blob: 83001dc5b6468529cd996e5d5a5179cd3fdc1f44 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Copyright (c) 2015 Linaro Ltd.
3 * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15#include <linux/clk.h>
16#include <linux/cpu.h>
17#include <linux/cpu_cooling.h>
18#include <linux/cpufreq.h>
19#include <linux/cpumask.h>
20#include <linux/of.h>
21#include <linux/platform_device.h>
22#include <linux/pm_opp.h>
23#include <linux/regulator/consumer.h>
24#include <linux/slab.h>
25#include <linux/thermal.h>
26
27#define MIN_VOLT_SHIFT (100000)
28#define MAX_VOLT_SHIFT (200000)
29#define MAX_VOLT_LIMIT (1150000)
30#define VOLT_TOL (10000)
31
32/*
33 * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
34 * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
35 * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
36 * voltage inputs need to be controlled under a hardware limitation:
37 * 100mV < Vsram - Vproc < 200mV
38 *
39 * When scaling the clock frequency of a CPU clock domain, the clock source
40 * needs to be switched to another stable PLL clock temporarily until
41 * the original PLL becomes stable at target frequency.
42 */
43struct mtk_cpu_dvfs_info {
44 struct device *cpu_dev;
45 struct regulator *proc_reg;
46 struct regulator *sram_reg;
47 struct clk *cpu_clk;
48 struct clk *inter_clk;
49 struct thermal_cooling_device *cdev;
50 int intermediate_voltage;
51 bool need_voltage_tracking;
52};
53
54static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
55 int new_vproc)
56{
57 struct regulator *proc_reg = info->proc_reg;
58 struct regulator *sram_reg = info->sram_reg;
59 int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
60
61 old_vproc = regulator_get_voltage(proc_reg);
62 old_vsram = regulator_get_voltage(sram_reg);
63 /* Vsram should not exceed the maximum allowed voltage of SoC. */
64 new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
65
66 if (old_vproc < new_vproc) {
67 /*
68 * When scaling up voltages, Vsram and Vproc scale up step
69 * by step. At each step, set Vsram to (Vproc + 200mV) first,
70 * then set Vproc to (Vsram - 100mV).
71 * Keep doing it until Vsram and Vproc hit target voltages.
72 */
73 do {
74 old_vsram = regulator_get_voltage(sram_reg);
75 old_vproc = regulator_get_voltage(proc_reg);
76
77 vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
78
79 if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
80 vsram = MAX_VOLT_LIMIT;
81
82 /*
83 * If the target Vsram hits the maximum voltage,
84 * try to set the exact voltage value first.
85 */
86 ret = regulator_set_voltage(sram_reg, vsram,
87 vsram);
88 if (ret)
89 ret = regulator_set_voltage(sram_reg,
90 vsram - VOLT_TOL,
91 vsram);
92
93 vproc = new_vproc;
94 } else {
95 ret = regulator_set_voltage(sram_reg, vsram,
96 vsram + VOLT_TOL);
97
98 vproc = vsram - MIN_VOLT_SHIFT;
99 }
100 if (ret)
101 return ret;
102
103 ret = regulator_set_voltage(proc_reg, vproc,
104 vproc + VOLT_TOL);
105 if (ret) {
106 regulator_set_voltage(sram_reg, old_vsram,
107 old_vsram);
108 return ret;
109 }
110 } while (vproc < new_vproc || vsram < new_vsram);
111 } else if (old_vproc > new_vproc) {
112 /*
113 * When scaling down voltages, Vsram and Vproc scale down step
114 * by step. At each step, set Vproc to (Vsram - 200mV) first,
115 * then set Vproc to (Vproc + 100mV).
116 * Keep doing it until Vsram and Vproc hit target voltages.
117 */
118 do {
119 old_vproc = regulator_get_voltage(proc_reg);
120 old_vsram = regulator_get_voltage(sram_reg);
121
122 vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
123 ret = regulator_set_voltage(proc_reg, vproc,
124 vproc + VOLT_TOL);
125 if (ret)
126 return ret;
127
128 if (vproc == new_vproc)
129 vsram = new_vsram;
130 else
131 vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
132
133 if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
134 vsram = MAX_VOLT_LIMIT;
135
136 /*
137 * If the target Vsram hits the maximum voltage,
138 * try to set the exact voltage value first.
139 */
140 ret = regulator_set_voltage(sram_reg, vsram,
141 vsram);
142 if (ret)
143 ret = regulator_set_voltage(sram_reg,
144 vsram - VOLT_TOL,
145 vsram);
146 } else {
147 ret = regulator_set_voltage(sram_reg, vsram,
148 vsram + VOLT_TOL);
149 }
150
151 if (ret) {
152 regulator_set_voltage(proc_reg, old_vproc,
153 old_vproc);
154 return ret;
155 }
156 } while (vproc > new_vproc + VOLT_TOL ||
157 vsram > new_vsram + VOLT_TOL);
158 }
159
160 return 0;
161}
162
163static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
164{
165 if (info->need_voltage_tracking)
166 return mtk_cpufreq_voltage_tracking(info, vproc);
167 else
168 return regulator_set_voltage(info->proc_reg, vproc,
169 vproc + VOLT_TOL);
170}
171
172static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
173 unsigned int index)
174{
175 struct cpufreq_frequency_table *freq_table = policy->freq_table;
176 struct clk *cpu_clk = policy->clk;
177 struct clk *armpll = clk_get_parent(cpu_clk);
178 struct mtk_cpu_dvfs_info *info = policy->driver_data;
179 struct device *cpu_dev = info->cpu_dev;
180 struct dev_pm_opp *opp;
181 long freq_hz, old_freq_hz;
182 int vproc, old_vproc, inter_vproc, target_vproc, ret;
183
184 inter_vproc = info->intermediate_voltage;
185
186 old_freq_hz = clk_get_rate(cpu_clk);
187 old_vproc = regulator_get_voltage(info->proc_reg);
188
189 freq_hz = freq_table[index].frequency * 1000;
190
191 rcu_read_lock();
192 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
193 if (IS_ERR(opp)) {
194 rcu_read_unlock();
195 pr_err("cpu%d: failed to find OPP for %ld\n",
196 policy->cpu, freq_hz);
197 return PTR_ERR(opp);
198 }
199 vproc = dev_pm_opp_get_voltage(opp);
200 rcu_read_unlock();
201
202 /*
203 * If the new voltage or the intermediate voltage is higher than the
204 * current voltage, scale up voltage first.
205 */
206 target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
207 if (old_vproc < target_vproc) {
208 ret = mtk_cpufreq_set_voltage(info, target_vproc);
209 if (ret) {
210 pr_err("cpu%d: failed to scale up voltage!\n",
211 policy->cpu);
212 mtk_cpufreq_set_voltage(info, old_vproc);
213 return ret;
214 }
215 }
216
217 /* Reparent the CPU clock to intermediate clock. */
218 ret = clk_set_parent(cpu_clk, info->inter_clk);
219 if (ret) {
220 pr_err("cpu%d: failed to re-parent cpu clock!\n",
221 policy->cpu);
222 mtk_cpufreq_set_voltage(info, old_vproc);
223 WARN_ON(1);
224 return ret;
225 }
226
227 /* Set the original PLL to target rate. */
228 ret = clk_set_rate(armpll, freq_hz);
229 if (ret) {
230 pr_err("cpu%d: failed to scale cpu clock rate!\n",
231 policy->cpu);
232 clk_set_parent(cpu_clk, armpll);
233 mtk_cpufreq_set_voltage(info, old_vproc);
234 return ret;
235 }
236
237 /* Set parent of CPU clock back to the original PLL. */
238 ret = clk_set_parent(cpu_clk, armpll);
239 if (ret) {
240 pr_err("cpu%d: failed to re-parent cpu clock!\n",
241 policy->cpu);
242 mtk_cpufreq_set_voltage(info, inter_vproc);
243 WARN_ON(1);
244 return ret;
245 }
246
247 /*
248 * If the new voltage is lower than the intermediate voltage or the
249 * original voltage, scale down to the new voltage.
250 */
251 if (vproc < inter_vproc || vproc < old_vproc) {
252 ret = mtk_cpufreq_set_voltage(info, vproc);
253 if (ret) {
254 pr_err("cpu%d: failed to scale down voltage!\n",
255 policy->cpu);
256 clk_set_parent(cpu_clk, info->inter_clk);
257 clk_set_rate(armpll, old_freq_hz);
258 clk_set_parent(cpu_clk, armpll);
259 return ret;
260 }
261 }
262
263 return 0;
264}
265
266static void mtk_cpufreq_ready(struct cpufreq_policy *policy)
267{
268 struct mtk_cpu_dvfs_info *info = policy->driver_data;
269 struct device_node *np = of_node_get(info->cpu_dev->of_node);
270
271 if (WARN_ON(!np))
272 return;
273
274 if (of_find_property(np, "#cooling-cells", NULL)) {
275 info->cdev = of_cpufreq_cooling_register(np,
276 policy->related_cpus);
277
278 if (IS_ERR(info->cdev)) {
279 dev_err(info->cpu_dev,
280 "running cpufreq without cooling device: %ld\n",
281 PTR_ERR(info->cdev));
282
283 info->cdev = NULL;
284 }
285 }
286
287 of_node_put(np);
288}
289
290static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
291{
292 struct device *cpu_dev;
293 struct regulator *proc_reg = ERR_PTR(-ENODEV);
294 struct regulator *sram_reg = ERR_PTR(-ENODEV);
295 struct clk *cpu_clk = ERR_PTR(-ENODEV);
296 struct clk *inter_clk = ERR_PTR(-ENODEV);
297 struct dev_pm_opp *opp;
298 unsigned long rate;
299 int ret;
300
301 cpu_dev = get_cpu_device(cpu);
302 if (!cpu_dev) {
303 pr_err("failed to get cpu%d device\n", cpu);
304 return -ENODEV;
305 }
306
307 cpu_clk = clk_get(cpu_dev, "cpu");
308 if (IS_ERR(cpu_clk)) {
309 if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
310 pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
311 else
312 pr_err("failed to get cpu clk for cpu%d\n", cpu);
313
314 ret = PTR_ERR(cpu_clk);
315 return ret;
316 }
317
318 inter_clk = clk_get(cpu_dev, "intermediate");
319 if (IS_ERR(inter_clk)) {
320 if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
321 pr_warn("intermediate clk for cpu%d not ready, retry.\n",
322 cpu);
323 else
324 pr_err("failed to get intermediate clk for cpu%d\n",
325 cpu);
326
327 ret = PTR_ERR(inter_clk);
328 goto out_free_resources;
329 }
330
331 proc_reg = regulator_get_exclusive(cpu_dev, "proc");
332 if (IS_ERR(proc_reg)) {
333 if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
334 pr_warn("proc regulator for cpu%d not ready, retry.\n",
335 cpu);
336 else
337 pr_err("failed to get proc regulator for cpu%d\n",
338 cpu);
339
340 ret = PTR_ERR(proc_reg);
341 goto out_free_resources;
342 }
343
344 /* Both presence and absence of sram regulator are valid cases. */
345 sram_reg = regulator_get_exclusive(cpu_dev, "sram");
346
347 ret = dev_pm_opp_of_add_table(cpu_dev);
348 if (ret) {
349 pr_warn("no OPP table for cpu%d\n", cpu);
350 goto out_free_resources;
351 }
352
353 /* Search a safe voltage for intermediate frequency. */
354 rate = clk_get_rate(inter_clk);
355 rcu_read_lock();
356 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
357 if (IS_ERR(opp)) {
358 rcu_read_unlock();
359 pr_err("failed to get intermediate opp for cpu%d\n", cpu);
360 ret = PTR_ERR(opp);
361 goto out_free_opp_table;
362 }
363 info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
364 rcu_read_unlock();
365
366 info->cpu_dev = cpu_dev;
367 info->proc_reg = proc_reg;
368 info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
369 info->cpu_clk = cpu_clk;
370 info->inter_clk = inter_clk;
371
372 /*
373 * If SRAM regulator is present, software "voltage tracking" is needed
374 * for this CPU power domain.
375 */
376 info->need_voltage_tracking = !IS_ERR(sram_reg);
377
378 return 0;
379
380out_free_opp_table:
381 dev_pm_opp_of_remove_table(cpu_dev);
382
383out_free_resources:
384 if (!IS_ERR(proc_reg))
385 regulator_put(proc_reg);
386 if (!IS_ERR(sram_reg))
387 regulator_put(sram_reg);
388 if (!IS_ERR(cpu_clk))
389 clk_put(cpu_clk);
390 if (!IS_ERR(inter_clk))
391 clk_put(inter_clk);
392
393 return ret;
394}
395
396static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
397{
398 if (!IS_ERR(info->proc_reg))
399 regulator_put(info->proc_reg);
400 if (!IS_ERR(info->sram_reg))
401 regulator_put(info->sram_reg);
402 if (!IS_ERR(info->cpu_clk))
403 clk_put(info->cpu_clk);
404 if (!IS_ERR(info->inter_clk))
405 clk_put(info->inter_clk);
406
407 dev_pm_opp_of_remove_table(info->cpu_dev);
408}
409
410static int mtk_cpufreq_init(struct cpufreq_policy *policy)
411{
412 struct mtk_cpu_dvfs_info *info;
413 struct cpufreq_frequency_table *freq_table;
414 int ret;
415
416 info = kzalloc(sizeof(*info), GFP_KERNEL);
417 if (!info)
418 return -ENOMEM;
419
420 ret = mtk_cpu_dvfs_info_init(info, policy->cpu);
421 if (ret) {
422 pr_err("%s failed to initialize dvfs info for cpu%d\n",
423 __func__, policy->cpu);
424 goto out_free_dvfs_info;
425 }
426
427 ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
428 if (ret) {
429 pr_err("failed to init cpufreq table for cpu%d: %d\n",
430 policy->cpu, ret);
431 goto out_release_dvfs_info;
432 }
433
434 ret = cpufreq_table_validate_and_show(policy, freq_table);
435 if (ret) {
436 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
437 goto out_free_cpufreq_table;
438 }
439
440 /* CPUs in the same cluster share a clock and power domain. */
441 cpumask_copy(policy->cpus, &cpu_topology[policy->cpu].core_sibling);
442 policy->driver_data = info;
443 policy->clk = info->cpu_clk;
444
445 return 0;
446
447out_free_cpufreq_table:
448 dev_pm_opp_free_cpufreq_table(info->cpu_dev, &freq_table);
449
450out_release_dvfs_info:
451 mtk_cpu_dvfs_info_release(info);
452
453out_free_dvfs_info:
454 kfree(info);
455
456 return ret;
457}
458
459static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
460{
461 struct mtk_cpu_dvfs_info *info = policy->driver_data;
462
463 cpufreq_cooling_unregister(info->cdev);
464 dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
465 mtk_cpu_dvfs_info_release(info);
466 kfree(info);
467
468 return 0;
469}
470
471static struct cpufreq_driver mt8173_cpufreq_driver = {
472 .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
473 .verify = cpufreq_generic_frequency_table_verify,
474 .target_index = mtk_cpufreq_set_target,
475 .get = cpufreq_generic_get,
476 .init = mtk_cpufreq_init,
477 .exit = mtk_cpufreq_exit,
478 .ready = mtk_cpufreq_ready,
479 .name = "mtk-cpufreq",
480 .attr = cpufreq_generic_attr,
481};
482
483static int mt8173_cpufreq_probe(struct platform_device *pdev)
484{
485 int ret;
486
487 ret = cpufreq_register_driver(&mt8173_cpufreq_driver);
488 if (ret)
489 pr_err("failed to register mtk cpufreq driver\n");
490
491 return ret;
492}
493
494static struct platform_driver mt8173_cpufreq_platdrv = {
495 .driver = {
496 .name = "mt8173-cpufreq",
497 },
498 .probe = mt8173_cpufreq_probe,
499};
500
501static int mt8173_cpufreq_driver_init(void)
502{
503 struct platform_device *pdev;
504 int err;
505
506 if (!of_machine_is_compatible("mediatek,mt8173"))
507 return -ENODEV;
508
509 err = platform_driver_register(&mt8173_cpufreq_platdrv);
510 if (err)
511 return err;
512
513 /*
514 * Since there's no place to hold device registration code and no
515 * device tree based way to match cpufreq driver yet, both the driver
516 * and the device registration codes are put here to handle defer
517 * probing.
518 */
519 pdev = platform_device_register_simple("mt8173-cpufreq", -1, NULL, 0);
520 if (IS_ERR(pdev)) {
521 pr_err("failed to register mtk-cpufreq platform device\n");
522 return PTR_ERR(pdev);
523 }
524
525 return 0;
526}
527device_initcall(mt8173_cpufreq_driver_init);