Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | #include <linux/slab.h> |
| 2 | #include <linux/file.h> |
| 3 | #include <linux/fdtable.h> |
| 4 | #include <linux/freezer.h> |
| 5 | #include <linux/mm.h> |
| 6 | #include <linux/stat.h> |
| 7 | #include <linux/fcntl.h> |
| 8 | #include <linux/swap.h> |
| 9 | #include <linux/string.h> |
| 10 | #include <linux/init.h> |
| 11 | #include <linux/pagemap.h> |
| 12 | #include <linux/perf_event.h> |
| 13 | #include <linux/highmem.h> |
| 14 | #include <linux/spinlock.h> |
| 15 | #include <linux/key.h> |
| 16 | #include <linux/personality.h> |
| 17 | #include <linux/binfmts.h> |
| 18 | #include <linux/coredump.h> |
| 19 | #include <linux/utsname.h> |
| 20 | #include <linux/pid_namespace.h> |
| 21 | #include <linux/module.h> |
| 22 | #include <linux/namei.h> |
| 23 | #include <linux/mount.h> |
| 24 | #include <linux/security.h> |
| 25 | #include <linux/syscalls.h> |
| 26 | #include <linux/tsacct_kern.h> |
| 27 | #include <linux/cn_proc.h> |
| 28 | #include <linux/audit.h> |
| 29 | #include <linux/tracehook.h> |
| 30 | #include <linux/kmod.h> |
| 31 | #include <linux/fsnotify.h> |
| 32 | #include <linux/fs_struct.h> |
| 33 | #include <linux/pipe_fs_i.h> |
| 34 | #include <linux/oom.h> |
| 35 | #include <linux/compat.h> |
| 36 | #include <linux/sched.h> |
| 37 | #include <linux/fs.h> |
| 38 | #include <linux/path.h> |
| 39 | |
| 40 | #include <asm/uaccess.h> |
| 41 | #include <asm/mmu_context.h> |
| 42 | #include <asm/tlb.h> |
| 43 | #include <asm/exec.h> |
| 44 | |
| 45 | #include <trace/events/task.h> |
| 46 | #include "internal.h" |
| 47 | |
| 48 | #include <trace/events/sched.h> |
| 49 | |
| 50 | int core_uses_pid; |
| 51 | unsigned int core_pipe_limit; |
| 52 | char core_pattern[CORENAME_MAX_SIZE] = "core"; |
| 53 | static int core_name_size = CORENAME_MAX_SIZE; |
| 54 | |
| 55 | struct core_name { |
| 56 | char *corename; |
| 57 | int used, size; |
| 58 | }; |
| 59 | |
| 60 | /* The maximal length of core_pattern is also specified in sysctl.c */ |
| 61 | |
| 62 | static int expand_corename(struct core_name *cn, int size) |
| 63 | { |
| 64 | char *corename = krealloc(cn->corename, size, GFP_KERNEL); |
| 65 | |
| 66 | if (!corename) |
| 67 | return -ENOMEM; |
| 68 | |
| 69 | if (size > core_name_size) /* racy but harmless */ |
| 70 | core_name_size = size; |
| 71 | |
| 72 | cn->size = ksize(corename); |
| 73 | cn->corename = corename; |
| 74 | return 0; |
| 75 | } |
| 76 | |
| 77 | static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt, |
| 78 | va_list arg) |
| 79 | { |
| 80 | int free, need; |
| 81 | va_list arg_copy; |
| 82 | |
| 83 | again: |
| 84 | free = cn->size - cn->used; |
| 85 | |
| 86 | va_copy(arg_copy, arg); |
| 87 | need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy); |
| 88 | va_end(arg_copy); |
| 89 | |
| 90 | if (need < free) { |
| 91 | cn->used += need; |
| 92 | return 0; |
| 93 | } |
| 94 | |
| 95 | if (!expand_corename(cn, cn->size + need - free + 1)) |
| 96 | goto again; |
| 97 | |
| 98 | return -ENOMEM; |
| 99 | } |
| 100 | |
| 101 | static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...) |
| 102 | { |
| 103 | va_list arg; |
| 104 | int ret; |
| 105 | |
| 106 | va_start(arg, fmt); |
| 107 | ret = cn_vprintf(cn, fmt, arg); |
| 108 | va_end(arg); |
| 109 | |
| 110 | return ret; |
| 111 | } |
| 112 | |
| 113 | static __printf(2, 3) |
| 114 | int cn_esc_printf(struct core_name *cn, const char *fmt, ...) |
| 115 | { |
| 116 | int cur = cn->used; |
| 117 | va_list arg; |
| 118 | int ret; |
| 119 | |
| 120 | va_start(arg, fmt); |
| 121 | ret = cn_vprintf(cn, fmt, arg); |
| 122 | va_end(arg); |
| 123 | |
| 124 | for (; cur < cn->used; ++cur) { |
| 125 | if (cn->corename[cur] == '/') |
| 126 | cn->corename[cur] = '!'; |
| 127 | } |
| 128 | return ret; |
| 129 | } |
| 130 | |
| 131 | static int cn_print_exe_file(struct core_name *cn) |
| 132 | { |
| 133 | struct file *exe_file; |
| 134 | char *pathbuf, *path; |
| 135 | int ret; |
| 136 | |
| 137 | exe_file = get_mm_exe_file(current->mm); |
| 138 | if (!exe_file) |
| 139 | return cn_esc_printf(cn, "%s (path unknown)", current->comm); |
| 140 | |
| 141 | pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY); |
| 142 | if (!pathbuf) { |
| 143 | ret = -ENOMEM; |
| 144 | goto put_exe_file; |
| 145 | } |
| 146 | |
| 147 | path = file_path(exe_file, pathbuf, PATH_MAX); |
| 148 | if (IS_ERR(path)) { |
| 149 | ret = PTR_ERR(path); |
| 150 | goto free_buf; |
| 151 | } |
| 152 | |
| 153 | ret = cn_esc_printf(cn, "%s", path); |
| 154 | |
| 155 | free_buf: |
| 156 | kfree(pathbuf); |
| 157 | put_exe_file: |
| 158 | fput(exe_file); |
| 159 | return ret; |
| 160 | } |
| 161 | |
| 162 | /* format_corename will inspect the pattern parameter, and output a |
| 163 | * name into corename, which must have space for at least |
| 164 | * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. |
| 165 | */ |
| 166 | static int format_corename(struct core_name *cn, struct coredump_params *cprm) |
| 167 | { |
| 168 | const struct cred *cred = current_cred(); |
| 169 | const char *pat_ptr = core_pattern; |
| 170 | int ispipe = (*pat_ptr == '|'); |
| 171 | int pid_in_pattern = 0; |
| 172 | int err = 0; |
| 173 | |
| 174 | cn->used = 0; |
| 175 | cn->corename = NULL; |
| 176 | if (expand_corename(cn, core_name_size)) |
| 177 | return -ENOMEM; |
| 178 | cn->corename[0] = '\0'; |
| 179 | |
| 180 | if (ispipe) |
| 181 | ++pat_ptr; |
| 182 | |
| 183 | /* Repeat as long as we have more pattern to process and more output |
| 184 | space */ |
| 185 | while (*pat_ptr) { |
| 186 | if (*pat_ptr != '%') { |
| 187 | err = cn_printf(cn, "%c", *pat_ptr++); |
| 188 | } else { |
| 189 | switch (*++pat_ptr) { |
| 190 | /* single % at the end, drop that */ |
| 191 | case 0: |
| 192 | goto out; |
| 193 | /* Double percent, output one percent */ |
| 194 | case '%': |
| 195 | err = cn_printf(cn, "%c", '%'); |
| 196 | break; |
| 197 | /* pid */ |
| 198 | case 'p': |
| 199 | pid_in_pattern = 1; |
| 200 | err = cn_printf(cn, "%d", |
| 201 | task_tgid_vnr(current)); |
| 202 | break; |
| 203 | /* global pid */ |
| 204 | case 'P': |
| 205 | err = cn_printf(cn, "%d", |
| 206 | task_tgid_nr(current)); |
| 207 | break; |
| 208 | case 'i': |
| 209 | err = cn_printf(cn, "%d", |
| 210 | task_pid_vnr(current)); |
| 211 | break; |
| 212 | case 'I': |
| 213 | err = cn_printf(cn, "%d", |
| 214 | task_pid_nr(current)); |
| 215 | break; |
| 216 | /* uid */ |
| 217 | case 'u': |
| 218 | err = cn_printf(cn, "%u", |
| 219 | from_kuid(&init_user_ns, |
| 220 | cred->uid)); |
| 221 | break; |
| 222 | /* gid */ |
| 223 | case 'g': |
| 224 | err = cn_printf(cn, "%u", |
| 225 | from_kgid(&init_user_ns, |
| 226 | cred->gid)); |
| 227 | break; |
| 228 | case 'd': |
| 229 | err = cn_printf(cn, "%d", |
| 230 | __get_dumpable(cprm->mm_flags)); |
| 231 | break; |
| 232 | /* signal that caused the coredump */ |
| 233 | case 's': |
| 234 | err = cn_printf(cn, "%d", |
| 235 | cprm->siginfo->si_signo); |
| 236 | break; |
| 237 | /* UNIX time of coredump */ |
| 238 | case 't': { |
| 239 | struct timeval tv; |
| 240 | do_gettimeofday(&tv); |
| 241 | err = cn_printf(cn, "%lu", tv.tv_sec); |
| 242 | break; |
| 243 | } |
| 244 | /* hostname */ |
| 245 | case 'h': |
| 246 | down_read(&uts_sem); |
| 247 | err = cn_esc_printf(cn, "%s", |
| 248 | utsname()->nodename); |
| 249 | up_read(&uts_sem); |
| 250 | break; |
| 251 | /* executable */ |
| 252 | case 'e': |
| 253 | err = cn_esc_printf(cn, "%s", current->comm); |
| 254 | break; |
| 255 | case 'E': |
| 256 | err = cn_print_exe_file(cn); |
| 257 | break; |
| 258 | /* core limit size */ |
| 259 | case 'c': |
| 260 | err = cn_printf(cn, "%lu", |
| 261 | rlimit(RLIMIT_CORE)); |
| 262 | break; |
| 263 | default: |
| 264 | break; |
| 265 | } |
| 266 | ++pat_ptr; |
| 267 | } |
| 268 | |
| 269 | if (err) |
| 270 | return err; |
| 271 | } |
| 272 | |
| 273 | out: |
| 274 | /* Backward compatibility with core_uses_pid: |
| 275 | * |
| 276 | * If core_pattern does not include a %p (as is the default) |
| 277 | * and core_uses_pid is set, then .%pid will be appended to |
| 278 | * the filename. Do not do this for piped commands. */ |
| 279 | if (!ispipe && !pid_in_pattern && core_uses_pid) { |
| 280 | err = cn_printf(cn, ".%d", task_tgid_vnr(current)); |
| 281 | if (err) |
| 282 | return err; |
| 283 | } |
| 284 | return ispipe; |
| 285 | } |
| 286 | |
| 287 | static int zap_process(struct task_struct *start, int exit_code, int flags) |
| 288 | { |
| 289 | struct task_struct *t; |
| 290 | int nr = 0; |
| 291 | |
| 292 | /* ignore all signals except SIGKILL, see prepare_signal() */ |
| 293 | start->signal->flags = SIGNAL_GROUP_COREDUMP | flags; |
| 294 | start->signal->group_exit_code = exit_code; |
| 295 | start->signal->group_stop_count = 0; |
| 296 | |
| 297 | for_each_thread(start, t) { |
| 298 | task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); |
| 299 | if (t != current && t->mm) { |
| 300 | sigaddset(&t->pending.signal, SIGKILL); |
| 301 | signal_wake_up(t, 1); |
| 302 | nr++; |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | return nr; |
| 307 | } |
| 308 | |
| 309 | static int zap_threads(struct task_struct *tsk, struct mm_struct *mm, |
| 310 | struct core_state *core_state, int exit_code) |
| 311 | { |
| 312 | struct task_struct *g, *p; |
| 313 | unsigned long flags; |
| 314 | int nr = -EAGAIN; |
| 315 | |
| 316 | spin_lock_irq(&tsk->sighand->siglock); |
| 317 | if (!signal_group_exit(tsk->signal)) { |
| 318 | mm->core_state = core_state; |
| 319 | tsk->signal->group_exit_task = tsk; |
| 320 | nr = zap_process(tsk, exit_code, 0); |
| 321 | clear_tsk_thread_flag(tsk, TIF_SIGPENDING); |
| 322 | } |
| 323 | spin_unlock_irq(&tsk->sighand->siglock); |
| 324 | if (unlikely(nr < 0)) |
| 325 | return nr; |
| 326 | |
| 327 | tsk->flags |= PF_DUMPCORE; |
| 328 | if (atomic_read(&mm->mm_users) == nr + 1) |
| 329 | goto done; |
| 330 | /* |
| 331 | * We should find and kill all tasks which use this mm, and we should |
| 332 | * count them correctly into ->nr_threads. We don't take tasklist |
| 333 | * lock, but this is safe wrt: |
| 334 | * |
| 335 | * fork: |
| 336 | * None of sub-threads can fork after zap_process(leader). All |
| 337 | * processes which were created before this point should be |
| 338 | * visible to zap_threads() because copy_process() adds the new |
| 339 | * process to the tail of init_task.tasks list, and lock/unlock |
| 340 | * of ->siglock provides a memory barrier. |
| 341 | * |
| 342 | * do_exit: |
| 343 | * The caller holds mm->mmap_sem. This means that the task which |
| 344 | * uses this mm can't pass exit_mm(), so it can't exit or clear |
| 345 | * its ->mm. |
| 346 | * |
| 347 | * de_thread: |
| 348 | * It does list_replace_rcu(&leader->tasks, ¤t->tasks), |
| 349 | * we must see either old or new leader, this does not matter. |
| 350 | * However, it can change p->sighand, so lock_task_sighand(p) |
| 351 | * must be used. Since p->mm != NULL and we hold ->mmap_sem |
| 352 | * it can't fail. |
| 353 | * |
| 354 | * Note also that "g" can be the old leader with ->mm == NULL |
| 355 | * and already unhashed and thus removed from ->thread_group. |
| 356 | * This is OK, __unhash_process()->list_del_rcu() does not |
| 357 | * clear the ->next pointer, we will find the new leader via |
| 358 | * next_thread(). |
| 359 | */ |
| 360 | rcu_read_lock(); |
| 361 | for_each_process(g) { |
| 362 | if (g == tsk->group_leader) |
| 363 | continue; |
| 364 | if (g->flags & PF_KTHREAD) |
| 365 | continue; |
| 366 | |
| 367 | for_each_thread(g, p) { |
| 368 | if (unlikely(!p->mm)) |
| 369 | continue; |
| 370 | if (unlikely(p->mm == mm)) { |
| 371 | lock_task_sighand(p, &flags); |
| 372 | nr += zap_process(p, exit_code, |
| 373 | SIGNAL_GROUP_EXIT); |
| 374 | unlock_task_sighand(p, &flags); |
| 375 | } |
| 376 | break; |
| 377 | } |
| 378 | } |
| 379 | rcu_read_unlock(); |
| 380 | done: |
| 381 | atomic_set(&core_state->nr_threads, nr); |
| 382 | return nr; |
| 383 | } |
| 384 | |
| 385 | static int coredump_wait(int exit_code, struct core_state *core_state) |
| 386 | { |
| 387 | struct task_struct *tsk = current; |
| 388 | struct mm_struct *mm = tsk->mm; |
| 389 | int core_waiters = -EBUSY; |
| 390 | |
| 391 | init_completion(&core_state->startup); |
| 392 | core_state->dumper.task = tsk; |
| 393 | core_state->dumper.next = NULL; |
| 394 | |
| 395 | down_write(&mm->mmap_sem); |
| 396 | if (!mm->core_state) |
| 397 | core_waiters = zap_threads(tsk, mm, core_state, exit_code); |
| 398 | up_write(&mm->mmap_sem); |
| 399 | |
| 400 | if (core_waiters > 0) { |
| 401 | struct core_thread *ptr; |
| 402 | |
| 403 | freezer_do_not_count(); |
| 404 | wait_for_completion(&core_state->startup); |
| 405 | freezer_count(); |
| 406 | /* |
| 407 | * Wait for all the threads to become inactive, so that |
| 408 | * all the thread context (extended register state, like |
| 409 | * fpu etc) gets copied to the memory. |
| 410 | */ |
| 411 | ptr = core_state->dumper.next; |
| 412 | while (ptr != NULL) { |
| 413 | wait_task_inactive(ptr->task, 0); |
| 414 | ptr = ptr->next; |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | return core_waiters; |
| 419 | } |
| 420 | |
| 421 | static void coredump_finish(struct mm_struct *mm, bool core_dumped) |
| 422 | { |
| 423 | struct core_thread *curr, *next; |
| 424 | struct task_struct *task; |
| 425 | |
| 426 | spin_lock_irq(¤t->sighand->siglock); |
| 427 | if (core_dumped && !__fatal_signal_pending(current)) |
| 428 | current->signal->group_exit_code |= 0x80; |
| 429 | current->signal->group_exit_task = NULL; |
| 430 | current->signal->flags = SIGNAL_GROUP_EXIT; |
| 431 | spin_unlock_irq(¤t->sighand->siglock); |
| 432 | |
| 433 | next = mm->core_state->dumper.next; |
| 434 | while ((curr = next) != NULL) { |
| 435 | next = curr->next; |
| 436 | task = curr->task; |
| 437 | /* |
| 438 | * see exit_mm(), curr->task must not see |
| 439 | * ->task == NULL before we read ->next. |
| 440 | */ |
| 441 | smp_mb(); |
| 442 | curr->task = NULL; |
| 443 | wake_up_process(task); |
| 444 | } |
| 445 | |
| 446 | mm->core_state = NULL; |
| 447 | } |
| 448 | |
| 449 | static bool dump_interrupted(void) |
| 450 | { |
| 451 | /* |
| 452 | * SIGKILL or freezing() interrupt the coredumping. Perhaps we |
| 453 | * can do try_to_freeze() and check __fatal_signal_pending(), |
| 454 | * but then we need to teach dump_write() to restart and clear |
| 455 | * TIF_SIGPENDING. |
| 456 | */ |
| 457 | return signal_pending(current); |
| 458 | } |
| 459 | |
| 460 | static void wait_for_dump_helpers(struct file *file) |
| 461 | { |
| 462 | struct pipe_inode_info *pipe = file->private_data; |
| 463 | |
| 464 | pipe_lock(pipe); |
| 465 | pipe->readers++; |
| 466 | pipe->writers--; |
| 467 | wake_up_interruptible_sync(&pipe->wait); |
| 468 | kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
| 469 | pipe_unlock(pipe); |
| 470 | |
| 471 | /* |
| 472 | * We actually want wait_event_freezable() but then we need |
| 473 | * to clear TIF_SIGPENDING and improve dump_interrupted(). |
| 474 | */ |
| 475 | wait_event_interruptible(pipe->wait, pipe->readers == 1); |
| 476 | |
| 477 | pipe_lock(pipe); |
| 478 | pipe->readers--; |
| 479 | pipe->writers++; |
| 480 | pipe_unlock(pipe); |
| 481 | } |
| 482 | |
| 483 | /* |
| 484 | * umh_pipe_setup |
| 485 | * helper function to customize the process used |
| 486 | * to collect the core in userspace. Specifically |
| 487 | * it sets up a pipe and installs it as fd 0 (stdin) |
| 488 | * for the process. Returns 0 on success, or |
| 489 | * PTR_ERR on failure. |
| 490 | * Note that it also sets the core limit to 1. This |
| 491 | * is a special value that we use to trap recursive |
| 492 | * core dumps |
| 493 | */ |
| 494 | static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) |
| 495 | { |
| 496 | struct file *files[2]; |
| 497 | struct coredump_params *cp = (struct coredump_params *)info->data; |
| 498 | int err = create_pipe_files(files, 0); |
| 499 | if (err) |
| 500 | return err; |
| 501 | |
| 502 | cp->file = files[1]; |
| 503 | |
| 504 | err = replace_fd(0, files[0], 0); |
| 505 | fput(files[0]); |
| 506 | /* and disallow core files too */ |
| 507 | current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; |
| 508 | |
| 509 | return err; |
| 510 | } |
| 511 | |
| 512 | void do_coredump(const siginfo_t *siginfo) |
| 513 | { |
| 514 | struct core_state core_state; |
| 515 | struct core_name cn; |
| 516 | struct mm_struct *mm = current->mm; |
| 517 | struct linux_binfmt * binfmt; |
| 518 | const struct cred *old_cred; |
| 519 | struct cred *cred; |
| 520 | int retval = 0; |
| 521 | int ispipe; |
| 522 | struct files_struct *displaced; |
| 523 | /* require nonrelative corefile path and be extra careful */ |
| 524 | bool need_suid_safe = false; |
| 525 | bool core_dumped = false; |
| 526 | static atomic_t core_dump_count = ATOMIC_INIT(0); |
| 527 | struct coredump_params cprm = { |
| 528 | .siginfo = siginfo, |
| 529 | .regs = signal_pt_regs(), |
| 530 | .limit = rlimit(RLIMIT_CORE), |
| 531 | /* |
| 532 | * We must use the same mm->flags while dumping core to avoid |
| 533 | * inconsistency of bit flags, since this flag is not protected |
| 534 | * by any locks. |
| 535 | */ |
| 536 | .mm_flags = mm->flags, |
| 537 | }; |
| 538 | |
| 539 | audit_core_dumps(siginfo->si_signo); |
| 540 | |
| 541 | binfmt = mm->binfmt; |
| 542 | if (!binfmt || !binfmt->core_dump) |
| 543 | goto fail; |
| 544 | if (!__get_dumpable(cprm.mm_flags)) |
| 545 | goto fail; |
| 546 | |
| 547 | cred = prepare_creds(); |
| 548 | if (!cred) |
| 549 | goto fail; |
| 550 | /* |
| 551 | * We cannot trust fsuid as being the "true" uid of the process |
| 552 | * nor do we know its entire history. We only know it was tainted |
| 553 | * so we dump it as root in mode 2, and only into a controlled |
| 554 | * environment (pipe handler or fully qualified path). |
| 555 | */ |
| 556 | if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) { |
| 557 | /* Setuid core dump mode */ |
| 558 | cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */ |
| 559 | need_suid_safe = true; |
| 560 | } |
| 561 | |
| 562 | retval = coredump_wait(siginfo->si_signo, &core_state); |
| 563 | if (retval < 0) |
| 564 | goto fail_creds; |
| 565 | |
| 566 | old_cred = override_creds(cred); |
| 567 | |
| 568 | ispipe = format_corename(&cn, &cprm); |
| 569 | |
| 570 | if (ispipe) { |
| 571 | int dump_count; |
| 572 | char **helper_argv; |
| 573 | struct subprocess_info *sub_info; |
| 574 | |
| 575 | if (ispipe < 0) { |
| 576 | printk(KERN_WARNING "format_corename failed\n"); |
| 577 | printk(KERN_WARNING "Aborting core\n"); |
| 578 | goto fail_unlock; |
| 579 | } |
| 580 | |
| 581 | if (cprm.limit == 1) { |
| 582 | /* See umh_pipe_setup() which sets RLIMIT_CORE = 1. |
| 583 | * |
| 584 | * Normally core limits are irrelevant to pipes, since |
| 585 | * we're not writing to the file system, but we use |
| 586 | * cprm.limit of 1 here as a special value, this is a |
| 587 | * consistent way to catch recursive crashes. |
| 588 | * We can still crash if the core_pattern binary sets |
| 589 | * RLIM_CORE = !1, but it runs as root, and can do |
| 590 | * lots of stupid things. |
| 591 | * |
| 592 | * Note that we use task_tgid_vnr here to grab the pid |
| 593 | * of the process group leader. That way we get the |
| 594 | * right pid if a thread in a multi-threaded |
| 595 | * core_pattern process dies. |
| 596 | */ |
| 597 | printk(KERN_WARNING |
| 598 | "Process %d(%s) has RLIMIT_CORE set to 1\n", |
| 599 | task_tgid_vnr(current), current->comm); |
| 600 | printk(KERN_WARNING "Aborting core\n"); |
| 601 | goto fail_unlock; |
| 602 | } |
| 603 | cprm.limit = RLIM_INFINITY; |
| 604 | |
| 605 | dump_count = atomic_inc_return(&core_dump_count); |
| 606 | if (core_pipe_limit && (core_pipe_limit < dump_count)) { |
| 607 | printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", |
| 608 | task_tgid_vnr(current), current->comm); |
| 609 | printk(KERN_WARNING "Skipping core dump\n"); |
| 610 | goto fail_dropcount; |
| 611 | } |
| 612 | |
| 613 | helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL); |
| 614 | if (!helper_argv) { |
| 615 | printk(KERN_WARNING "%s failed to allocate memory\n", |
| 616 | __func__); |
| 617 | goto fail_dropcount; |
| 618 | } |
| 619 | |
| 620 | retval = -ENOMEM; |
| 621 | sub_info = call_usermodehelper_setup(helper_argv[0], |
| 622 | helper_argv, NULL, GFP_KERNEL, |
| 623 | umh_pipe_setup, NULL, &cprm); |
| 624 | if (sub_info) |
| 625 | retval = call_usermodehelper_exec(sub_info, |
| 626 | UMH_WAIT_EXEC); |
| 627 | |
| 628 | argv_free(helper_argv); |
| 629 | if (retval) { |
| 630 | printk(KERN_INFO "Core dump to |%s pipe failed\n", |
| 631 | cn.corename); |
| 632 | goto close_fail; |
| 633 | } |
| 634 | } else { |
| 635 | struct inode *inode; |
| 636 | int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW | |
| 637 | O_LARGEFILE | O_EXCL; |
| 638 | |
| 639 | if (cprm.limit < binfmt->min_coredump) |
| 640 | goto fail_unlock; |
| 641 | |
| 642 | if (need_suid_safe && cn.corename[0] != '/') { |
| 643 | printk(KERN_WARNING "Pid %d(%s) can only dump core "\ |
| 644 | "to fully qualified path!\n", |
| 645 | task_tgid_vnr(current), current->comm); |
| 646 | printk(KERN_WARNING "Skipping core dump\n"); |
| 647 | goto fail_unlock; |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * Unlink the file if it exists unless this is a SUID |
| 652 | * binary - in that case, we're running around with root |
| 653 | * privs and don't want to unlink another user's coredump. |
| 654 | */ |
| 655 | if (!need_suid_safe) { |
| 656 | mm_segment_t old_fs; |
| 657 | |
| 658 | old_fs = get_fs(); |
| 659 | set_fs(KERNEL_DS); |
| 660 | /* |
| 661 | * If it doesn't exist, that's fine. If there's some |
| 662 | * other problem, we'll catch it at the filp_open(). |
| 663 | */ |
| 664 | (void) sys_unlink((const char __user *)cn.corename); |
| 665 | set_fs(old_fs); |
| 666 | } |
| 667 | |
| 668 | /* |
| 669 | * There is a race between unlinking and creating the |
| 670 | * file, but if that causes an EEXIST here, that's |
| 671 | * fine - another process raced with us while creating |
| 672 | * the corefile, and the other process won. To userspace, |
| 673 | * what matters is that at least one of the two processes |
| 674 | * writes its coredump successfully, not which one. |
| 675 | */ |
| 676 | if (need_suid_safe) { |
| 677 | /* |
| 678 | * Using user namespaces, normal user tasks can change |
| 679 | * their current->fs->root to point to arbitrary |
| 680 | * directories. Since the intention of the "only dump |
| 681 | * with a fully qualified path" rule is to control where |
| 682 | * coredumps may be placed using root privileges, |
| 683 | * current->fs->root must not be used. Instead, use the |
| 684 | * root directory of init_task. |
| 685 | */ |
| 686 | struct path root; |
| 687 | |
| 688 | task_lock(&init_task); |
| 689 | get_fs_root(init_task.fs, &root); |
| 690 | task_unlock(&init_task); |
| 691 | cprm.file = file_open_root(root.dentry, root.mnt, |
| 692 | cn.corename, open_flags, 0600); |
| 693 | path_put(&root); |
| 694 | } else { |
| 695 | cprm.file = filp_open(cn.corename, open_flags, 0600); |
| 696 | } |
| 697 | if (IS_ERR(cprm.file)) |
| 698 | goto fail_unlock; |
| 699 | |
| 700 | inode = file_inode(cprm.file); |
| 701 | if (inode->i_nlink > 1) |
| 702 | goto close_fail; |
| 703 | if (d_unhashed(cprm.file->f_path.dentry)) |
| 704 | goto close_fail; |
| 705 | /* |
| 706 | * AK: actually i see no reason to not allow this for named |
| 707 | * pipes etc, but keep the previous behaviour for now. |
| 708 | */ |
| 709 | if (!S_ISREG(inode->i_mode)) |
| 710 | goto close_fail; |
| 711 | /* |
| 712 | * Don't dump core if the filesystem changed owner or mode |
| 713 | * of the file during file creation. This is an issue when |
| 714 | * a process dumps core while its cwd is e.g. on a vfat |
| 715 | * filesystem. |
| 716 | */ |
| 717 | if (!uid_eq(inode->i_uid, current_fsuid())) |
| 718 | goto close_fail; |
| 719 | if ((inode->i_mode & 0677) != 0600) |
| 720 | goto close_fail; |
| 721 | if (!(cprm.file->f_mode & FMODE_CAN_WRITE)) |
| 722 | goto close_fail; |
| 723 | if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) |
| 724 | goto close_fail; |
| 725 | } |
| 726 | |
| 727 | /* get us an unshared descriptor table; almost always a no-op */ |
| 728 | retval = unshare_files(&displaced); |
| 729 | if (retval) |
| 730 | goto close_fail; |
| 731 | if (displaced) |
| 732 | put_files_struct(displaced); |
| 733 | if (!dump_interrupted()) { |
| 734 | file_start_write(cprm.file); |
| 735 | core_dumped = binfmt->core_dump(&cprm); |
| 736 | file_end_write(cprm.file); |
| 737 | } |
| 738 | if (ispipe && core_pipe_limit) |
| 739 | wait_for_dump_helpers(cprm.file); |
| 740 | close_fail: |
| 741 | if (cprm.file) |
| 742 | filp_close(cprm.file, NULL); |
| 743 | fail_dropcount: |
| 744 | if (ispipe) |
| 745 | atomic_dec(&core_dump_count); |
| 746 | fail_unlock: |
| 747 | kfree(cn.corename); |
| 748 | coredump_finish(mm, core_dumped); |
| 749 | revert_creds(old_cred); |
| 750 | fail_creds: |
| 751 | put_cred(cred); |
| 752 | fail: |
| 753 | return; |
| 754 | } |
| 755 | |
| 756 | /* |
| 757 | * Core dumping helper functions. These are the only things you should |
| 758 | * do on a core-file: use only these functions to write out all the |
| 759 | * necessary info. |
| 760 | */ |
| 761 | int dump_emit(struct coredump_params *cprm, const void *addr, int nr) |
| 762 | { |
| 763 | struct file *file = cprm->file; |
| 764 | loff_t pos = file->f_pos; |
| 765 | ssize_t n; |
| 766 | if (cprm->written + nr > cprm->limit) |
| 767 | return 0; |
| 768 | while (nr) { |
| 769 | if (dump_interrupted()) |
| 770 | return 0; |
| 771 | n = __kernel_write(file, addr, nr, &pos); |
| 772 | if (n <= 0) |
| 773 | return 0; |
| 774 | file->f_pos = pos; |
| 775 | cprm->written += n; |
| 776 | nr -= n; |
| 777 | } |
| 778 | return 1; |
| 779 | } |
| 780 | EXPORT_SYMBOL(dump_emit); |
| 781 | |
| 782 | int dump_skip(struct coredump_params *cprm, size_t nr) |
| 783 | { |
| 784 | static char zeroes[PAGE_SIZE]; |
| 785 | struct file *file = cprm->file; |
| 786 | if (file->f_op->llseek && file->f_op->llseek != no_llseek) { |
| 787 | if (cprm->written + nr > cprm->limit) |
| 788 | return 0; |
| 789 | if (dump_interrupted() || |
| 790 | file->f_op->llseek(file, nr, SEEK_CUR) < 0) |
| 791 | return 0; |
| 792 | cprm->written += nr; |
| 793 | return 1; |
| 794 | } else { |
| 795 | while (nr > PAGE_SIZE) { |
| 796 | if (!dump_emit(cprm, zeroes, PAGE_SIZE)) |
| 797 | return 0; |
| 798 | nr -= PAGE_SIZE; |
| 799 | } |
| 800 | return dump_emit(cprm, zeroes, nr); |
| 801 | } |
| 802 | } |
| 803 | EXPORT_SYMBOL(dump_skip); |
| 804 | |
| 805 | int dump_align(struct coredump_params *cprm, int align) |
| 806 | { |
| 807 | unsigned mod = cprm->written & (align - 1); |
| 808 | if (align & (align - 1)) |
| 809 | return 0; |
| 810 | return mod ? dump_skip(cprm, align - mod) : 1; |
| 811 | } |
| 812 | EXPORT_SYMBOL(dump_align); |
| 813 | |
| 814 | /* |
| 815 | * Ensures that file size is big enough to contain the current file |
| 816 | * postion. This prevents gdb from complaining about a truncated file |
| 817 | * if the last "write" to the file was dump_skip. |
| 818 | */ |
| 819 | void dump_truncate(struct coredump_params *cprm) |
| 820 | { |
| 821 | struct file *file = cprm->file; |
| 822 | loff_t offset; |
| 823 | |
| 824 | if (file->f_op->llseek && file->f_op->llseek != no_llseek) { |
| 825 | offset = file->f_op->llseek(file, 0, SEEK_CUR); |
| 826 | if (i_size_read(file->f_mapping->host) < offset) |
| 827 | do_truncate(file->f_path.dentry, offset, 0, file); |
| 828 | } |
| 829 | } |
| 830 | EXPORT_SYMBOL(dump_truncate); |