Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2015 Linaro Ltd. |
| 3 | * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org> |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License version 2 as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/clk.h> |
| 16 | #include <linux/cpu.h> |
| 17 | #include <linux/cpu_cooling.h> |
| 18 | #include <linux/cpufreq.h> |
| 19 | #include <linux/cpumask.h> |
| 20 | #include <linux/of.h> |
| 21 | #include <linux/platform_device.h> |
| 22 | #include <linux/pm_opp.h> |
| 23 | #include <linux/regulator/consumer.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/thermal.h> |
| 26 | |
| 27 | #define MIN_VOLT_SHIFT (100000) |
| 28 | #define MAX_VOLT_SHIFT (200000) |
| 29 | #define MAX_VOLT_LIMIT (1150000) |
| 30 | #define VOLT_TOL (10000) |
| 31 | |
| 32 | /* |
| 33 | * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS |
| 34 | * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in |
| 35 | * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two |
| 36 | * voltage inputs need to be controlled under a hardware limitation: |
| 37 | * 100mV < Vsram - Vproc < 200mV |
| 38 | * |
| 39 | * When scaling the clock frequency of a CPU clock domain, the clock source |
| 40 | * needs to be switched to another stable PLL clock temporarily until |
| 41 | * the original PLL becomes stable at target frequency. |
| 42 | */ |
| 43 | struct mtk_cpu_dvfs_info { |
| 44 | struct device *cpu_dev; |
| 45 | struct regulator *proc_reg; |
| 46 | struct regulator *sram_reg; |
| 47 | struct clk *cpu_clk; |
| 48 | struct clk *inter_clk; |
| 49 | struct thermal_cooling_device *cdev; |
| 50 | int intermediate_voltage; |
| 51 | bool need_voltage_tracking; |
| 52 | }; |
| 53 | |
| 54 | static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info, |
| 55 | int new_vproc) |
| 56 | { |
| 57 | struct regulator *proc_reg = info->proc_reg; |
| 58 | struct regulator *sram_reg = info->sram_reg; |
| 59 | int old_vproc, old_vsram, new_vsram, vsram, vproc, ret; |
| 60 | |
| 61 | old_vproc = regulator_get_voltage(proc_reg); |
| 62 | old_vsram = regulator_get_voltage(sram_reg); |
| 63 | /* Vsram should not exceed the maximum allowed voltage of SoC. */ |
| 64 | new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT); |
| 65 | |
| 66 | if (old_vproc < new_vproc) { |
| 67 | /* |
| 68 | * When scaling up voltages, Vsram and Vproc scale up step |
| 69 | * by step. At each step, set Vsram to (Vproc + 200mV) first, |
| 70 | * then set Vproc to (Vsram - 100mV). |
| 71 | * Keep doing it until Vsram and Vproc hit target voltages. |
| 72 | */ |
| 73 | do { |
| 74 | old_vsram = regulator_get_voltage(sram_reg); |
| 75 | old_vproc = regulator_get_voltage(proc_reg); |
| 76 | |
| 77 | vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT); |
| 78 | |
| 79 | if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) { |
| 80 | vsram = MAX_VOLT_LIMIT; |
| 81 | |
| 82 | /* |
| 83 | * If the target Vsram hits the maximum voltage, |
| 84 | * try to set the exact voltage value first. |
| 85 | */ |
| 86 | ret = regulator_set_voltage(sram_reg, vsram, |
| 87 | vsram); |
| 88 | if (ret) |
| 89 | ret = regulator_set_voltage(sram_reg, |
| 90 | vsram - VOLT_TOL, |
| 91 | vsram); |
| 92 | |
| 93 | vproc = new_vproc; |
| 94 | } else { |
| 95 | ret = regulator_set_voltage(sram_reg, vsram, |
| 96 | vsram + VOLT_TOL); |
| 97 | |
| 98 | vproc = vsram - MIN_VOLT_SHIFT; |
| 99 | } |
| 100 | if (ret) |
| 101 | return ret; |
| 102 | |
| 103 | ret = regulator_set_voltage(proc_reg, vproc, |
| 104 | vproc + VOLT_TOL); |
| 105 | if (ret) { |
| 106 | regulator_set_voltage(sram_reg, old_vsram, |
| 107 | old_vsram); |
| 108 | return ret; |
| 109 | } |
| 110 | } while (vproc < new_vproc || vsram < new_vsram); |
| 111 | } else if (old_vproc > new_vproc) { |
| 112 | /* |
| 113 | * When scaling down voltages, Vsram and Vproc scale down step |
| 114 | * by step. At each step, set Vproc to (Vsram - 200mV) first, |
| 115 | * then set Vproc to (Vproc + 100mV). |
| 116 | * Keep doing it until Vsram and Vproc hit target voltages. |
| 117 | */ |
| 118 | do { |
| 119 | old_vproc = regulator_get_voltage(proc_reg); |
| 120 | old_vsram = regulator_get_voltage(sram_reg); |
| 121 | |
| 122 | vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT); |
| 123 | ret = regulator_set_voltage(proc_reg, vproc, |
| 124 | vproc + VOLT_TOL); |
| 125 | if (ret) |
| 126 | return ret; |
| 127 | |
| 128 | if (vproc == new_vproc) |
| 129 | vsram = new_vsram; |
| 130 | else |
| 131 | vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT); |
| 132 | |
| 133 | if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) { |
| 134 | vsram = MAX_VOLT_LIMIT; |
| 135 | |
| 136 | /* |
| 137 | * If the target Vsram hits the maximum voltage, |
| 138 | * try to set the exact voltage value first. |
| 139 | */ |
| 140 | ret = regulator_set_voltage(sram_reg, vsram, |
| 141 | vsram); |
| 142 | if (ret) |
| 143 | ret = regulator_set_voltage(sram_reg, |
| 144 | vsram - VOLT_TOL, |
| 145 | vsram); |
| 146 | } else { |
| 147 | ret = regulator_set_voltage(sram_reg, vsram, |
| 148 | vsram + VOLT_TOL); |
| 149 | } |
| 150 | |
| 151 | if (ret) { |
| 152 | regulator_set_voltage(proc_reg, old_vproc, |
| 153 | old_vproc); |
| 154 | return ret; |
| 155 | } |
| 156 | } while (vproc > new_vproc + VOLT_TOL || |
| 157 | vsram > new_vsram + VOLT_TOL); |
| 158 | } |
| 159 | |
| 160 | return 0; |
| 161 | } |
| 162 | |
| 163 | static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc) |
| 164 | { |
| 165 | if (info->need_voltage_tracking) |
| 166 | return mtk_cpufreq_voltage_tracking(info, vproc); |
| 167 | else |
| 168 | return regulator_set_voltage(info->proc_reg, vproc, |
| 169 | vproc + VOLT_TOL); |
| 170 | } |
| 171 | |
| 172 | static int mtk_cpufreq_set_target(struct cpufreq_policy *policy, |
| 173 | unsigned int index) |
| 174 | { |
| 175 | struct cpufreq_frequency_table *freq_table = policy->freq_table; |
| 176 | struct clk *cpu_clk = policy->clk; |
| 177 | struct clk *armpll = clk_get_parent(cpu_clk); |
| 178 | struct mtk_cpu_dvfs_info *info = policy->driver_data; |
| 179 | struct device *cpu_dev = info->cpu_dev; |
| 180 | struct dev_pm_opp *opp; |
| 181 | long freq_hz, old_freq_hz; |
| 182 | int vproc, old_vproc, inter_vproc, target_vproc, ret; |
| 183 | |
| 184 | inter_vproc = info->intermediate_voltage; |
| 185 | |
| 186 | old_freq_hz = clk_get_rate(cpu_clk); |
| 187 | old_vproc = regulator_get_voltage(info->proc_reg); |
| 188 | |
| 189 | freq_hz = freq_table[index].frequency * 1000; |
| 190 | |
| 191 | rcu_read_lock(); |
| 192 | opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz); |
| 193 | if (IS_ERR(opp)) { |
| 194 | rcu_read_unlock(); |
| 195 | pr_err("cpu%d: failed to find OPP for %ld\n", |
| 196 | policy->cpu, freq_hz); |
| 197 | return PTR_ERR(opp); |
| 198 | } |
| 199 | vproc = dev_pm_opp_get_voltage(opp); |
| 200 | rcu_read_unlock(); |
| 201 | |
| 202 | /* |
| 203 | * If the new voltage or the intermediate voltage is higher than the |
| 204 | * current voltage, scale up voltage first. |
| 205 | */ |
| 206 | target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc; |
| 207 | if (old_vproc < target_vproc) { |
| 208 | ret = mtk_cpufreq_set_voltage(info, target_vproc); |
| 209 | if (ret) { |
| 210 | pr_err("cpu%d: failed to scale up voltage!\n", |
| 211 | policy->cpu); |
| 212 | mtk_cpufreq_set_voltage(info, old_vproc); |
| 213 | return ret; |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | /* Reparent the CPU clock to intermediate clock. */ |
| 218 | ret = clk_set_parent(cpu_clk, info->inter_clk); |
| 219 | if (ret) { |
| 220 | pr_err("cpu%d: failed to re-parent cpu clock!\n", |
| 221 | policy->cpu); |
| 222 | mtk_cpufreq_set_voltage(info, old_vproc); |
| 223 | WARN_ON(1); |
| 224 | return ret; |
| 225 | } |
| 226 | |
| 227 | /* Set the original PLL to target rate. */ |
| 228 | ret = clk_set_rate(armpll, freq_hz); |
| 229 | if (ret) { |
| 230 | pr_err("cpu%d: failed to scale cpu clock rate!\n", |
| 231 | policy->cpu); |
| 232 | clk_set_parent(cpu_clk, armpll); |
| 233 | mtk_cpufreq_set_voltage(info, old_vproc); |
| 234 | return ret; |
| 235 | } |
| 236 | |
| 237 | /* Set parent of CPU clock back to the original PLL. */ |
| 238 | ret = clk_set_parent(cpu_clk, armpll); |
| 239 | if (ret) { |
| 240 | pr_err("cpu%d: failed to re-parent cpu clock!\n", |
| 241 | policy->cpu); |
| 242 | mtk_cpufreq_set_voltage(info, inter_vproc); |
| 243 | WARN_ON(1); |
| 244 | return ret; |
| 245 | } |
| 246 | |
| 247 | /* |
| 248 | * If the new voltage is lower than the intermediate voltage or the |
| 249 | * original voltage, scale down to the new voltage. |
| 250 | */ |
| 251 | if (vproc < inter_vproc || vproc < old_vproc) { |
| 252 | ret = mtk_cpufreq_set_voltage(info, vproc); |
| 253 | if (ret) { |
| 254 | pr_err("cpu%d: failed to scale down voltage!\n", |
| 255 | policy->cpu); |
| 256 | clk_set_parent(cpu_clk, info->inter_clk); |
| 257 | clk_set_rate(armpll, old_freq_hz); |
| 258 | clk_set_parent(cpu_clk, armpll); |
| 259 | return ret; |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | return 0; |
| 264 | } |
| 265 | |
| 266 | static void mtk_cpufreq_ready(struct cpufreq_policy *policy) |
| 267 | { |
| 268 | struct mtk_cpu_dvfs_info *info = policy->driver_data; |
| 269 | struct device_node *np = of_node_get(info->cpu_dev->of_node); |
| 270 | |
| 271 | if (WARN_ON(!np)) |
| 272 | return; |
| 273 | |
| 274 | if (of_find_property(np, "#cooling-cells", NULL)) { |
| 275 | info->cdev = of_cpufreq_cooling_register(np, |
| 276 | policy->related_cpus); |
| 277 | |
| 278 | if (IS_ERR(info->cdev)) { |
| 279 | dev_err(info->cpu_dev, |
| 280 | "running cpufreq without cooling device: %ld\n", |
| 281 | PTR_ERR(info->cdev)); |
| 282 | |
| 283 | info->cdev = NULL; |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | of_node_put(np); |
| 288 | } |
| 289 | |
| 290 | static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu) |
| 291 | { |
| 292 | struct device *cpu_dev; |
| 293 | struct regulator *proc_reg = ERR_PTR(-ENODEV); |
| 294 | struct regulator *sram_reg = ERR_PTR(-ENODEV); |
| 295 | struct clk *cpu_clk = ERR_PTR(-ENODEV); |
| 296 | struct clk *inter_clk = ERR_PTR(-ENODEV); |
| 297 | struct dev_pm_opp *opp; |
| 298 | unsigned long rate; |
| 299 | int ret; |
| 300 | |
| 301 | cpu_dev = get_cpu_device(cpu); |
| 302 | if (!cpu_dev) { |
| 303 | pr_err("failed to get cpu%d device\n", cpu); |
| 304 | return -ENODEV; |
| 305 | } |
| 306 | |
| 307 | cpu_clk = clk_get(cpu_dev, "cpu"); |
| 308 | if (IS_ERR(cpu_clk)) { |
| 309 | if (PTR_ERR(cpu_clk) == -EPROBE_DEFER) |
| 310 | pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu); |
| 311 | else |
| 312 | pr_err("failed to get cpu clk for cpu%d\n", cpu); |
| 313 | |
| 314 | ret = PTR_ERR(cpu_clk); |
| 315 | return ret; |
| 316 | } |
| 317 | |
| 318 | inter_clk = clk_get(cpu_dev, "intermediate"); |
| 319 | if (IS_ERR(inter_clk)) { |
| 320 | if (PTR_ERR(inter_clk) == -EPROBE_DEFER) |
| 321 | pr_warn("intermediate clk for cpu%d not ready, retry.\n", |
| 322 | cpu); |
| 323 | else |
| 324 | pr_err("failed to get intermediate clk for cpu%d\n", |
| 325 | cpu); |
| 326 | |
| 327 | ret = PTR_ERR(inter_clk); |
| 328 | goto out_free_resources; |
| 329 | } |
| 330 | |
| 331 | proc_reg = regulator_get_exclusive(cpu_dev, "proc"); |
| 332 | if (IS_ERR(proc_reg)) { |
| 333 | if (PTR_ERR(proc_reg) == -EPROBE_DEFER) |
| 334 | pr_warn("proc regulator for cpu%d not ready, retry.\n", |
| 335 | cpu); |
| 336 | else |
| 337 | pr_err("failed to get proc regulator for cpu%d\n", |
| 338 | cpu); |
| 339 | |
| 340 | ret = PTR_ERR(proc_reg); |
| 341 | goto out_free_resources; |
| 342 | } |
| 343 | |
| 344 | /* Both presence and absence of sram regulator are valid cases. */ |
| 345 | sram_reg = regulator_get_exclusive(cpu_dev, "sram"); |
| 346 | |
| 347 | ret = dev_pm_opp_of_add_table(cpu_dev); |
| 348 | if (ret) { |
| 349 | pr_warn("no OPP table for cpu%d\n", cpu); |
| 350 | goto out_free_resources; |
| 351 | } |
| 352 | |
| 353 | /* Search a safe voltage for intermediate frequency. */ |
| 354 | rate = clk_get_rate(inter_clk); |
| 355 | rcu_read_lock(); |
| 356 | opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate); |
| 357 | if (IS_ERR(opp)) { |
| 358 | rcu_read_unlock(); |
| 359 | pr_err("failed to get intermediate opp for cpu%d\n", cpu); |
| 360 | ret = PTR_ERR(opp); |
| 361 | goto out_free_opp_table; |
| 362 | } |
| 363 | info->intermediate_voltage = dev_pm_opp_get_voltage(opp); |
| 364 | rcu_read_unlock(); |
| 365 | |
| 366 | info->cpu_dev = cpu_dev; |
| 367 | info->proc_reg = proc_reg; |
| 368 | info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg; |
| 369 | info->cpu_clk = cpu_clk; |
| 370 | info->inter_clk = inter_clk; |
| 371 | |
| 372 | /* |
| 373 | * If SRAM regulator is present, software "voltage tracking" is needed |
| 374 | * for this CPU power domain. |
| 375 | */ |
| 376 | info->need_voltage_tracking = !IS_ERR(sram_reg); |
| 377 | |
| 378 | return 0; |
| 379 | |
| 380 | out_free_opp_table: |
| 381 | dev_pm_opp_of_remove_table(cpu_dev); |
| 382 | |
| 383 | out_free_resources: |
| 384 | if (!IS_ERR(proc_reg)) |
| 385 | regulator_put(proc_reg); |
| 386 | if (!IS_ERR(sram_reg)) |
| 387 | regulator_put(sram_reg); |
| 388 | if (!IS_ERR(cpu_clk)) |
| 389 | clk_put(cpu_clk); |
| 390 | if (!IS_ERR(inter_clk)) |
| 391 | clk_put(inter_clk); |
| 392 | |
| 393 | return ret; |
| 394 | } |
| 395 | |
| 396 | static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info) |
| 397 | { |
| 398 | if (!IS_ERR(info->proc_reg)) |
| 399 | regulator_put(info->proc_reg); |
| 400 | if (!IS_ERR(info->sram_reg)) |
| 401 | regulator_put(info->sram_reg); |
| 402 | if (!IS_ERR(info->cpu_clk)) |
| 403 | clk_put(info->cpu_clk); |
| 404 | if (!IS_ERR(info->inter_clk)) |
| 405 | clk_put(info->inter_clk); |
| 406 | |
| 407 | dev_pm_opp_of_remove_table(info->cpu_dev); |
| 408 | } |
| 409 | |
| 410 | static int mtk_cpufreq_init(struct cpufreq_policy *policy) |
| 411 | { |
| 412 | struct mtk_cpu_dvfs_info *info; |
| 413 | struct cpufreq_frequency_table *freq_table; |
| 414 | int ret; |
| 415 | |
| 416 | info = kzalloc(sizeof(*info), GFP_KERNEL); |
| 417 | if (!info) |
| 418 | return -ENOMEM; |
| 419 | |
| 420 | ret = mtk_cpu_dvfs_info_init(info, policy->cpu); |
| 421 | if (ret) { |
| 422 | pr_err("%s failed to initialize dvfs info for cpu%d\n", |
| 423 | __func__, policy->cpu); |
| 424 | goto out_free_dvfs_info; |
| 425 | } |
| 426 | |
| 427 | ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table); |
| 428 | if (ret) { |
| 429 | pr_err("failed to init cpufreq table for cpu%d: %d\n", |
| 430 | policy->cpu, ret); |
| 431 | goto out_release_dvfs_info; |
| 432 | } |
| 433 | |
| 434 | ret = cpufreq_table_validate_and_show(policy, freq_table); |
| 435 | if (ret) { |
| 436 | pr_err("%s: invalid frequency table: %d\n", __func__, ret); |
| 437 | goto out_free_cpufreq_table; |
| 438 | } |
| 439 | |
| 440 | /* CPUs in the same cluster share a clock and power domain. */ |
| 441 | cpumask_copy(policy->cpus, &cpu_topology[policy->cpu].core_sibling); |
| 442 | policy->driver_data = info; |
| 443 | policy->clk = info->cpu_clk; |
| 444 | |
| 445 | return 0; |
| 446 | |
| 447 | out_free_cpufreq_table: |
| 448 | dev_pm_opp_free_cpufreq_table(info->cpu_dev, &freq_table); |
| 449 | |
| 450 | out_release_dvfs_info: |
| 451 | mtk_cpu_dvfs_info_release(info); |
| 452 | |
| 453 | out_free_dvfs_info: |
| 454 | kfree(info); |
| 455 | |
| 456 | return ret; |
| 457 | } |
| 458 | |
| 459 | static int mtk_cpufreq_exit(struct cpufreq_policy *policy) |
| 460 | { |
| 461 | struct mtk_cpu_dvfs_info *info = policy->driver_data; |
| 462 | |
| 463 | cpufreq_cooling_unregister(info->cdev); |
| 464 | dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table); |
| 465 | mtk_cpu_dvfs_info_release(info); |
| 466 | kfree(info); |
| 467 | |
| 468 | return 0; |
| 469 | } |
| 470 | |
| 471 | static struct cpufreq_driver mt8173_cpufreq_driver = { |
| 472 | .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK, |
| 473 | .verify = cpufreq_generic_frequency_table_verify, |
| 474 | .target_index = mtk_cpufreq_set_target, |
| 475 | .get = cpufreq_generic_get, |
| 476 | .init = mtk_cpufreq_init, |
| 477 | .exit = mtk_cpufreq_exit, |
| 478 | .ready = mtk_cpufreq_ready, |
| 479 | .name = "mtk-cpufreq", |
| 480 | .attr = cpufreq_generic_attr, |
| 481 | }; |
| 482 | |
| 483 | static int mt8173_cpufreq_probe(struct platform_device *pdev) |
| 484 | { |
| 485 | int ret; |
| 486 | |
| 487 | ret = cpufreq_register_driver(&mt8173_cpufreq_driver); |
| 488 | if (ret) |
| 489 | pr_err("failed to register mtk cpufreq driver\n"); |
| 490 | |
| 491 | return ret; |
| 492 | } |
| 493 | |
| 494 | static struct platform_driver mt8173_cpufreq_platdrv = { |
| 495 | .driver = { |
| 496 | .name = "mt8173-cpufreq", |
| 497 | }, |
| 498 | .probe = mt8173_cpufreq_probe, |
| 499 | }; |
| 500 | |
| 501 | static int mt8173_cpufreq_driver_init(void) |
| 502 | { |
| 503 | struct platform_device *pdev; |
| 504 | int err; |
| 505 | |
| 506 | if (!of_machine_is_compatible("mediatek,mt8173")) |
| 507 | return -ENODEV; |
| 508 | |
| 509 | err = platform_driver_register(&mt8173_cpufreq_platdrv); |
| 510 | if (err) |
| 511 | return err; |
| 512 | |
| 513 | /* |
| 514 | * Since there's no place to hold device registration code and no |
| 515 | * device tree based way to match cpufreq driver yet, both the driver |
| 516 | * and the device registration codes are put here to handle defer |
| 517 | * probing. |
| 518 | */ |
| 519 | pdev = platform_device_register_simple("mt8173-cpufreq", -1, NULL, 0); |
| 520 | if (IS_ERR(pdev)) { |
| 521 | pr_err("failed to register mtk-cpufreq platform device\n"); |
| 522 | return PTR_ERR(pdev); |
| 523 | } |
| 524 | |
| 525 | return 0; |
| 526 | } |
| 527 | device_initcall(mt8173_cpufreq_driver_init); |