blob: b5befc2111721d841a4e5801bb0f89884e92ceac [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * linux/arch/arm/mach-sa1100/cpu-sa1110.c
3 *
4 * Copyright (C) 2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Note: there are two erratas that apply to the SA1110 here:
11 * 7 - SDRAM auto-power-up failure (rev A0)
12 * 13 - Corruption of internal register reads/writes following
13 * SDRAM reads (rev A0, B0, B1)
14 *
15 * We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
16 *
17 * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type
18 */
19#include <linux/cpufreq.h>
20#include <linux/delay.h>
21#include <linux/init.h>
22#include <linux/io.h>
23#include <linux/kernel.h>
24#include <linux/moduleparam.h>
25#include <linux/types.h>
26
27#include <asm/cputype.h>
28#include <asm/mach-types.h>
29
30#include <mach/generic.h>
31#include <mach/hardware.h>
32
33#undef DEBUG
34
35struct sdram_params {
36 const char name[20];
37 u_char rows; /* bits */
38 u_char cas_latency; /* cycles */
39 u_char tck; /* clock cycle time (ns) */
40 u_char trcd; /* activate to r/w (ns) */
41 u_char trp; /* precharge to activate (ns) */
42 u_char twr; /* write recovery time (ns) */
43 u_short refresh; /* refresh time for array (us) */
44};
45
46struct sdram_info {
47 u_int mdcnfg;
48 u_int mdrefr;
49 u_int mdcas[3];
50};
51
52static struct sdram_params sdram_tbl[] __initdata = {
53 { /* Toshiba TC59SM716 CL2 */
54 .name = "TC59SM716-CL2",
55 .rows = 12,
56 .tck = 10,
57 .trcd = 20,
58 .trp = 20,
59 .twr = 10,
60 .refresh = 64000,
61 .cas_latency = 2,
62 }, { /* Toshiba TC59SM716 CL3 */
63 .name = "TC59SM716-CL3",
64 .rows = 12,
65 .tck = 8,
66 .trcd = 20,
67 .trp = 20,
68 .twr = 8,
69 .refresh = 64000,
70 .cas_latency = 3,
71 }, { /* Samsung K4S641632D TC75 */
72 .name = "K4S641632D",
73 .rows = 14,
74 .tck = 9,
75 .trcd = 27,
76 .trp = 20,
77 .twr = 9,
78 .refresh = 64000,
79 .cas_latency = 3,
80 }, { /* Samsung K4S281632B-1H */
81 .name = "K4S281632B-1H",
82 .rows = 12,
83 .tck = 10,
84 .trp = 20,
85 .twr = 10,
86 .refresh = 64000,
87 .cas_latency = 3,
88 }, { /* Samsung KM416S4030CT */
89 .name = "KM416S4030CT",
90 .rows = 13,
91 .tck = 8,
92 .trcd = 24, /* 3 CLKs */
93 .trp = 24, /* 3 CLKs */
94 .twr = 16, /* Trdl: 2 CLKs */
95 .refresh = 64000,
96 .cas_latency = 3,
97 }, { /* Winbond W982516AH75L CL3 */
98 .name = "W982516AH75L",
99 .rows = 16,
100 .tck = 8,
101 .trcd = 20,
102 .trp = 20,
103 .twr = 8,
104 .refresh = 64000,
105 .cas_latency = 3,
106 }, { /* Micron MT48LC8M16A2TG-75 */
107 .name = "MT48LC8M16A2TG-75",
108 .rows = 12,
109 .tck = 8,
110 .trcd = 20,
111 .trp = 20,
112 .twr = 8,
113 .refresh = 64000,
114 .cas_latency = 3,
115 },
116};
117
118static struct sdram_params sdram_params;
119
120/*
121 * Given a period in ns and frequency in khz, calculate the number of
122 * cycles of frequency in period. Note that we round up to the next
123 * cycle, even if we are only slightly over.
124 */
125static inline u_int ns_to_cycles(u_int ns, u_int khz)
126{
127 return (ns * khz + 999999) / 1000000;
128}
129
130/*
131 * Create the MDCAS register bit pattern.
132 */
133static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd)
134{
135 u_int shift;
136
137 rcd = 2 * rcd - 1;
138 shift = delayed + 1 + rcd;
139
140 mdcas[0] = (1 << rcd) - 1;
141 mdcas[0] |= 0x55555555 << shift;
142 mdcas[1] = mdcas[2] = 0x55555555 << (shift & 1);
143}
144
145static void
146sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,
147 struct sdram_params *sdram)
148{
149 u_int mem_khz, sd_khz, trp, twr;
150
151 mem_khz = cpu_khz / 2;
152 sd_khz = mem_khz;
153
154 /*
155 * If SDCLK would invalidate the SDRAM timings,
156 * run SDCLK at half speed.
157 *
158 * CPU steppings prior to B2 must either run the memory at
159 * half speed or use delayed read latching (errata 13).
160 */
161 if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||
162 (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000))
163 sd_khz /= 2;
164
165 sd->mdcnfg = MDCNFG & 0x007f007f;
166
167 twr = ns_to_cycles(sdram->twr, mem_khz);
168
169 /* trp should always be >1 */
170 trp = ns_to_cycles(sdram->trp, mem_khz) - 1;
171 if (trp < 1)
172 trp = 1;
173
174 sd->mdcnfg |= trp << 8;
175 sd->mdcnfg |= trp << 24;
176 sd->mdcnfg |= sdram->cas_latency << 12;
177 sd->mdcnfg |= sdram->cas_latency << 28;
178 sd->mdcnfg |= twr << 14;
179 sd->mdcnfg |= twr << 30;
180
181 sd->mdrefr = MDREFR & 0xffbffff0;
182 sd->mdrefr |= 7;
183
184 if (sd_khz != mem_khz)
185 sd->mdrefr |= MDREFR_K1DB2;
186
187 /* initial number of '1's in MDCAS + 1 */
188 set_mdcas(sd->mdcas, sd_khz >= 62000,
189 ns_to_cycles(sdram->trcd, mem_khz));
190
191#ifdef DEBUG
192 printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
193 sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1],
194 sd->mdcas[2]);
195#endif
196}
197
198/*
199 * Set the SDRAM refresh rate.
200 */
201static inline void sdram_set_refresh(u_int dri)
202{
203 MDREFR = (MDREFR & 0xffff000f) | (dri << 4);
204 (void) MDREFR;
205}
206
207/*
208 * Update the refresh period. We do this such that we always refresh
209 * the SDRAMs within their permissible period. The refresh period is
210 * always a multiple of the memory clock (fixed at cpu_clock / 2).
211 *
212 * FIXME: we don't currently take account of burst accesses here,
213 * but neither do Intels DM nor Angel.
214 */
215static void
216sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram)
217{
218 u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;
219 u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;
220
221#ifdef DEBUG
222 mdelay(250);
223 printk(KERN_DEBUG "new dri value = %d\n", dri);
224#endif
225
226 sdram_set_refresh(dri);
227}
228
229/*
230 * Ok, set the CPU frequency.
231 */
232static int sa1110_target(struct cpufreq_policy *policy, unsigned int ppcr)
233{
234 struct sdram_params *sdram = &sdram_params;
235 struct sdram_info sd;
236 unsigned long flags;
237 unsigned int unused;
238
239 sdram_calculate_timing(&sd, sa11x0_freq_table[ppcr].frequency, sdram);
240
241#if 0
242 /*
243 * These values are wrong according to the SA1110 documentation
244 * and errata, but they seem to work. Need to get a storage
245 * scope on to the SDRAM signals to work out why.
246 */
247 if (policy->max < 147500) {
248 sd.mdrefr |= MDREFR_K1DB2;
249 sd.mdcas[0] = 0xaaaaaa7f;
250 } else {
251 sd.mdrefr &= ~MDREFR_K1DB2;
252 sd.mdcas[0] = 0xaaaaaa9f;
253 }
254 sd.mdcas[1] = 0xaaaaaaaa;
255 sd.mdcas[2] = 0xaaaaaaaa;
256#endif
257
258 /*
259 * The clock could be going away for some time. Set the SDRAMs
260 * to refresh rapidly (every 64 memory clock cycles). To get
261 * through the whole array, we need to wait 262144 mclk cycles.
262 * We wait 20ms to be safe.
263 */
264 sdram_set_refresh(2);
265 if (!irqs_disabled())
266 msleep(20);
267 else
268 mdelay(20);
269
270 /*
271 * Reprogram the DRAM timings with interrupts disabled, and
272 * ensure that we are doing this within a complete cache line.
273 * This means that we won't access SDRAM for the duration of
274 * the programming.
275 */
276 local_irq_save(flags);
277 asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
278 udelay(10);
279 __asm__ __volatile__("\n\
280 b 2f \n\
281 .align 5 \n\
2821: str %3, [%1, #0] @ MDCNFG \n\
283 str %4, [%1, #28] @ MDREFR \n\
284 str %5, [%1, #4] @ MDCAS0 \n\
285 str %6, [%1, #8] @ MDCAS1 \n\
286 str %7, [%1, #12] @ MDCAS2 \n\
287 str %8, [%2, #0] @ PPCR \n\
288 ldr %0, [%1, #0] \n\
289 b 3f \n\
2902: b 1b \n\
2913: nop \n\
292 nop"
293 : "=&r" (unused)
294 : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg),
295 "r" (sd.mdrefr), "r" (sd.mdcas[0]),
296 "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr));
297 local_irq_restore(flags);
298
299 /*
300 * Now, return the SDRAM refresh back to normal.
301 */
302 sdram_update_refresh(sa11x0_freq_table[ppcr].frequency, sdram);
303
304 return 0;
305}
306
307static int __init sa1110_cpu_init(struct cpufreq_policy *policy)
308{
309 return cpufreq_generic_init(policy, sa11x0_freq_table, CPUFREQ_ETERNAL);
310}
311
312/* sa1110_driver needs __refdata because it must remain after init registers
313 * it with cpufreq_register_driver() */
314static struct cpufreq_driver sa1110_driver __refdata = {
315 .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
316 .verify = cpufreq_generic_frequency_table_verify,
317 .target_index = sa1110_target,
318 .get = sa11x0_getspeed,
319 .init = sa1110_cpu_init,
320 .name = "sa1110",
321};
322
323static struct sdram_params *sa1110_find_sdram(const char *name)
324{
325 struct sdram_params *sdram;
326
327 for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl);
328 sdram++)
329 if (strcmp(name, sdram->name) == 0)
330 return sdram;
331
332 return NULL;
333}
334
335static char sdram_name[16];
336
337static int __init sa1110_clk_init(void)
338{
339 struct sdram_params *sdram;
340 const char *name = sdram_name;
341
342 if (!cpu_is_sa1110())
343 return -ENODEV;
344
345 if (!name[0]) {
346 if (machine_is_assabet())
347 name = "TC59SM716-CL3";
348 if (machine_is_pt_system3())
349 name = "K4S641632D";
350 if (machine_is_h3100())
351 name = "KM416S4030CT";
352 if (machine_is_jornada720() || machine_is_h3600())
353 name = "K4S281632B-1H";
354 if (machine_is_nanoengine())
355 name = "MT48LC8M16A2TG-75";
356 }
357
358 sdram = sa1110_find_sdram(name);
359 if (sdram) {
360 printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d"
361 " twr: %d refresh: %d cas_latency: %d\n",
362 sdram->tck, sdram->trcd, sdram->trp,
363 sdram->twr, sdram->refresh, sdram->cas_latency);
364
365 memcpy(&sdram_params, sdram, sizeof(sdram_params));
366
367 return cpufreq_register_driver(&sa1110_driver);
368 }
369
370 return 0;
371}
372
373module_param_string(sdram, sdram_name, sizeof(sdram_name), 0);
374arch_initcall(sa1110_clk_init);