbdev; // pointer back to the cpdev this endpoint belongs to
int ep_num; // endpoint number
unsigned long err_flags; // errors on the ep (halt, no mem)
int con_flags; //connection flags (recv, listen)
int q_cnt; //number of urbs down at the lower layer
int type; //ep type (interrupt, bulk etc)
int max_transfer_size;
int pipe;
int interval; // interval for interrupt end points
};
struct cp_lkm_ep
{
struct list_head list_bep; // for being inserted into the bep's list of eps
struct list_head list_cpdev; // for being inserted into the cpdev's list of eps
struct cp_lkm_base_ep* bep; // pointer to this ep's base endpoint
struct cp_lkm_usb_dev* cpdev; // pointer back to the cpdev this endpoint belongs to
int con_flags; //connection flags (recv, listen)
int ep_num; // duplicated from base endpoint for convenience
};
/* This struct gets stored in skb->cb which is currently a 48 byte buffer
The size of this struct needs to not ever be bigger than 48
*/
struct skb_data {
//if pointers and ints are 64 bits (8 bytes) then this is 48 bytes currently and
//no other variables can be added
struct urb *urb;
struct cp_lkm_usb_base_dev *cpbdev;
struct cp_lkm_base_ep* bep;
enum skb_state state;
int status;
int unique_id; //id of cpdev that sent the tx pkt
};
#define MAX_USB_DRVR_NAME 10
#define USB_DRVR_FRMT_STR "cpusb%d"
struct cp_lkm_usb_base_dev
{
struct list_head list; //for inserting in global dev list
struct list_head cpdev_list; //list of cpdevs cloned from this base dev
struct list_head in_bep_list; // list of base in endpoints
struct list_head out_bep_list; // list of base out endpoints
int data_in_bep_num; //data in ep number
int data_out_bep_num; //data out ep number
struct usb_driver* usb_driver;
struct usb_device_id* usb_id_table;
int vid;
int pid;
int intf_num;
int alt_intf_num;
int usb_bus;
int usb_addr;
int feature_flags;
int base_id; //unique id of the first clone to plug
cp_lkm_usb_state_t base_state;
struct sk_buff_head in_q; //recv skb's are stored here while down at usb waiting to be filled with recv data
struct sk_buff_head out_q; //send skb's are stored here while down at usb waiting to be transmitted
struct sk_buff_head ctrlq; //ctrl skb's are stored here while down at usb waiting to be filled or transmitted
struct sk_buff_head data_tx_done; //tx skb's are stored here while waiting to be freed
struct sk_buff_head data_rx_done; //recv and ctrl skb's are stored here while waiting to have recv data processed
struct sk_buff_head other_done; //sent skb's are stored here while waiting to be freed
u32 data_q_len; // holds count of data pkts (both rx and tx) needing to be processed
spinlock_t data_q_lock; // lock to keep data_q_len sync'd
spinlock_t processing_state_lock;
cp_lkm_usb_process_state_t processing_state;
spinlock_t other_state_lock;
cp_lkm_usb_process_state_t other_state;
bool scheduled; //tasklet scheduled to process the pending
struct tasklet_struct other_process_tasklet;
struct tasklet_struct data_process_tasklet;
int rx_schedule_threshold;
int tx_schedule_threshold;
int tx_resume_threshold;
struct work_struct kevent;
char usb_drvr_name[MAX_USB_DRVR_NAME];
void* wrapper_ctxt;
int wrapper_hdr_size;
int pm_hdr_size;
int pm_hdr_offset;
struct usb_interface* intf;
struct usb_device *udev;
int plug_result;
bool disconnect_wait;
struct timer_list rx_delay;
int tx_usb_q_count;
bool tx_paused;
struct timer_list usb_pause_stuck_timer;
int tx_proc_cnt; //how many data tx pkts have we successfully sent
int tx_proc_cnt_at_pause; //how many data tx pkts we had sent when we paused
#if 0
//debug stuff, comment out
//unsigned int dbg_total_stuck_cnt;
//unsigned int dbg_total_tx_at_stuck_cnt;
//unsigned int dbg_total_tx_proc;
#endif
};
struct cp_lkm_usb_dev
{
//init at open
struct cp_lkm_usb_base_dev* cpbdev;
int unique_id;
int pm_id;
int clone_num;
int mux_id;
cp_lkm_usb_state_t state;
struct list_head list; //for inserting in base dev list
struct cp_lkm_edi* edi;
struct list_head in_ep_list; //list of in endpoints on the dev
struct list_head out_ep_list; //list of out endpoints on the dev
int data_in_ep_num; //data in ep number
int data_out_ep_num; //data out ep number
//for debug
#if 0
struct timer_list dbg_timer;
unsigned int dbg_total_rx_irq;
unsigned int dbg_total_tx_irq;
unsigned int dbg_total_rx_proc;
unsigned int dbg_total_d_done;
unsigned int dbg_total_o_done;
unsigned int dbg_total_pause;
unsigned int dbg_total_resume;
unsigned int dbg_total_max_work;
unsigned int dbg_total_timeout;
unsigned int dbg_total_budget;
unsigned int dbg_total_o_tasklet;
unsigned int dbg_total_d_resched;
unsigned int dbg_total_wq_sched;
unsigned int dbg_total_napi_sched;
unsigned int dbg_total_tasklet_sched;
unsigned int dbg_total_d_comp;
//unsigned int dbg_total_ic;
//unsigned int dbg_total_tc;
unsigned int dbg_total_rx_qlen;
unsigned int dbg_total_tx_qlen;
unsigned int dbg_total_num_hybrid_t;
unsigned int dbg_total_num_normal_t;
unsigned int dbg_total_num_hybrid;
unsigned int dbg_total_num_normal;
unsigned int dbg_total_num_d_timers;
unsigned int dbg_total_sch_sk;
#endif
};
struct cp_lkm_usb_ctx
{
struct cp_lkm_common_ctx common;
struct list_head dev_list;
spinlock_t lock; //used to protect access to dev_list from different instances. Also used to coordinate thread accesses from usb and cpmodem layers.
//when one thread grabs the lock, no other threads can run (soft and hw IRQs can still run). The usb hub unplug handler runs on a thread.
//this means if one thread grabs the lock it can be guaranteed the modem can unplug while it is doing its thing.
};
//static void cp_lkm_usb_dbg_memleak_timer (unsigned long param);
//static void cp_lkm_usb_dbg_timer (unsigned long param);
enum {
CP_LKM_STUCK_INIT = 0,
CP_LKM_STUCK_START,
CP_LKM_STUCK_STOP,
CP_LKM_STUCK_DEINIT
};
static void cp_lkm_usb_stuck_check(struct cp_lkm_usb_base_dev* cpbdev, int action);
static void cp_lkm_usb_pause_stuck_timer(struct timer_list *timer);
static void cp_lkm_usb_delay_timer (struct timer_list *timer);
static void cp_lkm_usb_kevent (struct work_struct *work);
static int cp_lkm_usb_open(struct cp_lkm_common_ctx *ctx);
static int cp_lkm_usb_close(struct cp_lkm_common_ctx *ctx);
static int cp_lkm_usb_handle_ioctl(struct cp_lkm_common_ctx *ctx, int cmd, void *k_argp);
static int cp_lkm_usb_handle_msg(struct cp_lkm_common_ctx *ctx, struct cp_lkm_msg_hdr *hdr, struct sk_buff *skb);
static int cp_lkm_usb_start_xmit (void *ctx, struct sk_buff *skb);
static int cp_lkm_usb_start_xmit_common(void *ctx, struct sk_buff *skb, int src, struct cp_lkm_ep* ep);
static void cp_lkm_usb_xmit_complete (struct urb *urb);
static int cp_lkm_usb_submit_recv (struct cp_lkm_usb_base_dev* cpbdev, struct urb *urb, gfp_t flags, struct cp_lkm_base_ep* bep, bool data);
static void cp_lkm_usb_recv_complete (struct urb *urb);
static void cp_lkm_usb_other_recv_process (struct cp_lkm_usb_base_dev* cpbdev, struct sk_buff *skb_in);
static void cp_lkm_usb_data_recv_process (struct cp_lkm_usb_base_dev* cpbdev, struct sk_buff *skb);
static void cp_lkm_usb_ctrl_process (struct cp_lkm_usb_base_dev* cpbdev, struct sk_buff *skb_in);
static int cp_lkm_usb_close_intf(struct cp_lkm_usb_close_intf* ci);
static int cp_lkm_usb_unlink_urbs (struct cp_lkm_usb_base_dev *cpbdev, struct sk_buff_head *q, struct cp_lkm_base_ep* bep);
static void cp_lkm_usb_process_other_done_tasklet (unsigned long param);
static void cp_lkm_usb_process_data_done_tasklet (unsigned long param);
static void cp_lkm_usb_rx_data_restock (struct cp_lkm_usb_base_dev* cpdev);
static void cp_lkm_usb_rx_other_restock (struct cp_lkm_usb_base_dev* cpbdev);
static void cp_lkm_usb_defer_kevent (struct cp_lkm_usb_base_dev* cpbdev, struct cp_lkm_base_ep* bep, int work);
static bool cp_lkm_schedule_data_process(struct cp_lkm_usb_base_dev* cpbdev, bool if_data, bool is_resume, bool have_lock);
static void cp_lkm_schedule_rx_restock(struct cp_lkm_usb_base_dev* cpbdev, struct cp_lkm_base_ep* bep);
static int cp_lkm_usb_start_ctrl_xmit(void *ctx, struct sk_buff *skb_in);
static int cp_lkm_usb_have_data(struct cp_lkm_usb_base_dev *cpbdev);
static struct cp_lkm_usb_ctx cp_lkm_usb_mgr;
// Knobs we can tweak on a processor by processor basis to maximize performance
// Dummy values filled in here so we don't get warning on using unitialized variables
static int CP_LKM_PM_NAPI_WEIGHT = 0; //budget we register with NAPI (max number of pkts it thinks we will process).
static int CP_LKM_USB_NAPI_MAX_WORK = 0; //actual number of pkts we will process (we're not entirely honest with NAPI)
static int CP_LKM_USB_MAX_RX_QLEN = 0; //max number of rx data URBs we allow to flow in the shim (we alloc these)
static int CP_LKM_USB_MAX_OTHER_QLEN = 0; //max number of rx urbs on non-data endpoints
static int CP_LKM_USB_TX_PAUSE_Q_PKTS = 0; //max number of tx data URBs we allow to flow in the shim (alloc'd by network stack, we control this by pausing)
static int CP_LKM_USB_TX_RESUME_Q_PKTS = 0; //un-pause network at this number
//static int CP_LKM_USB_TX_RESUME_Q_PKTS_HYBRID = 0; //un-pause network at this number when in hybrid mode with pkt counting
static int CP_LKM_USB_TX_SCHED_CNT = 0; //How many done tx's we allow to accumulate before scheduling cleanup in normal mode
//static int CP_LKM_USB_TX_SCHED_CNT_HYBRID = 0; //How many done tx's we allow to accumulate before scheduling cleanup in hybrid mode with pkt counting
static int CP_LKM_USB_RX_SCHED_CNT = 0; //How many done rx's we allow to accumulate before scheduling processing in normal mode
//static int CP_LKM_USB_RX_SCHED_CNT_HYBRID = 0; //How many done rx's we allow to accumulate before scheduling processing in hybrid mode with pkt counting
static int CP_LKM_USB_RESTOCK_MULTIPLE = 0; //How many rx URBs we should restock as we process them (0 means don't restock as we go, 1 means every one, 2 means 1 out of every 2 etc)
//static int CP_LKM_USB_DATA_MAX_PPS = 0; //Packets per second that will cause us to transition from normal to hybrid mode when using pkt counting
//static int CP_LKM_USB_DATA_MIN_PPS = 0; //packets per second that will cause us to transition from hybrid back to normal when using pkt counting
static int CP_LKM_USB_TASKLET_CNT = 0; //in hybrid mode, schedule tasklet on cnts 0 to this number
static int CP_LKM_USB_WORKQUEUE_CNT = 0; //in hybrid mode, schedule workqueue on cnts CP_LKM_USB_TASKLET_CNT to this number, then start cnt over
static int CP_LKM_USB_PROCESS_DIVISOR = 0; //times to loop through the process loop, doing pkts/divisor pkts each time. Set to 1 to only process what was there when entering
//broadcom EHCI controller has issues we need to work around
static int cp_lkm_is_broadcom = 0;
#define CP_LKM_USB_PAUSED_CNT 5000
//TODO remove
#if 0
static int g_dbg_data_skballoc_cnt = 0;
static int g_dbg_other_skballoc_cnt = 0;
static int g_dbg_ctrl_skballoc_cnt = 0;
static int g_dbg_xmit_skballoc_cnt = 0;
static int g_dbg_urballoc_cnt = 0;
static int g_dbg_unplug_cnt = 0;
static void cp_lkm_usb_urb_cnt(int inc)
{
unsigned long flags;
spin_lock_irqsave(&dbg_state_lock, flags);
g_dbg_urballoc_cnt += inc;
spin_unlock_irqrestore(&dbg_state_lock, flags); //release lock so interrupts can resume firing
}
static void cp_lkm_usb_cnts(int state, int inc)
{
#if 1
unsigned long flags;
spin_lock_irqsave(&dbg_state_lock, flags);
switch (state) {
case in_other_start:
case in_other_done:
case in_other_cleanup:
g_dbg_other_skballoc_cnt+=inc;
break;
case ctrl_start:
case ctrl_done:
g_dbg_ctrl_skballoc_cnt+=inc;
break;
case out_start:
case out_done:
g_dbg_xmit_skballoc_cnt+=inc;
break;
case in_data_start:
case in_data_done:
case in_data_cleanup:
g_dbg_data_skballoc_cnt+=inc;
break;
case unlink_start:
g_dbg_unplug_cnt+=inc;
break;
default:
printk("!!clean: unknown skb state: %d\n",state);
break;
}
spin_unlock_irqrestore(&dbg_state_lock, flags);
#endif
}
#endif
static struct cp_lkm_usb_dev* cp_lkm_usb_find_muxed_dev(struct cp_lkm_usb_base_dev* cpbdev, int mux_id)
{
struct list_head *pos;
list_for_each(pos, &cpbdev->cpdev_list){
struct cp_lkm_usb_dev* cpdev = list_entry(pos, struct cp_lkm_usb_dev, list);
//printk("%s() cpdev: %p, cpdev->mux_id: %d\n", __FUNCTION__, cpdev, cpdev->mux_id);
if(cpdev->mux_id == mux_id) {
return cpdev;
}
}
return NULL;
}
static struct cp_lkm_usb_dev* cp_lkm_usb_find_dev(int uniqueid)
{
struct list_head *bpos;
struct list_head *pos;
list_for_each(bpos, &cp_lkm_usb_mgr.dev_list){
struct cp_lkm_usb_base_dev* cpbdev = list_entry(bpos, struct cp_lkm_usb_base_dev, list);
list_for_each(pos, &cpbdev->cpdev_list){
struct cp_lkm_usb_dev* cpdev = list_entry(pos, struct cp_lkm_usb_dev, list);
if(cpdev->unique_id == uniqueid) {
return cpdev;
}
}
}
return NULL;
}
#define CP_LKM_DEV_MATCH_ALL 1
#define CP_LKM_DEV_MATCH_BUS_ADDR_ONLY 2
// Find base device from its bus, addr and unique id
static struct cp_lkm_usb_base_dev* cp_lkm_usb_find_base_dev(int bus, int addr, int unique_id, int match)
{
struct list_head *pos;
struct list_head *bpos;
list_for_each(bpos, &cp_lkm_usb_mgr.dev_list){
struct cp_lkm_usb_base_dev* cpbdev = list_entry(bpos, struct cp_lkm_usb_base_dev, list);
if(cpbdev->usb_bus == bus && cpbdev->usb_addr == addr) {
if (match == CP_LKM_DEV_MATCH_BUS_ADDR_ONLY) {
return cpbdev;
}
if (cpbdev->base_id == unique_id) {
//matches the base_id so don't need to look further
return cpbdev;
}
//look to see if matches the unique_id of one of the cpdevs (only hit this case when running clones)
list_for_each(pos, &cpbdev->cpdev_list){
struct cp_lkm_usb_dev* cpdev = list_entry(pos, struct cp_lkm_usb_dev, list);
if (cpdev->unique_id == unique_id) {
return cpbdev;
}
}
}
}
return NULL;
}
/*
static struct cp_lkm_usb_dev* cp_lkm_usb_get_head_dev(void)
{
struct list_head *bpos;
struct list_head *pos;
list_for_each(bpos, &cp_lkm_usb_mgr.dev_list){
struct cp_lkm_usb_base_dev* cpbdev = list_entry(bpos, struct cp_lkm_usb_base_dev, list);
list_for_each(pos, &cpbdev->cpdev_list){
struct cp_lkm_usb_dev* cpdev = list_entry(pos, struct cp_lkm_usb_dev, list);
return cpdev;
}
}
return NULL;
}
*/
// pause or unpause all cpdevs associated with this cpbdev
static void cp_lkm_usb_dev_pause(struct cp_lkm_usb_base_dev* cpbdev, bool pause)
{
struct list_head *pos;
list_for_each(pos, &cpbdev->cpdev_list){
struct cp_lkm_usb_dev* cpdev = list_entry(pos, struct cp_lkm_usb_dev, list);
if (pause) {
if(cpdev->edi->pm_send_pause) {
cpdev->edi->pm_send_pause(cpdev->edi->pm_recv_ctx);
//cpdev->dbg_total_pause++;
}
}
else{
if (cpdev->edi->pm_send_resume) {
//cpdev->dbg_total_resume++;
cpdev->edi->pm_send_resume(cpdev->edi->pm_recv_ctx);
}
}
}
cpbdev->tx_paused = pause;
}
static void cp_lkm_usb_clean_list(struct sk_buff_head* list)
{
struct sk_buff *skb;
struct skb_data *entry;
while((skb = skb_dequeue(list)) != NULL){
DEBUG_TRACE("%s() found a straggler", __FUNCTION__);
entry = (struct skb_data *) skb->cb;
if(entry->urb) {
//cp_lkm_usb_urb_cnt(-1);
usb_free_urb (entry->urb);
}
//cp_lkm_usb_cnts(entry->state, -1);
dev_kfree_skb_any(skb);
}
}
static void cp_lkm_usb_mark_as_dead(struct cp_lkm_usb_dev* cpdev)
{
cpdev->edi->usb_send_ctx = NULL;
if(cpdev->state != CP_LKM_USB_DEAD) {
LOG("Device with id:%d unplugged", cpdev->unique_id);
}
cpdev->state = CP_LKM_USB_DEAD;
}
static void cp_lkm_usb_mark_base_as_dead(struct cp_lkm_usb_base_dev* cpbdev)
{
cpbdev->base_state = CP_LKM_USB_DEAD;
}
static struct cp_lkm_base_ep* cp_lkm_usb_get_bep(struct cp_lkm_usb_base_dev* cpbdev, int ep_num)
{
struct cp_lkm_base_ep* bep = NULL;
struct list_head *entry, *nxt, *head;
if(USB_DIR_IN & ep_num) {
//printk("%s() search IN list for ep_num: 0x%x\n", __FUNCTION__, ep_num);
head = &cpbdev->in_bep_list;
}
else{
//printk("%s() search OUT list for ep_num: 0x%x\n", __FUNCTION__, ep_num);
head = &cpbdev->out_bep_list;
}
list_for_each_safe(entry, nxt, head) {
bep = list_entry(entry, struct cp_lkm_base_ep, list);
if (bep->ep_num == ep_num) {
//printk("%s() found ep_num: %d\n", __FUNCTION__, ep_num);
return bep;
}
}
//printk("%s() didn't find ep_num: %d\n", __FUNCTION__,ep_num);
return NULL;
}
static struct cp_lkm_ep* cp_lkm_usb_get_ep(struct cp_lkm_usb_dev* cpdev, int ep_num)
{
struct cp_lkm_ep* ep = NULL;
struct list_head *entry, *nxt, *head;
if(USB_DIR_IN & ep_num) {
//printk("%s() search IN list for ep_num: 0x%x\n", __FUNCTION__, ep_num);
head = &cpdev->in_ep_list;
}
else{
//printk("%s() search OUT list for ep_num: 0x%x\n", __FUNCTION__, ep_num);
head = &cpdev->out_ep_list;
}
list_for_each_safe(entry, nxt, head) {
ep = list_entry(entry, struct cp_lkm_ep, list_cpdev);
if (ep->ep_num == ep_num) {
//printk("%s() found ep_num: %d\n", __FUNCTION__, ep_num);
return ep;
}
}
//printk("%s() didn't find ep_num: %d\n", __FUNCTION__,ep_num);
return NULL;
}
static void cp_lkm_usb_bep_finalize(void *arg)
{
struct cp_lkm_base_ep* bep = (struct cp_lkm_base_ep*)arg;
struct list_head *entry, *nxt;
struct cp_lkm_ep *ep;
//printk("%s() start\n", __FUNCTION__);
//todo remove
//del_timer_sync(&cpdev->dbg_timer);
//printk("%s() - free eps\n",__FUNCTION__);
list_for_each_safe(entry, nxt, &bep->eps) {
ep = list_entry(entry, struct cp_lkm_ep, list_bep);
//printk("%s() - free ep: %p from bep: %p\n",__FUNCTION__,ep,bep);
list_del(&ep->list_bep);
memref_deref(ep);
}
}
static void cp_lkm_usb_ep_finalize(void *arg)
{
//struct cp_lkm_ep* ep = (struct cp_lkm_ep*)arg;
//printk("%s() - free ep: %p, ep_num: 0x%x\n",__FUNCTION__,arg ,ep->ep_num);
}
static struct cp_lkm_ep* cp_lkm_usb_create_ep(struct cp_lkm_usb_dev* cpdev, int ep_num)
{
struct cp_lkm_ep* ep;
struct cp_lkm_base_ep* bep;
struct cp_lkm_usb_base_dev* cpbdev;
DEBUG_ASSERT(cpdev, "cpdev is null");
cpbdev = cpdev->cpbdev;
DEBUG_ASSERT(cpbdev, "cpbdev is null");
//see if already exists first
ep = cp_lkm_usb_get_ep(cpdev, ep_num);
if(ep) {
DEBUG_TRACE("%s() ep: %p already exists", __FUNCTION__, ep);
//printk("%s() ep: 0x%x already exists\n", __FUNCTION__, ep_num);
return ep;
}
//printk("%s() - create new ep, cpdev: %p, ep_num: 0x%x\n",__FUNCTION__,cpdev, ep_num);
//Need to create new ep and possibly a new bep. We will alloc and init everything first and
//then if that all works, we will put everything in its proper place (in lists and stuff)
ep = memref_alloc_and_zero(sizeof(struct cp_lkm_ep), cp_lkm_usb_ep_finalize);
if(!ep) {
DEBUG_ERROR("%s() failed to alloc new ep", __FUNCTION__);
return NULL;
}
INIT_LIST_HEAD(&ep->list_bep);
INIT_LIST_HEAD(&ep->list_cpdev);
ep->ep_num = ep_num;
//may need to create a new base ep if this is the first time we've seen this endpoint number and direction
//this is always the case for non-cloned interfaces
bep = cp_lkm_usb_get_bep(cpbdev, ep_num);
if (!bep) {
bep = memref_alloc_and_zero(sizeof(struct cp_lkm_base_ep), cp_lkm_usb_bep_finalize);
if(!bep) {
DEBUG_ERROR("%s() failed to alloc new ep", __FUNCTION__);
memref_deref(ep);
return NULL;
}
//printk("%s() - create new bep: %p, cpbdev: %p, ep_num: 0x%x\n",__FUNCTION__,bep, cpbdev, ep_num);
bep->ep_num = ep_num;
bep->cpbdev = cpbdev;
INIT_LIST_HEAD(&bep->list);
INIT_LIST_HEAD(&bep->eps);
if(USB_DIR_IN & ep_num) {
list_add_tail(&bep->list, &cpbdev->in_bep_list);
}
else{
list_add_tail(&bep->list, &cpbdev->out_bep_list);
}
}
//if we get here, everything alloc'd ok, so can insert in lists and stuf
// Each ep will have two memrefs, one from the alloc which is for entry in the cpdev list
// and another for entry into the bep list. This way the ep won't be freed until it is removed
// from both lists at unplug time
ep->cpdev = cpdev;
ep->bep = bep;
if(USB_DIR_IN & ep_num) {
list_add_tail(&ep->list_cpdev, &cpdev->in_ep_list);
}
else{
list_add_tail(&ep->list_cpdev, &cpdev->out_ep_list);
}
memref_ref(ep);
list_add_tail(&ep->list_bep, &bep->eps);
return ep;
}
// cp_lkm_usb_plug_intf is called by cpusb via the ioctl. It registers a driver for the interface.
// This function is then called by the lower usb layer so we can claim that interface.
int cp_lkm_usb_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct cp_lkm_usb_base_dev* cpbdev;
struct usb_device* udev;
struct usb_host_interface* interface;
int unique_id;
//unsigned long flags;
int rc;
uintptr_t tmp_uid;
usb_get_intf(intf);
//printk("%s()\n",__FUNCTION__);
udev = interface_to_usbdev (intf);
interface = intf->cur_altsetting;
unique_id = (int)id->driver_info;
tmp_uid = unique_id;
spin_lock(&cp_lkm_usb_mgr.lock);
// Error scenario to watch for here:
// 1. Device unplugs and replugs before the upper app detects the unplug and calls our unplug_intf. In
// this case this driver is still registered and will get the new probe (we don't want this, we want the app driver
// to get the plug and claim the device orginally). When disconnect happens we set the state to DEAD. If we get
// a probe on a dead device, don't take it.
cpbdev = cp_lkm_usb_find_base_dev(udev->bus->busnum, udev->devnum, unique_id, CP_LKM_DEV_MATCH_ALL);
if(!cpbdev || cpbdev->base_state == CP_LKM_USB_DEAD) {
spin_unlock(&cp_lkm_usb_mgr.lock);
DEBUG_TRACE("%s() no cpdev or already dead", __FUNCTION__);
return -ENXIO;
}
//make sure it is for our device (match the usb addresses)
//printk("%s() id: %d ouraddr:%d, probeaddr:%d, ourintf:%d, probeintf:%d!\n", __FUNCTION__, unique_id,
// cpbdev->usb_addr,udev->devnum,cpbdev->intf_num,interface->desc.bInterfaceNumber);
if(cpbdev->usb_bus != udev->bus->busnum || cpbdev->usb_addr != udev->devnum || cpbdev->intf_num != interface->desc.bInterfaceNumber) {
spin_unlock(&cp_lkm_usb_mgr.lock);
DEBUG_TRACE("%s() reject ourbus: %d, probebus: %d, ouraddr:%d, probeaddr:%d, ourintf:%d, probeintf:%d!", __FUNCTION__,
cpbdev->usb_bus, udev->bus->busnum, cpbdev->usb_addr,udev->devnum,cpbdev->intf_num,interface->desc.bInterfaceNumber);
return -ENXIO;
}
cpbdev->intf = intf;
cpbdev->udev = udev;
spin_unlock(&cp_lkm_usb_mgr.lock);
if(cpbdev->alt_intf_num) {
rc = usb_set_interface(udev, cpbdev->intf_num, cpbdev->alt_intf_num);
if(rc) {
DEBUG_ERROR("%s() set intf failed :%d", __FUNCTION__,rc);
cpbdev->plug_result = -1; //only set this on failure, not reject
return -1;
}
}
spin_lock(&cp_lkm_usb_mgr.lock);
cpbdev->base_state = CP_LKM_USB_CTRL;
usb_set_intfdata(intf, (void*)tmp_uid);
usb_get_dev (udev);
memref_ref(cpbdev);
spin_unlock(&cp_lkm_usb_mgr.lock);
cp_lkm_usb_stuck_check(cpbdev, CP_LKM_STUCK_INIT);
//throughput control stuff
cpbdev->rx_schedule_threshold = CP_LKM_USB_RX_SCHED_CNT;
cpbdev->tx_schedule_threshold = CP_LKM_USB_TX_SCHED_CNT;
cpbdev->tx_resume_threshold = CP_LKM_USB_TX_RESUME_Q_PKTS;
//todo remove
//if (!dbg_memleak_timer_started) {
// dbg_memleak_timer_started = 1;
// dbg_memleak_timer.function = cp_lkm_usb_dbg_memleak_timer;
// dbg_memleak_timer.data = 0;
// init_timer(&dbg_memleak_timer);
// mod_timer(&dbg_memleak_timer, jiffies + msecs_to_jiffies(20000));
//}
//if (dbg_state_init == 0) {
// spin_lock_init(&dbg_state_lock);
// dbg_state_init = 1;
//}
DEBUG_TRACE("%s() probe done", __FUNCTION__);
return 0;
}
static bool cp_lkm_usb_shuter_down_do_pm_unlink(void* ctx1, void* ctx2)
{
struct cp_lkm_usb_base_dev* cpbdev = (struct cp_lkm_usb_base_dev*)ctx1;
struct cp_lkm_usb_dev* cpdev;
struct list_head *pos;
unsigned long flags;
//Unlink from the pm and disable the data state machine
bool done = false;
spin_lock_irqsave(&cpbdev->processing_state_lock, flags);
if(cpbdev->processing_state == USB_PROCESS_STATE_IDLE){
cpbdev->processing_state = USB_PROCESS_STATE_PAUSED; //data soft interrupt handlers now won't run
spin_lock(&cpbdev->data_q_lock);
cpbdev->data_q_len = CP_LKM_USB_PAUSED_CNT;
spin_unlock(&cpbdev->data_q_lock); //usb hw interrupts now won't schedule soft interrupt handlers
spin_unlock_irqrestore(&cpbdev->processing_state_lock, flags); //release lock so interrupts can resume firing
//unlink the pm side for all cpdevs associated with this cpbdev. Once this returns we are guaranteed not to get any new xmit skb's from the pm
list_for_each(pos, &cpbdev->cpdev_list){
cpdev = list_entry(pos, struct cp_lkm_usb_dev, list);
LOG("Unlink cpdev: %p from pm", cpdev);
cp_lkm_pm_usb_link(cpdev->edi, cpdev->pm_id, 0);
cpdev->edi->usb_send_ctx = NULL;
}
spin_lock_irqsave(&cpbdev->processing_state_lock, flags);
done = true;
}
spin_unlock_irqrestore(&cpbdev->processing_state_lock, flags);
return done;
}
static bool cp_lkm_usb_shuter_down_do_other_tasklet(void* ctx1, void* ctx2)
{
struct cp_lkm_usb_base_dev* cpbdev = (struct cp_lkm_usb_base_dev*)ctx1;
unsigned long flags;
bool done = false;
spin_lock_irqsave(&cpbdev->other_state_lock, flags);
if(cpbdev->other_state == USB_PROCESS_STATE_IDLE){
cpbdev->other_state = USB_PROCESS_STATE_PAUSED;
done = true;
}
spin_unlock_irqrestore(&cpbdev->other_state_lock, flags);
return done;
}
static bool cp_lkm_usb_shuter_down_do_empty_queues(void* ctx1, void* ctx2)
{
struct cp_lkm_usb_base_dev* cpbdev = (struct cp_lkm_usb_base_dev*)ctx1;
bool done = false;
if (skb_queue_empty(&cpbdev->in_q) &&
skb_queue_empty(&cpbdev->out_q) &&
skb_queue_empty(&cpbdev->ctrlq)){
done = true;
}
return done;
}
static void cp_lkm_usb_shuter_down(struct cp_lkm_usb_base_dev* cpbdev)
{
struct list_head *entry, *nxt;
struct cp_lkm_base_ep *bep;
//printk("%s() done\n", __FUNCTION__);
//Unlink from the pm and disable the data state machine
LOG("Unlink cpdev from pm");
cp_lkm_do_or_die(cpbdev, NULL, cp_lkm_usb_shuter_down_do_pm_unlink, CP_LKM_TIMEOUT_MS, CP_LKM_ITER, "Failed to unlink pm from cpdev");
//disable the 'other' tasklet
LOG("Disable cpdev other tasklet");
cp_lkm_do_or_die(cpbdev, NULL, cp_lkm_usb_shuter_down_do_other_tasklet, CP_LKM_TIMEOUT_MS, CP_LKM_ITER, "Failed to shutdown cpdev other tasklet");
//Once we get here no xmits can happen or any recv or xmit done processing can happen so no new kevents can be scheduled
//so we can stop them here
//clear all the flags before flushing the kevents so that we won't try to do anything during the kevent callback
list_for_each_safe(entry, nxt, &cpbdev->in_bep_list) {
bep = list_entry(entry, struct cp_lkm_base_ep, list);
bep->err_flags = 0;
bep->con_flags = 0;
}
list_for_each_safe(entry, nxt, &cpbdev->out_bep_list) {
bep = list_entry(entry, struct cp_lkm_base_ep, list);
bep->err_flags = 0;
bep->con_flags = 0;
}
//This forces the kernel to run all scheduled kevents, so any of our pending ones will run. (Note: Make sure
//our kevent handlers check to see if we are attached before doing anything so that we don't schedule anything new while
//shutting down)
LOG("Cancel cpdev kevents");
cancel_work_sync(&cpbdev->kevent);
//Make sure all the urbs have been cancelled
// ensure there are no more active urbs
//set_current_state(TASK_UNINTERRUPTIBLE);
//these cause the urbs to be cancelled and the callbacks to be called. The urbs are removed from
//the queues in the callbacks.
cp_lkm_usb_unlink_urbs (cpbdev, &cpbdev->out_q, NULL);
cp_lkm_usb_unlink_urbs (cpbdev, &cpbdev->in_q, NULL);
cp_lkm_usb_unlink_urbs (cpbdev, &cpbdev->ctrlq, NULL);
LOG("Wait for all cpdev urbs to be returned");
cp_lkm_do_or_die(cpbdev, NULL, cp_lkm_usb_shuter_down_do_empty_queues, CP_LKM_TIMEOUT_MS, CP_LKM_ITER, "Failed to empty cpdev queues");
//shutdown timer and tasklets
LOG("Shutdown cpdev timers and tasklets");
del_timer_sync (&cpbdev->rx_delay);
cp_lkm_usb_stuck_check(cpbdev, CP_LKM_STUCK_DEINIT);
tasklet_kill(&cpbdev->data_process_tasklet);
tasklet_kill(&cpbdev->other_process_tasklet);
// All outstanding transfers are back, so now we can clean up.
cp_lkm_usb_clean_list(&cpbdev->data_tx_done);
cp_lkm_usb_clean_list(&cpbdev->data_rx_done);
cp_lkm_usb_clean_list(&cpbdev->other_done);
//printk("%s() done\n", __FUNCTION__);
usb_set_intfdata(cpbdev->intf, NULL);
usb_put_intf(cpbdev->intf);
cpbdev->intf = NULL;
LOG("cpdev unplug done");
return;
}
// Called when the USB hub detects that our device just unplugged.
// Called in a thread context. We do the lower usb cleanup here because there
// are some things that have to be done before exiting from disconnect.
// We don't clean up the upper layer stuff because the upper layer doesn't yet know
// we are unplugged and will continue to send us data. When the upper layer gets the
// unplug notify, it will call cp_lkm_usb_unplug_intf. We finish cleaning up in there.
void cp_lkm_usb_disconnect(struct usb_interface *intf)
{
struct cp_lkm_usb_dev* cpdev;
struct cp_lkm_usb_base_dev* cpbdev;
//unsigned long flags;
int unique_id;
// We don't want this function to run at the same time as any of the calls from the modem common stack (ioctl and write)
// They all grab this lock for the duration of their calls. They also check the state of the device before proceeding.
// Once we have the lock, we know none of them are running. Any new calls will block waiting on the lock.
// If we then change the state to dead we can release the lock while we do the rest of cleanup. When they get the lock
// they will see the state is dead and error out and return immediately. This prevents us from blocking the common modem thread.
spin_lock(&cp_lkm_usb_mgr.lock);
//If cpdev is not in intf, then this is the close->disconnect path, so do nothing
unique_id = (uintptr_t)usb_get_intfdata(intf);
//struct usb_device *udev;
//printk("%s() start, id: %d\n", __FUNCTION__, unique_id);
//see if device already went away, this should be impossible
//the unique id is always for the first instance if running clones
cpdev = cp_lkm_usb_find_dev(unique_id);
if(!cpdev) {
//printk("%s() no cpdev, id: %d\n", __FUNCTION__, unique_id);
spin_unlock(&cp_lkm_usb_mgr.lock);
return;
}
cpbdev = cpdev->cpbdev;
cpbdev->disconnect_wait = true;
// Mark the device as dead so we won't start anything new.
// NOTE: make sure nothing new can be started on the USB side from this point on.
// This includes transmits from the network. Transmits from cpusb.
// Recv packets, halt clears, ioctls etc
cp_lkm_usb_mark_base_as_dead(cpbdev);
// Once device is marked dead, we can release the semaphore. This is so write and ioctl from the modem stack
// can return quickly with errors instead of blocking while the disconnect completes.
spin_unlock(&cp_lkm_usb_mgr.lock);
cp_lkm_usb_shuter_down(cpbdev);
cpbdev->disconnect_wait = false;
memref_deref(cpbdev);
//printk("%s() done id: %d\n", __FUNCTION__,unique_id);
}
static void cp_lkm_usb_base_dev_finalize(void *arg)
{
struct cp_lkm_usb_base_dev* cpbdev = (struct cp_lkm_usb_base_dev*)arg;
struct list_head *entry, *nxt;
struct cp_lkm_base_ep *bep;
//int unique_id = cpbdev->base_id;
//printk("%s()\n", __FUNCTION__);
//if was added to the list, need to remove it.
if(cpbdev->list.next != &cpbdev->list) {
spin_lock(&cp_lkm_usb_mgr.lock);
list_del(&cpbdev->list);
//printk("%s() free cpbdev from global list \n", __FUNCTION__);
spin_unlock(&cp_lkm_usb_mgr.lock);
}
//These should already be empty, but just in case
//printk("%s() clean lists\n", __FUNCTION__);
cp_lkm_usb_clean_list(&cpbdev->in_q);
cp_lkm_usb_clean_list(&cpbdev->out_q);
cp_lkm_usb_clean_list(&cpbdev->ctrlq);
cp_lkm_usb_clean_list(&cpbdev->data_tx_done);
cp_lkm_usb_clean_list(&cpbdev->data_rx_done);
cp_lkm_usb_clean_list(&cpbdev->other_done);
if(cpbdev->wrapper_ctxt) {
//printk("%s() free wrapper\n", __FUNCTION__);
cp_lkm_wrapper_instance_free(cpbdev->wrapper_ctxt);
cpbdev->wrapper_ctxt = NULL;
}
if(cpbdev->usb_driver) {
//printk("%s() free driver\n", __FUNCTION__);
kfree(cpbdev->usb_driver);
cpbdev->usb_driver = NULL;
}
if(cpbdev->usb_id_table) {
//printk("%s() free id table\n", __FUNCTION__);
kfree(cpbdev->usb_id_table);
cpbdev->usb_id_table = NULL;
}
if(cpbdev->udev) {
//printk("%s() free udev\n", __FUNCTION__);
usb_put_dev (cpbdev->udev);
cpbdev->udev = NULL;
}
//printk("%s() - free eps\n",__FUNCTION__);
list_for_each_safe(entry, nxt, &cpbdev->cpdev_list) {
struct cp_lkm_usb_dev* cpdev = list_entry(entry, struct cp_lkm_usb_dev, list);
//printk("%s() - free cpdev: %p from cpbdev: %p\n",__FUNCTION__, cpdev, cpbdev);
list_del(&cpdev->list);
memref_deref(cpdev);
}
list_for_each_safe(entry, nxt, &cpbdev->in_bep_list) {
bep = list_entry(entry, struct cp_lkm_base_ep, list);
//printk("%s() - free in bep: %p from cpbdev: %p\n",__FUNCTION__,bep, cpbdev);
list_del(&bep->list);
memref_deref(bep);
}
list_for_each_safe(entry, nxt, &cpbdev->out_bep_list) {
bep = list_entry(entry, struct cp_lkm_base_ep, list);
//printk("%s() - free out bep: %p from cpbdev: %p\n ",__FUNCTION__,bep, cpbdev);
list_del(&bep->list);
memref_deref(bep);
}
//printk("%s() done base_id: %d\n", __FUNCTION__,unique_id);
}
static void cp_lkm_usb_dev_finalize(void *arg)
{
struct cp_lkm_usb_dev* cpdev = (struct cp_lkm_usb_dev*)arg;
struct list_head *entry, *nxt;
struct cp_lkm_ep *ep;
//printk("%s() start\n", __FUNCTION__);
//todo remove
//del_timer_sync(&cpdev->dbg_timer);
//printk("%s() - free eps\n",__FUNCTION__);
list_for_each_safe(entry, nxt, &cpdev->in_ep_list) {
ep = list_entry(entry, struct cp_lkm_ep, list_cpdev);
//printk("%s() - free ep: %p, num: %d from cpdev: %p\n",__FUNCTION__,ep, ep->ep_num, cpdev);
list_del(&ep->list_cpdev);
memref_deref(ep);
}
list_for_each_safe(entry, nxt, &cpdev->out_ep_list) {
ep = list_entry(entry, struct cp_lkm_ep, list_cpdev);
//printk("%s() - free ep: %p, num: %d from cpdev: %p\n",__FUNCTION__,ep, ep->ep_num, cpdev);
list_del(&ep->list_cpdev);
memref_deref(ep);
}
if(cpdev->edi) {
//printk("%s() free edi\n", __FUNCTION__);
cpdev->edi->usb_send_ctx = NULL;
cpdev->edi->usb_send = NULL;
memref_deref(cpdev->edi);
cpdev->edi = NULL;
}
//printk("%s() end \n", __FUNCTION__);
}
static int cp_lkm_usb_plug_intf(struct cp_lkm_usb_plug_intf* pi)
{
int retval;
struct cp_lkm_usb_dev* cpdev = NULL;
struct cp_lkm_usb_base_dev* cpbdev = NULL;
bool need_new;
bool is_cloneable;
//Make sure we aren't going to overflow the skb space reserved for us to use
//DEBUG_ASSERT(sizeof(struct skb_data) < sizeof(((struct sk_buff*)0)->cb));
//DEBUG_INFO("%s(), skb_data size: %d, skb_buff cb size: %d",__FUNCTION__,sizeof(struct skb_data),sizeof(((struct sk_buff*)0)->cb));
// We need to alloc a new cpbdev on plug if:
// 1. The device is not cloned at this layer (thus each plug has its own cpbdev)
// Note: Some devices are cloned at other layers (cpusb_linux.c), so they can be running as clones in the system, but not at this layer.
// This is why we can't just look at the clone_num to determine.
// 2. It is cloneable and clone_num is 0 (only the first clone gets a new cpbdev, the rest share it)
is_cloneable = pi->feature_flags & CP_LKM_FEATURE_CLONE_MUXED_INTF;
need_new = !is_cloneable || (is_cloneable && pi->clone_num == 0);
//printk("%s() start id:%d vid/pid: 0x%x/0x%x, bus/addr: %d/%d, intf: %d, flags: 0x%x, clone: %d, mux: %d\n", __FUNCTION__, pi->unique_id, pi->vid, pi->pid, pi->bus, pi->addr, pi->intf_num, pi->feature_flags, pi->clone_num, pi->mux_id);
if (need_new) {
//first instance, so need a new cpbdev
cpbdev = memref_alloc_and_zero(sizeof(struct cp_lkm_usb_base_dev), cp_lkm_usb_base_dev_finalize);
if(!cpbdev) {
//printk("%s() failed to alloc cpbdev\n", __FUNCTION__);
goto init_fail;
}
//printk("%s() id: %d, alloc'd new cpbdev: %p\n", __FUNCTION__, pi->unique_id, cpbdev);
cpbdev->base_state = CP_LKM_USB_INIT;
cpbdev->vid = pi->vid;
cpbdev->pid = pi->pid;
cpbdev->intf_num = pi->intf_num;
cpbdev->alt_intf_num = pi->alt_intf_num;
cpbdev->usb_bus = pi->bus;
cpbdev->usb_addr = pi->addr;
cpbdev->feature_flags = pi->feature_flags;
cpbdev->base_id = pi->unique_id;
INIT_LIST_HEAD(&cpbdev->in_bep_list);
INIT_LIST_HEAD(&cpbdev->out_bep_list);
INIT_LIST_HEAD(&cpbdev->list);
INIT_LIST_HEAD(&cpbdev->cpdev_list);
cpbdev->data_in_bep_num = pi->ep_in;
cpbdev->data_out_bep_num = pi->ep_out;
//alloc and register the usb driver
cpbdev->usb_driver = kzalloc(sizeof(struct usb_driver), GFP_KERNEL);
if(!cpbdev->usb_driver) {
//printk("%s() failed to alloc driver\n", __FUNCTION__);
goto init_fail;
}
cpbdev->usb_id_table = kzalloc(sizeof(struct usb_device_id)*2, GFP_KERNEL);
if(!cpbdev->usb_id_table) {
//printk("%s() failed to alloc table\n", __FUNCTION__);
goto init_fail;
}
cpbdev->usb_id_table[0].idVendor = cpbdev->vid;
cpbdev->usb_id_table[0].idProduct = cpbdev->pid;
cpbdev->usb_id_table[0].match_flags = USB_DEVICE_ID_MATCH_DEVICE;
cpbdev->usb_id_table[0].driver_info = (unsigned long)pi->unique_id;
//create unique drvr string
sprintf(cpbdev->usb_drvr_name, USB_DRVR_FRMT_STR, pi->unique_id);
cpbdev->usb_driver->name = cpbdev->usb_drvr_name;
cpbdev->usb_driver->probe = cp_lkm_usb_probe;
cpbdev->usb_driver->disconnect = cp_lkm_usb_disconnect;
cpbdev->usb_driver->id_table = cpbdev->usb_id_table;
skb_queue_head_init (&cpbdev->in_q);
skb_queue_head_init (&cpbdev->out_q);
skb_queue_head_init (&cpbdev->ctrlq);
skb_queue_head_init (&cpbdev->data_tx_done);
skb_queue_head_init (&cpbdev->data_rx_done);
skb_queue_head_init (&cpbdev->other_done);
cpbdev->data_q_len = 0;
spin_lock_init(&cpbdev->data_q_lock);
spin_lock_init(&cpbdev->processing_state_lock);
spin_lock_init(&cpbdev->other_state_lock);
cpbdev->processing_state = USB_PROCESS_STATE_IDLE;
cpbdev->other_state = USB_PROCESS_STATE_IDLE;
INIT_WORK(&cpbdev->kevent, cp_lkm_usb_kevent);
timer_setup(&cpbdev->rx_delay, cp_lkm_usb_delay_timer, 0);
cpbdev->data_process_tasklet.func = cp_lkm_usb_process_data_done_tasklet; //TODO: modify to take cpbdev
cpbdev->data_process_tasklet.data = (unsigned long) cpbdev;
cpbdev->other_process_tasklet.func = cp_lkm_usb_process_other_done_tasklet; //TODO: modify to take cpbdev
cpbdev->other_process_tasklet.data = (unsigned long) cpbdev;
cpbdev->disconnect_wait = false;
spin_lock(&cp_lkm_usb_mgr.lock);
list_add_tail(&cpbdev->list, &cp_lkm_usb_mgr.dev_list);
spin_unlock(&cp_lkm_usb_mgr.lock);
// When we call register, it calls our probe function with all available matching interfaces. In probe
// we save the result of the probe so we can return fail here if it didn't go well
//printk("%s() reg drvr for vid:%x, pid:%x, addr:%d, intf:%d\n", __FUNCTION__, pi->vid,pi->pid,pi->addr,pi->intf_num);
retval = usb_register(cpbdev->usb_driver);
if(retval || cpbdev->plug_result != 0) {
//printk("%s() failed to register driver or probe failed retval:%d, plug_result:%d\n", __FUNCTION__, retval, cpbdev->plug_result);
goto init_fail;
}
cpbdev->base_state = CP_LKM_USB_CTRL;
DEBUG_TRACE("%s() done", __FUNCTION__);
}
else{
//clone, should already have a base dev
cpbdev = cp_lkm_usb_find_base_dev(pi->bus, pi->addr, pi->unique_id, CP_LKM_DEV_MATCH_BUS_ADDR_ONLY);
if(!cpbdev) {
//printk("%s() failed to find cpbdev\n", __FUNCTION__);
goto init_fail;
}
//printk("%s() id: %d, already have cpbdev: %p\n", __FUNCTION__, pi->unique_id, cpbdev);
}
// make sure base dev has all the feature flags of every clone
cpbdev->feature_flags |= pi->feature_flags;
//printk("%s() id: %d, cpbdev: %p, alloc new cpdev\n", __FUNCTION__, pi->unique_id, cpbdev);
cpdev = memref_alloc_and_zero(sizeof(struct cp_lkm_usb_dev), cp_lkm_usb_dev_finalize);
if(!cpdev) {
//printk("%s() failed to alloc cpdev\n", __FUNCTION__);
goto init_fail;
}
//printk("%s() id: %d, cpdev: %p\n", __FUNCTION__, pi->unique_id, cpdev);
INIT_LIST_HEAD(&cpdev->in_ep_list);
INIT_LIST_HEAD(&cpdev->out_ep_list);
INIT_LIST_HEAD(&cpdev->list);
//add to list right away so if anything below fails, it will be cleaned up when cpbdev is cleaned up
list_add_tail(&cpdev->list, &cpbdev->cpdev_list);
cpdev->cpbdev = cpbdev;
cpdev->unique_id = pi->unique_id;
//clone and mux are only used with muxed clone interfaces.
cpdev->clone_num = (pi->feature_flags & CP_LKM_FEATURE_CLONE_MUXED_INTF) ? pi->clone_num : 0;
cpdev->mux_id = (pi->feature_flags & CP_LKM_FEATURE_CLONE_MUXED_INTF) ? pi->mux_id : CP_LKM_WRAPPER_DEFAULT_ID;
//printk("%s() unique_id: %d, clone: %d, mux_id: %d\n", __FUNCTION__, pi->unique_id, pi->clone_num, cpdev->mux_id);
cpdev->data_in_ep_num = pi->ep_in;
cpdev->data_out_ep_num = pi->ep_out;
//pre-create the data endpoints so they will be first in the list, since they are most often used
cp_lkm_usb_create_ep(cpdev, pi->ep_in);
cp_lkm_usb_create_ep(cpdev, pi->ep_out);
cpdev->edi = memref_alloc_and_zero(sizeof(struct cp_lkm_edi), NULL);
if(!cpdev->edi) {
//printk("%s() failed to alloc edi\n", __FUNCTION__);
goto init_fail;
}
cpdev->edi->usb_send = cp_lkm_usb_start_xmit;
//for debug, comment out before checkin
//cpdev->dbg_timer.function = cp_lkm_usb_dbg_timer;
//cpdev->dbg_timer.data = (unsigned long)cpdev;
//init_timer(&cpdev->dbg_timer);
//mod_timer(&cpdev->dbg_timer, jiffies + msecs_to_jiffies(10000));
//TODO CA: I think this shouldn't be set until open, commenting out for now to see if blows chow in plug fest
//cpdev->edi->usb_send_ctx = cpdev;
cpdev->state = CP_LKM_USB_CTRL;
//printk("%s() done success id: %d\n", __FUNCTION__, pi->unique_id);
return 0;
init_fail:
if(cpbdev) {
//the finalizer for cpbdev does the clean up
memref_deref(cpbdev);
}
//returning an error to the modem stack on plug will cause it to hard reset
//the modem, thus causing the rest of the driver cleanup to occur
//printk("%s() open_intf fail\n", __FUNCTION__);
return -1;
}
static int cp_lkm_usb_set_wrapper(struct cp_lkm_usb_set_wrapper* sw)
{ //unsigned long flags;
struct cp_lkm_usb_dev* cpdev;
struct cp_lkm_usb_base_dev* cpbdev;
void* wrapper_info = NULL;
unsigned long not_copied;
int res = 0;
//printk("%s() unique_id: %d, clone: %d, mux_id: %d\n", __FUNCTION__, sw->unique_id, sw->clone_num, sw->mux_id);
spin_lock(&cp_lkm_usb_mgr.lock);
cpdev = cp_lkm_usb_find_dev(sw->unique_id);
if(!cpdev) {
spin_unlock(&cp_lkm_usb_mgr.lock);
//printk("%s() no cpdev found for id: %d\n", __FUNCTION__, sw->unique_id);
return -1;
}
cpbdev = cpdev->cpbdev;
if(cpbdev->base_state == CP_LKM_USB_DEAD){
//modem is unplugging, upper layer just doesn't know it yet, so act like ok until it finds out
spin_unlock(&cp_lkm_usb_mgr.lock);
//printk("%s() set_wrapper fail cpdev:%p, state:%d\n", __FUNCTION__, cpdev, cpdev->state);
return 0;
}
// benk - what if wrapper_info_len is 0???
if(cpbdev->wrapper_ctxt){
//already have a wrapper so free it
cp_lkm_wrapper_instance_free(cpbdev->wrapper_ctxt);
}
if(sw->wrapper_info_len) {
wrapper_info = kzalloc(sw->wrapper_info_len, GFP_KERNEL);
if(!wrapper_info) {
DEBUG_ERROR("%s() couldn't alloc wrapper info", __FUNCTION__);
res = -1;
goto set_wrapper_done;
}
}
//copy the wrapper info from user to kernel space
not_copied = copy_from_user(wrapper_info, sw->wrapper_info, sw->wrapper_info_len);
if (not_copied) {
DEBUG_ERROR("%s() couldn't copy wrapper info", __FUNCTION__);
res = -1;
goto set_wrapper_done;
}
//alloc the wrapper instance. On success it takes ownership of the wrapper_info and is responsible for freeing it
DEBUG_INFO("%s() wrapper: %d", __FUNCTION__, sw->wrapper);
cpbdev->wrapper_ctxt = cp_lkm_wrapper_instance_alloc(sw->wrapper, wrapper_info, sw->wrapper_info_len);
if(!cpbdev->wrapper_ctxt){
DEBUG_ERROR("%s() couldn't alloc wrapper", __FUNCTION__);
res = -1;
goto set_wrapper_done;
}
cpbdev->wrapper_hdr_size = cp_lkm_wrapper_hdr_size(cpbdev->wrapper_ctxt);
cp_lkm_wrapper_set_state(cpbdev->wrapper_ctxt, cpdev->mux_id, CP_LKM_WRAPPER_CTRL);
cpdev->clone_num = sw->clone_num;
cpdev->mux_id = sw->mux_id;
set_wrapper_done:
if(wrapper_info) {
kfree(wrapper_info);
}
spin_unlock(&cp_lkm_usb_mgr.lock);
return res;
}
static int cp_lkm_usb_set_mux_id(struct cp_lkm_usb_set_mux_id* smi)
{ //unsigned long flags;
struct cp_lkm_usb_dev* cpdev;
//struct cp_lkm_usb_base_dev* cpbdev;
int res = 0;
//printk("%s()\n", __FUNCTION__);
spin_lock(&cp_lkm_usb_mgr.lock);
cpdev = cp_lkm_usb_find_dev(smi->unique_id);
if(!cpdev) {
spin_unlock(&cp_lkm_usb_mgr.lock);
//printk("%s() failed to find cpdev for id: %d\n", __FUNCTION__, smi->unique_id);
return -1;
}
if(cpdev->cpbdev->base_state == CP_LKM_USB_DEAD){
//modem is unplugging, upper layer just doesn't know it yet, so act like ok until it finds out
spin_unlock(&cp_lkm_usb_mgr.lock);
return 0;
}
cpdev->mux_id = smi->mux_id;
//printk("%s() unique_id: %d, mux_id: %d\n", __FUNCTION__, smi->unique_id, smi->mux_id);
spin_unlock(&cp_lkm_usb_mgr.lock);
return res;
}
static int cp_lkm_usb_open_intf(struct cp_lkm_usb_open_intf* oi)
{
//unsigned long flags;
struct cp_lkm_usb_dev* cpdev;
//printk("%s() u-uid: %d\n", __FUNCTION__,oi->unique_id);
spin_lock(&cp_lkm_usb_mgr.lock);
cpdev = cp_lkm_usb_find_dev(oi->unique_id);
//if state isn't CP_LKM_USB_CTRL, then the interface either did not plug for some reason (i.e. didn't get probe from usb),
//or it plugged, but then unplugged before open was called.
if(!cpdev || cpdev->cpbdev->base_state != CP_LKM_USB_CTRL) {
spin_unlock(&cp_lkm_usb_mgr.lock);
//printk("%s() open_intf fail cpdev:%p, state:%d\n", __FUNCTION__, cpdev, cpdev?cpdev->state:0xff);
return -1;
}
cpdev->state = CP_LKM_USB_ACTIVE;
cpdev->edi->usb_send_ctx = cpdev; //this allows the network side to call me
cp_lkm_wrapper_set_state(cpdev->cpbdev->wrapper_ctxt, cpdev->mux_id, CP_LKM_WRAPPER_ACTIVE);
spin_unlock(&cp_lkm_usb_mgr.lock);
//printk("%s() done\n", __FUNCTION__);
return 0;
}
static int cp_lkm_usb_close_intf(struct cp_lkm_usb_close_intf* ci)
{
//unsigned long flags;
struct cp_lkm_usb_dev* cpdev;
//printk("%s() u-uid: %d\n", __FUNCTION__, ci->unique_id);
//down(&cp_lkm_usb_mgr.thread_sem);
spin_lock(&cp_lkm_usb_mgr.lock);
cpdev = cp_lkm_usb_find_dev(ci->unique_id);
if(!cpdev || cpdev->cpbdev->base_state == CP_LKM_USB_DEAD) {
//device has already unplugged, or is half-unplugged, so don't allow this action to complete
spin_unlock(&cp_lkm_usb_mgr.lock);
//up(&cp_lkm_usb_mgr.thread_sem);
return 0;
}
cpdev->edi->usb_send_ctx = NULL; //disconnect from network side so he won't send me any more data
cpdev->state = CP_LKM_USB_CTRL;
cp_lkm_wrapper_set_state(cpdev->cpbdev->wrapper_ctxt, cpdev->mux_id, CP_LKM_WRAPPER_CTRL);
spin_unlock(&cp_lkm_usb_mgr.lock);
//up(&cp_lkm_usb_mgr.thread_sem);
//printk("%s() done\n", __FUNCTION__);
return 0;
}
static bool cp_lkm_usb_unplug_do_disconnect_wait(void* ctx1, void* ctx2)
{
struct cp_lkm_usb_base_dev* cpbdev = (struct cp_lkm_usb_base_dev*)ctx1;
bool done = false;
if (cpbdev->disconnect_wait == false){
done = true;
}
return done;
}
/*
* This function is called when the common modem stack wants to give up the interface.
* There are two scenarios:
* 1. Modem unplugs which leads to the following flow:
* -> cp_lkm_usb_disconnect is called by USB sublayer, it cleans up bottom half of cpdev and waits for common modem stack unplug
* -> common modem stack sees unplug event
* -> it calls this function to finish the cleanup and deregister the driver
* -> we are done
*
* 2. Common modem stack decides to give up the interface due to one common
* modem driver relinquishing the modem and another common modem driver grabbing it.
* This leads to the following flow:
* -> Common modem stack calls this function.
* -> it calls usb_deregister() which will call cp_lkm_usb_disconnect in context
* -> cp_lkm_usb_disconnect shuts down and frees the usb interface
* -> After usb_deregister() exits we finish and exit.
*
* Notes: This means the two shutdown functions, this one and cp_lkm_usb_disconnect can be
* run in any order, so they must not stomp on each other. For example since
* cp_lkm_usb_disconnect frees the interface with the kernel, this function better
* not do anything that requires the interface after calling usb_deregister()
*
* The modem stack is single threaded so this function can never be reentrant
*/
static int cp_lkm_usb_unplug_intf(struct cp_lkm_usb_unplug_intf* ui)
{
//find dev in list by unique id
struct cp_lkm_usb_dev* cpdev;
struct cp_lkm_usb_base_dev* cpbdev;
bool shuter_down = true;
struct list_head *pos;
//printk("%s() start id: %d\n", __FUNCTION__, ui->unique_id);
spin_lock(&cp_lkm_usb_mgr.lock);
//The device should always exist, but if it doesn't, there is no need to blow up, so exit peacefully
cpdev = cp_lkm_usb_find_dev(ui->unique_id);
if(!cpdev) {
spin_unlock(&cp_lkm_usb_mgr.lock);
return -1;
}
cpbdev = cpdev->cpbdev;
cp_lkm_usb_mark_as_dead(cpdev);
list_for_each(pos, &cpbdev->cpdev_list){
struct cp_lkm_usb_dev* tmp_cpdev = list_entry(pos, struct cp_lkm_usb_dev, list);
if(tmp_cpdev->state != CP_LKM_USB_DEAD) {
//don't shut down until all clone devices have unplugged
shuter_down = false;
break;
}
}
//free semaphore before calling usb_deregister because it causes disconnect to be called for case 2 in the header comments
//which will try and grab the semaphore, so we would be deadlocked
spin_unlock(&cp_lkm_usb_mgr.lock);
if (shuter_down) {
LOG("Wait for cpdev to finish unplugging");
cp_lkm_do_or_die(cpbdev, NULL, cp_lkm_usb_unplug_do_disconnect_wait,CP_LKM_TIMEOUT_MS,CP_LKM_ITER,"cpdev failed to finish disconnecting");
//printk("%s() usb_deregister\n",__FUNCTION__);
usb_deregister(cpbdev->usb_driver);
/* clean up */
memref_deref(cpbdev);
}
/* IMPORTANT: don't do anything other than deref after call to deregister*/
LOG("cpdev done unplugging");
return 0;
}
/*
* Handle endpoint action requests from modem stack.
*
* Important things to know:
* In normal mode:
* 1. There will be 1 cpdev per cpbdev, and 1 ep per bep.
* 2. Every different ep can either be listened on or recv'd on, but never both at the same time
*
* In clone mode:
* 1. There will be n cpdevs per cpbdev, and n eps ber bep (depending on number of clones).
* 2. Every different ep can either be listened on or recv'd on, but never both at the same time.
* 3. All cloned data eps can be listened on at the same time (data header allows us to mux data between all the data eps, data endpoints don't use recv).
* 4. With all other cloned eps of the same type (AT, CNS, QMI), only one clone can be listened on or recv'd on at a time.
* This is because there are not headers on these channels to let us know where to mux the data to. Fortunately, the
* modem stack enforces this, so we don't have to enforce it here, but we can use it to know how to route cloned packets
* coming in on non-data channel endpoints
*/
static int cp_lkm_usb_ep_action(struct cp_lkm_usb_ep_action* ea)
{
struct cp_lkm_ep* ep;
struct cp_lkm_base_ep* bep = NULL;
struct cp_lkm_usb_dev* cpdev;
struct cp_lkm_usb_base_dev* cpbdev;
//unsigned long flags;
int pump_recv = 0;
//printk("%s() - action: %d, ep_num: 0x%x, id: %d\n",__FUNCTION__,ea->action, ea->ep_num, ea->unique_id);
spin_lock(&cp_lkm_usb_mgr.lock);
//There should always be a device, and it should always be plugged
cpdev = cp_lkm_usb_find_dev(ea->unique_id);
if(!cpdev) {
spin_unlock(&cp_lkm_usb_mgr.lock);
//printk("%s() no device found for unique id: %d\n", __FUNCTION__, ea->unique_id);
return -1;
}
cpbdev = cpdev->cpbdev;
if(cpbdev->base_state == CP_LKM_USB_INIT) {
spin_unlock(&cp_lkm_usb_mgr.lock);
//printk("%s() no probe yet, unique_id: %d, action: %d\n", __FUNCTION__,ea->unique_id,ea->action);
return -1;
}
if(cpbdev->base_state == CP_LKM_USB_DEAD) {
// The device can unplug down here before cpusb knows about it so it can continue to send us stuff.
// The modem will unplug soon so just act like we did it and return ok. I didn't want to
// return an error because that might cause cpusb unnecessary heartburn.
spin_unlock(&cp_lkm_usb_mgr.lock);
//printk("%s() cpdev already dead, shouldn't be doing this: id: %d, action: %d cpbdev: %p, cpdev: %p\n", __FUNCTION__,ea->unique_id,ea->action,cpbdev,cpdev);
return 0;
}
DEBUG_ASSERT(cpbdev, "cpbdev is null");
//create the ep if it doesn't already exist
if(ea->action == EP_ACTION_CREATE) {
cp_lkm_usb_create_ep(cpdev, ea->ep_num);
}
if (ea->action == EP_ACTION_FLUSH_CONTROL) {
ep = NULL;
} else {
ep = cp_lkm_usb_get_ep(cpdev, ea->ep_num);
if(!ep) {
spin_unlock(&cp_lkm_usb_mgr.lock);
//printk("%s() failed to find ep: 0x%x for action: %d\n", __FUNCTION__, ea->ep_num, ea->action);
return -1;
}
bep = ep->bep;
DEBUG_ASSERT(bep,"base ep is null");
}
//if (ep && ea->action != EP_ACTION_RECV) {
// printk("%s() - action: %d, ep_num: 0x%x, bep: %p, ep: %p, cpbdev: %p, cpdev: %p, id: %d\n",__FUNCTION__,ea->action, ea->ep_num, bep, ep, bep->cpbdev, ep->cpdev,ea->unique_id);
//}
//printk("ea->action: %d, ep_num: %d\n", ea->action, ea->ep_num);
switch(ea->action) {
case EP_ACTION_CREATE:
//printk("%s() - action: %d, ep_num: 0x%x, bep: %p, ep: %p, cpbdev: %p, cpdev: %p, id: %d\n",__FUNCTION__,ea->action, ea->ep_num, bep, ep, bep->cpbdev, ep->cpdev,ea->unique_id);
//initialize endpoint fields
bep->type = ea->ep_type;
bep->max_transfer_size = ea->max_transfer_size;
bep->interval = ea->interval;
DEBUG_ASSERT(cpbdev->udev,"udev is null");
if(bep->ep_num & USB_DIR_IN) { //in
if(bep->type == UE_BULK) {
bep->pipe = usb_rcvbulkpipe(cpbdev->udev,bep->ep_num);
}
else{ //interrupt
bep->pipe = usb_rcvintpipe(cpbdev->udev, bep->ep_num);
}
}
else{ //out
if(bep->type == UE_BULK) {
bep->pipe = usb_sndbulkpipe(cpbdev->udev,bep->ep_num);
}
else{ //interrupt
bep->pipe = usb_sndintpipe(cpbdev->udev, bep->ep_num);
}
}
DEBUG_TRACE("%s() create action:%d, ep:0x%x, type:%d, pipe:0x%x", __FUNCTION__, ea->action, ea->ep_num, ea->ep_type, bep->pipe);
break;
case EP_ACTION_LISTEN:
DEBUG_TRACE("%s() listen action:%d, ep:0x%x, type:%d, pipe:0x%x", __FUNCTION__, ea->action, ea->ep_num, ea->ep_type, bep->pipe);
ep->con_flags |= CP_LKM_USB_LISTEN;
//listen on any endpoint starts listen on base
bep->con_flags |= CP_LKM_USB_LISTEN;
pump_recv = 1;
break;
case EP_ACTION_LISTEN_STOP:
{
bool listen_done = true;
struct list_head *entry, *nxt;
struct cp_lkm_ep *tmp_ep;
DEBUG_TRACE("%s() listen stop action:%d, ep:0x%x, type:%d, pipe:0x%x", __FUNCTION__, ea->action, ea->ep_num, ea->ep_type, bep->pipe);
// the ep is done listening
ep->con_flags &= ~CP_LKM_USB_LISTEN;
//now see if all eps on this bep are done listening
list_for_each_safe(entry, nxt, &bep->eps) {
tmp_ep = list_entry(entry, struct cp_lkm_ep, list_bep);
if(tmp_ep->con_flags & CP_LKM_USB_LISTEN) {
//if any of the eps on the bep still listening, then still listen on the bep
listen_done = false;
break;
}
}
if(listen_done) {
bep->con_flags &= ~CP_LKM_USB_LISTEN;
//If RX_HALT bit set then there is an error on this endpoint and the kevent will be scheduled to fix the error. As part of the fix
//he will unlink the urbs. Bad things can happen if we call cp_lkm_usb_unlink_urbs here at same time the kevent handler is calling it
if(!test_bit (EVENT_RX_HALT, &bep->err_flags)){
//TODO CORY: is it ok to call unlink while holding the global lock?? Can I set a flag and run the tasklet to do the work instead??
cp_lkm_usb_unlink_urbs(cpbdev, &cpbdev->in_q, bep);
}
}
}
break;
case EP_ACTION_RECV:
DEBUG_TRACE("%s() recv action:%d, ep:0x%x, type:%d, pipe:0x%x", __FUNCTION__, ea->action, ea->ep_num, ea->ep_type, bep->pipe);
// can only have one pending recv on a given ep
ep->con_flags |= CP_LKM_USB_RECV;
bep->con_flags |= CP_LKM_USB_RECV;
pump_recv = 1;
break;
case EP_ACTION_FLUSH_CONTROL:
//printk("%s() flush control action:%d\n", __FUNCTION__, ea->action);
//TODO CORY: is it ok to call unlink while holding the global lock?? Can I set a flag and run the tasklet to do the work instead??
//We don't schedule kevents to clear endpoint halts since they are self recovering so we don't need to test the halt bits on the ctrl channel
cp_lkm_usb_unlink_urbs(cpbdev, &cpbdev->ctrlq, NULL);
break;
case EP_ACTION_SET_MAX_TX_SIZE:
//printk("%s() set max tx size to %d on ep: 0x%x\n",__FUNCTION__,ea->max_transfer_size, ea->ep_num);
bep->max_transfer_size = ea->max_transfer_size;
break;
default:
break;
}
if(pump_recv) {
cp_lkm_schedule_rx_restock(cpbdev, bep);
}
spin_unlock(&cp_lkm_usb_mgr.lock);
return 0;
}
static bool cp_lkm_usb_do_pm_link(void* ctx1, void* ctx2)
{
struct cp_lkm_usb_dev* cpdev = (struct cp_lkm_usb_dev*)ctx1;
struct cp_lkm_usb_base_dev* cpbdev = cpdev->cpbdev;
struct cp_lkm_usb_pm_link* upl = (struct cp_lkm_usb_pm_link*)ctx2;
unsigned long flags;
bool done = false;
int rc;
//printk("%s() usb id: %d, pm id: %d, link: %d\n", __FUNCTION__, upl->usb_unique_id, upl->pm_unique_id ,upl->link);
// We are getting ready to either link or unlink the usb to the protocol manager. This means we will be changing
// function pointers that are used by the data processing state machine and by the code that schedules the data
// processing machine.
//
// We need to shut both of those down before doing the linking.
// 1: We shut the machine down by setting the state to USB_PROCESS_STATE_PAUSED.
// 2: We shut down the scheduling by putting the data_q_len to CP_LKM_USB_PAUSED_CNT so the hw interrupts won't schedule a process
spin_lock_irqsave(&cpbdev->processing_state_lock, flags);
if(cpbdev->processing_state == USB_PROCESS_STATE_IDLE){
cpbdev->processing_state = USB_PROCESS_STATE_PAUSED; //pauses the data processing soft irq handler
spin_lock(&cpbdev->data_q_lock);
cpbdev->data_q_len = CP_LKM_USB_PAUSED_CNT; //stops the hw irq handlers from trying to schedule the soft irq handler
spin_unlock(&cpbdev->data_q_lock);
if(upl->link) {
cpdev->edi->usb_send_ctx = cpdev;
}
//release lock while calling pm since we don't know how long they may take. We have already set the processing_state to
//paused so the soft interrupt routines won't try to do anything so we are safe.
spin_unlock_irqrestore(&cpbdev->processing_state_lock, flags);
rc = cp_lkm_pm_usb_link(cpdev->edi, upl->pm_unique_id, upl->link);
DEBUG_ASSERT(rc == 0, "Failed to link usb and pm");
spin_lock_irqsave(&cpbdev->processing_state_lock, flags);
if(upl->link) {
if (cpdev->edi->pm_get_hdr_size && cpdev->edi->pm_recv_ctx) {
cpdev->edi->pm_get_hdr_size(cpdev->edi->pm_recv_ctx, cpbdev->wrapper_hdr_size, &cpbdev->pm_hdr_size, &cpbdev->pm_hdr_offset);
}
}
else{
cpdev->edi->usb_send_ctx = NULL;
}
cpdev->pm_id = upl->pm_unique_id;
spin_lock(&cpbdev->data_q_lock);
//set things back up properly before re-enabling the soft irq and hardware handlers
cpbdev->data_q_len = cpbdev->data_rx_done.qlen + cpbdev->data_tx_done.qlen; //this must be set before calling schedule_data_process
spin_unlock(&cpbdev->data_q_lock);
cpbdev->processing_state = USB_PROCESS_STATE_IDLE;
done = true;
}
spin_unlock_irqrestore(&cpbdev->processing_state_lock, flags);
return done;
}
static int cp_lkm_usb_pm_link(struct cp_lkm_usb_pm_link* upl)
{
struct cp_lkm_usb_dev* cpdev;
struct cp_lkm_usb_base_dev* cpbdev;
spin_lock(&cp_lkm_usb_mgr.lock);
//There should always be a device, and it should always be plugged
cpdev = cp_lkm_usb_find_dev(upl->usb_unique_id);
//printk("%s() cpdev: %p, u-uid: %d, pm-uid: %d, up: %d\n", __FUNCTION__, cpdev, upl->usb_unique_id, upl->pm_unique_id, upl->link);
if(!cpdev || cpdev->cpbdev->base_state == CP_LKM_USB_INIT) {
spin_unlock(&cp_lkm_usb_mgr.lock);
//printk("%s() no device or no probe yet\n", __FUNCTION__);
return -1;
}
cpbdev = cpdev->cpbdev;
// The device can unplug down here before cpusb knows about it so it can continue to send us stuff.
// The modem will unplug soon so just act like we did it and return ok. I didn't want to
// return an error because that might cause cpusb unnecessary heartburn.
if(cpbdev->base_state == CP_LKM_USB_DEAD) {
spin_unlock(&cp_lkm_usb_mgr.lock);
//printk("%s() device already unplugged\n", __FUNCTION__);
return 0;
}
//printk("%s() usb id: %d, pm id: %d, link: %d\n", __FUNCTION__, upl->usb_unique_id, upl->pm_unique_id ,upl->link);
// We are getting ready to either link or unlink the usb to the protocol manager. This means we will be changing
// function pointers that are used by the data processing state machine and by the code that schedules the data
// processing machine.
//
// We need to shut both of those down before doing the linking.
// 1: We shut the machine down by setting the state to USB_processing_state_PAUSED.
// 2: We shut down the scheduling by putting the data_q_len to CP_LKM_USB_PAUSED_CNT so the hw interrupts won't schedule a process
cp_lkm_do_or_die(cpdev, upl, cp_lkm_usb_do_pm_link, CP_LKM_TIMEOUT_MS, CP_LKM_ITER, "cpdev failed to link with pm");
//printk("%s() done\n", __FUNCTION__);
spin_unlock(&cp_lkm_usb_mgr.lock);
//force a resume
cp_lkm_schedule_data_process(cpbdev, false, true, false);
return 0;
}
static int cp_lkm_usb_is_alive_intf(struct cp_lkm_usb_is_alive_intf *alivei)
{
//find dev in list by unique id
struct cp_lkm_usb_dev *cpdev;
int alive;
//printk("%s() start\n", __FUNCTION__);
spin_lock(&cp_lkm_usb_mgr.lock);
//The device should always exist, but if it doesn't, there is no need to blow up, so exit peacefully
cpdev = cp_lkm_usb_find_dev(alivei->unique_id);
if(!cpdev) {
spin_unlock(&cp_lkm_usb_mgr.lock);
return -1;
}
alive = (cpdev->state == CP_LKM_USB_DEAD) ? -1 : 0;
//free semaphore before calling usb_deregister because it causes disconnect to be called for case 2 in the header comments
//which will try and grab the semaphore, so we would be deadlocked
spin_unlock(&cp_lkm_usb_mgr.lock);
return alive;
}
static bool cp_lkm_usb_is_attached(struct cp_lkm_usb_dev* cpdev)
{
return (cpdev->state == CP_LKM_USB_ACTIVE || cpdev->state == CP_LKM_USB_CTRL);
}
static bool cp_lkm_usb_is_base_attached(struct cp_lkm_usb_base_dev* cpbdev)
{
//base has three possible states: INIT, CTRL, DEAD (it never goes to ACTIVE, only the cpdev's do that)
return cpbdev->base_state == CP_LKM_USB_CTRL;
}
//
// Input:
// if_data: set to true if caller only wants to schedule if there is data pending
// is_reschedule: set to true if the caller is the scheduled handler to see if it should be rescheduled
// have_lock: true if the caller already has the lock
//
// returns:
// true if scheduled new processing
// false if didn't schedule.
//
// Note: returns false if it was currently scheduled
static bool cp_lkm_schedule_data_process(struct cp_lkm_usb_base_dev* cpbdev, bool if_data, bool is_reschedule, bool have_lock)
{
unsigned long flags;
bool res = false;
if (!have_lock) {
spin_lock_irqsave(&cpbdev->data_q_lock, flags);
}
//never schedule processing when we are paused
if (cpbdev->data_q_len == CP_LKM_USB_PAUSED_CNT) {
goto schedule_done;
}
if (is_reschedule) {
cpbdev->scheduled = false;
}
if (cpbdev->scheduled == true) {
goto schedule_done;
}
if (if_data) {
if(!cp_lkm_usb_have_data(cpbdev)){
goto schedule_done;
}
}
cpbdev->scheduled = true;
res = true;
//cpdev->dbg_total_tasklet_sched++;
tasklet_schedule(&cpbdev->data_process_tasklet);
schedule_done:
if (!have_lock) {
spin_unlock_irqrestore(&cpbdev->data_q_lock, flags);
}
return res;
}
static void cp_lkm_schedule_rx_restock(struct cp_lkm_usb_base_dev* cpbdev, struct cp_lkm_base_ep* bep)
{
if(bep == NULL) {
cp_lkm_schedule_data_process(cpbdev,false,false,false);
tasklet_schedule(&cpbdev->other_process_tasklet);
}
else if(bep->ep_num == cpbdev->data_in_bep_num) {
//printk("start data ep listen\n");
cp_lkm_schedule_data_process(cpbdev,false,false,false);
}
else{
tasklet_schedule(&cpbdev->other_process_tasklet);
}
}
#define DATA_SRC_TX 0
#define DATA_SRC_RX 1
#define DATA_SRC_OTHER 2
static void cp_lkm_usb_done_and_defer_data(struct cp_lkm_usb_base_dev* cpbdev, struct sk_buff *skb, int src)
{
unsigned long flags;
spin_lock_irqsave(&cpbdev->data_q_lock, flags);
if(src == DATA_SRC_TX) {
__skb_queue_tail(&cpbdev->data_tx_done, skb);
}
else{
__skb_queue_tail(&cpbdev->data_rx_done, skb);
}
if(cpbdev->data_q_len != CP_LKM_USB_PAUSED_CNT) {
cpbdev->data_q_len++;
cp_lkm_schedule_data_process(cpbdev,true,false,true);
}
spin_unlock_irqrestore(&cpbdev->data_q_lock, flags);
}
//for non data endpoint pkts
static void cp_lkm_usb_done_and_defer_other(struct cp_lkm_usb_base_dev* cpbdev, struct sk_buff *skb)
{
unsigned long flags;
spin_lock_irqsave(&cpbdev->other_done.lock, flags);
__skb_queue_tail(&cpbdev->other_done, skb);
//only rearm the softirq if the list was empty
if(cpbdev->other_done.qlen == 1) {
tasklet_schedule(&cpbdev->other_process_tasklet);
}
spin_unlock_irqrestore(&cpbdev->other_done.lock, flags);
}
static void cp_lkm_usb_process_other_done_tasklet (unsigned long param)
{
struct cp_lkm_usb_base_dev* cpbdev = (struct cp_lkm_usb_base_dev *)param;
struct sk_buff *skb;
struct skb_data *entry;
bool timed_out = false;
unsigned long time_limit = jiffies + 2;
bool can_restock = true;
unsigned long flags;
spin_lock_irqsave(&cpbdev->other_state_lock, flags);
if(cpbdev->other_state != USB_PROCESS_STATE_IDLE){
spin_unlock_irqrestore(&cpbdev->other_state_lock, flags);
return;
}
cpbdev->other_state = USB_PROCESS_STATE_ACTIVE;
spin_unlock_irqrestore(&cpbdev->other_state_lock, flags);
if (timer_pending(&cpbdev->rx_delay) || !cp_lkm_usb_is_base_attached(cpbdev)) {
//printk("%s(), cpbdev %p delaying or no longer attached, base_state: %d\n", __FUNCTION__,cpbdev,cpbdev->base_state);
can_restock = false;
}
//cpdev->dbg_total_o_done++;
while(!timed_out) {
skb = skb_dequeue(&cpbdev->other_done);
if(skb == NULL) {
break;
}
entry = (struct skb_data *) skb->cb;
//printk("%s(), other data cpbdev: %p, bep: %p, num: 0x%x\n",__FUNCTION__,cpbdev,entry->bep,(entry->bep?entry->bep->ep_num:0));
//cp_lkm_usb_cnts(entry->state,-1);
switch (entry->state) {
case in_other_done:
if(entry->urb) {
//cp_lkm_usb_urb_cnt(-1);
usb_free_urb (entry->urb);
}
cp_lkm_usb_other_recv_process(cpbdev, skb);
break;
case ctrl_done:
if(entry->urb) {
//cp_lkm_usb_urb_cnt(-1);
usb_free_urb (entry->urb);
}
cp_lkm_usb_ctrl_process(cpbdev, skb);
break;
case out_done:
case in_other_cleanup:
if(entry->urb) {
//cp_lkm_usb_urb_cnt(-1);
usb_free_urb (entry->urb);
}
dev_kfree_skb_any(skb);
break;
case unlink_start:
default:
//printk("!!other: unknown skb state: %d\n",entry->state);
break;
}
if(time_after_eq(jiffies, time_limit)) {
//ran out of time, process this one and then bail
timed_out = true;
}
}
if(can_restock) {
cp_lkm_usb_rx_other_restock(cpbdev);
}
if(timed_out) {
tasklet_schedule(&cpbdev->other_process_tasklet);
}
spin_lock_irqsave(&cpbdev->other_state_lock, flags);
cpbdev->other_state = USB_PROCESS_STATE_IDLE;
spin_unlock_irqrestore(&cpbdev->other_state_lock, flags);
return ;
}
// Timer callback. This runs in soft interrupt context.
//
// The call to restock can blow chow (actually when it calls cp_lkm_schedule_data_process)
// if an unlink or unplug happens while we are still in the call.
//
// Unlink or plug can happen during this call on multi core platforms with kernel preemption enabled.
// This timer is scheduled if we ran into some unexpected USB error and want
// to give the USB endpoint some time before trying to reschedule recv urbs on it.
//
// The whole purpose of this function is to pump the system if it is otherwise idle. If
// it isn't idle, we can count on those processes to call cp_lkm_schedule_rx_restock when done.
static void cp_lkm_usb_delay_timer (struct timer_list *timer)
{
unsigned long flags;
struct cp_lkm_usb_base_dev* cpbdev = from_timer(cpbdev,timer,rx_delay);
spin_lock_irqsave(&cpbdev->processing_state_lock, flags);
if(cpbdev->processing_state == USB_PROCESS_STATE_IDLE){
cp_lkm_schedule_rx_restock(cpbdev,NULL);
}
spin_unlock_irqrestore(&cpbdev->processing_state_lock, flags);
}
#if 0
static void cp_lkm_usb_dbg_memleak_timer (unsigned long param)
{
printk("+=+=+=+=+=!!!!mem: %d, urb: %d, skb: data: %d, other: %d, xmit: %d, ctrl: %d, unplug:%d, stck_cnt: %d, stck_chk: %d, unlink: %d\n",g_dbg_memalloc_cnt,g_dbg_urballoc_cnt,g_dbg_data_skballoc_cnt,g_dbg_other_skballoc_cnt,g_dbg_xmit_skballoc_cnt,g_dbg_ctrl_skballoc_cnt,g_dbg_unplug_cnt,g_stuck_cnt,g_stuck_chk,g_unlink_cnt);
mod_timer(&dbg_memleak_timer, jiffies + msecs_to_jiffies(5000));
}
#endif
/*
* We pause the transmit if there are too many urbs down at the usb layer.
* The Broadcom processor's USB block sometimes gets stuck meaning we will never
* unpause. This function is used to detect if we are paused because of a stuck and
* try to recover it.
*/
static void cp_lkm_usb_stuck_check(struct cp_lkm_usb_base_dev* cpbdev, int action)
{
//only broadcom has the stuck problem
if (cp_lkm_is_broadcom == 0) {
//printk("Not BRCM!!!!\n");
return;
}
//TODO: it seems like this might work fine with clones. I don't think it hurts to be inited,
// started or stopped multiple times??
//g_stuck_chk++;
switch(action) {
case CP_LKM_STUCK_INIT:
timer_setup(&cpbdev->usb_pause_stuck_timer, cp_lkm_usb_pause_stuck_timer, 0);
break;
case CP_LKM_STUCK_START:
mod_timer(&cpbdev->usb_pause_stuck_timer, jiffies + msecs_to_jiffies(3000));
cpbdev->tx_proc_cnt_at_pause = cpbdev->tx_proc_cnt;
break;
case CP_LKM_STUCK_STOP:
case CP_LKM_STUCK_DEINIT:
del_timer_sync(&cpbdev->usb_pause_stuck_timer);
break;
}
}
// Broadcom has a problem in the EHCI controller where if it gets a NAK on an out packet
// it occassionally doesn't update the status of the URB and retry it. This results in the endpoint getting stuck.
// If we detect that it is stuck (if the tx has been paused for more than 3 seconds) then we cancel the
// struck urb and this gets things going again. The cancelled urb results in a dropped packet which is undesirable,
// but preferrable to being stuck.
static void cp_lkm_usb_pause_stuck_timer (struct timer_list *timer)
{
struct cp_lkm_usb_base_dev* cpbdev = from_timer(cpbdev,timer,usb_pause_stuck_timer);
struct skb_data *entry;
struct sk_buff *skb;
struct urb *urb = NULL;
unsigned long flags;
spin_lock_irqsave(&cpbdev->out_q.lock, flags);
if (cpbdev->tx_paused) {
// cancel stuck urb?
skb = skb_peek(&cpbdev->out_q);
if (skb) {
entry = (struct skb_data *) skb->cb;
if (entry) {
if(cpbdev->tx_proc_cnt_at_pause == cpbdev->tx_proc_cnt){
//printk("\n!!!!!!Canceling stuck URB, cnt at stuck: %d, cnt at unstick: %d!!!!!!!!!!!!!!!!!!!!!!!!!\n", cpbdev->tx_proc_cnt_at_pause, cpbdev->tx_proc_cnt);
urb = entry->urb;
usb_get_urb(urb);
}
//else{
//some pkts were transmitted successfully while waiting, though not enough to unpause us.
//this means the tx is not stuck, so don't need to cancel anything
//printk("\n!!!!!!Restarting stuck URB timer, cnt at stuck: %d, cnt at unstick: %d!!!!!!!!!!!!!!!!!!!!!!!!!\n",cpbdev->tx_proc_cnt_at_pause, cpbdev->tx_proc_cnt);
//}
// restart just in case this doesn't unpause tx
cp_lkm_usb_stuck_check(cpbdev, CP_LKM_STUCK_START);
//g_stuck_cnt++;
}
}
}
spin_unlock_irqrestore(&cpbdev->out_q.lock, flags);
if (urb) {
//printk("\n!!!!!!Canceling stuck URB!!!!!!!!!!\n");
//cpbdev->dbg_total_stuck_cnt++;
usb_unlink_urb (urb);
usb_put_urb(urb);
}
}
#if 0
static void cp_lkm_usb_dbg_timer (unsigned long param)
{
struct cp_lkm_usb_dev* cpdev = (struct cp_lkm_usb_dev *)param;
struct cp_lkm_usb_base_dev* cpbdev = cpdev->cpbdev;
printk("!!!!cpdev: %p, clone: %d, id: 0x%x, q_cnt: %d, p: %d, stuck_cnt: %d, tx done: %d, ip_copies: %d!!!!!!!\n",cpdev, cpdev->clone_num,cpdev->mux_id,cpbdev->tx_usb_q_count,cpbdev->tx_paused, cpbdev->dbg_total_stuck_cnt, cpbdev->tx_proc_cnt,num_ip_copies);
//printk("!!!!Stuck urb count: %d, total_pause: %d, cpdev: %p, is_brcm: %d!!!!!!!\n",cpdev->dbg_total_stuck_cnt,cpdev->dbg_total_pause,cpdev,cp_lkm_is_broadcom);
//printk("!!!!!!!!!!!\n");
#if 0
int txa;
int rxa;
int drql;
int dtql;
//int ab;
int tx,rx;
int pkt_avg;
//int epqc, in_q;
cpdev->dbg_total_rx_qlen += cpdev->data_rx_done.qlen;
cpdev->dbg_total_tx_qlen += cpdev->data_tx_done.qlen;
//ab = cpdev->dbg_total_budget/(cpdev->dbg_total_d_done+1);
txa = cpdev->dbg_total_tx_proc/(cpdev->dbg_total_d_done+1);
rxa = cpdev->dbg_total_rx_proc/(cpdev->dbg_total_d_done+1);
drql = cpdev->dbg_total_rx_qlen/(cpdev->dbg_total_d_done+1);
dtql = cpdev->dbg_total_tx_qlen/(cpdev->dbg_total_d_done+1);
//epqc = cpdev->in_eps[CP_LKM_DATA_INDEX].q_cnt;
//in_q = cpdev->in_q.qlen;
tx = cpdev->dbg_total_tx_irq;
rx = cpdev->dbg_total_rx_irq;
pkt_avg = (tx+rx)/5;
printk("tot: %d, tx: %d, rx: %d, pa: %d, dones: %d, p: %d\n", tx+rx, tx, rx, pkt_avg, cpdev->dbg_total_d_done, cpdev->dbg_total_pause);
printk("resch: %d, d_c: %d, sch_n: %d, sch_t: %d, sch_wq: %d, sch_sk: %d, ds: %d\n", cpdev->dbg_total_d_resched, cpdev->dbg_total_d_comp, cpdev->dbg_total_napi_sched,cpdev->dbg_total_tasklet_sched, cpdev->dbg_total_wq_sched,cpdev->dbg_total_sch_sk, cpdev->data_state);
printk("txa: %d, rxa: %d, to: %d, HZ:%d \n", txa , rxa, cpdev->dbg_total_timeout, HZ);
printk("nrm_t: %d, blk_t: %d, nrm: %d, blk: %d, ntmrs: %d \n", cpdev->dbg_total_num_normal_t,cpdev->dbg_total_num_hybrid_t,cpdev->dbg_total_num_normal,cpdev->dbg_total_num_hybrid, cpdev->dbg_total_num_d_timers);
printk("psd: %d, tuqc: %d, schd: %d, dql: %d, rql: %d, tql: %d, toq: %d\n",cpdev->tx_paused,cpdev->tx_usb_q_count,cpdev->scheduled,cpdev->data_q_len,cpdev->data_rx_done.qlen,cpdev->data_tx_done.qlen,cpdev->out_q.qlen);
printk("txirq: %d, txprc: %d\n",cpdev->dbg_total_tx_irq, cpdev->dbg_total_tx_proc);
//printk("ipqc: %d, in_q: %d\n", epqc, in_q);
//printk("d0: %p,d1: %p,d2: %p,d3: %p,d4: %p\n", devs[0],devs[1],devs[2],devs[3],devs[4]);
cpdev->dbg_total_d_done = cpdev->dbg_total_d_resched = cpdev->dbg_total_d_comp = 0;
cpdev->dbg_total_pause = cpdev->dbg_total_max_work = cpdev->dbg_total_budget = 0;
cpdev->dbg_total_tx_irq = cpdev->dbg_total_rx_irq = 0;
cpdev->dbg_total_tx_proc = cpdev->dbg_total_rx_proc = 0;
cpdev->dbg_total_rx_qlen = cpdev->dbg_total_tx_qlen = 0;
cpdev->dbg_total_napi_sched=cpdev->dbg_total_tasklet_sched=cpdev->dbg_total_wq_sched=0;
cpdev->dbg_total_num_normal_t=cpdev->dbg_total_num_hybrid_t=cpdev->dbg_total_num_normal=cpdev->dbg_total_num_hybrid=cpdev->dbg_total_num_d_timers = 0;
#endif
mod_timer(&cpdev->dbg_timer, jiffies + msecs_to_jiffies(5000));
}
#endif
//Caller must have the data_q_lock before calling
static int cp_lkm_usb_have_data(struct cp_lkm_usb_base_dev *cpbdev)
{
//return the amount of work to be done if it exceeds the threshold, else return 0
if(cpbdev->data_rx_done.qlen >= cpbdev->rx_schedule_threshold || cpbdev->data_tx_done.qlen >= cpbdev->tx_schedule_threshold){
return cpbdev->data_rx_done.qlen + cpbdev->data_tx_done.qlen;
}
return 0;
}
#if 1
static int cp_lkm_usb_process_data_done(struct cp_lkm_usb_base_dev *cpbdev, int budget)
{
struct sk_buff *skb;
struct skb_data *entry;
struct cp_lkm_usb_dev* cpdev __attribute__((unused));
unsigned long time_limit = jiffies + 3;
int retval;
int restock = 0;
unsigned long flags;
int rx_work_done = 0;
int tx_work_done = 0;
int work_done = 0;
int can_restock = 1;
int i;
int loop;
int num_proc;
int actual_budget;
int num_rx;
int num_tx;
struct sk_buff_head done_q;
bool paused;
skb_queue_head_init (&done_q);
//cpdev->dbg_total_d_done++;
//cpdev->dbg_total_budget += budget;
//cpdev->dbg_total_rx_qlen += cpdev->data_rx_done.qlen;
//cpdev->dbg_total_tx_qlen += cpdev->data_tx_done.qlen;
// if the delay timer is running, we aren't supposed to send any more recv urbs to the usb layer.
// if the device has detached, we need to finish processing done pkts, but don't resubmit any new urbs
if (timer_pending(&cpbdev->rx_delay) || !cp_lkm_usb_is_base_attached(cpbdev)) {
//printk("%s(), cpdev delaying or no longer attached\n", __FUNCTION__);
can_restock = 0;
}
paused = cpbdev->tx_paused;
actual_budget = CP_LKM_USB_NAPI_MAX_WORK;
for(loop=0;loop<CP_LKM_USB_PROCESS_DIVISOR;loop++) {
if(time_after_eq(jiffies, time_limit)) {
//ran out of time, process this one and then bail
work_done = budget;
//cpdev->dbg_total_timeout++;
break;
}
//keep restocking the q until we max out the budget or timeout or runout
if(rx_work_done >= actual_budget || (paused && tx_work_done >= actual_budget)) {
work_done = budget;
break;
}
spin_lock_irqsave(&cpbdev->data_q_lock, flags);
num_rx = cpbdev->data_rx_done.qlen;
num_tx = cpbdev->data_tx_done.qlen;
num_proc = max(num_rx,num_tx);
num_proc = min(num_proc,actual_budget/CP_LKM_USB_PROCESS_DIVISOR); //grab 1/divisor of remaining budget each time
// Note: A unit of work for the shim is either a lone tx, a lone rx or a combo of a rx and a tx.
// Here we calculate how much work to do on this poll. If there was work left over from last time
// finish processing it.
for(i = 0; i < num_proc; i++) {
skb = __skb_dequeue (&cpbdev->data_rx_done);
if(skb){
cpbdev->data_q_len--;
__skb_queue_tail(&done_q, skb);
}
skb = __skb_dequeue (&cpbdev->data_tx_done);
if(skb){
cpbdev->data_q_len--;
__skb_queue_tail(&done_q, skb);
}
}
spin_unlock_irqrestore(&cpbdev->data_q_lock, flags);
//nothing in the q, we are done
if(done_q.qlen == 0) {
break;
}
while((skb = __skb_dequeue(&done_q))){
entry = (struct skb_data *) skb->cb;
//cp_lkm_usb_cnts(entry->state,-1);
switch (entry->state) {
case in_data_done:
//cpdev->dbg_total_rx_proc++;
entry->bep->q_cnt--;
restock++;
rx_work_done++;
work_done++;
if(can_restock && restock == CP_LKM_USB_RESTOCK_MULTIPLE) {
restock = 0;
retval = cp_lkm_usb_submit_recv (cpbdev, entry->urb, GFP_ATOMIC, entry->bep, true);
if (retval < 0) {
//printk("%s(), can't resubmit\n", __FUNCTION__);
//cp_lkm_usb_urb_cnt(-1);
usb_free_urb (entry->urb);
can_restock = 0;
}
}
else{
//cp_lkm_usb_urb_cnt(-1);
usb_free_urb (entry->urb);
}
cp_lkm_usb_data_recv_process(cpbdev, skb);
break;
case out_done:
work_done++;
tx_work_done++;
//fall through on purpose
fallthrough;
case in_data_cleanup:
if(entry->urb) {
//cp_lkm_usb_urb_cnt(-1);
usb_free_urb (entry->urb);
}
dev_kfree_skb_any(skb);
break;
case unlink_start:
default:
//printk("!!data: unknown skb state: %d\n",entry->state);
break;
}
}
}
//restock recv urbs to usb layer if we processed any
if(can_restock) {
cp_lkm_usb_rx_data_restock(cpbdev);
}
//see if we need to resume the tx side
if(tx_work_done) {
spin_lock_irqsave (&cpbdev->out_q.lock, flags);
cpbdev->tx_proc_cnt += tx_work_done;
if(tx_work_done > cpbdev->tx_usb_q_count) {
cpbdev->tx_usb_q_count = 0;
}
else{
cpbdev->tx_usb_q_count -= tx_work_done;
}
if(cpbdev->tx_usb_q_count <= cpbdev->tx_resume_threshold) {
if(cpbdev->tx_paused){
//unpause all cpdevs
cp_lkm_usb_dev_pause(cpbdev, false);
// cancel usb_pause_stuck_timer
cp_lkm_usb_stuck_check(cpbdev, CP_LKM_STUCK_STOP);
}
}
spin_unlock_irqrestore (&cpbdev->out_q.lock, flags);
}
//if(work_done > cpdev->dbg_total_max_work){
// cpdev->dbg_total_max_work = work_done;
//}
//can't return greater than the passed in budget
if(work_done > budget) {
work_done = budget;
}
return work_done;
//return 1;
}
#endif
static int cp_lkm_usb_common_process_data_done(struct cp_lkm_usb_base_dev* cpbdev, int budget)
{
unsigned long flags;
int work_done = -1;
bool rescheduled;
bool ran_data_done = false;
if(NULL == cpbdev) {
//printk("%s() !!!!!!!!!!!!!!!!no ctxt\n", __FUNCTION__);
return work_done;
}
spin_lock_irqsave(&cpbdev->processing_state_lock, flags);
if(cpbdev->processing_state == USB_PROCESS_STATE_IDLE){
cpbdev->processing_state = USB_PROCESS_STATE_ACTIVE;
spin_unlock_irqrestore(&cpbdev->processing_state_lock, flags);
work_done = cp_lkm_usb_process_data_done(cpbdev, budget);
spin_lock_irqsave(&cpbdev->processing_state_lock, flags);
ran_data_done = true;
cpbdev->processing_state = USB_PROCESS_STATE_IDLE;
}
spin_unlock_irqrestore(&cpbdev->processing_state_lock, flags);
if (ran_data_done) {
rescheduled = cp_lkm_schedule_data_process(cpbdev,true,true,false);
if (rescheduled) {
work_done = budget;
//cpdev->dbg_total_d_resched++;
}
else if(work_done){
work_done--;
//cpdev->dbg_total_d_comp++;
}
}
else{
//cpdev->dbg_total_sch_sk++;
}
return work_done;
}
static void cp_lkm_usb_process_data_done_tasklet (unsigned long param)
{
struct cp_lkm_usb_base_dev* cpbdev = (struct cp_lkm_usb_base_dev *)param;
cp_lkm_usb_common_process_data_done(cpbdev, CP_LKM_PM_NAPI_WEIGHT);
}
static void cp_lkm_usb_rx_data_restock (struct cp_lkm_usb_base_dev* cpbdev)
{
//struct cp_lkm_usb_dev* cpdev = (struct cp_lkm_usb_dev *)param;
//int cur_token;
struct urb *urb;
//int ep_index;
int q_len;
struct cp_lkm_base_ep* bep;
int retval;
int q_cnt;
// timer_pending means we had an error and are waiting for a recovery period before submitting any more rx urbs
if (timer_pending(&cpbdev->rx_delay)) {
return;
}
// restock the recv queues on any ep's that are listening
bep = cp_lkm_usb_get_bep(cpbdev, cpbdev->data_in_bep_num);
if(!(bep->con_flags & CP_LKM_USB_LISTEN) && !(bep->con_flags & CP_LKM_USB_RECV)) {
return;
}
if(test_bit (EVENT_RX_HALT, &bep->err_flags)){
return;
}
if(bep->con_flags & CP_LKM_USB_RECV) {
//only post 1 for recv's
q_len = 1;
}
else{
//its a listen
q_len = CP_LKM_USB_MAX_RX_QLEN;
}
// Try to q up to q_len recv buffs with usb. We may not be able to get to that amount if
// there is a problem with usb, so only try up to q_len times to insert them.
retval = 0;
q_cnt = bep->q_cnt;
while(q_cnt < q_len) {
urb = usb_alloc_urb (0, GFP_ATOMIC);
if (!urb) {
if (q_cnt == 0) {
cp_lkm_usb_defer_kevent (cpbdev, bep, EVENT_RX_MEMORY);
}
break;
}
//cp_lkm_usb_urb_cnt(1);
retval = cp_lkm_usb_submit_recv (cpbdev, urb, GFP_ATOMIC, bep, true);
if (retval < 0) {
//cp_lkm_usb_urb_cnt(-1);
usb_free_urb (urb);
break;
}
q_cnt++;
}
}
static void cp_lkm_usb_rx_other_restock (struct cp_lkm_usb_base_dev* cpbdev)
{
struct urb *urb;
int q_len;
struct cp_lkm_base_ep* bep;
int retval;
int q_cnt;
struct list_head *entry, *nxt;
// timer_pending means we had an error and are waiting for a recovery period before submitting any more rx urbs
if (timer_pending(&cpbdev->rx_delay)) {
return;
}
// restock the recv queues on any ep's that are listening
list_for_each_safe(entry, nxt, &cpbdev->in_bep_list) {
bep = list_entry(entry, struct cp_lkm_base_ep, list);
if(!(bep->con_flags & CP_LKM_USB_LISTEN) && !(bep->con_flags & CP_LKM_USB_RECV)) {
continue;
}
if(test_bit (EVENT_RX_HALT, &bep->err_flags)){
continue;
}
if(bep->ep_num == cpbdev->data_in_bep_num) {
continue;
}
if(bep->con_flags & CP_LKM_USB_RECV) {
//only post 1 for recv's
q_len = 1;
}
else{
//its a listen
q_len = CP_LKM_USB_MAX_OTHER_QLEN;
}
// Try to q up to q_len recv buffs with usb. We may not be able to get to that amount if
// there is a problem with usb, so only try up to q_len times to insert them.
retval = 0;
q_cnt = bep->q_cnt;
while(q_cnt < q_len) {
urb = usb_alloc_urb (0, GFP_ATOMIC);
if (!urb) {
if (q_cnt == 0) {
cp_lkm_usb_defer_kevent (cpbdev, bep, EVENT_RX_MEMORY);
}
break;
}
//cp_lkm_usb_urb_cnt(1);
retval = cp_lkm_usb_submit_recv (cpbdev, urb, GFP_ATOMIC, bep, false);
if (retval < 0) {
//cp_lkm_usb_urb_cnt(-1);
usb_free_urb (urb);
break;
}
q_cnt++;
}
}
}
//unlink all urbs with the given ep, or all if ep is NULL
static int cp_lkm_usb_unlink_urbs (struct cp_lkm_usb_base_dev *cpbdev, struct sk_buff_head *q, struct cp_lkm_base_ep* bep)
{
unsigned long flags;
struct sk_buff *skb;
int count = 0;
spin_lock_irqsave (&q->lock, flags);
while (!skb_queue_empty(q)) {
struct skb_data *entry;
struct urb *urb;
int retval;
skb_queue_walk(q, skb) {
entry = (struct skb_data *) skb->cb;
urb = entry->urb;
if(urb && (entry->state != unlink_start) && (entry->bep == bep || bep == NULL)) {
goto found;
}
}
break;
found:
entry->state = unlink_start;
/*
* Get reference count of the URB to avoid it to be
* freed during usb_unlink_urb, which may trigger
* use-after-free problem inside usb_unlink_urb since
* usb_unlink_urb is always racing with .complete
* handler(include defer_bh).
*/
usb_get_urb(urb);
spin_unlock_irqrestore(&q->lock, flags);
// during some PM-driven resume scenarios,
// these (async) unlinks complete immediately
//usb_kill_urb(urb);
retval = usb_unlink_urb (urb);
//g_unlink_cnt++;
if (retval != -EINPROGRESS && retval != 0){
//netdev_dbg(dev->net, "unlink urb err, %d\n", retval);
} else{
count++;
}
usb_put_urb(urb);
spin_lock_irqsave(&q->lock, flags);
}
spin_unlock_irqrestore (&q->lock, flags);
return count;
}
static void cp_lkm_usb_defer_kevent (struct cp_lkm_usb_base_dev* cpbdev, struct cp_lkm_base_ep* bep, int work)
{
set_bit (work, &bep->err_flags);
if (!schedule_work (&cpbdev->kevent)) {
//deverr (dev, "kevent %d may have been dropped", work);
} else {
//devdbg (dev, "kevent %d scheduled", work);
}
}
// Workqueue callback function. This runs in thread context
static void cp_lkm_usb_kevent (struct work_struct *work)
{
struct cp_lkm_usb_base_dev* cpbdev = (struct cp_lkm_usb_base_dev *)container_of(work, struct cp_lkm_usb_base_dev, kevent);
int status;
struct cp_lkm_base_ep* bep;
struct list_head *entry, *nxt;
//grab global lock while testing dev state so it can't change on us.
spin_lock(&cp_lkm_usb_mgr.lock);
if(!cp_lkm_usb_is_base_attached(cpbdev)){
spin_unlock(&cp_lkm_usb_mgr.lock);
return;
}
//don't want to hold global lock while doing this since don't know how long this will take, see next note
spin_unlock(&cp_lkm_usb_mgr.lock);
//NOTE: if kernel preemption is enabled and the disconnect gets called right here, bad things could happen if the cpdev->udev
// is released. Fortunately, cp_lkm_usb_disconnect() calls cancel_work_sync() before releasing it. This will either cancel this
// function if it isn't currently running, or will wait until it exits before returning if it is running. This protects us.
list_for_each_safe(entry, nxt, &cpbdev->out_bep_list) {
bep = list_entry(entry, struct cp_lkm_base_ep, list);
/* usb_clear_halt() needs a thread context */
if (test_bit (EVENT_TX_HALT, &bep->err_flags)) {
cp_lkm_usb_unlink_urbs (cpbdev, &cpbdev->out_q, bep);
status = usb_clear_halt (cpbdev->udev, bep->pipe);
DEBUG_TRACE("%s() EVENT_TX_HALT status:%d", __FUNCTION__, status);
if (status < 0 && status != -EPIPE && status != -ESHUTDOWN) {
//if (netif_msg_tx_err (dev))
// deverr (dev, "can't clear tx halt, status %d",
DEBUG_TRACE("%s() failed EVENT_TX_HALT status:%d", __FUNCTION__, status);
// status);
} else {
clear_bit (EVENT_TX_HALT, &bep->err_flags);
//if (status != -ESHUTDOWN)
// netif_wake_queue (dev->net);
}
}
}
list_for_each_safe(entry, nxt, &cpbdev->in_bep_list) {
bep = list_entry(entry, struct cp_lkm_base_ep, list);
if (test_bit (EVENT_RX_HALT, &bep->err_flags)) {
cp_lkm_usb_unlink_urbs (cpbdev, &cpbdev->in_q, bep);
status = usb_clear_halt (cpbdev->udev, bep->pipe);
DEBUG_TRACE("%s() EVENT_RX_HALT status:%d", __FUNCTION__, status);
if (status < 0 && status != -EPIPE && status != -ESHUTDOWN) {
DEBUG_TRACE("%s() failed EVENT_RX_HALT status:%d", __FUNCTION__, status);
//if (netif_msg_rx_err (dev))
// deverr (dev, "can't clear rx halt, status %d",
// status);
} else {
clear_bit (EVENT_RX_HALT, &bep->err_flags);
//grab global lock so link/unlink or unplug can't mess up the restock shedule pointers mid scheduling
spin_lock(&cp_lkm_usb_mgr.lock);
if (cp_lkm_usb_is_base_attached(cpbdev)){
cp_lkm_schedule_rx_restock(cpbdev,bep);
}
spin_unlock(&cp_lkm_usb_mgr.lock);
}
}
}
/* tasklet could resubmit itself forever if memory is tight */
list_for_each_safe(entry, nxt, &cpbdev->in_bep_list) {
bep = list_entry(entry, struct cp_lkm_base_ep, list);
if (test_bit (EVENT_RX_MEMORY, &bep->err_flags)) {
DEBUG_TRACE("%s() EVENT_RX_MEMORY", __FUNCTION__);
clear_bit (EVENT_RX_MEMORY, &bep->err_flags);
//grab global lock so link/unlink or unplug can't mess up the restock shedule pointers mid scheduling
spin_lock(&cp_lkm_usb_mgr.lock);
if (cp_lkm_usb_is_base_attached(cpbdev) && bep->q_cnt == 0){
cp_lkm_schedule_rx_restock(cpbdev,bep);
}
spin_unlock(&cp_lkm_usb_mgr.lock);
}
}
//if (test_bit (EVENT_LINK_RESET, &cpdev->flags)) {
// struct driver_info *info = dev->driver_info;
// int retval = 0;
//
// clear_bit (EVENT_LINK_RESET, &dev->flags);
// if(info->link_reset && (retval = info->link_reset(dev)) < 0) {
// devinfo(dev, "link reset failed (%d) usbnet usb-%s-%s, %s",
// retval,
// dev->udev->bus->bus_name, dev->udev->devpath,
// info->description);
// }
//}
//if (dev->flags)
// devdbg (dev, "kevent done, flags = 0x%lx",
// dev->flags);
}
static void cp_lkm_usb_ctrl_complete(struct urb *urb)
{
unsigned long flags;
struct sk_buff *skb = (struct sk_buff *) urb->context;
struct skb_data *entry = (struct skb_data *) skb->cb;
struct cp_lkm_usb_base_dev* cpbdev = (struct cp_lkm_usb_base_dev *)entry->cpbdev;
//remove skb from the list first thing so no other code conext looking at the
//list (such as unlink_urbs) can mess with it.
spin_lock_irqsave(&cpbdev->ctrlq.lock, flags);
__skb_unlink(skb, &cpbdev->ctrlq);
spin_unlock_irqrestore(&cpbdev->ctrlq.lock,flags);
skb->len = urb->actual_length;
//skip status and error checking if the device has unplugged
if(!cp_lkm_usb_is_base_attached(cpbdev)) {
urb->status = -ENODEV;
goto ctrl_done;
}
if (urb->status != 0) {
switch (urb->status) {
case -EPIPE:
break;
/* software-driven interface shutdown */
case -ECONNRESET: // async unlink
case -ESHUTDOWN: // hardware gone
break;
case -ENODEV:
//printk("ctrl fail, no dev\n");
break;
case -EPROTO:
case -ETIME:
case -EILSEQ:
//CA: decided not to throttle on ctrl channel transfers since they are a different beast
//if (!timer_pending (&cpdev->rx_delay)) {
// mod_timer (&cpdev->rx_delay, jiffies + THROTTLE_JIFFIES);
//if (netif_msg_link (dev))
// devdbg (dev, "tx throttle %d",
// urb->status);
//}
//netif_stop_queue (dev->net);
break;
default:
//if (netif_msg_tx_err (dev))
// devdbg (dev, "tx err %d", entry->urb->status);
break;
}
}
ctrl_done:
urb->dev = NULL;
entry->state = ctrl_done;
entry->status = urb->status;
entry->urb = NULL;
if(urb->setup_packet) {
kfree(urb->setup_packet);
}
//cp_lkm_usb_urb_cnt(-1);
usb_free_urb (urb);
cp_lkm_usb_done_and_defer_other(cpbdev, skb);
}
static int cp_lkm_usb_start_ctrl_xmit(void *ctx, struct sk_buff *skb_in)
{
struct cp_lkm_usb_dev* cpdev = (struct cp_lkm_usb_dev *)ctx;
struct cp_lkm_usb_base_dev* cpbdev;
int retval = NET_XMIT_SUCCESS;
struct urb *urb = NULL;
struct skb_data *entry;
unsigned long flags;
int pipe;
u8* tmp8;
u16* tmp16;
struct usb_ctrlrequest *req = NULL;
if(NULL == cpdev || !cp_lkm_usb_is_attached(cpdev) || !cp_lkm_usb_is_base_attached(cpdev->cpbdev)) {
//printk("%s() no ctxt\n", __FUNCTION__);
goto ctrl_done;
}
cpbdev = cpdev->cpbdev;
DEBUG_TRACE("%s()", __FUNCTION__);
if ((urb = usb_alloc_urb(0, GFP_ATOMIC)) == NULL) {
retval = -ENOMEM;
goto ctrl_done;
}
//cp_lkm_usb_urb_cnt(1);
if ((req = kmalloc(sizeof(struct usb_ctrlrequest), GFP_ATOMIC)) == NULL) {
//cp_lkm_usb_urb_cnt(-1);
usb_free_urb(urb);
retval = -ENOMEM;
goto ctrl_done;
}
//The upper layer driver put all the ctrl stuff at the end of the buffer (in correct le order)
//This layer puts it in a separate buffer
tmp8 = (u8*)skb_in->data;
req->bRequestType = *tmp8;
skb_pull(skb_in, 1);
tmp8 = (u8*)skb_in->data;
req->bRequest = *tmp8;
skb_pull(skb_in, 1);
tmp16 = (u16*)skb_in->data;
req->wValue = *tmp16;
skb_pull(skb_in, 2);
tmp16 = (u16*)skb_in->data;
req->wIndex = *tmp16;
skb_pull(skb_in, 2);
tmp16 = (u16*)skb_in->data;
req->wLength = *tmp16;
skb_pull(skb_in, 2);
//printk("%s() RT:%x, R:%x, V:%x, I:%x, L:%x\n", __FUNCTION__, req->bRequestType, req->bRequest, req->wValue, req->wIndex, req->wLength);
entry = (struct skb_data *) skb_in->cb;
entry->urb = urb;
entry->cpbdev = cpbdev;
entry->state = ctrl_start;
entry->status = 0;
entry->bep = NULL;
entry->unique_id = cpdev->unique_id;
if(req->bRequestType & USB_DIR_IN) {
DEBUG_TRACE("%s() ctrl in len: %d", __FUNCTION__,skb_in->len);
pipe = usb_rcvctrlpipe(cpbdev->udev, 0);
}
else{
DEBUG_TRACE("%s() ctrl out len: %d", __FUNCTION__,skb_in->len);
pipe = usb_sndctrlpipe(cpbdev->udev, 0);
}
usb_fill_control_urb(urb, cpbdev->udev, pipe,
(void *)req, skb_in->data, skb_in->len,
cp_lkm_usb_ctrl_complete, skb_in);
//cp_lkm_usb_cnts(ctrl_start,1);
spin_lock_irqsave (&cpbdev->ctrlq.lock, flags);
retval = usb_submit_urb (urb, GFP_ATOMIC);
switch (retval) {
case 0:
//net->trans_start = jiffies;
//success: queue it
__skb_queue_tail (&cpbdev->ctrlq, skb_in);
skb_in = NULL;
urb = NULL;
req = NULL;
break;
case -ENODEV:
break;
case -EPROTO:
case -EPIPE:
break;
default:
break;
}
spin_unlock_irqrestore (&cpbdev->ctrlq.lock, flags);
ctrl_done:
if(req) {
kfree(req);
}
if(urb) {
//cp_lkm_usb_urb_cnt(-1);
usb_free_urb(urb);
}
if(skb_in) {
//cp_lkm_usb_cnts(ctrl_start,-1);
dev_kfree_skb_any (skb_in);
}
DEBUG_TRACE("%s() retval %d", __FUNCTION__, retval);
return retval;
}
#define THROTTLE_JIFFIES (HZ/8)
/*
* This function runs in a hw interrupt context. Do not put any DEBUG_XX print messages in here.
*/
static void cp_lkm_usb_xmit_complete (struct urb *urb)
{
unsigned long flags;
struct sk_buff *skb = (struct sk_buff *) urb->context;
struct skb_data *entry = (struct skb_data *) skb->cb;
struct cp_lkm_usb_base_dev* cpbdev = (struct cp_lkm_usb_base_dev *)entry->cpbdev;
struct cp_lkm_base_ep* bep = (struct cp_lkm_base_ep*)entry->bep;
bool is_data = false;
struct cp_lkm_usb_dev* cpdev;
//remove skb from the list first thing so no other code context looking at the
//list (such as unlink_urbs) can mess with it.
spin_lock_irqsave(&cpbdev->out_q.lock,flags);
__skb_unlink(skb, &cpbdev->out_q);
spin_unlock_irqrestore(&cpbdev->out_q.lock,flags);
bep->q_cnt--;
if(bep->ep_num == cpbdev->data_out_bep_num) {
is_data = true;
}
// we save mux id of the cpdev that sent each tx pckt.
cpdev = cp_lkm_usb_find_dev(entry->unique_id);
//skip status and error checking if the device has unplugged
if(!cp_lkm_usb_is_base_attached(cpbdev)) {
goto xmit_done;
}
if (urb->status != 0) {
UPDATE_STATS(cpdev->edi->pm_stats64_ctx, tx_errors, 1);
switch (urb->status) {
case -EPIPE:
//don't have to clear halts on ctrl ep
if (bep->ep_num != 0) {
cp_lkm_usb_defer_kevent (cpbdev, bep, EVENT_TX_HALT);
}
break;
/* software-driven interface shutdown */
case -ECONNRESET: // async unlink
case -ESHUTDOWN: // hardware gone
break;
case -ENODEV:
break;
// like rx, tx gets controller i/o faults during khubd delays
// and so it uses the same throttling mechanism.
case -EPROTO:
case -ETIME:
case -EILSEQ:
if (!timer_pending (&cpbdev->rx_delay)) {
mod_timer (&cpbdev->rx_delay, jiffies + THROTTLE_JIFFIES);
//if (netif_msg_link (dev))
// devdbg (dev, "tx throttle %d",
// urb->status);
}
//netif_stop_queue (dev->net);
break;
default:
//if (netif_msg_tx_err (dev))
// devdbg (dev, "tx err %d", entry->urb->status);
break;
}
}
xmit_done:
entry->state = out_done;
if(is_data) {
//cpdev->dbg_total_tx_irq++;
cp_lkm_usb_done_and_defer_data(cpbdev, skb, DATA_SRC_TX);
}
else{
cp_lkm_usb_done_and_defer_other(cpbdev, skb);
}
}
static int cp_lkm_usb_start_xmit_common(void *ctx, struct sk_buff *skb_in, int src, struct cp_lkm_ep* ep)
{
struct cp_lkm_usb_dev* cpdev = (struct cp_lkm_usb_dev *)ctx;
struct cp_lkm_usb_base_dev* cpbdev;
struct cp_lkm_base_ep* bep;
int length;
int retval = NET_XMIT_SUCCESS;
struct urb *urb = NULL;
struct skb_data *entry;
unsigned long flags;
struct sk_buff* skb_out = NULL;
int wres;
if(NULL == cpdev || !cp_lkm_usb_is_attached(cpdev) || !cp_lkm_usb_is_base_attached(cpdev->cpbdev)) {
//printk("%s() no ctxt\n", __FUNCTION__);
dev_kfree_skb_any(skb_in);
return -1;
}
cpbdev = cpdev->cpbdev;
//the network doesn't have a pointer to the ep readily available so he passes in NULL for ep so we can
//fetch the well known ep for the data out ep
length = 0;
if(src == CP_LKM_WRAPPER_SRC_DATA && ep == NULL){
ep = cp_lkm_usb_get_ep(cpdev,cpdev->data_out_ep_num);
length = skb_in->len;
}
bep = ep->bep;
while(1) {
skb_out = NULL;
urb = NULL;
retval = NET_XMIT_SUCCESS;
//DEBUG_ERROR("%s() wrap it skb_in:%p", __FUNCTION__, skb_in);
//only use wrappers on the data endpoint
if(ep->ep_num == cpdev->data_out_ep_num) {
//DEBUG_ERROR("%s() wrap it", __FUNCTION__);
//spin_lock_irqsave (&cp_lkm_usb_mgr.lock, flags);
wres = cp_lkm_wrapper_send(cpbdev->wrapper_ctxt, src, cpdev->mux_id, skb_in, &skb_out);
skb_in = NULL; //we no longer own skb so null its pointer for future call if we loop
//spin_unlock_irqrestore (&cp_lkm_usb_mgr.lock, flags);
if (wres == CP_LKM_WRAPPER_RES_ERROR) {
DEBUG_ERROR("%s() wrapper error wres:0x%x, skb_out:%p", __FUNCTION__, wres, skb_out);
UPDATE_STATS(cpdev->edi->pm_stats64_ctx, tx_dropped, 1);
retval = -ENOMEM;
goto xmit_done;
}
}
else{
//Not a data ep, send the skb and then we are done
skb_out = skb_in;
skb_in = NULL;
wres = CP_LKM_WRAPPER_RES_DONE;
}
//If we get here, send returned either done or again. skb_out can be NULL if there is nothing to
//send, so check that first
if(NULL == skb_out) {
// DEBUG_INFO("%s() no wrapped data", __FUNCTION__);
goto xmit_done;
}
if(cp_lkm_is_broadcom && ((uintptr_t)(skb_out->data) & 0x3)) {
//broadcom unaligned packets that are multiples of 512 plus 3,4 or 5 bytes (515,516,517,1027,1028,1029,etc)
//are corrupted for some reason, so need to copy into an aligned buffer
int r = skb_out->len & 0x000001FF; //poor man's mod
if (r >= 3 && r <= 5) {
struct sk_buff* skb_new = skb_copy_expand(skb_out, 0, 0, GFP_ATOMIC);
if(!skb_new) {
retval = -ENOMEM;
goto xmit_done;
}
//printk("%s() unaligned: %p, aligned: %p, len: %d, r: %d\n",__FUNCTION__,skb_out->data, skb_new->data, skb_out->len, r);
dev_kfree_skb_any(skb_out);
skb_out=skb_new;
}
}
if (!(urb = usb_alloc_urb (0, GFP_ATOMIC))) {
//if (netif_msg_tx_err (dev))
// devdbg (dev, "no urb");
DEBUG_ERROR("%s() urb alloc failed", __FUNCTION__);
UPDATE_STATS(cpdev->edi->pm_stats64_ctx, tx_dropped, 1);
retval = -ENOMEM;
goto xmit_done;
}
//cp_lkm_usb_urb_cnt(1);
entry = (struct skb_data *) skb_out->cb;
entry->urb = urb;
entry->cpbdev = cpbdev;
entry->bep = bep;
entry->state = out_start;
entry->unique_id = cpdev->unique_id;
//cp_lkm_usb_cnts(out_start,1);
if(bep->type == UE_BULK) {
usb_fill_bulk_urb (urb, cpbdev->udev, bep->pipe, skb_out->data,
skb_out->len, cp_lkm_usb_xmit_complete, skb_out);
}
else{
usb_fill_int_urb (urb, cpbdev->udev, bep->pipe, skb_out->data, skb_out->len,
cp_lkm_usb_xmit_complete, skb_out, bep->interval);
}
if (!(cpbdev->feature_flags & CP_LKM_FEATURE_NO_ZERO_PACKETS)) {
urb->transfer_flags |= URB_ZERO_PACKET;
}
// DEBUG_INFO("%s()", __FUNCTION__);
// DEBUG_INFO("%s() send to ep: 0x%x type:%d, pipe:0x%x", __FUNCTION__, ep->ep_num, ep->type, ep->pipe);
spin_lock_irqsave (&cpbdev->out_q.lock, flags);
retval = usb_submit_urb (urb, GFP_ATOMIC);
switch (retval) {
case 0:
//net->trans_start = jiffies;
//success: queue it
__skb_queue_tail (&cpbdev->out_q, skb_out);
bep->q_cnt++;
skb_out = NULL;
urb = NULL;
if(ep->ep_num == cpdev->data_out_ep_num) {
cpbdev->tx_usb_q_count++;
if(cpbdev->tx_usb_q_count >= CP_LKM_USB_TX_PAUSE_Q_PKTS){
if(!cpbdev->tx_paused) {
//pause all cpdevs
cp_lkm_usb_dev_pause(cpbdev, true);
cp_lkm_usb_stuck_check(cpbdev, CP_LKM_STUCK_START);
}
}
}
break;
case -EPIPE:
UPDATE_STATS(cpdev->edi->pm_stats64_ctx, tx_errors, 1);
//don't clear halts on ctrl ep
if(ep->ep_num != 0) {
cp_lkm_usb_defer_kevent(cpbdev, bep, EVENT_TX_HALT);
}
break;
case -ENODEV:
break;
case -EPROTO:
default:
//if (netif_msg_tx_err (dev))
UPDATE_STATS(cpdev->edi->pm_stats64_ctx, tx_errors, 1);
// devdbg (dev, "tx: submit urb err %d", retval);
break;
}
spin_unlock_irqrestore (&cpbdev->out_q.lock, flags);
xmit_done:
if (retval) {
DEBUG_TRACE("%s() failed to send: %d", __FUNCTION__, retval);
//cp_lkm_usb_cnts(out_start,-1);
}
//if these are non null then they weren't sent so free them
if (skb_out){
dev_kfree_skb_any (skb_out);
}
if(urb) {
//cp_lkm_usb_urb_cnt(-1);
usb_free_urb (urb);
}
//Bail out of while loop unless the wrapper asked to be called again
if(wres != CP_LKM_WRAPPER_RES_AGAIN) {
break;
}
length = 0;
}
return retval;
}
static int cp_lkm_usb_start_xmit (void *ctx, struct sk_buff *skb)
{
struct cp_lkm_usb_dev* cpdev = (struct cp_lkm_usb_dev *)ctx;
struct cp_lkm_usb_base_dev* cpbdev;
int res;
if(NULL == cpdev){
DEBUG_TRACE("%s() no ctxt", __FUNCTION__);
dev_kfree_skb_any(skb);
return -1;
}
cpbdev = cpdev->cpbdev;
if(cpbdev->tx_paused || CP_LKM_USB_ACTIVE != cpdev->state) {
DEBUG_TRACE("%s() no ctxt", __FUNCTION__);
dev_kfree_skb_any(skb);
return -1;
}
res = cp_lkm_usb_start_xmit_common(ctx, skb, CP_LKM_WRAPPER_SRC_DATA, NULL);
return res;
}
static int cp_lkm_usb_to_cplkm_status(int usb_status)
{
int cplkm_status;
switch(usb_status) {
case 0:
cplkm_status = CP_LKM_STATUS_OK;
break;
default:
//printk("usb err: %d\n", usb_status);
cplkm_status = CP_LKM_STATUS_ERROR;
break;
}
return cplkm_status;
}
static void cp_lkm_usb_other_recv_process (struct cp_lkm_usb_base_dev* cpbdev, struct sk_buff *skb_in)
{
struct skb_data *entry;
struct cp_lkm_msg_hdr hdr;
int status;
struct cp_lkm_base_ep* bep;
struct cp_lkm_usb_dev* cpdev = NULL;
struct list_head *tmp, *nxt;
struct cp_lkm_ep *ep;
if(!cp_lkm_usb_is_base_attached(cpbdev)){
//printk("%s(), cpbdev: %p not attached. state: %d\n",__FUNCTION__,cpbdev,cpbdev->base_state);
dev_kfree_skb_any (skb_in);
return;
}
entry = (struct skb_data *)skb_in->cb;
bep = entry->bep;
//Note: pkts on non-data endpoints when running with clones present a problem because there are no headers on these
// pkts to tell us which clone ep to send this to. Fortunately, the modem stack serializes clone instances so
// only one can be accessing the non-data endpoints at a time. In order to get any responses from the module
// over their endpoint, they must be either listening or have posted a recv. We use this fact to find the
// ep we need to send the recv back on.
list_for_each_safe(tmp, nxt, &bep->eps) {
ep = list_entry(tmp, struct cp_lkm_ep, list_bep);
if (ep->con_flags & (CP_LKM_USB_LISTEN | CP_LKM_USB_RECV)) {
cpdev = ep->cpdev;
if (ep->con_flags & CP_LKM_USB_RECV) {
//can only have one recv pending on non-data endpoints for a given ep number.
//therefor when the clone is done, the base is done
ep->con_flags &= ~CP_LKM_USB_RECV;
bep->con_flags &= ~CP_LKM_USB_RECV;
}
//printk("%s(), other data cpdev: %p, ep: %p, num: 0x%x, flags: 0x%x\n",__FUNCTION__,cpdev,ep, ep->ep_num,ep->con_flags);
break;
}
}
if (!cpdev) {
//printk("%s() no cpdev unexpectedly for unique_id: %d",__FUNCTION__, entry->unique_id);
dev_kfree_skb_any (skb_in);
return;
}
status = cp_lkm_usb_to_cplkm_status(entry->status);
//printk("%s() other data uid: %d, ep_num:0x%x, status:%d, len: %d\n", __FUNCTION__, cpdev->unique_id,bep->ep_num, entry->status, skb_in->len);
memset(&hdr,0,sizeof(hdr));
hdr.instance_id = cpdev->unique_id;
hdr.cmd = CP_LKM_USB_CMD_DATA_RECV;
hdr.status = status;
hdr.len = skb_in?skb_in->len:0;
hdr.arg1 = bep->ep_num;
cp_lkm_post_message(&cp_lkm_usb_mgr.common, &hdr, skb_in);
return;
}
static void cp_lkm_usb_ctrl_process (struct cp_lkm_usb_base_dev* cpbdev, struct sk_buff *skb_in)
{
struct skb_data *entry;
struct cp_lkm_msg_hdr hdr;
int status;
static struct cp_lkm_usb_dev* cpdev = NULL;
DEBUG_TRACE("%s()", __FUNCTION__);
if(!cp_lkm_usb_is_base_attached(cpbdev)){
dev_kfree_skb_any (skb_in);
return;
}
entry = (struct skb_data *)skb_in->cb;
cpdev = cp_lkm_usb_find_dev(entry->unique_id);
if (!cpdev) {
//printk("%s() no cpdev unexpectedly for unique_id: %d",__FUNCTION__, entry->unique_id);
dev_kfree_skb_any (skb_in);
return;
}
status = cp_lkm_usb_to_cplkm_status(entry->status);
memset(&hdr,0,sizeof(hdr));
hdr.instance_id = cpdev->unique_id;
hdr.cmd = CP_LKM_USB_CMD_CTRL_RECV;
hdr.status = status;
hdr.len = skb_in?skb_in->len:0;
hdr.arg1 = 0; //ctrl channel ep is always 0
cp_lkm_post_message(&cp_lkm_usb_mgr.common, &hdr, skb_in);
DEBUG_TRACE("%s() ctrl response status:%d", __FUNCTION__, entry->status);
return;
}
//This function runs in an interrupt context so it can't be preempted. This means cpdev can't
//be deleted out from under
static void cp_lkm_usb_data_recv_process (struct cp_lkm_usb_base_dev* cpbdev, struct sk_buff *skb_in)
{
struct sk_buff *skb_out;
int res;
int dst;
struct skb_data *entry;
struct cp_lkm_usb_dev* cpdev;
struct cp_lkm_base_ep* bep;
int ep_num;
int mux_id;
// WARNING: The memory this pointer points to will be freed by the wrapper, so copy everything you need
// out of it here before going into the while loop
entry = (struct skb_data *)skb_in->cb;
bep = entry->bep;
ep_num = bep->ep_num;
//printk("%s() cpbdev: %p, bep: %p base_state: %d\n", __FUNCTION__, cpbdev, bep, cpbdev->base_state);
if(!cp_lkm_usb_is_base_attached(cpbdev)){
dev_kfree_skb_any (skb_in);
return;
}
while(1) {
skb_out = NULL;
mux_id = 0;
res = cp_lkm_wrapper_recv(cpbdev->wrapper_ctxt, &dst, &mux_id, skb_in, &skb_out);
if (dst != CP_LKM_WRAPPER_DST_CTRL && dst != CP_LKM_WRAPPER_DST_DATA) {
// this is something other than data that we don't know what to do with, so drop it.
goto recv_done;
}
cpdev = cp_lkm_usb_find_muxed_dev(cpbdev, mux_id);
skb_in = NULL;
if (NULL == cpdev) {
//LOG("%s(), no cpdev found for mux_id: 0x%x, or base_id: %d", __FUNCTION__,mux_id,cpbdev->base_id);
DEBUG_WARN("%s(), no cpdev found for mux_id: 0x%x, or base_id: %d", __FUNCTION__,mux_id,cpbdev->base_id);
goto recv_done;
}
if(res == CP_LKM_WRAPPER_RES_ERROR) {
UPDATE_STATS(cpdev->edi->pm_stats64_ctx, rx_dropped, 1);
goto recv_done;
}
//printk("%s() cpdev: %p, ep_num: 0x%x, dst: %d, mux_id: %d, state: %d, res: %d\n", __FUNCTION__, cpdev, ep_num, dst, mux_id, cpdev->state, res);
//DEBUG_INFO("%s() while() - skb_out:%p, dst:%d, res:%d", __FUNCTION__, skb_out, dst, res);
//if nothing to send, see if we can bail or if need to call again
if(NULL == skb_out){
goto recv_done;
}
if(dst == CP_LKM_WRAPPER_DST_CTRL) {
//printk("%s() ctrl pkt cpdev: %p\n", __FUNCTION__, cpdev);
if (skb_out->len) { // watch for 0 length short packets
struct cp_lkm_msg_hdr hdr;
DEBUG_TRACE("%s() recv app pkt", __FUNCTION__);
memset(&hdr,0,sizeof(hdr));
hdr.instance_id = cpdev->unique_id;
hdr.cmd = CP_LKM_USB_CMD_DATA_RECV;
hdr.status = CP_LKM_STATUS_OK;
hdr.len = skb_out->len;
hdr.arg1 = ep_num;
cp_lkm_post_message(&cp_lkm_usb_mgr.common, &hdr, skb_out);
skb_out = NULL;
}
}
//dst == CP_LKM_WRAPPER_DST_DATA
else{
//printk("%s() data pkt cpdev: %p\n", __FUNCTION__, cpdev);
if (skb_out->len && cpdev->edi->pm_recv){
//printk("%s() data pkt send to pm cpdev: %p, first byte: 0x%x\n", __FUNCTION__, cpdev, skb_out->data[0]);
cpdev->edi->pm_recv(cpdev->edi->pm_recv_ctx, skb_out);
skb_out = NULL;
}
}
recv_done:
if(skb_out) {
dev_kfree_skb_any(skb_out);
}
//if wrapper didn't ask to be called back, then done
if(res != CP_LKM_WRAPPER_RES_AGAIN) {
break;
}
}
return;
}
/*
* This function runs in a hw interrupt context. Do not put any DEBUG_XX print messages in here.
*/
static void cp_lkm_usb_recv_complete (struct urb *urb)
{
unsigned long flags;
struct sk_buff *skb = (struct sk_buff *) urb->context;
struct skb_data *entry = (struct skb_data *) skb->cb;
struct cp_lkm_usb_base_dev* cpbdev = (struct cp_lkm_usb_base_dev *)entry->cpbdev;
struct cp_lkm_usb_dev* cpdev_stats_only;
int urb_status = urb->status;
struct cp_lkm_base_ep* bep = entry->bep;
bool is_data = false;
//if(urb->status) {
// printk("recv_done: status: %d, len:%d\n", urb->status, urb->actual_length);
//}
// we don't know what cpdev recv packets are destined for when running muxed clones, so report all errors
// to the base device (for non cloned cases, this will always be the correct cpdev)
cpdev_stats_only = cp_lkm_usb_find_dev(cpbdev->base_id);
//remove skb from the list first thing so no other code conext looking at the
//list (such as unlink_urbs) can mess with it.
spin_lock_irqsave(&cpbdev->in_q.lock,flags);
__skb_unlink(skb, &cpbdev->in_q);
spin_unlock_irqrestore(&cpbdev->in_q.lock,flags);
skb_put (skb, urb->actual_length);
if(bep->ep_num == cpbdev->data_in_bep_num) {
is_data = true;
entry->state = in_data_done;
//note we don't decrement the data ep cnt until we process the pkt
} else{
bep->q_cnt--;
entry->state = in_other_done;
}
entry->status = urb->status;
//skip status and error checking if the device has unplugged
if(!cp_lkm_usb_is_base_attached(cpbdev)) {
entry->status = -ENODEV;
goto recv_done;
}
switch (urb_status) {
// success
case 0:
break;
// stalls need manual reset. this is rare ... except that
// when going through USB 2.0 TTs, unplug appears this way.
// we avoid the highspeed version of the ETIMEOUT/EILSEQ
// storm, recovering as needed.
case -EPIPE:
UPDATE_STATS(cpdev_stats_only->edi->pm_stats64_ctx, rx_errors, 1);
//don't clear halts on ctrl ep
if(bep->ep_num != 0) {
cp_lkm_usb_defer_kevent (cpbdev, bep, EVENT_RX_HALT);
}
goto block;
// software-driven interface shutdown
case -ECONNRESET: // async unlink
case -ESHUTDOWN: // hardware gone
goto block;
case -ENODEV:
//printk("recv_done nodev:%d\n", ENODEV);
goto block;
// we get controller i/o faults during khubd disconnect() delays.
// throttle down resubmits, to avoid log floods; just temporarily,
// so we still recover when the fault isn't a khubd delay.
case -EPROTO:
case -ETIME:
case -EILSEQ:
UPDATE_STATS(cpdev_stats_only->edi->pm_stats64_ctx, rx_errors, 1);
if (!timer_pending (&cpbdev->rx_delay)) {
mod_timer (&cpbdev->rx_delay, jiffies + THROTTLE_JIFFIES);
}
block:
if(bep->ep_num == cpbdev->data_in_bep_num) {
bep->q_cnt--;
entry->state = in_data_cleanup;
}
else{
entry->state = in_other_cleanup;
}
break;
// data overrun ... flush fifo?
case -EOVERFLOW:
UPDATE_STATS(cpdev_stats_only->edi->pm_stats64_ctx, rx_over_errors, 1);
// FALLTHROUGH
default:
if(bep->ep_num == cpbdev->data_in_bep_num) {
bep->q_cnt--;
entry->state = in_data_cleanup;
}
else{
entry->state = in_other_cleanup;
}
UPDATE_STATS(cpdev_stats_only->edi->pm_stats64_ctx, rx_errors, 1);
break;
}
// on responses to a requested recv from the app driver, we need to always return something even on error so force it here
if(bep->con_flags & CP_LKM_USB_RECV) {
if(is_data){
entry->state = in_data_done; //this should never happen, data endpoints always listen, they don't post recv's
}
else{
entry->state = in_other_done;
}
}
recv_done:
//do not use the 'entry' struct after this call. It is part of the skb and the skb will be freed when the _bh function runs.
//if you need something from it save it off before calling this
if(is_data) {
//cpdev->dbg_total_rx_irq++;
//printk("%s(), got data on cpbdev: %p, bep: %p, id: %d\n",__FUNCTION__, cpbdev, entry->bep, cpbdev->base_id);
cp_lkm_usb_done_and_defer_data(cpbdev, skb, DATA_SRC_RX);
}
else{
//printk("%s(), got other data on cpbdev: %p, bep: %p, id: %d\n",__FUNCTION__, cpbdev, entry->bep, cpbdev->base_id);
cp_lkm_usb_done_and_defer_other(cpbdev, skb);
}
}
//static int g_num_adjusts = 0;
//static int g_num_recv_pkts = 0;
//static int g_num_iters = 0;
static int cp_lkm_usb_submit_recv(struct cp_lkm_usb_base_dev* cpbdev , struct urb *urb, gfp_t flags, struct cp_lkm_base_ep* bep, bool data)
{
struct sk_buff *skb;
struct skb_data *entry;
int retval = 0;
unsigned long lockflags;
size_t size;
int hdr_size = 0;
int hdr_offset = 0;
int pad = 0; //some platforms require alignment override. pad takes care of that.
//g_num_recv_pkts++;
//g_num_iters++;
//if(g_num_iters > 10000){
// printk("%s() num pkts: %d, num adjusts: %d\n",__FUNCTION__,g_num_recv_pkts,g_num_adjusts);
// g_num_iters = 0;
//}
size = bep->max_transfer_size;
if (data) {
hdr_size = cpbdev->pm_hdr_size;
hdr_offset = cpbdev->pm_hdr_offset;
}
if(cp_lkm_is_broadcom && (hdr_offset & 0x3)) {
//Jira issue FW-14929: On broadcom, we have to keep the buffers four byte aligned else the USB block
//corrupts the data (no idea why).
//Round up the hdr_offset to nearest 4 byte boundary. This means pkts may not be aligned as expected,
//so recieve function will need to either realign with a copy, or send up to the stack unaligned
// See cp_lkm_pm_net_recv() to see how we decided to deal with it (subject to change).
pad = 4 - (hdr_offset&0x3);
//g_num_adjusts++;
}
if ((skb = alloc_skb (size+hdr_size+pad, flags)) == NULL) {
//if (netif_msg_rx_err (dev))
// devdbg (dev, "no rx skb");
cp_lkm_usb_defer_kevent (cpbdev, bep, EVENT_RX_MEMORY);
return -ENOMEM;
}
if (data) {
skb_reserve(skb, hdr_offset+pad);
//printk("%s(), data: %p, len: %d, whs:%d, hs:%d, ho:%d\n",__FUNCTION__,skb->data,skb->len,wrapper_hdr_size,hdr_size,hdr_offset);
}
entry = (struct skb_data *) skb->cb;
entry->urb = urb;
entry->cpbdev = cpbdev;
if(data) {
entry->state = in_data_start;
}
else{
entry->state = in_other_start;
}
entry->status = 0;
entry->bep = bep;
if(bep->type == UE_BULK) {
usb_fill_bulk_urb (urb, cpbdev->udev, bep->pipe, skb->data, size,
cp_lkm_usb_recv_complete, skb);
}
else{
usb_fill_int_urb (urb, cpbdev->udev, bep->pipe, skb->data, size,
cp_lkm_usb_recv_complete, skb, bep->interval);
}
//cp_lkm_usb_cnts(entry->state,1);
spin_lock_irqsave (&cpbdev->in_q.lock, lockflags);
if (cp_lkm_usb_is_base_attached(cpbdev) && !test_bit (EVENT_RX_HALT, &bep->err_flags)) {
DEBUG_TRACE("%s() ep:0x%x, size:%d, type:%d, pipe:0x%x",__FUNCTION__, bep->ep_num, size, bep->type, bep->pipe);
retval = usb_submit_urb (urb, GFP_ATOMIC);
switch (retval) {
case -EPIPE:
//don't clear halts on ctrl ep
if(bep->ep_num != 0) {
cp_lkm_usb_defer_kevent (cpbdev, bep, EVENT_RX_HALT);
}
break;
case -ENOMEM:
cp_lkm_usb_defer_kevent (cpbdev, bep, EVENT_RX_MEMORY);
break;
case -ENODEV:
//if (netif_msg_ifdown (dev))
// devdbg (dev, "device gone");
//netif_device_detach (dev->net);
break;
case -EPROTO:
default:
//if (netif_msg_rx_err (dev))
// devdbg (dev, "rx submit, %d", retval);
cp_lkm_schedule_rx_restock(cpbdev,bep);
break;
case 0:
__skb_queue_tail (&cpbdev->in_q, skb);
bep->q_cnt++;
//if(cpdev->in_q.qlen == 1 && ep->index == CP_LKM_DATA_INDEX){
// printk("rx q empty\n");
//}
}
} else {
//if (netif_msg_ifdown (dev))
// devdbg (dev, "rx: stopped");
retval = -ENOLINK;
}
spin_unlock_irqrestore (&cpbdev->in_q.lock, lockflags);
if (retval) {
DEBUG_TRACE("%s() FAILED ep_num:0x%x ep_type:%d, retval: %d",__FUNCTION__, bep->ep_num, bep->type, retval);
//cp_lkm_usb_cnts(entry->state,-1);
dev_kfree_skb_any (skb);
}
return retval;
}
static int cp_lkm_usb_init(void)
{
DEBUG_TRACE("%s()", __FUNCTION__);
memset(&cp_lkm_usb_mgr, 0x00, sizeof(struct cp_lkm_usb_ctx));
cp_lkm_usb_mgr.common.open = cp_lkm_usb_open;
cp_lkm_usb_mgr.common.close = cp_lkm_usb_close;
cp_lkm_usb_mgr.common.handle_msg = cp_lkm_usb_handle_msg;
cp_lkm_usb_mgr.common.handle_ioctl = cp_lkm_usb_handle_ioctl;
INIT_LIST_HEAD(&cp_lkm_usb_mgr.dev_list);
cp_lkm_common_ctx_init(&cp_lkm_usb_mgr.common);
spin_lock_init(&cp_lkm_usb_mgr.lock);
//sema_init(&cp_lkm_usb_mgr.thread_sem, 1);
if(!strcmp(PRODUCT_PLATFORM, "brcm_arm")) {
LOG("cp_lkm: Broadcom platform");
cp_lkm_is_broadcom = 1;
}
LOG("cp_lkm: Product chipset %s",PRODUCT_INFO_CHIPSET);
LOG("cp_lkm: Product platform %s",PRODUCT_PLATFORM);
//Things work better if the napi weight here matchs the global weight set in service_manager/services/firewall.py
//This is even true if we don't use napi here since ethernet on some platforms use it
if ((strcmp(PRODUCT_PLATFORM,"ramips")==0) && (strcmp(PRODUCT_INFO_CHIPSET, "3883")!=0)){
//all ralink (mediatek) platforms except for 3883 use the low settings
//use_high = false;
CP_LKM_PM_NAPI_WEIGHT = 32;
}
else{
//use_high = true;
CP_LKM_PM_NAPI_WEIGHT = 64;
}
//set up default settings for all platforms
CP_LKM_USB_NAPI_MAX_WORK = CP_LKM_PM_NAPI_WEIGHT;
CP_LKM_USB_MAX_RX_QLEN = CP_LKM_USB_NAPI_MAX_WORK;
CP_LKM_USB_MAX_OTHER_QLEN = 2;
CP_LKM_USB_TX_PAUSE_Q_PKTS = CP_LKM_USB_NAPI_MAX_WORK;
CP_LKM_USB_TX_RESUME_Q_PKTS = CP_LKM_USB_TX_PAUSE_Q_PKTS/4;
CP_LKM_USB_TX_SCHED_CNT = 1;
CP_LKM_USB_RX_SCHED_CNT = 1;
CP_LKM_USB_RESTOCK_MULTIPLE = 1; //restock rx as we process them
CP_LKM_USB_TASKLET_CNT = 10;
CP_LKM_USB_WORKQUEUE_CNT = 5;
CP_LKM_USB_PROCESS_DIVISOR = 4;
LOG("cp_lkm: Processor: %s, Max work: %d, NAPI budget: %d, QLEN: %d.",PRODUCT_INFO_CHIPSET, CP_LKM_USB_NAPI_MAX_WORK, CP_LKM_PM_NAPI_WEIGHT, CP_LKM_USB_MAX_RX_QLEN);
return 0;
}
static int cp_lkm_usb_cleanup(void)
{
//module is unloading, clean up everything
// empty pending posted messages
cp_lkm_cleanup_msg_list(&cp_lkm_usb_mgr.common);
cp_lkm_usb_close(&cp_lkm_usb_mgr.common);
return 0;
}
static int cp_lkm_usb_open(struct cp_lkm_common_ctx *ctx)
{
//struct cp_lkm_usb_ctx* mgr;
DEBUG_TRACE("%s()", __FUNCTION__);
//mgr = (struct cp_lkm_usb_ctx*)ctx;
return 0;
}
static int cp_lkm_usb_close(struct cp_lkm_common_ctx *ctx)
{
//unsigned long flags;
//struct cp_lkm_usb_dev* cpdev;
//struct cp_lkm_usb_close_intf ci;
//struct cp_lkm_usb_unplug_intf ui;
LOG("%s() called unexpectedly.", __FUNCTION__);
//NOTE: catkin 10/11/2019 - Close is only called in our system if the modem stack crashes. This means
// things are in a bad state and the router will be rebooting. We decided not
// to clean things up here because this code got into an infinite loop in
// certain fail situations, which prevented the router from rebooting.
// Revisit if close ever becomes a normal event.
/*
while(1) {
spin_lock(&cp_lkm_usb_mgr.lock);
cpdev = cp_lkm_usb_get_head_dev();
spin_unlock(&cp_lkm_usb_mgr.lock);
if(!cpdev) {
return 0;
}
//TODO - when this closed we have a modem plugged, we will be deleting the top half of the driver while the bottom half is
// still plugged. Figure out how to force the driver to disconnect the modem
ci.unique_id = cpdev->unique_id;
cp_lkm_usb_close_intf(&ci);
//the unplug removes the device from the list which prevents us from infinite looping here
ui.unique_id = cpdev->unique_id;
cp_lkm_usb_unplug_intf(&ui);
}
cp_lkm_cleanup_msg_list(ctx);
*/
return 0;
}
static int cp_lkm_usb_handle_msg(struct cp_lkm_common_ctx *ctx, struct cp_lkm_msg_hdr *hdr, struct sk_buff *skb)
{
int retval = -1;
struct cp_lkm_ep* ep;
struct cp_lkm_usb_dev* cpdev;
struct cp_lkm_usb_base_dev* cpbdev;
//grab lock to protect global device list before searching (don't want to search it if another thread is adding or removing a cpdev)
spin_lock(&cp_lkm_usb_mgr.lock);
cpdev = cp_lkm_usb_find_dev(hdr->instance_id);
//grab thread semaphore so disconnect can't run and delete the cpdev while we are running here
if(!cpdev || !cp_lkm_usb_is_attached(cpdev) || !cp_lkm_usb_is_base_attached(cpdev->cpbdev)) {
spin_unlock(&cp_lkm_usb_mgr.lock);
dev_kfree_skb_any (skb);
//printk("%s() no device or no probe yet\n", __FUNCTION__);
return 0;
}
cpbdev = cpdev->cpbdev;
switch(hdr->cmd) {
case CP_LKM_USB_CMD_DATA_SEND:
{
ep = cp_lkm_usb_get_ep(cpdev, hdr->arg1);
if(ep) {
//printk("%s(), send other data cpbdev: %p, cpdev: %p, bep: %p, ep: %p, num: 0x%x\n",__FUNCTION__,cpdev->cpbdev,cpdev,ep->bep,ep,ep->ep_num);
retval = cp_lkm_usb_start_xmit_common(cpdev, skb, CP_LKM_WRAPPER_SRC_CTRL, ep);
skb = NULL;
}
else{
DEBUG_TRACE("%s() Invalid EP number 0x%x", __FUNCTION__, hdr->arg1);
retval = -1;
}
}
break;
case CP_LKM_USB_CMD_CTRL_SEND:
{
retval = cp_lkm_usb_start_ctrl_xmit(cpdev, skb);
skb = NULL;
}
break;
}
spin_unlock(&cp_lkm_usb_mgr.lock);
if(skb) {
dev_kfree_skb_any (skb);
}
return retval;
}
static int cp_lkm_usb_handle_ioctl(struct cp_lkm_common_ctx *ctx, int cmd, void *k_argp)
{
int retval = -1;
//printk("%s(), cmd:0x%x\n", __FUNCTION__, _IOC_NR(cmd));
switch(cmd) {
case CP_LKM_IOCTL_USB_PLUG_INTF:
{
struct cp_lkm_usb_plug_intf* pi = (struct cp_lkm_usb_plug_intf*)k_argp;
retval = cp_lkm_usb_plug_intf(pi);
}
break;
case CP_LKM_IOCTL_USB_SET_WRAPPER:
{
struct cp_lkm_usb_set_wrapper* sw = (struct cp_lkm_usb_set_wrapper*)k_argp;
retval = cp_lkm_usb_set_wrapper(sw);
}
break;
case CP_LKM_IOCTL_USB_SET_MUX_ID:
{
struct cp_lkm_usb_set_mux_id* smi = (struct cp_lkm_usb_set_mux_id*)k_argp;
retval = cp_lkm_usb_set_mux_id(smi);
}
break;
case CP_LKM_IOCTL_USB_OPEN_INTF:
{
struct cp_lkm_usb_open_intf* oi = (struct cp_lkm_usb_open_intf*)k_argp;
retval = cp_lkm_usb_open_intf(oi);
}
break;
case CP_LKM_IOCTL_USB_CLOSE_INTF:
{
struct cp_lkm_usb_close_intf* ci = (struct cp_lkm_usb_close_intf*)k_argp;
retval = cp_lkm_usb_close_intf(ci);
}
break;
case CP_LKM_IOCTL_USB_UNPLUG_INTF:
{
struct cp_lkm_usb_unplug_intf* ui = (struct cp_lkm_usb_unplug_intf*)k_argp;
retval = cp_lkm_usb_unplug_intf(ui);
}
break;
case CP_LKM_IOCTL_USB_EP_ACTION:
{
struct cp_lkm_usb_ep_action* ea = (struct cp_lkm_usb_ep_action*)k_argp;
retval = cp_lkm_usb_ep_action(ea);
}
break;
case CP_LKM_IOCTL_USB_PM_LINK:
{
struct cp_lkm_usb_pm_link *upl = (struct cp_lkm_usb_pm_link *)k_argp;
retval = cp_lkm_usb_pm_link(upl);
}
break;
case CP_LKM_IOCTL_USB_IS_ALIVE_INTF:
{
struct cp_lkm_usb_is_alive_intf* alivei = (struct cp_lkm_usb_is_alive_intf*)k_argp;
retval = cp_lkm_usb_is_alive_intf(alivei);
}
}
return retval;
}
/******************************* kernel module PM instance functionality **********************************/
struct cp_lkm_pm_ctx {
struct cp_lkm_common_ctx common;
struct list_head pm_list;
spinlock_t pm_list_lock;
};
struct cp_lkm_pm_ctx cp_lkm_pm_mgr;
static void cp_lkm_pm_filter_empty_list(struct cp_lkm_pm_common *pm)
{
struct cp_lkm_pm_filter *filter;
struct list_head *entry, *tmp;
list_for_each_safe(entry, tmp, &pm->filter_list) {
filter = list_entry(entry, struct cp_lkm_pm_filter, list);
list_del(&filter->list);
kfree(filter);
}
}
static bool cp_lkm_pm_filter_ok(struct cp_lkm_pm_common *pm, unsigned char *buf, unsigned int buf_len)
{
bool allow = true; // default allow the egress packet
struct list_head *pos;
struct in_device *in_dev;
struct in_ifaddr *ifa;
struct iphdr *ipv4_hdr;
u32 ipv4_src_addr = 0;
u32 ipv4_net_addr = 0;
u32 ipv4_net_mask = 0;
ipv4_hdr = (struct iphdr *)buf;
// these are the include filters (white list) - exclude filters (black list) are not currently supported
// exclude filters may need to be processed in another loop through the filters
list_for_each(pos, &pm->filter_list) {
struct cp_lkm_pm_filter *filter = list_entry(pos, struct cp_lkm_pm_filter, list);
switch(filter->type) {
case CP_LKM_PM_FILTER_TYPE_IP_SRC_WAN_SUBNET_INCLUDE:
if (4 == ipv4_hdr->version) {
// ipv4
allow = false;
ipv4_src_addr = __be32_to_cpu(ipv4_hdr->saddr);
if(ipv4_src_addr == 0){
//DHCP rebind packets may have a src addr of 0.0.0.0 and we want to let those through.
allow = true;
}
else{
// get network device IP address and check against src packet ip address
rcu_read_lock();
in_dev = rcu_dereference(pm->net_dev->ip_ptr);
// in_dev has a list of IP addresses (because an interface can have multiple - check them all)
for (ifa = in_dev->ifa_list; ifa != NULL; ifa = ifa->ifa_next) {
ipv4_net_addr = __be32_to_cpu(ifa->ifa_local);
ipv4_net_mask = __be32_to_cpu(ifa->ifa_mask);
if ((ipv4_net_addr & ipv4_net_mask) == (ipv4_src_addr & ipv4_net_mask)) {
// allow the packet
allow = true;
break;
}
}
rcu_read_unlock();
}
}/* benk needs to be tested before ok to execute
else if (6 == ipv4_hdr->version) {
struct in6_addr *addr = (struct in6_addr *)&buf[2 * sizeof(u32)];
if (ipv6_chk_prefix(addr, pm->net_dev)) {
allow = true;
}
} */
break;
case CP_LKM_PM_FILTER_TYPE_IP_SRC_SUBNET_INCLUDE:
if (4 == ipv4_hdr->version) {
// ipv4
allow = false;
ipv4_src_addr = __be32_to_cpu(ipv4_hdr->saddr);
if(ipv4_src_addr == 0){
//DHCP rebind packets may have a src addr of 0.0.0.0 and we want to let those through.
allow = true;
}
else if ((filter->subnet.ipv4_addr & filter->subnet.ipv4_mask) == (ipv4_src_addr & filter->subnet.ipv4_mask)) {
allow = true;
}
}
default:
break;
}
if (allow) {
break;
}
}
if (!allow) {
DEBUG_WARN("%s() dropping packet - src:0x%x\n", __FUNCTION__, ipv4_src_addr);
}
return allow;
}
/******************************* kernel module pm common functionality **********************************/
int cp_lkm_common_init(struct cp_lkm_pm_common *pmc)
{
// allocate stats struct
pmc->pcpu_stats64 = netdev_alloc_pcpu_stats(struct cp_lkm_pm_stats64);
if (!pmc->pcpu_stats64) {
return -ENOMEM;
}
pmc->pm_link_count = 0;
spin_lock_init(&pmc->pm_link_lock);
INIT_LIST_HEAD(&pmc->filter_list);
return 0;
}
void cp_lkm_common_deinit(struct cp_lkm_pm_common *pmc)
{
if (!pmc->pcpu_stats64) {
return;
}
free_percpu(pmc->pcpu_stats64);
pmc->pcpu_stats64 = NULL;
}
// The pm_link_lock is used to coordinate activity between xmit, poll, and link/unlink
// It is okay to poll and xmit at the same time, but we don't want to do either if we are linking or unlinking.
// link/unlink sets the pm_link_count negative to block both poll and xmit. If pm_link_count is not negative then
// both poll and xmit are free to grab the link at any time and at the same time.
//retval:
// 0 = you have the token, proceed
// -1 = you don't have the token, do not pass go
int cp_lkm_common_inc_link_lock(struct cp_lkm_pm_common* pmc)
{
unsigned long flags;
int retval = 0;
spin_lock_irqsave(&pmc->pm_link_lock, flags);
if(pmc->pm_link_count < 0) {
retval = -1;
}
else{
pmc->pm_link_count++;
}
spin_unlock_irqrestore(&pmc->pm_link_lock, flags);
return retval;
}
int cp_lkm_common_dec_link_lock(struct cp_lkm_pm_common* pmc)
{
unsigned long flags;
int retval = 0;
spin_lock_irqsave(&pmc->pm_link_lock, flags);
if(pmc->pm_link_count > 0) {
pmc->pm_link_count--;
}
else{
//should never hit this
retval = -1;
}
spin_unlock_irqrestore(&pmc->pm_link_lock, flags);
return retval;
}
/******************************* kernel module net PM functionality **********************************/
// common structure for ethernet and IP protocol managers
struct cp_lkm_pm_net {
struct cp_lkm_pm_common common;
struct ethhdr eth_hdr;
};
static void cp_lkm_pm_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
{
struct cp_lkm_pm_net *pm_net;
int i;
struct cp_lkm_pm_stats64 *pstats;
pm_net = netdev_priv(netdev);
for_each_possible_cpu(i) {
u64 rx_packets, rx_bytes, rx_errors, rx_dropped, rx_over_errors;
u64 tx_packets, tx_bytes, tx_errors, tx_dropped;
unsigned int start;
pstats = per_cpu_ptr(pm_net->common.pcpu_stats64, i);
do {
start = u64_stats_fetch_begin_irq(&pstats->syncp);
rx_packets = pstats->rx_packets;
tx_packets = pstats->tx_packets;
rx_bytes = pstats->rx_bytes;
tx_bytes = pstats->tx_bytes;
rx_errors = pstats->rx_errors;
tx_errors = pstats->tx_errors;
rx_dropped = pstats->rx_dropped;
tx_dropped = pstats->tx_dropped;
rx_over_errors = pstats->rx_over_errors;
} while (u64_stats_fetch_retry_irq(&pstats->syncp, start));
stats->rx_packets += rx_packets;
stats->tx_packets += tx_packets;
stats->rx_bytes += rx_bytes;
stats->tx_bytes += tx_bytes;
stats->rx_errors += rx_errors;
stats->tx_errors += tx_errors;
stats->rx_dropped += rx_dropped;
stats->tx_dropped += tx_dropped;
stats->rx_over_errors += rx_over_errors;
}
}
static int cp_lkm_pm_net_open(struct net_device *dev)
{
struct cp_lkm_pm_net *pm_net;
DEBUG_TRACE("%s()", __FUNCTION__);
pm_net = netdev_priv(dev);
netif_start_queue(dev);
// is this link up?
return 0;
}
static int cp_lkm_pm_net_close(struct net_device *dev)
{
struct cp_lkm_pm_net *pm_net = netdev_priv(dev);
struct cp_lkm_msg_hdr hdr;
DEBUG_TRACE("%s()", __FUNCTION__);
// link change
netif_stop_queue(dev);
// post message to indicate link down
memset(&hdr,0,sizeof(hdr));
hdr.instance_id = pm_net->common.unique_id;
hdr.cmd = CP_LKM_PM_LINK_DOWN;
hdr.status = CP_LKM_STATUS_OK;
cp_lkm_post_message(&cp_lkm_pm_mgr.common, &hdr, NULL);
LOG("Link Down indicated - id:%d\n", hdr.instance_id);
return 0;
}
static int cp_lkm_pm_net_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct cp_lkm_pm_net *pm_net = netdev_priv(dev);
bool filter_ok = true;
int link_res;
//see if we can grab the link lock, if not, we are either bringing up or taking down the link between USB and PM, so not safe to proceed
link_res = cp_lkm_common_inc_link_lock(&pm_net->common);
if(link_res < 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (!pm_net->common.edi) {
// cannot do anything without edi
dev_kfree_skb_any(skb);
goto net_xmit_done;
}
//DEBUG_INFO("%s() - %s len:%d", __FUNCTION__, pm_net->common.net_dev->name, skb->len);
UPDATE_STATS(pm_net->common.edi->pm_stats64_ctx, tx_bytes, (skb->len - sizeof(struct ethhdr)));
UPDATE_STATS(pm_net->common.edi->pm_stats64_ctx, tx_packets, 1);
/* Drop packet if interface is not attached */
if (0 == pm_net->common.attached)
goto drop;
if (!pm_net->common.edi->usb_send) {
goto drop;
}
filter_ok = cp_lkm_pm_filter_ok(&pm_net->common, skb->data + sizeof(struct ethhdr), skb->len - sizeof(struct ethhdr));
if (!filter_ok) {
pm_net->common.filter_drop_cnt++;
DEBUG_WARN("%s() filter dropped packet cnt:%u", __FUNCTION__, pm_net->common.filter_drop_cnt);
goto drop;
}
switch(pm_net->common.type) {
case CP_LKM_PM_TYPE_IP_DHCP:
case CP_LKM_PM_TYPE_IP_STATIC:
skb_pull(skb, sizeof(struct ethhdr)); // strip off the ethernet header
break;
default:
break;
}
// send data to USB module
pm_net->common.edi->usb_send(pm_net->common.edi->usb_send_ctx, skb);
goto net_xmit_done;
drop:
DEBUG_INFO("%s() - dropped", __FUNCTION__);
UPDATE_STATS(pm_net->common.edi->pm_stats64_ctx, tx_dropped, 1);
dev_kfree_skb_any(skb);
net_xmit_done:
cp_lkm_common_dec_link_lock(&pm_net->common);
return NETDEV_TX_OK;
}
#if 0
static u8 cp_lkm_pm_test_find(u8* pkt, u32 pkt_len, u8* pattern, u32 pattern_len)
{
s32 i;
for(i = 0; i < (pkt_len - pattern_len); i++) {
if (memcmp(&pkt[i],pattern,pattern_len) == 0) {
return 1;
}
}
return 0;
}
static int cp_lkm_pm_test(struct sk_buff *skb)
{
static u8 first_pkt = 1;
static u8 started = 0;
static unsigned long total_data = 0;
static unsigned long start_time = 0;
static unsigned long stop_time = 0;
static unsigned long invalid_pkts = 0;
static unsigned long total_pkts = 0;
int drop = 0;
unsigned char *ptr = skb->data;
u32 pkt_len = skb->len;
u8 prot;
//u8 type;
u16 udp_len;
u16 dst_port;
if (pkt_len < 20) {
return 0;
}
//function is set up to parse IP pkts, may be called with ether framed pkts as well.
//auto detect ether hdr and remove it
if (ptr[0] != 0x45) {
//ether header
if(ptr[14] == 0x45){
ptr+=14;
pkt_len -= 14;
}
//vlan hdr
else if (ptr[12] == 0x81 && ptr[18] == 0x45) {
ptr+=18;
pkt_len -=18;
}
}
if (ptr[0] != 0x45) {
invalid_pkts++;
}
//printk("0x%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x len: %d \n",ptr[0],ptr[1],ptr[2],ptr[3],ptr[4],ptr[5],ptr[6],ptr[7],ptr[8],ptr[9],ptr[10],ptr[11],ptr[12],ptr[13],ptr[14],ptr[15],pkt_len);
//printk("0x%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x len: %d \n",ptr[0],ptr[1],ptr[2],ptr[3],ptr[4],ptr[5],ptr[6],ptr[7],ptr[8],ptr[9],ptr[10],ptr[11],ptr[12],ptr[13],ptr[14],ptr[15],pkt_len);
if (pkt_len >= 28) {
prot = ptr[9];
if (prot == 0x11) {
ptr += 20; //skip ip header
pkt_len -= 20;
dst_port = ntohs(*((u16*)(&ptr[2])));
udp_len = ntohs(*((u16*)(&ptr[4])));
//printk("Got UDP pkt\n");
if (started && dst_port == 5001) {
drop = 1;
if (first_pkt == 1) {
first_pkt = 0;
total_data = 0;
start_time = jiffies;
invalid_pkts = 0;
total_pkts = 0;
}
total_data += (udp_len+34); //add ip and ether hdrs
stop_time = jiffies;
total_pkts++;
}
else if(dst_port == 5002) {
drop = 1;
ptr += 8; //skip udp header
printk("SHIM START PORT len: %d data: 0x%x, start=%x, stop=%x\n",udp_len, ptr[0], start_time, stop_time);
if(cp_lkm_pm_test_find(ptr, udp_len, "START", 5)){
printk("Got IPERF START\n");
first_pkt = 1;
started = 1;
cp_lkm_wrapper_start_debug();
}
else if (cp_lkm_pm_test_find(ptr, udp_len, "STOP", 4)) {
u32 delta_time = (stop_time - start_time)*1000/HZ;
u32 bits_per_sec = (total_data/delta_time)*8000; //in bytes per milisecond, need bits per second
delta_time -= 2; //iperf has 2 second delay waiting for an ack we won't send
started = 0;
printk("Got IPERF STOP: Total data: %u, Total pkts: %u, Total invalid: %u, Total time: %u msec, BitsPerSec: %u\n",total_data, total_pkts, invalid_pkts, delta_time,bits_per_sec);
cp_lkm_wrapper_stop_debug();
}
}
}
}
return drop;
}
#endif
// called in soft interrupt context - otherwise some protection around pm_net is required
//int num_ip_copies = 0;
//int num_eth_copies = 0;
//int num_pkts = 0;
//int num_iters = 0;
//int num_unaligned = 0;
static int cp_lkm_pm_net_recv(void *ctx, struct sk_buff *skb)
{
struct cp_lkm_pm_net *pm_net;
int err;
int recv_bytes;
struct sk_buff *skb_new;
int align = 0; //set to 1 to always send 4 byte aligned IP pkts to network stack
int pad = 20; //number of bytes to put on front of new skbs
//DEBUG_INFO("%s()", __FUNCTION__);
if(NULL == ctx) {
dev_kfree_skb_any(skb);
return 0;
}
//num_pkts++;
//num_iters++;
pm_net = (struct cp_lkm_pm_net *)ctx;
//printk("%s() pm_net: %p\n", __FUNCTION__, pm_net);
skb->dev = pm_net->common.net_dev;
switch(pm_net->common.type) {
case CP_LKM_PM_TYPE_ETHERNET_DHCP:
case CP_LKM_PM_TYPE_ETHERNET_STATIC:
case CP_LKM_PM_TYPE_ETHERNET_STATIC_NOARP:
//this strips the ether header off the packet
skb->protocol = eth_type_trans(skb, pm_net->common.net_dev);
//Need IP hdr aligned for IP stack to avoid unaligned access interrupts
if(align && ((uintptr_t)(skb->data) & 0x3)) {
//num_eth_copies++;
skb_new = skb_copy_expand(skb, pad, 0, GFP_ATOMIC);
dev_kfree_skb_any(skb);
skb=skb_new;
}
if (!skb) {
// packet dropped
UPDATE_STATS(pm_net->common.edi->pm_stats64_ctx, rx_dropped, 1);
return -ENOMEM;
}
break;
case CP_LKM_PM_TYPE_IP_DHCP:
case CP_LKM_PM_TYPE_IP_STATIC:
// Need to add ether header first for processing, then remove it. Need IP hdr aligned when done.
//
// Note: avoid the temptation to skip adding the ether header and doing manually what the call
// to eth_type_trans() does. We did that and it bit us (see Jira issue FW-16149)
// The kernel expects the ether header to be present in the skb buff even though the data ptr
// has been moved past it. Also, if the skb has been cloned, then we are dealing with an
// aggregated modem protocol (multiple pkts per skb), so we have to make a copy to guarantee
// our tmp ether header isn't written into the data space of the previous pkt from the set.
//
if((align && ((uintptr_t)(skb->data) & 0x3)) || (skb_headroom(skb) < ETH_HLEN) || skb_cloned(skb)){
//printk("copy: align: %d, head: %d, cloned: %d, len: %d\n", ((uintptr_t)(skb->data) & 0x3), skb_headroom(skb), skb_cloned(skb), skb->len);
//num_ip_copies++;
skb_new = skb_copy_expand(skb, 16+pad, 0, GFP_ATOMIC);
dev_kfree_skb_any(skb);
skb=skb_new;
}
if (!skb) {
// packet dropped
UPDATE_STATS(pm_net->common.edi->pm_stats64_ctx, rx_dropped, 1);
return -ENOMEM;
}
if (0x60 == (skb->data[0] & 0xF0)) { //mask off version bits of first byte of IP packet to check for ip version
// set the hdr protocol type to IPV6
pm_net->eth_hdr.h_proto = __constant_htons(ETH_P_IPV6);
} else {
// probably ipv4, but not explicitly checking
// set the hdr protocol type to IPV4
pm_net->eth_hdr.h_proto = __constant_htons(ETH_P_IP);
}
memcpy(skb_push(skb, sizeof(struct ethhdr)), (unsigned char *)&pm_net->eth_hdr, sizeof(struct ethhdr));
//this strips the ether hdr off the packet
skb->protocol = eth_type_trans(skb, pm_net->common.net_dev);
break;
default:
DEBUG_INFO("%s() invalid protocol type: %d", __FUNCTION__, pm_net->common.type);
// packet dropped
UPDATE_STATS(pm_net->common.edi->pm_stats64_ctx, rx_errors, 1);
kfree(skb);
return NET_RX_DROP;
}
recv_bytes = skb->len;
//if (cp_lkm_pm_test(skb) == 1) {
// dev_kfree_skb_any(skb);
// return NET_RX_SUCCESS;
//}
//if((int)(skb->data) & 0x3){
//printk("Unaligned IP pkt!!!!!!!!!!!!\n");
//num_unaligned++;
//}
//if(num_iters >= 10000) {
// num_iters = 0;
// printk("num_ip_copies: %d, num_eth_copies: %d, num_unaligned: %d, num_pkts: %d\n",num_ip_copies,num_eth_copies,num_unaligned,num_pkts);
//}
netif_rx(skb);
err = NET_RX_SUCCESS;
UPDATE_STATS(pm_net->common.edi->pm_stats64_ctx, rx_packets, 1);
UPDATE_STATS(pm_net->common.edi->pm_stats64_ctx, rx_bytes, recv_bytes);
return 0;
}
static void cp_lkm_pm_net_get_hdr_size(void *ctx, int wrapper_hdr_size, int* hdr_size, int* hdr_offset)
{
struct cp_lkm_pm_net *pm_net;
int pad;
int tmp_size;
int pm_hdr = ETH_HLEN;
int pm_extra = 6;
*hdr_size = 0;
*hdr_offset = 0;
pm_net = (struct cp_lkm_pm_net *)ctx;
if(!pm_net) {
return;
}
//temp return here
//return;
//calculate how much header space there is before the IP hdr.
//this is needed to align the IP hdr properly for optimal performance
switch(pm_net->common.type) {
case CP_LKM_PM_TYPE_ETHERNET_DHCP:
case CP_LKM_PM_TYPE_ETHERNET_STATIC:
case CP_LKM_PM_TYPE_ETHERNET_STATIC_NOARP:
//pkts will need room for the wrapper header and the ether hdr.
//both headers will be present at the same time.
tmp_size = wrapper_hdr_size + pm_hdr + pm_extra;
pad = ((~tmp_size)+1)&0x3; //calculate padding needed for 4 byte boundary on alloc
*hdr_size = tmp_size + pad;
*hdr_offset = pad+pm_extra;
break;
case CP_LKM_PM_TYPE_IP_DHCP:
case CP_LKM_PM_TYPE_IP_STATIC:
//pkts will need room for the wrapper header or the ether hdr
//both headers won't be present at the same time. The wrapper is present
//up through the USB side of the shim. We (the pm) add a temp ether header
//for processing after the wrapper header is removed
tmp_size = max(wrapper_hdr_size, pm_hdr+pm_extra);
pad = ((~tmp_size)+1)&0x3; //calculate padding needed for 4 byte boundary on alloc
*hdr_size = tmp_size + pad;
*hdr_offset = *hdr_size - wrapper_hdr_size;
break;
default:
break;
}
}
static u32 cp_lkm_pm_net_get_link(struct net_device *dev)
{
struct cp_lkm_pm_net *pm_net;
DEBUG_TRACE("%s()", __FUNCTION__);
pm_net = netdev_priv(dev);
if(!pm_net) {
return 0;
}
return pm_net->common.attached;
}
#ifndef KERNEL_2_6_21
static const struct net_device_ops cp_lkm_pm_net_device_ops = {
.ndo_open = cp_lkm_pm_net_open,
.ndo_start_xmit = cp_lkm_pm_net_xmit,
.ndo_stop = cp_lkm_pm_net_close,
.ndo_get_stats64 = cp_lkm_pm_get_stats64
};
#endif
static const struct ethtool_ops cp_lkm_pm_net_ethtool_ops = {
.get_link = cp_lkm_pm_net_get_link,
};
static void cp_lkm_pm_net_setup(struct net_device *net_dev)
{
struct cp_lkm_pm_net *pm_net;
DEBUG_INFO("%s()", __FUNCTION__);
pm_net = netdev_priv(net_dev);
ether_setup(net_dev);
#ifdef KERNEL_2_6_21
net_dev->open = cp_lkm_pm_net_open;
net_dev->hard_start_xmit = cp_lkm_pm_net_xmit;
net_dev->stop = cp_lkm_pm_net_close;
#else
net_dev->netdev_ops = &cp_lkm_pm_net_device_ops;
net_dev->needed_headroom = 48;
net_dev->needed_tailroom = 8;
#endif
net_dev->ethtool_ops = &cp_lkm_pm_net_ethtool_ops;
}
static int cp_lkm_pm_net_attach(struct cp_lkm_pm_ctx *mgr, cp_lkm_pm_type_t type, int uid, char *name, unsigned char *mac)
{
int err;
struct cp_lkm_pm_net *pm_net;
struct net_device *net_dev;
unsigned long flags;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 17,0)
net_dev = alloc_netdev(sizeof(struct cp_lkm_pm_net), name, NET_NAME_UNKNOWN, cp_lkm_pm_net_setup);
#else
net_dev = alloc_netdev(sizeof(struct cp_lkm_pm_net), name, cp_lkm_pm_net_setup);
#endif
if (!net_dev) {
DEBUG_INFO("%s() alloc failed: %s", __FUNCTION__, name);
return -ENOMEM;
}
pm_net= netdev_priv(net_dev);
err = cp_lkm_common_init(&pm_net->common);
if (err) {
free_netdev(net_dev);
return err;
}
pm_net->common.net_dev = net_dev;
pm_net->common.unique_id = uid;
pm_net->common.type = type;
pm_net->common.edi = NULL;
//printk("%s(%p) pm-uid: %d, pm_net: %p\n", __FUNCTION__, mgr, uid, pm_net);
switch (type) {
case CP_LKM_PM_TYPE_ETHERNET_DHCP:
case CP_LKM_PM_TYPE_ETHERNET_STATIC:
case CP_LKM_PM_TYPE_ETHERNET_STATIC_NOARP:
if(!memcmp(mac, "\x00\x00\x00\x00\x00\x00", ETH_ALEN)) {
random_ether_addr(net_dev->dev_addr);
} else {
memcpy (net_dev->dev_addr, mac, ETH_ALEN);
}
/////////////////////////Need to only do if driver says so.
if (type == CP_LKM_PM_TYPE_ETHERNET_STATIC_NOARP) {
net_dev->flags |= IFF_NOARP;
}
break;
case CP_LKM_PM_TYPE_IP_DHCP:
case CP_LKM_PM_TYPE_IP_STATIC:
// random addr for DHCP functionality
if(!memcmp(mac, "\x00\x00\x00\x00\x00\x00", ETH_ALEN) || !memcmp(mac, "\x00\x30\x44\x00\x00\x00", ETH_ALEN)) {
random_ether_addr(net_dev->dev_addr);
} else {
memcpy (net_dev->dev_addr, mac, ETH_ALEN);
}
net_dev->flags |= IFF_NOARP;
memcpy(pm_net->eth_hdr.h_dest, net_dev->dev_addr, ETH_ALEN);
random_ether_addr(pm_net->eth_hdr.h_source);
break;
default:
DEBUG_INFO("%s() invalid protocol type: %d", __FUNCTION__, type);
cp_lkm_common_deinit(&pm_net->common);
free_netdev(net_dev);
return -EINVAL;
}
DEBUG_INFO("%s register netdev", __FUNCTION__);
err = register_netdev(net_dev);
if (err < 0) {
DEBUG_INFO("%s netdev registration error", __FUNCTION__);
cp_lkm_common_deinit(&pm_net->common);
free_netdev(net_dev);
return err;
}
netif_device_attach(pm_net->common.net_dev);
netif_stop_queue(pm_net->common.net_dev);
pm_net->common.attached = 1;
spin_lock_irqsave(&cp_lkm_pm_mgr.pm_list_lock, flags);
list_add(&pm_net->common.list, &mgr->pm_list);
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
return 0;
}
static int cp_lkm_pm_net_detach(struct cp_lkm_pm_ctx *mgr, int uid)
{
// find the object in the list
struct list_head *pos;
struct cp_lkm_pm_common *pm = NULL;
unsigned long flags;
DEBUG_TRACE("%s(%p)", __FUNCTION__, mgr);
spin_lock_irqsave(&cp_lkm_pm_mgr.pm_list_lock, flags);
list_for_each(pos, &mgr->pm_list){
struct cp_lkm_pm_common *pm_tmp = list_entry(pos, struct cp_lkm_pm_common, list);
if(pm_tmp->unique_id == uid) {
pm = pm_tmp;
break;
}
}
if (!pm) {
// already detached
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
DEBUG_INFO("%s() already detached", __FUNCTION__);
return 0;
}
// remove the object
list_del(&pm->list);
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
if (pm->attached) {
DEBUG_INFO("%s() detaching", __FUNCTION__);
netif_device_detach(pm->net_dev);
pm->attached = 0;
}
unregister_netdev(pm->net_dev);
// clean the filter list
cp_lkm_pm_filter_empty_list(pm);
cp_lkm_common_deinit(pm);
free_netdev(pm->net_dev); // this also frees the pm since it was allocated as part of the net_dev
return 0;
}
static int cp_lkm_pm_net_activate(struct cp_lkm_pm_ctx *mgr, int uid, bool activate)
{
// find the object in the list
struct list_head *pos;
struct cp_lkm_pm_common *pm = NULL;
unsigned long flags;
//printk("%s(%p) activate: %d\n", __FUNCTION__, mgr, activate);
spin_lock_irqsave(&cp_lkm_pm_mgr.pm_list_lock, flags);
list_for_each(pos, &mgr->pm_list){
struct cp_lkm_pm_common *pm_tmp = list_entry(pos, struct cp_lkm_pm_common, list);
if(pm_tmp->unique_id == uid) {
pm = pm_tmp;
break;
}
}
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
if (!pm) {
// couldn't find object - already unplugged
DEBUG_INFO("%s() already unplugged", __FUNCTION__);
return 0;
}
if (activate) {
//netif_start_queue(pm->net_dev);
if (pm->edi) {
pm->edi->pm_recv_ctx = pm;
}
netif_wake_queue(pm->net_dev);
} else {
netif_stop_queue(pm->net_dev);
if (pm->edi) {
pm->edi->pm_recv_ctx = NULL;
//printk("pm_recv_ctx null\n");
}
// remove the filters - will be added back in before activate
cp_lkm_pm_filter_empty_list(pm);
}
return 0;
}
int cp_lkm_pm_net_pause(void *ctx)
{
struct cp_lkm_pm_common* pm = (struct cp_lkm_pm_common *)ctx;
if(!ctx) {
return 0;
}
netif_stop_queue(pm->net_dev);
return 0;
}
int cp_lkm_pm_net_resume(void *ctx)
{
struct cp_lkm_pm_common* pm = (struct cp_lkm_pm_common *)ctx;
if(!ctx) {
return 0;
}
//netif_start_queue(pm->net_dev);
netif_wake_queue(pm->net_dev);
return 0;
}
/******************************* kernel module PPP/tty PM functionality **********************************/
struct cp_lkm_pm_ppp {
struct cp_lkm_pm_common common;
u8 *no_carrier_ptr;
bool in_frame;
struct tty_struct *tty; // pointer to the tty for this device
int minor;
int open_count;
};
#define CP_TTY_MINORS 10
#define CP_TTY_DEVICE_NAME "ttyCP"
#define PPP_MGR_NO_CARRIER "NO CARRIER"
#define PPP_FLAG 0x7E
static struct cp_lkm_pm_ppp *cp_lkm_pm_ppp_table[CP_TTY_MINORS];
static struct tty_driver *cp_lkm_pm_tty_driver = NULL;
static struct tty_port cp_lkm_pm_tty_port[CP_TTY_MINORS];
static void cp_lkm_pm_ppp_finalize(void *arg)
{
struct cp_lkm_pm_ppp *pm_ppp = (struct cp_lkm_pm_ppp *)arg;
tty_unregister_device(cp_lkm_pm_tty_driver, pm_ppp->minor);
cp_lkm_pm_ppp_table[pm_ppp->minor] = NULL;
if (pm_ppp->common.edi) {
pm_ppp->common.edi = NULL;
}
// clean the filter list
cp_lkm_pm_filter_empty_list(&pm_ppp->common);
}
static int cp_lkm_pm_ppp_attach(struct cp_lkm_pm_ctx *mgr, cp_lkm_pm_type_t type, int uid, char *name)
{
int minor;
int err;
unsigned long flags;
struct cp_lkm_pm_ppp *pm_ppp;
DEBUG_INFO("%s(%p)", __FUNCTION__, mgr);
//printk("%s() uid: %d, type: %d\n", __FUNCTION__, uid, type);
// find an empty minor device slot and register
for (minor = 0; minor < CP_TTY_MINORS && cp_lkm_pm_ppp_table[minor]; minor++);
if (minor == CP_TTY_MINORS) {
DEBUG_WARN("%s(%p) - out of devices", __FUNCTION__, mgr);
return -ENODEV;
}
if (!(pm_ppp = memref_alloc_and_zero(sizeof(struct cp_lkm_pm_ppp), cp_lkm_pm_ppp_finalize))) {
DEBUG_WARN("%s(%p) - no memory", __FUNCTION__, mgr);
return -ENOMEM;
}
err = cp_lkm_common_init(&pm_ppp->common);
if (err) {
return -ENOMEM;
}
pm_ppp->common.type = type;
pm_ppp->common.unique_id = uid;
pm_ppp->no_carrier_ptr = PPP_MGR_NO_CARRIER;
pm_ppp->minor = minor;
cp_lkm_pm_ppp_table[minor] = pm_ppp;
sprintf(name, "%s%d", CP_TTY_DEVICE_NAME, minor);
//printk("%s(%p) attached\n", __FUNCTION__, &pm_ppp->common);
pm_ppp->common.attached = 1;
pm_ppp->open_count = 0;
spin_lock_irqsave(&cp_lkm_pm_mgr.pm_list_lock, flags);
list_add(&pm_ppp->common.list, &mgr->pm_list);
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
tty_port_register_device(&cp_lkm_pm_tty_port[minor], cp_lkm_pm_tty_driver, minor, NULL);
return 0;
}
static int cp_lkm_pm_ppp_detach(struct cp_lkm_pm_ctx *mgr, int uid)
{
// find the object in the list
struct list_head *pos;
struct cp_lkm_pm_common *pm = NULL;
struct cp_lkm_pm_ppp *pm_ppp;
unsigned long flags;
DEBUG_INFO("%s(%p)", __FUNCTION__, mgr);
//printk("%s() uid: %d\n", __FUNCTION__, uid);
spin_lock_irqsave(&cp_lkm_pm_mgr.pm_list_lock, flags);
list_for_each(pos, &mgr->pm_list){
struct cp_lkm_pm_common *pm_tmp = list_entry(pos, struct cp_lkm_pm_common, list);
if(pm_tmp->unique_id == uid) {
pm = pm_tmp;
break;
}
}
if (!pm) {
// already detached
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
DEBUG_INFO("%s() already detached", __FUNCTION__);
return 0;
}
// remove the object
list_del(&pm->list);
pm_ppp = (struct cp_lkm_pm_ppp *)pm;
//printk("%s() !attached\n", __FUNCTION__);
pm->attached = 0;
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
// clean the filter list
cp_lkm_pm_filter_empty_list(pm);
cp_lkm_common_deinit(pm);
memref_deref(pm_ppp);
return 0;
}
static int cp_lkm_pm_ppp_activate(struct cp_lkm_pm_ctx *mgr, int uid, bool activate)
{
// find the object in the list
struct list_head *pos;
struct cp_lkm_pm_common *pm = NULL;
unsigned long flags;
spin_lock_irqsave(&cp_lkm_pm_mgr.pm_list_lock, flags);
list_for_each(pos, &mgr->pm_list){
struct cp_lkm_pm_common *pm_tmp = list_entry(pos, struct cp_lkm_pm_common, list);
if(pm_tmp->unique_id == uid) {
pm = pm_tmp;
break;
}
}
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
if (!pm) {
// already detached
DEBUG_INFO("%s() already detached", __FUNCTION__);
return 0;
}
//printk("%s(%p) activate: %d, attached: %d\n", __FUNCTION__, pm, activate, pm->attached);
if (activate) {
if (pm->edi) {
pm->edi->pm_recv_ctx = pm;
}
} else {
if (pm->edi) {
pm->edi->pm_recv_ctx = NULL;
//printk("pm_recv_ctx null\n");
}
// clean the filter list
cp_lkm_pm_filter_empty_list(pm);
}
return 0;
}
static int cp_lkm_pm_tty_open(struct tty_struct * tty, struct file * filp)
{
struct cp_lkm_pm_ppp *pm_ppp;
int index;
unsigned long flags;
DEBUG_INFO("%s()", __FUNCTION__);
index = tty->index;
// get the pm_ppp associated with this tty pointer
spin_lock_irqsave(&cp_lkm_pm_mgr.pm_list_lock, flags);
pm_ppp = cp_lkm_pm_ppp_table[index];
if (!pm_ppp /*|| tty->driver_data */|| !pm_ppp->common.attached) {
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
return -EINVAL;
}
if (pm_ppp->open_count++) {
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
return 0;
}
memref_ref(pm_ppp);
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
// save our structure within the tty structure
tty->driver_data = pm_ppp;
pm_ppp->tty = tty;
// XXX 3.10 hack
//tty->low_latency = 0;
return 0;
}
static void cp_lkm_pm_tty_close(struct tty_struct * tty, struct file * filp)
{
struct cp_lkm_pm_ppp *pm_ppp;
unsigned long flags;
DEBUG_INFO("%s()", __FUNCTION__);
pm_ppp = tty->driver_data;
if(!pm_ppp) {
return;
}
spin_lock_irqsave(&cp_lkm_pm_mgr.pm_list_lock, flags);
if (--pm_ppp->open_count) {
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
return;
}
tty->driver_data = NULL;
pm_ppp->tty = NULL;
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
memref_deref(pm_ppp);
}
static bool cp_lkm_pm_ppp_check_match(struct cp_lkm_pm_ppp *pm_ppp, u8 ch)
{
if (*(pm_ppp->no_carrier_ptr) == ch) {
// character match - advance to next character
pm_ppp->no_carrier_ptr++;
if (! *(pm_ppp->no_carrier_ptr)) {
// end of no carrier string - found oob no carrier
return true;
}
return false;
}
// characters don't match
if (pm_ppp->no_carrier_ptr != (u8 *)PPP_MGR_NO_CARRIER) {
// characters don't match - start over
pm_ppp->no_carrier_ptr = (u8 *)PPP_MGR_NO_CARRIER;
// check not matching character against first character of no carrier - 1 level of recursion
return cp_lkm_pm_ppp_check_match(pm_ppp, ch);
}
return false;
}
static bool cp_lkm_pm_ppp_is_no_carrier(struct cp_lkm_pm_ppp *pm_ppp, struct sk_buff *skb)
{
// search thru skb for data between frame markers for NO CARRIER
bool no_carrier = false;
unsigned int len = skb->len;
u8 *pos = skb->data;
DEBUG_TRACE("%s()", __FUNCTION__);
while (len--) {
if (PPP_FLAG == (*pos)) {
pm_ppp->in_frame = !pm_ppp->in_frame;
} else if (!pm_ppp->in_frame) {
// look for match
no_carrier = cp_lkm_pm_ppp_check_match(pm_ppp, *pos);
if (no_carrier) {
DEBUG_INFO("%s() found no carrier", __FUNCTION__);
return true;
}
} else {
pm_ppp->no_carrier_ptr = PPP_MGR_NO_CARRIER;
}
pos++;
}
return false;
}
static void cp_lkm_pm_ppp_get_hdr_size(void *ctx, int wrapper_hdr_size, int* hdr_size, int* hdr_offset)
{
*hdr_size = 0;
*hdr_offset = 0;
}
// called in soft interrupt context
static int cp_lkm_pm_ppp_recv(void *ctx, struct sk_buff *skb)
{
#ifdef KERNEL_2_6_21
int size;
#endif
struct cp_lkm_pm_ppp *pm_ppp;
bool oob_no_carrier;
if(NULL == ctx || !skb->len) {
DEBUG_INFO("%s() - null ctx - dropped", __FUNCTION__);
goto done;
}
pm_ppp = (struct cp_lkm_pm_ppp *)ctx;
if (!pm_ppp) {
DEBUG_INFO("%s() - NULL pm_ppp - dropped", __FUNCTION__);
goto done;
}
// check for OOB NO CARRIER - signal up through file descriptor
oob_no_carrier = cp_lkm_pm_ppp_is_no_carrier(pm_ppp, skb);
if (oob_no_carrier) {
struct cp_lkm_msg_hdr hdr;
DEBUG_INFO("%s() - posting no carrier", __FUNCTION__);
memset(&hdr,0,sizeof(hdr));
hdr.instance_id = pm_ppp->common.unique_id;
hdr.cmd = CP_LKM_PM_LINK_DOWN;
hdr.status = CP_LKM_STATUS_OK;
hdr.len = 0;
LOG("Received NO CARRIER\n");
DEBUG_INFO("%s() - posting link down", __FUNCTION__);
cp_lkm_post_message(&cp_lkm_pm_mgr.common, &hdr, NULL);
goto done;
}
if (!pm_ppp->tty || !pm_ppp->tty->driver_data) {
DEBUG_INFO("%s() - not setup - dropped", __FUNCTION__);
goto done;
}
#ifdef KERNEL_2_6_21
size = tty_buffer_request_room(pm_ppp->tty, skb->len);
if(size < skb->len) {
// dropped data - or we need to queue for later
DEBUG_WARN("%s() - dropping network data", __FUNCTION__);
goto done;
}
#endif
tty_insert_flip_string(pm_ppp->tty->port, skb->data, skb->len);
tty_flip_buffer_push(pm_ppp->tty->port);
done:
dev_kfree_skb_any(skb);
return 0;
}
// this can be called from interrupt thread or normal kernel thread
static int cp_lkm_pm_tty_write(struct tty_struct * tty, const unsigned char *buf, int count)
{
struct cp_lkm_pm_ppp *pm_ppp;
struct sk_buff *skb;
int link_res;
int retval = count;
if (!count) {
//printk("%s() !count \n", __FUNCTION__);
return 0;
}
pm_ppp = (struct cp_lkm_pm_ppp *)tty->driver_data;
if (!pm_ppp) {
//printk("%s() !pm_ppp \n", __FUNCTION__);
return -EINVAL;
}
//printk("%s(%p) id:%d, attached: %d\n", __FUNCTION__, &pm_ppp->common, pm_ppp->common.unique_id, pm_ppp->common.attached);
//see if we can grab the link lock, if not, we are either bringing up or taking down the link between USB and PM, so not safe to proceed
link_res = cp_lkm_common_inc_link_lock(&pm_ppp->common);
if(link_res < 0) {
//printk("%s() !link \n", __FUNCTION__);
return 0;
}
/* Drop packet if interface is not attached */
if (!pm_ppp->common.attached){
retval = 0;
//printk("%s() !attached: %d \n", __FUNCTION__, pm_ppp->common.attached);
goto drop;
}
if (!(pm_ppp->common.edi) || !(pm_ppp->common.edi->usb_send) || !(pm_ppp->common.edi->usb_send_ctx)) {
retval = 0;
//printk("%s() !edi \n", __FUNCTION__);
goto drop;
}
//benk check for enabled filter - send in buffer pointer to ip header
// alloc skb to send
if ((skb = alloc_skb (count, GFP_ATOMIC)) == NULL) {
retval = -ENOMEM;
goto pm_tty_write_done;
}
memcpy(skb->data, buf, count);
skb->len = count;
skb_set_tail_pointer(skb, skb->len);
// send data to USB module
pm_ppp->common.edi->usb_send(pm_ppp->common.edi->usb_send_ctx, skb);
retval = count;
goto pm_tty_write_done;
drop:
pm_tty_write_done:
cp_lkm_common_dec_link_lock(&pm_ppp->common);
//printk("%s() done\n", __FUNCTION__);
return retval;
}
static int cp_lkm_pm_tty_write_room(struct tty_struct *tty)
{
struct cp_lkm_pm_ppp *pm_ppp;
DEBUG_INFO("%s()", __FUNCTION__);
pm_ppp = (struct cp_lkm_pm_ppp *)tty->driver_data;
if (!pm_ppp) {
return -EINVAL;
}
return 2048;
}
static int cp_lkm_pm_tty_chars_in_buffer(struct tty_struct *tty)
{
struct cp_lkm_pm_ppp *pm_ppp;
DEBUG_INFO("%s()", __FUNCTION__);
pm_ppp = (struct cp_lkm_pm_ppp *)tty->driver_data;
if (!pm_ppp) {
return -EINVAL;
}
return 0;
}
static void cp_lkm_pm_tty_set_termios(struct tty_struct *tty, struct ktermios * old)
{
DEBUG_INFO("%s()", __FUNCTION__);
}
#ifdef KERNEL_2_6_21
static int cp_lkm_pm_tty_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg)
#else
static int cp_lkm_pm_tty_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg)
#endif
{
struct cp_lkm_pm_ppp *pm_ppp;
DEBUG_TRACE("%s(%x)", __FUNCTION__, cmd);
pm_ppp = (struct cp_lkm_pm_ppp *)tty->driver_data;
if (!pm_ppp) {
return -EINVAL;
}
return -ENOIOCTLCMD;
}
static struct tty_operations cp_lkm_pm_tty_ops = {
.open = cp_lkm_pm_tty_open,
.close = cp_lkm_pm_tty_close,
.write = cp_lkm_pm_tty_write,
.write_room = cp_lkm_pm_tty_write_room,
.chars_in_buffer = cp_lkm_pm_tty_chars_in_buffer,
.set_termios = cp_lkm_pm_tty_set_termios,
.ioctl = cp_lkm_pm_tty_ioctl
/*
.throttle = acm_tty_throttle,
.unthrottle = acm_tty_unthrottle,
*/
};
static int cp_lkm_pm_tty_init(void)
{
int retval;
int i;
for(i = 0; i < CP_TTY_MINORS; i++) {
tty_port_init(&cp_lkm_pm_tty_port[i]);
}
cp_lkm_pm_tty_driver = alloc_tty_driver(CP_TTY_MINORS);
if (!cp_lkm_pm_tty_driver) {
return -ENOMEM;
}
// initialize the tty driver
cp_lkm_pm_tty_driver->owner = THIS_MODULE;
cp_lkm_pm_tty_driver->driver_name = "cptty";
cp_lkm_pm_tty_driver->name = CP_TTY_DEVICE_NAME;
cp_lkm_pm_tty_driver->major = 0; // dynamically assign major number
cp_lkm_pm_tty_driver->minor_start = 0,
cp_lkm_pm_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
cp_lkm_pm_tty_driver->subtype = SERIAL_TYPE_NORMAL;
cp_lkm_pm_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
cp_lkm_pm_tty_driver->init_termios = tty_std_termios;
tty_set_operations(cp_lkm_pm_tty_driver, &cp_lkm_pm_tty_ops);
retval = tty_register_driver(cp_lkm_pm_tty_driver);
if (retval) {
DEBUG_ERROR("%s() failed to register cp tty driver", __FUNCTION__);
put_tty_driver(cp_lkm_pm_tty_driver);
for(i = 0; i < CP_TTY_MINORS; i++) {
tty_port_destroy(&cp_lkm_pm_tty_port[i]);
}
}
return retval;
}
static void cp_lkm_pm_tty_cleanup(void)
{
int i;
if (cp_lkm_pm_tty_driver) {
tty_unregister_driver(cp_lkm_pm_tty_driver);
put_tty_driver(cp_lkm_pm_tty_driver);
for(i = 0; i < CP_TTY_MINORS; i++) {
tty_port_destroy(&cp_lkm_pm_tty_port[i]);
}
cp_lkm_pm_tty_driver = NULL;
}
}
/******************************* kernel module PM mgr functionality **********************************/
static int cp_lkm_pm_open(struct cp_lkm_common_ctx *ctx);
static int cp_lkm_pm_close(struct cp_lkm_common_ctx *ctx);
static int cp_lkm_pm_handle_msg(struct cp_lkm_common_ctx *ctx, struct cp_lkm_msg_hdr *hdr, struct sk_buff *skb);
static int cp_lkm_pm_handle_ioctl(struct cp_lkm_common_ctx *ctx, int cmd, void *k_argp);
static int cp_lkm_pm_init(void)
{
DEBUG_INFO("%s()", __FUNCTION__);
memset(&cp_lkm_pm_mgr, 0x00, sizeof(struct cp_lkm_pm_ctx));
cp_lkm_pm_mgr.common.open = cp_lkm_pm_open;
cp_lkm_pm_mgr.common.close = cp_lkm_pm_close;
cp_lkm_pm_mgr.common.handle_msg = cp_lkm_pm_handle_msg;
cp_lkm_pm_mgr.common.handle_ioctl = cp_lkm_pm_handle_ioctl;
INIT_LIST_HEAD(&cp_lkm_pm_mgr.pm_list);
spin_lock_init(&cp_lkm_pm_mgr.pm_list_lock);
cp_lkm_common_ctx_init(&cp_lkm_pm_mgr.common);
return 0;
}
static int cp_lkm_pm_cleanup(void)
{
struct cp_lkm_pm_common *pmi;
struct list_head *entry, *tmp;
unsigned long flags;
DEBUG_INFO("%s()", __FUNCTION__);
// clean up msg list
cp_lkm_cleanup_msg_list(&cp_lkm_pm_mgr.common);
// cleanup any PM in list
spin_lock_irqsave(&cp_lkm_pm_mgr.pm_list_lock, flags);
list_for_each_safe(entry, tmp, &cp_lkm_pm_mgr.pm_list) {
pmi = list_entry(entry, struct cp_lkm_pm_common, list);
if (pmi->edi) {
pmi->edi->pm_recv_ctx = NULL;
//printk("pm_recv_ctx null\n");
pmi->edi->pm_stats64_ctx = NULL;
pmi->edi = NULL;
}
list_del(&pmi->list);
// clean the filter list
cp_lkm_pm_filter_empty_list(pmi);
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
if (pmi->net_dev) {
// network device
cp_lkm_common_deinit(pmi);
unregister_netdev(pmi->net_dev);
free_netdev(pmi->net_dev); // this also frees the pmi since it was allocated as part of the net_dev
} else {
// tty device
memref_deref(pmi);
}
spin_lock_irqsave(&cp_lkm_pm_mgr.pm_list_lock, flags);
}
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
return 0;
}
static int cp_lkm_pm_open(struct cp_lkm_common_ctx *ctx)
{
// struct cp_lkm_pm_ctx *pm_mgr;
DEBUG_INFO("%s(%p)", __FUNCTION__, ctx);
// pm_mgr = (struct cp_lkm_pm_ctx *)ctx;
return 0;
}
static int cp_lkm_pm_close(struct cp_lkm_common_ctx *ctx)
{
//struct cp_lkm_pm_ctx *pm_mgr = (struct cp_lkm_pm_ctx *)ctx;
//struct cp_lkm_pm_common *pm_tmp = NULL;
//struct list_head *entry, *tmp;
//unsigned long flags;
LOG("%s() called unexpectedly.", __FUNCTION__);
//NOTE: catkin 10/11/2019 - Close is only called in our system if the modem stack crashes. This means
// things are in a bad state and the router will be rebooting. We decided not
// to clean things up here because close code on usb side got into an infinite loop
// and prevented the router from rebooting. Revisit if close ever becomes a normal event.
/*
spin_lock_irqsave(&pm_mgr->pm_list_lock, flags);
list_for_each_safe(entry, tmp, &pm_mgr->pm_list) {
pm_tmp = list_entry(entry, struct cp_lkm_pm_common, list);
spin_unlock_irqrestore(&pm_mgr->pm_list_lock, flags);
// call detach to clean up network interface
if (CP_LKM_PM_TYPE_PPP_CLIENT == pm_tmp->type || CP_LKM_PM_TYPE_PPP_SERVER == pm_tmp->type) {
cp_lkm_pm_ppp_detach(pm_mgr, pm_tmp->unique_id);
} else {
cp_lkm_pm_net_detach(pm_mgr, pm_tmp->unique_id);
}
}
spin_unlock_irqrestore(&pm_mgr->pm_list_lock, flags);
cp_lkm_cleanup_msg_list(ctx);
*/
return 0;
}
static int cp_lkm_pm_handle_msg(struct cp_lkm_common_ctx *ctx, struct cp_lkm_msg_hdr *hdr, struct sk_buff *skb)
{
struct cp_lkm_pm_ctx *pm_mgr;
//printk("%s(%p)\n", __FUNCTION__, ctx);
pm_mgr = (struct cp_lkm_pm_ctx *)ctx;
// how to write back response with common function?
if (skb) {
kfree(skb);
}
return 0;
}
static int cp_lkm_pm_add_filter(struct cp_lkm_pm_ctx *mgr, int uid, struct cp_lkm_pm_filter *filter)
{
// find the object in the list
struct list_head *pos;
struct cp_lkm_pm_common *pm = NULL;
unsigned long flags;
struct cp_lkm_pm_filter *new_filter;
DEBUG_TRACE("%s(%p)", __FUNCTION__, mgr);
spin_lock_irqsave(&cp_lkm_pm_mgr.pm_list_lock, flags);
list_for_each(pos, &mgr->pm_list){
struct cp_lkm_pm_common *pm_tmp = list_entry(pos, struct cp_lkm_pm_common, list);
if(pm_tmp->unique_id == uid) {
pm = pm_tmp;
break;
}
}
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
if (!pm) {
DEBUG_WARN("%s() pm not attached", __FUNCTION__);
return -ENODEV;
}
new_filter = kmalloc(sizeof(struct cp_lkm_pm_filter), GFP_ATOMIC);
if (!new_filter) {
DEBUG_WARN("%s() - failed to alloc filter\n", __FUNCTION__);
return -1;
}
memcpy(new_filter, filter, sizeof(struct cp_lkm_pm_filter));
INIT_LIST_HEAD(&new_filter->list);
list_add_tail(&new_filter->list, &pm->filter_list);
return 0;
}
static int cp_lkm_pm_handle_ioctl(struct cp_lkm_common_ctx *ctx, int cmd, void *k_argp)
{
struct cp_lkm_pm_ctx *pm_mgr;
int result = 0;
struct cp_lkm_pm_attach_ioctl *attach_params;
struct cp_lkm_pm_detach_ioctl *detach_params;
struct cp_lkm_pm_activate_deactivate_ioctl *activate_params;
struct cp_lkm_pm_add_filter_ioctl *filter_params;
char name[CP_LKM_MAX_IF_NAME];
unsigned long not_copied;
//printk("%s(%p) cmd:%d\n", __FUNCTION__, ctx, _IOC_NR(cmd));
pm_mgr = (struct cp_lkm_pm_ctx *)ctx;
switch (cmd) {
case CP_LKM_IOCTL_PM_ATTACH:
attach_params = (struct cp_lkm_pm_attach_ioctl *)k_argp;
not_copied = copy_from_user(name, attach_params->name, CP_LKM_MAX_IF_NAME);
if (not_copied) {
return -ENOMEM;
}
DEBUG_INFO("%s(%s) attach", __FUNCTION__, name);
switch(attach_params->type) {
case CP_LKM_PM_TYPE_PPP_CLIENT:
case CP_LKM_PM_TYPE_PPP_SERVER:
result = cp_lkm_pm_ppp_attach(pm_mgr, attach_params->type, attach_params->uid, name);
if (!result) {
not_copied = copy_to_user(attach_params->name, name, CP_LKM_MAX_IF_NAME);
if (not_copied) {
return -ENOMEM;
}
}
break;
case CP_LKM_PM_TYPE_ETHERNET_DHCP:
case CP_LKM_PM_TYPE_ETHERNET_STATIC:
case CP_LKM_PM_TYPE_ETHERNET_STATIC_NOARP:
case CP_LKM_PM_TYPE_IP_STATIC:
case CP_LKM_PM_TYPE_IP_DHCP:
result = cp_lkm_pm_net_attach(pm_mgr, attach_params->type, attach_params->uid, name, attach_params->mac);
break;
default:
result = -ENOTSUPP;
break;
}
break;
case CP_LKM_IOCTL_PM_DETACH:
detach_params = (struct cp_lkm_pm_detach_ioctl *)k_argp;
DEBUG_INFO("%s() detach uid:%d", __FUNCTION__, detach_params->uid);
switch(detach_params->type) {
case CP_LKM_PM_TYPE_PPP_CLIENT:
case CP_LKM_PM_TYPE_PPP_SERVER:
result = cp_lkm_pm_ppp_detach(pm_mgr, detach_params->uid);
break;
case CP_LKM_PM_TYPE_ETHERNET_DHCP:
case CP_LKM_PM_TYPE_ETHERNET_STATIC:
case CP_LKM_PM_TYPE_ETHERNET_STATIC_NOARP:
case CP_LKM_PM_TYPE_IP_STATIC:
case CP_LKM_PM_TYPE_IP_DHCP:
result = cp_lkm_pm_net_detach(pm_mgr, detach_params->uid);
break;
default:
result = -ENOTSUPP;
break;
}
break;
case CP_LKM_IOCTL_PM_ACTIVATE:
activate_params = (struct cp_lkm_pm_activate_deactivate_ioctl *)k_argp;
switch(activate_params->type) {
case CP_LKM_PM_TYPE_PPP_CLIENT:
case CP_LKM_PM_TYPE_PPP_SERVER:
result = cp_lkm_pm_ppp_activate(pm_mgr, activate_params->uid, true);
break;
case CP_LKM_PM_TYPE_ETHERNET_DHCP:
case CP_LKM_PM_TYPE_ETHERNET_STATIC:
case CP_LKM_PM_TYPE_ETHERNET_STATIC_NOARP:
case CP_LKM_PM_TYPE_IP_STATIC:
case CP_LKM_PM_TYPE_IP_DHCP:
result = cp_lkm_pm_net_activate(pm_mgr, activate_params->uid, true);
break;
default:
result = -ENOTSUPP;
break;
}
break;
case CP_LKM_IOCTL_PM_DEACTIVATE:
activate_params = (struct cp_lkm_pm_activate_deactivate_ioctl *)k_argp;
switch(activate_params->type) {
case CP_LKM_PM_TYPE_PPP_CLIENT:
case CP_LKM_PM_TYPE_PPP_SERVER:
result = cp_lkm_pm_ppp_activate(pm_mgr, activate_params->uid, false);
break;
case CP_LKM_PM_TYPE_ETHERNET_DHCP:
case CP_LKM_PM_TYPE_ETHERNET_STATIC:
case CP_LKM_PM_TYPE_ETHERNET_STATIC_NOARP:
case CP_LKM_PM_TYPE_IP_STATIC:
case CP_LKM_PM_TYPE_IP_DHCP:
result = cp_lkm_pm_net_activate(pm_mgr, activate_params->uid, false);
break;
default:
result = -ENOTSUPP;
break;
}
break;
case CP_LKM_IOCTL_PM_ADD_FILTER:
filter_params = (struct cp_lkm_pm_add_filter_ioctl *)k_argp;
result = cp_lkm_pm_add_filter(pm_mgr, filter_params->uid, &filter_params->filter);
break;
default:
break;
}
return result;
}
static bool cp_lkm_pm_usb_do_link_lock(void* ctx1, void* ctx2)
{
struct cp_lkm_pm_common *pm = (struct cp_lkm_pm_common*)ctx1;
bool done = false;
unsigned long flags;
// grab the lock and set the link_count. The link_count is used to keep send and poll from
// being called over to the USB layer while we are mucking with the send and poll pointers
spin_lock_irqsave(&pm->pm_link_lock, flags);
if(pm->pm_link_count <= 0) {
pm->pm_link_count = -1;
done = true;
}
spin_unlock_irqrestore(&pm->pm_link_lock, flags);
return done;
}
// This function changes the shared edi pointers.
// !!!It is the only function in the pm that is permitted to change edi function pointers!!!
// Other functions can change the ctxt pointers
static int cp_lkm_pm_usb_link(struct cp_lkm_edi *edi, int pm_unique_id, int link)
{
struct list_head *pos;
struct cp_lkm_pm_common *pm = NULL;
unsigned long flags;
struct cp_lkm_edi *tmp_edi;
spin_lock_irqsave(&cp_lkm_pm_mgr.pm_list_lock, flags);
list_for_each(pos, &cp_lkm_pm_mgr.pm_list){
struct cp_lkm_pm_common *pm_tmp = list_entry(pos, struct cp_lkm_pm_common, list);
if(pm_tmp->unique_id == pm_unique_id) {
pm = pm_tmp;
break;
}
}
spin_unlock_irqrestore(&cp_lkm_pm_mgr.pm_list_lock, flags);
if (!pm) {
// couldn't find object
//printk("%s() unable to find protocol manager with id:%d\n", __FUNCTION__, pm_unique_id);
return -EINVAL;
}
//printk("%s() pm_net: %p\n", __FUNCTION__, pm);
// grab the lock and set the link_count. The link_count is used to keep send and poll from
// being called over to the USB layer while we are mucking with the send and poll pointers
cp_lkm_do_or_die(pm, NULL, cp_lkm_pm_usb_do_link_lock, CP_LKM_TIMEOUT_MS, CP_LKM_ITER, "Failed to grab cp pm lock");
//printk("%s() pm: %p, attached: %d, pm_type: %d\n", __FUNCTION__, pm, pm->attached,pm->type);
tmp_edi = pm->edi;
pm->edi = NULL;
if (link) {
if (tmp_edi) {
// already linked - unlink from previous edi
// just a precaution, should never happen
tmp_edi->pm_recv = NULL;
tmp_edi->pm_recv_ctx = NULL;
tmp_edi->pm_get_hdr_size = NULL;
//printk("pm_recv_ctx null\n");
tmp_edi->pm_send_pause = NULL;
tmp_edi->pm_send_resume = NULL;
tmp_edi->pm_stats64_ctx = NULL;
//pm->edi = NULL;
}
tmp_edi = edi;
tmp_edi->pm_recv_ctx = pm;
switch(pm->type) {
case CP_LKM_PM_TYPE_PPP_CLIENT:
case CP_LKM_PM_TYPE_PPP_SERVER:
tmp_edi->pm_recv = cp_lkm_pm_ppp_recv;
tmp_edi->pm_get_hdr_size = cp_lkm_pm_ppp_get_hdr_size;
tmp_edi->pm_stats64_ctx = NULL;
break;
default:
tmp_edi->pm_recv = cp_lkm_pm_net_recv;
tmp_edi->pm_get_hdr_size = cp_lkm_pm_net_get_hdr_size;
tmp_edi->pm_send_pause = cp_lkm_pm_net_pause;
tmp_edi->pm_send_resume = cp_lkm_pm_net_resume;
tmp_edi->pm_stats64_ctx = pm;
break;
}
pm->edi = tmp_edi;
// release the link_count on link so things can start flowing.
// don't release it on unlink since we don't want things to flow when unlinked
spin_lock_irqsave(&pm->pm_link_lock, flags);
pm->pm_link_count = 0;
spin_unlock_irqrestore(&pm->pm_link_lock, flags);
} else {
if (tmp_edi) {
tmp_edi->pm_recv = NULL;
tmp_edi->pm_recv_ctx = NULL;
tmp_edi->pm_get_hdr_size = NULL;
//printk("pm_recv_ctx null\n");
tmp_edi->pm_send_pause = NULL;
tmp_edi->pm_send_resume = NULL;
tmp_edi->pm_stats64_ctx = NULL;
//pm->edi = NULL;
}
}
return 0;
}
/******************** common user/kernel communication functions **************/
static void cp_lkm_common_ctx_init(struct cp_lkm_common_ctx *common)
{
DEBUG_WARN("%s()", __FUNCTION__);
INIT_LIST_HEAD(&common->read_list);
spin_lock_init(&common->read_list_lock);
init_waitqueue_head(&common->inq);
common->open_cnt = 0;
common->reading_data = false;
common->write_skb = NULL;
}
static void cp_lkm_cleanup_msg_list(struct cp_lkm_common_ctx *common)
{
struct cp_lkm_read_msg *msg;
unsigned long flags;
struct list_head *entry, *tmp;
spin_lock_irqsave(&common->read_list_lock, flags);
list_for_each_safe(entry, tmp, &common->read_list) {
msg = list_entry(entry, struct cp_lkm_read_msg, list);
list_del(&msg->list);
dev_kfree_skb_any(msg->skb);
kfree(msg);
}
spin_unlock_irqrestore(&common->read_list_lock, flags);
}
// this may be called from soft interrupt context or normal kernel thread context
static int cp_lkm_post_message(struct cp_lkm_common_ctx *mgr, struct cp_lkm_msg_hdr* hdr, struct sk_buff *skb)
{
struct cp_lkm_read_msg *msg;
unsigned long flags;
msg = kmalloc(sizeof(struct cp_lkm_read_msg), GFP_ATOMIC);
if (!msg) {
if (skb) {
dev_kfree_skb_any(skb);
}
return -ENOMEM;
}
msg->skb = skb;
memcpy(&msg->hdr, hdr, sizeof(struct cp_lkm_msg_hdr));
spin_lock_irqsave(&mgr->read_list_lock, flags);
list_add_tail(&msg->list, &mgr->read_list);
spin_unlock_irqrestore(&mgr->read_list_lock, flags);
mgr->q_waiting = false;
// signal poll
wake_up_interruptible(&mgr->inq);
return 0;
}
int cp_lkm_open(struct inode *inode, struct file *filp)
{
int result = 0;
struct cp_lkm_common_ctx *common;
DEBUG_TRACE("%s()", __FUNCTION__);
try_module_get(THIS_MODULE);
// set private data
if (iminor(inode) == CP_LKM_USB_MGR_MINOR) {
filp->private_data = &cp_lkm_usb_mgr;
common = &cp_lkm_usb_mgr.common;
DEBUG_INFO("%s() open usb manager", __FUNCTION__);
} else if (iminor(inode) == CP_LKM_PM_MGR_MINOR) {
filp->private_data = &cp_lkm_pm_mgr;
common = &cp_lkm_pm_mgr.common;
DEBUG_INFO("%s() open pm manager", __FUNCTION__);
} else {
return -ENOENT;
}
if (common->open_cnt) {
return -EBUSY;
}
common->open_cnt++;
if (common->open) {
result = common->open(common);
}
return result;
}
int cp_lkm_release(struct inode *inode, struct file *filp)
{
int result = 0;
struct cp_lkm_common_ctx *common;
common = (struct cp_lkm_common_ctx *)filp->private_data;
DEBUG_TRACE("%s() release", __FUNCTION__);
if (0 == common->open_cnt) {
return 0;
}
if (common->close) {
result = common->close(common);
}
module_put(THIS_MODULE);
common->open_cnt--;
return result;
}
// first read is the header
// second read is the data. If no data, then no second read
// if error in either stage, negative value is returned and next read will be for header
// messages are not removed until successfully read header and data (if any)
ssize_t cp_lkm_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
struct cp_lkm_common_ctx *common;
ssize_t result;
struct cp_lkm_read_msg *msg;
unsigned long flags;
unsigned long not_copied;
// DEBUG_INFO("%s() reading %d bytes", __FUNCTION__, count);
common = (struct cp_lkm_common_ctx *)filp->private_data;
spin_lock_irqsave(&common->read_list_lock, flags);
if (list_empty(&common->read_list)) {
spin_unlock_irqrestore(&common->read_list_lock, flags);
return -EAGAIN;
}
msg = list_first_entry(&common->read_list, struct cp_lkm_read_msg, list);
spin_unlock_irqrestore(&common->read_list_lock, flags);
if (!common->reading_data) { // header mode
// read header
if (sizeof(struct cp_lkm_msg_hdr) != count) {
return -EINVAL;
}
not_copied = copy_to_user(buf, &msg->hdr, sizeof(struct cp_lkm_msg_hdr));
if (not_copied) {
return -ENOMEM;
}
if (!msg->hdr.len) {
result = count;
goto read_free;
}
// switch to data mode
common->reading_data = !common->reading_data;
return count;
}
// switch to header mode
common->reading_data = !common->reading_data;
// data mode - handle the data transfer
if (msg->hdr.len != count) {
return -EINVAL;
}
not_copied = copy_to_user(buf, msg->skb->data, msg->hdr.len);
if (not_copied) {
return -ENOMEM;
}
result = count;
read_free:
spin_lock_irqsave(&common->read_list_lock, flags);
list_del(&msg->list);
spin_unlock_irqrestore(&common->read_list_lock, flags);
if (msg->skb) {
dev_kfree_skb_any(msg->skb);
}
kfree(msg);
return result;
}
// the user must write the header first
// then the user must write the data equivalent to the hdr.len
// on error, a negative value is returned and the entire message is lost
// on error, the next write must be header
ssize_t cp_lkm_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
{
struct cp_lkm_common_ctx *common;
unsigned long not_copied;
int result;
struct sk_buff *skb = NULL;
struct cp_lkm_msg_hdr hdr;
struct cp_lkm_msg_hdr *hdrp;
// DEBUG_INFO("%s() writing %d bytes", __FUNCTION__, count);
common = (struct cp_lkm_common_ctx *)filp->private_data;
if (!common->write_skb) {
// handle the header
if (count != sizeof(struct cp_lkm_msg_hdr)) {
return -EINVAL;
}
not_copied = copy_from_user(&hdr, buf, count);
if (not_copied) {
return -ENOMEM;
}
if ((skb = alloc_skb (count + hdr.len, GFP_KERNEL)) == NULL) {
return -ENOMEM;
}
memcpy(skb->data, &hdr, count);
// setup skb pointers - skb->data points to message data with header immediately before skb->data
skb->len = hdr.len;
skb->data += sizeof(struct cp_lkm_msg_hdr);
skb_set_tail_pointer(skb, hdr.len);
if (!hdr.len) {
goto send_msg;
}
// save until we get the data
common->write_skb = skb;
return count;
}
// handle the data
skb = common->write_skb;
common->write_skb = NULL;
hdrp = (struct cp_lkm_msg_hdr *)(skb->data) - 1;
if (count != hdrp->len) {
dev_kfree_skb_any(skb);
return -EINVAL;
}
not_copied = copy_from_user(skb->data, buf, count);
if (not_copied) {
dev_kfree_skb_any(skb);
return -ENOMEM;
}
send_msg:
if (common->handle_msg) {
result = common->handle_msg(common, (struct cp_lkm_msg_hdr *)(skb->data) - 1, skb);
if (result) {
return result;
}
}
return count;
}
unsigned int cp_lkm_poll(struct file *filp, struct poll_table_struct *wait)
{
unsigned long flags;
unsigned int mask = 0;
struct cp_lkm_common_ctx *common;
common = (struct cp_lkm_common_ctx *)filp->private_data;
poll_wait(filp, &common->inq, wait);
spin_lock_irqsave(&common->read_list_lock, flags);
if (!list_empty(&common->read_list)) {
mask = POLLIN | POLLRDNORM; // readable
}
spin_unlock_irqrestore(&common->read_list_lock, flags);
return mask;
}
#ifdef KERNEL_2_6_21
int cp_lkm_ioctl (struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg)
#else
long cp_lkm_ioctl (struct file *filp, unsigned int cmd, unsigned long arg)
#endif
{
int result = -EINVAL;
void __user *uargp = (void __user *)arg;
void *kargp = NULL;
struct cp_lkm_common_ctx *common = (struct cp_lkm_common_ctx *)filp->private_data;
DEBUG_TRACE("%s(%p) - cmd:%d", __FUNCTION__, filp, _IOC_NR(cmd));
switch(cmd) {
case CP_LKM_IOCTL_SET_LOG_LEVEL:
cp_lkm_log_level = (uintptr_t)uargp;
LOG("Setting debug log level:%d", cp_lkm_log_level);
cp_lkm_wrapper_set_log_level(cp_lkm_log_level);
return 0;
default:
if (_IOC_SIZE(cmd)) {
kargp = kmalloc(_IOC_SIZE(cmd), GFP_ATOMIC);
if (!kargp) {
result = -ENOMEM;
goto done;
}
if (copy_from_user(kargp, uargp, _IOC_SIZE(cmd))) {
result = -EFAULT;
goto done;
}
}
}
if (common->handle_ioctl) {
result = common->handle_ioctl(common, cmd, kargp);
}
if (_IOC_DIR(cmd) & _IOC_READ) {
if (copy_to_user(uargp, kargp, _IOC_SIZE(cmd))) {
result = -EFAULT;
goto done;
}
}
done:
if (kargp) {
kfree(kargp);
}
return result;
}
static int __init cp_lkm_start(void)
{
int err;
//printk("%s() Initializing module...\n", __FUNCTION__);
// initialize global structures
err = cp_lkm_pm_tty_init();
if (err) {
return err;
}
cp_lkm_usb_init();
cp_lkm_pm_init();
// Allocating memory for the buffer
if ((major = register_chrdev(0, "cp_lkm", &cp_lkm_fops)) < 0) {
DEBUG_INFO("%s() failed dynamic registration", __FUNCTION__);
cp_lkm_pm_tty_cleanup();
return major;
}
cp_lkm_class = class_create(THIS_MODULE, "cp_lkm");
if (IS_ERR(cp_lkm_class)) {
DEBUG_INFO("%s() failed class create", __FUNCTION__);
unregister_chrdev(major, "cp_lkm");
cp_lkm_pm_tty_cleanup();
return -ENODEV;
}
#ifdef KERNEL_2_6_21
cp_lkm_dev[0] = device_create(cp_lkm_class, NULL, MKDEV(major, CP_LKM_USB_MGR_MINOR), "cp_lkm_usb");
#else
cp_lkm_dev[0] = device_create(cp_lkm_class, NULL, MKDEV(major, CP_LKM_USB_MGR_MINOR), NULL, "cp_lkm_usb");
#endif
if (IS_ERR(cp_lkm_dev[0])){
DEBUG_INFO("%s() failed device create: i", __FUNCTION__);
// clean up previous devices
class_destroy(cp_lkm_class);
unregister_chrdev(major, "cp_lkm");
cp_lkm_pm_tty_cleanup();
return -ENODEV;
}
#ifdef KERNEL_2_6_21
cp_lkm_dev[1] = device_create(cp_lkm_class, NULL, MKDEV(major, CP_LKM_PM_MGR_MINOR), "cp_lkm_pm");
#else
cp_lkm_dev[1] = device_create(cp_lkm_class, NULL, MKDEV(major, CP_LKM_PM_MGR_MINOR), NULL, "cp_lkm_pm");
#endif
if (IS_ERR(cp_lkm_dev[1])){
DEBUG_INFO("%s() failed device create: i", __FUNCTION__);
// clean up previous devices
device_destroy(cp_lkm_class, MKDEV(major, 0));
class_destroy(cp_lkm_class);
unregister_chrdev(major, "cp_lkm");
cp_lkm_pm_tty_cleanup();
return -ENODEV;
}
LOG("cp_lkm: Inserting kernel module");
return 0;
}
static void __exit cp_lkm_end(void)
{
int i;
//TODO remove
//del_timer_sync (&dbg_memleak_timer);
cp_lkm_pm_cleanup();
cp_lkm_usb_cleanup();
for (i = 0; i < 2; i++) {
device_destroy(cp_lkm_class, MKDEV(major, i));
}
class_destroy(cp_lkm_class);
unregister_chrdev(major, "cp_lkm");
cp_lkm_pm_tty_cleanup();
LOG("cp_lkm: Removing kernel module");
}
module_init(cp_lkm_start);
module_exit(cp_lkm_end);
MODULE_LICENSE("GPL");