Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * linux/arch/arm/mach-sa1100/cpu-sa1110.c |
| 3 | * |
| 4 | * Copyright (C) 2001 Russell King |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | * |
| 10 | * Note: there are two erratas that apply to the SA1110 here: |
| 11 | * 7 - SDRAM auto-power-up failure (rev A0) |
| 12 | * 13 - Corruption of internal register reads/writes following |
| 13 | * SDRAM reads (rev A0, B0, B1) |
| 14 | * |
| 15 | * We ignore rev. A0 and B0 devices; I don't think they're worth supporting. |
| 16 | * |
| 17 | * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type |
| 18 | */ |
| 19 | #include <linux/cpufreq.h> |
| 20 | #include <linux/delay.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/io.h> |
| 23 | #include <linux/kernel.h> |
| 24 | #include <linux/moduleparam.h> |
| 25 | #include <linux/types.h> |
| 26 | |
| 27 | #include <asm/cputype.h> |
| 28 | #include <asm/mach-types.h> |
| 29 | |
| 30 | #include <mach/generic.h> |
| 31 | #include <mach/hardware.h> |
| 32 | |
| 33 | #undef DEBUG |
| 34 | |
| 35 | struct sdram_params { |
| 36 | const char name[20]; |
| 37 | u_char rows; /* bits */ |
| 38 | u_char cas_latency; /* cycles */ |
| 39 | u_char tck; /* clock cycle time (ns) */ |
| 40 | u_char trcd; /* activate to r/w (ns) */ |
| 41 | u_char trp; /* precharge to activate (ns) */ |
| 42 | u_char twr; /* write recovery time (ns) */ |
| 43 | u_short refresh; /* refresh time for array (us) */ |
| 44 | }; |
| 45 | |
| 46 | struct sdram_info { |
| 47 | u_int mdcnfg; |
| 48 | u_int mdrefr; |
| 49 | u_int mdcas[3]; |
| 50 | }; |
| 51 | |
| 52 | static struct sdram_params sdram_tbl[] __initdata = { |
| 53 | { /* Toshiba TC59SM716 CL2 */ |
| 54 | .name = "TC59SM716-CL2", |
| 55 | .rows = 12, |
| 56 | .tck = 10, |
| 57 | .trcd = 20, |
| 58 | .trp = 20, |
| 59 | .twr = 10, |
| 60 | .refresh = 64000, |
| 61 | .cas_latency = 2, |
| 62 | }, { /* Toshiba TC59SM716 CL3 */ |
| 63 | .name = "TC59SM716-CL3", |
| 64 | .rows = 12, |
| 65 | .tck = 8, |
| 66 | .trcd = 20, |
| 67 | .trp = 20, |
| 68 | .twr = 8, |
| 69 | .refresh = 64000, |
| 70 | .cas_latency = 3, |
| 71 | }, { /* Samsung K4S641632D TC75 */ |
| 72 | .name = "K4S641632D", |
| 73 | .rows = 14, |
| 74 | .tck = 9, |
| 75 | .trcd = 27, |
| 76 | .trp = 20, |
| 77 | .twr = 9, |
| 78 | .refresh = 64000, |
| 79 | .cas_latency = 3, |
| 80 | }, { /* Samsung K4S281632B-1H */ |
| 81 | .name = "K4S281632B-1H", |
| 82 | .rows = 12, |
| 83 | .tck = 10, |
| 84 | .trp = 20, |
| 85 | .twr = 10, |
| 86 | .refresh = 64000, |
| 87 | .cas_latency = 3, |
| 88 | }, { /* Samsung KM416S4030CT */ |
| 89 | .name = "KM416S4030CT", |
| 90 | .rows = 13, |
| 91 | .tck = 8, |
| 92 | .trcd = 24, /* 3 CLKs */ |
| 93 | .trp = 24, /* 3 CLKs */ |
| 94 | .twr = 16, /* Trdl: 2 CLKs */ |
| 95 | .refresh = 64000, |
| 96 | .cas_latency = 3, |
| 97 | }, { /* Winbond W982516AH75L CL3 */ |
| 98 | .name = "W982516AH75L", |
| 99 | .rows = 16, |
| 100 | .tck = 8, |
| 101 | .trcd = 20, |
| 102 | .trp = 20, |
| 103 | .twr = 8, |
| 104 | .refresh = 64000, |
| 105 | .cas_latency = 3, |
| 106 | }, { /* Micron MT48LC8M16A2TG-75 */ |
| 107 | .name = "MT48LC8M16A2TG-75", |
| 108 | .rows = 12, |
| 109 | .tck = 8, |
| 110 | .trcd = 20, |
| 111 | .trp = 20, |
| 112 | .twr = 8, |
| 113 | .refresh = 64000, |
| 114 | .cas_latency = 3, |
| 115 | }, |
| 116 | }; |
| 117 | |
| 118 | static struct sdram_params sdram_params; |
| 119 | |
| 120 | /* |
| 121 | * Given a period in ns and frequency in khz, calculate the number of |
| 122 | * cycles of frequency in period. Note that we round up to the next |
| 123 | * cycle, even if we are only slightly over. |
| 124 | */ |
| 125 | static inline u_int ns_to_cycles(u_int ns, u_int khz) |
| 126 | { |
| 127 | return (ns * khz + 999999) / 1000000; |
| 128 | } |
| 129 | |
| 130 | /* |
| 131 | * Create the MDCAS register bit pattern. |
| 132 | */ |
| 133 | static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd) |
| 134 | { |
| 135 | u_int shift; |
| 136 | |
| 137 | rcd = 2 * rcd - 1; |
| 138 | shift = delayed + 1 + rcd; |
| 139 | |
| 140 | mdcas[0] = (1 << rcd) - 1; |
| 141 | mdcas[0] |= 0x55555555 << shift; |
| 142 | mdcas[1] = mdcas[2] = 0x55555555 << (shift & 1); |
| 143 | } |
| 144 | |
| 145 | static void |
| 146 | sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz, |
| 147 | struct sdram_params *sdram) |
| 148 | { |
| 149 | u_int mem_khz, sd_khz, trp, twr; |
| 150 | |
| 151 | mem_khz = cpu_khz / 2; |
| 152 | sd_khz = mem_khz; |
| 153 | |
| 154 | /* |
| 155 | * If SDCLK would invalidate the SDRAM timings, |
| 156 | * run SDCLK at half speed. |
| 157 | * |
| 158 | * CPU steppings prior to B2 must either run the memory at |
| 159 | * half speed or use delayed read latching (errata 13). |
| 160 | */ |
| 161 | if ((ns_to_cycles(sdram->tck, sd_khz) > 1) || |
| 162 | (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000)) |
| 163 | sd_khz /= 2; |
| 164 | |
| 165 | sd->mdcnfg = MDCNFG & 0x007f007f; |
| 166 | |
| 167 | twr = ns_to_cycles(sdram->twr, mem_khz); |
| 168 | |
| 169 | /* trp should always be >1 */ |
| 170 | trp = ns_to_cycles(sdram->trp, mem_khz) - 1; |
| 171 | if (trp < 1) |
| 172 | trp = 1; |
| 173 | |
| 174 | sd->mdcnfg |= trp << 8; |
| 175 | sd->mdcnfg |= trp << 24; |
| 176 | sd->mdcnfg |= sdram->cas_latency << 12; |
| 177 | sd->mdcnfg |= sdram->cas_latency << 28; |
| 178 | sd->mdcnfg |= twr << 14; |
| 179 | sd->mdcnfg |= twr << 30; |
| 180 | |
| 181 | sd->mdrefr = MDREFR & 0xffbffff0; |
| 182 | sd->mdrefr |= 7; |
| 183 | |
| 184 | if (sd_khz != mem_khz) |
| 185 | sd->mdrefr |= MDREFR_K1DB2; |
| 186 | |
| 187 | /* initial number of '1's in MDCAS + 1 */ |
| 188 | set_mdcas(sd->mdcas, sd_khz >= 62000, |
| 189 | ns_to_cycles(sdram->trcd, mem_khz)); |
| 190 | |
| 191 | #ifdef DEBUG |
| 192 | printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n", |
| 193 | sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1], |
| 194 | sd->mdcas[2]); |
| 195 | #endif |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * Set the SDRAM refresh rate. |
| 200 | */ |
| 201 | static inline void sdram_set_refresh(u_int dri) |
| 202 | { |
| 203 | MDREFR = (MDREFR & 0xffff000f) | (dri << 4); |
| 204 | (void) MDREFR; |
| 205 | } |
| 206 | |
| 207 | /* |
| 208 | * Update the refresh period. We do this such that we always refresh |
| 209 | * the SDRAMs within their permissible period. The refresh period is |
| 210 | * always a multiple of the memory clock (fixed at cpu_clock / 2). |
| 211 | * |
| 212 | * FIXME: we don't currently take account of burst accesses here, |
| 213 | * but neither do Intels DM nor Angel. |
| 214 | */ |
| 215 | static void |
| 216 | sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram) |
| 217 | { |
| 218 | u_int ns_row = (sdram->refresh * 1000) >> sdram->rows; |
| 219 | u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32; |
| 220 | |
| 221 | #ifdef DEBUG |
| 222 | mdelay(250); |
| 223 | printk(KERN_DEBUG "new dri value = %d\n", dri); |
| 224 | #endif |
| 225 | |
| 226 | sdram_set_refresh(dri); |
| 227 | } |
| 228 | |
| 229 | /* |
| 230 | * Ok, set the CPU frequency. |
| 231 | */ |
| 232 | static int sa1110_target(struct cpufreq_policy *policy, unsigned int ppcr) |
| 233 | { |
| 234 | struct sdram_params *sdram = &sdram_params; |
| 235 | struct sdram_info sd; |
| 236 | unsigned long flags; |
| 237 | unsigned int unused; |
| 238 | |
| 239 | sdram_calculate_timing(&sd, sa11x0_freq_table[ppcr].frequency, sdram); |
| 240 | |
| 241 | #if 0 |
| 242 | /* |
| 243 | * These values are wrong according to the SA1110 documentation |
| 244 | * and errata, but they seem to work. Need to get a storage |
| 245 | * scope on to the SDRAM signals to work out why. |
| 246 | */ |
| 247 | if (policy->max < 147500) { |
| 248 | sd.mdrefr |= MDREFR_K1DB2; |
| 249 | sd.mdcas[0] = 0xaaaaaa7f; |
| 250 | } else { |
| 251 | sd.mdrefr &= ~MDREFR_K1DB2; |
| 252 | sd.mdcas[0] = 0xaaaaaa9f; |
| 253 | } |
| 254 | sd.mdcas[1] = 0xaaaaaaaa; |
| 255 | sd.mdcas[2] = 0xaaaaaaaa; |
| 256 | #endif |
| 257 | |
| 258 | /* |
| 259 | * The clock could be going away for some time. Set the SDRAMs |
| 260 | * to refresh rapidly (every 64 memory clock cycles). To get |
| 261 | * through the whole array, we need to wait 262144 mclk cycles. |
| 262 | * We wait 20ms to be safe. |
| 263 | */ |
| 264 | sdram_set_refresh(2); |
| 265 | if (!irqs_disabled()) |
| 266 | msleep(20); |
| 267 | else |
| 268 | mdelay(20); |
| 269 | |
| 270 | /* |
| 271 | * Reprogram the DRAM timings with interrupts disabled, and |
| 272 | * ensure that we are doing this within a complete cache line. |
| 273 | * This means that we won't access SDRAM for the duration of |
| 274 | * the programming. |
| 275 | */ |
| 276 | local_irq_save(flags); |
| 277 | asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0)); |
| 278 | udelay(10); |
| 279 | __asm__ __volatile__("\n\ |
| 280 | b 2f \n\ |
| 281 | .align 5 \n\ |
| 282 | 1: str %3, [%1, #0] @ MDCNFG \n\ |
| 283 | str %4, [%1, #28] @ MDREFR \n\ |
| 284 | str %5, [%1, #4] @ MDCAS0 \n\ |
| 285 | str %6, [%1, #8] @ MDCAS1 \n\ |
| 286 | str %7, [%1, #12] @ MDCAS2 \n\ |
| 287 | str %8, [%2, #0] @ PPCR \n\ |
| 288 | ldr %0, [%1, #0] \n\ |
| 289 | b 3f \n\ |
| 290 | 2: b 1b \n\ |
| 291 | 3: nop \n\ |
| 292 | nop" |
| 293 | : "=&r" (unused) |
| 294 | : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg), |
| 295 | "r" (sd.mdrefr), "r" (sd.mdcas[0]), |
| 296 | "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr)); |
| 297 | local_irq_restore(flags); |
| 298 | |
| 299 | /* |
| 300 | * Now, return the SDRAM refresh back to normal. |
| 301 | */ |
| 302 | sdram_update_refresh(sa11x0_freq_table[ppcr].frequency, sdram); |
| 303 | |
| 304 | return 0; |
| 305 | } |
| 306 | |
| 307 | static int __init sa1110_cpu_init(struct cpufreq_policy *policy) |
| 308 | { |
| 309 | return cpufreq_generic_init(policy, sa11x0_freq_table, CPUFREQ_ETERNAL); |
| 310 | } |
| 311 | |
| 312 | /* sa1110_driver needs __refdata because it must remain after init registers |
| 313 | * it with cpufreq_register_driver() */ |
| 314 | static struct cpufreq_driver sa1110_driver __refdata = { |
| 315 | .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK, |
| 316 | .verify = cpufreq_generic_frequency_table_verify, |
| 317 | .target_index = sa1110_target, |
| 318 | .get = sa11x0_getspeed, |
| 319 | .init = sa1110_cpu_init, |
| 320 | .name = "sa1110", |
| 321 | }; |
| 322 | |
| 323 | static struct sdram_params *sa1110_find_sdram(const char *name) |
| 324 | { |
| 325 | struct sdram_params *sdram; |
| 326 | |
| 327 | for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl); |
| 328 | sdram++) |
| 329 | if (strcmp(name, sdram->name) == 0) |
| 330 | return sdram; |
| 331 | |
| 332 | return NULL; |
| 333 | } |
| 334 | |
| 335 | static char sdram_name[16]; |
| 336 | |
| 337 | static int __init sa1110_clk_init(void) |
| 338 | { |
| 339 | struct sdram_params *sdram; |
| 340 | const char *name = sdram_name; |
| 341 | |
| 342 | if (!cpu_is_sa1110()) |
| 343 | return -ENODEV; |
| 344 | |
| 345 | if (!name[0]) { |
| 346 | if (machine_is_assabet()) |
| 347 | name = "TC59SM716-CL3"; |
| 348 | if (machine_is_pt_system3()) |
| 349 | name = "K4S641632D"; |
| 350 | if (machine_is_h3100()) |
| 351 | name = "KM416S4030CT"; |
| 352 | if (machine_is_jornada720() || machine_is_h3600()) |
| 353 | name = "K4S281632B-1H"; |
| 354 | if (machine_is_nanoengine()) |
| 355 | name = "MT48LC8M16A2TG-75"; |
| 356 | } |
| 357 | |
| 358 | sdram = sa1110_find_sdram(name); |
| 359 | if (sdram) { |
| 360 | printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d" |
| 361 | " twr: %d refresh: %d cas_latency: %d\n", |
| 362 | sdram->tck, sdram->trcd, sdram->trp, |
| 363 | sdram->twr, sdram->refresh, sdram->cas_latency); |
| 364 | |
| 365 | memcpy(&sdram_params, sdram, sizeof(sdram_params)); |
| 366 | |
| 367 | return cpufreq_register_driver(&sa1110_driver); |
| 368 | } |
| 369 | |
| 370 | return 0; |
| 371 | } |
| 372 | |
| 373 | module_param_string(sdram, sdram_name, sizeof(sdram_name), 0); |
| 374 | arch_initcall(sa1110_clk_init); |