Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * linux/fs/namespace.c |
| 3 | * |
| 4 | * (C) Copyright Al Viro 2000, 2001 |
| 5 | * Released under GPL v2. |
| 6 | * |
| 7 | * Based on code from fs/super.c, copyright Linus Torvalds and others. |
| 8 | * Heavily rewritten. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/syscalls.h> |
| 12 | #include <linux/export.h> |
| 13 | #include <linux/capability.h> |
| 14 | #include <linux/mnt_namespace.h> |
| 15 | #include <linux/user_namespace.h> |
| 16 | #include <linux/namei.h> |
| 17 | #include <linux/security.h> |
| 18 | #include <linux/idr.h> |
| 19 | #include <linux/init.h> /* init_rootfs */ |
| 20 | #include <linux/fs_struct.h> /* get_fs_root et.al. */ |
| 21 | #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ |
| 22 | #include <linux/uaccess.h> |
| 23 | #include <linux/proc_ns.h> |
| 24 | #include <linux/magic.h> |
| 25 | #include <linux/bootmem.h> |
| 26 | #include <linux/task_work.h> |
| 27 | #include "pnode.h" |
| 28 | #include "internal.h" |
| 29 | |
| 30 | /* Maximum number of mounts in a mount namespace */ |
| 31 | unsigned int sysctl_mount_max __read_mostly = 100000; |
| 32 | |
| 33 | static unsigned int m_hash_mask __read_mostly; |
| 34 | static unsigned int m_hash_shift __read_mostly; |
| 35 | static unsigned int mp_hash_mask __read_mostly; |
| 36 | static unsigned int mp_hash_shift __read_mostly; |
| 37 | |
| 38 | static __initdata unsigned long mhash_entries; |
| 39 | static int __init set_mhash_entries(char *str) |
| 40 | { |
| 41 | if (!str) |
| 42 | return 0; |
| 43 | mhash_entries = simple_strtoul(str, &str, 0); |
| 44 | return 1; |
| 45 | } |
| 46 | __setup("mhash_entries=", set_mhash_entries); |
| 47 | |
| 48 | static __initdata unsigned long mphash_entries; |
| 49 | static int __init set_mphash_entries(char *str) |
| 50 | { |
| 51 | if (!str) |
| 52 | return 0; |
| 53 | mphash_entries = simple_strtoul(str, &str, 0); |
| 54 | return 1; |
| 55 | } |
| 56 | __setup("mphash_entries=", set_mphash_entries); |
| 57 | |
| 58 | static u64 event; |
| 59 | static DEFINE_IDA(mnt_id_ida); |
| 60 | static DEFINE_IDA(mnt_group_ida); |
| 61 | static DEFINE_SPINLOCK(mnt_id_lock); |
| 62 | static int mnt_id_start = 0; |
| 63 | static int mnt_group_start = 1; |
| 64 | |
| 65 | static struct hlist_head *mount_hashtable __read_mostly; |
| 66 | static struct hlist_head *mountpoint_hashtable __read_mostly; |
| 67 | static struct kmem_cache *mnt_cache __read_mostly; |
| 68 | static DECLARE_RWSEM(namespace_sem); |
| 69 | |
| 70 | /* /sys/fs */ |
| 71 | struct kobject *fs_kobj; |
| 72 | EXPORT_SYMBOL_GPL(fs_kobj); |
| 73 | |
| 74 | /* |
| 75 | * vfsmount lock may be taken for read to prevent changes to the |
| 76 | * vfsmount hash, ie. during mountpoint lookups or walking back |
| 77 | * up the tree. |
| 78 | * |
| 79 | * It should be taken for write in all cases where the vfsmount |
| 80 | * tree or hash is modified or when a vfsmount structure is modified. |
| 81 | */ |
| 82 | __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); |
| 83 | |
| 84 | static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) |
| 85 | { |
| 86 | unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); |
| 87 | tmp += ((unsigned long)dentry / L1_CACHE_BYTES); |
| 88 | tmp = tmp + (tmp >> m_hash_shift); |
| 89 | return &mount_hashtable[tmp & m_hash_mask]; |
| 90 | } |
| 91 | |
| 92 | static inline struct hlist_head *mp_hash(struct dentry *dentry) |
| 93 | { |
| 94 | unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); |
| 95 | tmp = tmp + (tmp >> mp_hash_shift); |
| 96 | return &mountpoint_hashtable[tmp & mp_hash_mask]; |
| 97 | } |
| 98 | |
| 99 | /* |
| 100 | * allocation is serialized by namespace_sem, but we need the spinlock to |
| 101 | * serialize with freeing. |
| 102 | */ |
| 103 | static int mnt_alloc_id(struct mount *mnt) |
| 104 | { |
| 105 | int res; |
| 106 | |
| 107 | retry: |
| 108 | ida_pre_get(&mnt_id_ida, GFP_KERNEL); |
| 109 | spin_lock(&mnt_id_lock); |
| 110 | res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); |
| 111 | if (!res) |
| 112 | mnt_id_start = mnt->mnt_id + 1; |
| 113 | spin_unlock(&mnt_id_lock); |
| 114 | if (res == -EAGAIN) |
| 115 | goto retry; |
| 116 | |
| 117 | return res; |
| 118 | } |
| 119 | |
| 120 | static void mnt_free_id(struct mount *mnt) |
| 121 | { |
| 122 | int id = mnt->mnt_id; |
| 123 | spin_lock(&mnt_id_lock); |
| 124 | ida_remove(&mnt_id_ida, id); |
| 125 | if (mnt_id_start > id) |
| 126 | mnt_id_start = id; |
| 127 | spin_unlock(&mnt_id_lock); |
| 128 | } |
| 129 | |
| 130 | /* |
| 131 | * Allocate a new peer group ID |
| 132 | * |
| 133 | * mnt_group_ida is protected by namespace_sem |
| 134 | */ |
| 135 | static int mnt_alloc_group_id(struct mount *mnt) |
| 136 | { |
| 137 | int res; |
| 138 | |
| 139 | if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) |
| 140 | return -ENOMEM; |
| 141 | |
| 142 | res = ida_get_new_above(&mnt_group_ida, |
| 143 | mnt_group_start, |
| 144 | &mnt->mnt_group_id); |
| 145 | if (!res) |
| 146 | mnt_group_start = mnt->mnt_group_id + 1; |
| 147 | |
| 148 | return res; |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * Release a peer group ID |
| 153 | */ |
| 154 | void mnt_release_group_id(struct mount *mnt) |
| 155 | { |
| 156 | int id = mnt->mnt_group_id; |
| 157 | ida_remove(&mnt_group_ida, id); |
| 158 | if (mnt_group_start > id) |
| 159 | mnt_group_start = id; |
| 160 | mnt->mnt_group_id = 0; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * vfsmount lock must be held for read |
| 165 | */ |
| 166 | static inline void mnt_add_count(struct mount *mnt, int n) |
| 167 | { |
| 168 | #ifdef CONFIG_SMP |
| 169 | this_cpu_add(mnt->mnt_pcp->mnt_count, n); |
| 170 | #else |
| 171 | preempt_disable(); |
| 172 | mnt->mnt_count += n; |
| 173 | preempt_enable(); |
| 174 | #endif |
| 175 | } |
| 176 | |
| 177 | /* |
| 178 | * vfsmount lock must be held for write |
| 179 | */ |
| 180 | unsigned int mnt_get_count(struct mount *mnt) |
| 181 | { |
| 182 | #ifdef CONFIG_SMP |
| 183 | unsigned int count = 0; |
| 184 | int cpu; |
| 185 | |
| 186 | for_each_possible_cpu(cpu) { |
| 187 | count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; |
| 188 | } |
| 189 | |
| 190 | return count; |
| 191 | #else |
| 192 | return mnt->mnt_count; |
| 193 | #endif |
| 194 | } |
| 195 | |
| 196 | static void drop_mountpoint(struct fs_pin *p) |
| 197 | { |
| 198 | struct mount *m = container_of(p, struct mount, mnt_umount); |
| 199 | dput(m->mnt_ex_mountpoint); |
| 200 | pin_remove(p); |
| 201 | mntput(&m->mnt); |
| 202 | } |
| 203 | |
| 204 | static struct mount *alloc_vfsmnt(const char *name) |
| 205 | { |
| 206 | struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); |
| 207 | if (mnt) { |
| 208 | int err; |
| 209 | |
| 210 | err = mnt_alloc_id(mnt); |
| 211 | if (err) |
| 212 | goto out_free_cache; |
| 213 | |
| 214 | if (name) { |
| 215 | mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); |
| 216 | if (!mnt->mnt_devname) |
| 217 | goto out_free_id; |
| 218 | } |
| 219 | |
| 220 | #ifdef CONFIG_SMP |
| 221 | mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); |
| 222 | if (!mnt->mnt_pcp) |
| 223 | goto out_free_devname; |
| 224 | |
| 225 | this_cpu_add(mnt->mnt_pcp->mnt_count, 1); |
| 226 | #else |
| 227 | mnt->mnt_count = 1; |
| 228 | mnt->mnt_writers = 0; |
| 229 | #endif |
| 230 | |
| 231 | INIT_HLIST_NODE(&mnt->mnt_hash); |
| 232 | INIT_LIST_HEAD(&mnt->mnt_child); |
| 233 | INIT_LIST_HEAD(&mnt->mnt_mounts); |
| 234 | INIT_LIST_HEAD(&mnt->mnt_list); |
| 235 | INIT_LIST_HEAD(&mnt->mnt_expire); |
| 236 | INIT_LIST_HEAD(&mnt->mnt_share); |
| 237 | INIT_LIST_HEAD(&mnt->mnt_slave_list); |
| 238 | INIT_LIST_HEAD(&mnt->mnt_slave); |
| 239 | INIT_HLIST_NODE(&mnt->mnt_mp_list); |
| 240 | INIT_LIST_HEAD(&mnt->mnt_umounting); |
| 241 | #ifdef CONFIG_FSNOTIFY |
| 242 | INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); |
| 243 | #endif |
| 244 | init_fs_pin(&mnt->mnt_umount, drop_mountpoint); |
| 245 | } |
| 246 | return mnt; |
| 247 | |
| 248 | #ifdef CONFIG_SMP |
| 249 | out_free_devname: |
| 250 | kfree_const(mnt->mnt_devname); |
| 251 | #endif |
| 252 | out_free_id: |
| 253 | mnt_free_id(mnt); |
| 254 | out_free_cache: |
| 255 | kmem_cache_free(mnt_cache, mnt); |
| 256 | return NULL; |
| 257 | } |
| 258 | |
| 259 | /* |
| 260 | * Most r/o checks on a fs are for operations that take |
| 261 | * discrete amounts of time, like a write() or unlink(). |
| 262 | * We must keep track of when those operations start |
| 263 | * (for permission checks) and when they end, so that |
| 264 | * we can determine when writes are able to occur to |
| 265 | * a filesystem. |
| 266 | */ |
| 267 | /* |
| 268 | * __mnt_is_readonly: check whether a mount is read-only |
| 269 | * @mnt: the mount to check for its write status |
| 270 | * |
| 271 | * This shouldn't be used directly ouside of the VFS. |
| 272 | * It does not guarantee that the filesystem will stay |
| 273 | * r/w, just that it is right *now*. This can not and |
| 274 | * should not be used in place of IS_RDONLY(inode). |
| 275 | * mnt_want/drop_write() will _keep_ the filesystem |
| 276 | * r/w. |
| 277 | */ |
| 278 | int __mnt_is_readonly(struct vfsmount *mnt) |
| 279 | { |
| 280 | if (mnt->mnt_flags & MNT_READONLY) |
| 281 | return 1; |
| 282 | if (mnt->mnt_sb->s_flags & MS_RDONLY) |
| 283 | return 1; |
| 284 | return 0; |
| 285 | } |
| 286 | EXPORT_SYMBOL_GPL(__mnt_is_readonly); |
| 287 | |
| 288 | static inline void mnt_inc_writers(struct mount *mnt) |
| 289 | { |
| 290 | #ifdef CONFIG_SMP |
| 291 | this_cpu_inc(mnt->mnt_pcp->mnt_writers); |
| 292 | #else |
| 293 | mnt->mnt_writers++; |
| 294 | #endif |
| 295 | } |
| 296 | |
| 297 | static inline void mnt_dec_writers(struct mount *mnt) |
| 298 | { |
| 299 | #ifdef CONFIG_SMP |
| 300 | this_cpu_dec(mnt->mnt_pcp->mnt_writers); |
| 301 | #else |
| 302 | mnt->mnt_writers--; |
| 303 | #endif |
| 304 | } |
| 305 | |
| 306 | static unsigned int mnt_get_writers(struct mount *mnt) |
| 307 | { |
| 308 | #ifdef CONFIG_SMP |
| 309 | unsigned int count = 0; |
| 310 | int cpu; |
| 311 | |
| 312 | for_each_possible_cpu(cpu) { |
| 313 | count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; |
| 314 | } |
| 315 | |
| 316 | return count; |
| 317 | #else |
| 318 | return mnt->mnt_writers; |
| 319 | #endif |
| 320 | } |
| 321 | |
| 322 | static int mnt_is_readonly(struct vfsmount *mnt) |
| 323 | { |
| 324 | if (mnt->mnt_sb->s_readonly_remount) |
| 325 | return 1; |
| 326 | /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ |
| 327 | smp_rmb(); |
| 328 | return __mnt_is_readonly(mnt); |
| 329 | } |
| 330 | |
| 331 | /* |
| 332 | * Most r/o & frozen checks on a fs are for operations that take discrete |
| 333 | * amounts of time, like a write() or unlink(). We must keep track of when |
| 334 | * those operations start (for permission checks) and when they end, so that we |
| 335 | * can determine when writes are able to occur to a filesystem. |
| 336 | */ |
| 337 | /** |
| 338 | * __mnt_want_write - get write access to a mount without freeze protection |
| 339 | * @m: the mount on which to take a write |
| 340 | * |
| 341 | * This tells the low-level filesystem that a write is about to be performed to |
| 342 | * it, and makes sure that writes are allowed (mnt it read-write) before |
| 343 | * returning success. This operation does not protect against filesystem being |
| 344 | * frozen. When the write operation is finished, __mnt_drop_write() must be |
| 345 | * called. This is effectively a refcount. |
| 346 | */ |
| 347 | int __mnt_want_write(struct vfsmount *m) |
| 348 | { |
| 349 | struct mount *mnt = real_mount(m); |
| 350 | int ret = 0; |
| 351 | |
| 352 | preempt_disable(); |
| 353 | mnt_inc_writers(mnt); |
| 354 | /* |
| 355 | * The store to mnt_inc_writers must be visible before we pass |
| 356 | * MNT_WRITE_HOLD loop below, so that the slowpath can see our |
| 357 | * incremented count after it has set MNT_WRITE_HOLD. |
| 358 | */ |
| 359 | smp_mb(); |
| 360 | while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) |
| 361 | cpu_relax(); |
| 362 | /* |
| 363 | * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will |
| 364 | * be set to match its requirements. So we must not load that until |
| 365 | * MNT_WRITE_HOLD is cleared. |
| 366 | */ |
| 367 | smp_rmb(); |
| 368 | if (mnt_is_readonly(m)) { |
| 369 | mnt_dec_writers(mnt); |
| 370 | ret = -EROFS; |
| 371 | } |
| 372 | preempt_enable(); |
| 373 | |
| 374 | return ret; |
| 375 | } |
| 376 | |
| 377 | /** |
| 378 | * mnt_want_write - get write access to a mount |
| 379 | * @m: the mount on which to take a write |
| 380 | * |
| 381 | * This tells the low-level filesystem that a write is about to be performed to |
| 382 | * it, and makes sure that writes are allowed (mount is read-write, filesystem |
| 383 | * is not frozen) before returning success. When the write operation is |
| 384 | * finished, mnt_drop_write() must be called. This is effectively a refcount. |
| 385 | */ |
| 386 | int mnt_want_write(struct vfsmount *m) |
| 387 | { |
| 388 | int ret; |
| 389 | |
| 390 | sb_start_write(m->mnt_sb); |
| 391 | ret = __mnt_want_write(m); |
| 392 | if (ret) |
| 393 | sb_end_write(m->mnt_sb); |
| 394 | return ret; |
| 395 | } |
| 396 | EXPORT_SYMBOL_GPL(mnt_want_write); |
| 397 | |
| 398 | /** |
| 399 | * mnt_clone_write - get write access to a mount |
| 400 | * @mnt: the mount on which to take a write |
| 401 | * |
| 402 | * This is effectively like mnt_want_write, except |
| 403 | * it must only be used to take an extra write reference |
| 404 | * on a mountpoint that we already know has a write reference |
| 405 | * on it. This allows some optimisation. |
| 406 | * |
| 407 | * After finished, mnt_drop_write must be called as usual to |
| 408 | * drop the reference. |
| 409 | */ |
| 410 | int mnt_clone_write(struct vfsmount *mnt) |
| 411 | { |
| 412 | /* superblock may be r/o */ |
| 413 | if (__mnt_is_readonly(mnt)) |
| 414 | return -EROFS; |
| 415 | preempt_disable(); |
| 416 | mnt_inc_writers(real_mount(mnt)); |
| 417 | preempt_enable(); |
| 418 | return 0; |
| 419 | } |
| 420 | EXPORT_SYMBOL_GPL(mnt_clone_write); |
| 421 | |
| 422 | /** |
| 423 | * __mnt_want_write_file - get write access to a file's mount |
| 424 | * @file: the file who's mount on which to take a write |
| 425 | * |
| 426 | * This is like __mnt_want_write, but it takes a file and can |
| 427 | * do some optimisations if the file is open for write already |
| 428 | */ |
| 429 | int __mnt_want_write_file(struct file *file) |
| 430 | { |
| 431 | if (!(file->f_mode & FMODE_WRITER)) |
| 432 | return __mnt_want_write(file->f_path.mnt); |
| 433 | else |
| 434 | return mnt_clone_write(file->f_path.mnt); |
| 435 | } |
| 436 | |
| 437 | /** |
| 438 | * mnt_want_write_file - get write access to a file's mount |
| 439 | * @file: the file who's mount on which to take a write |
| 440 | * |
| 441 | * This is like mnt_want_write, but it takes a file and can |
| 442 | * do some optimisations if the file is open for write already |
| 443 | */ |
| 444 | int mnt_want_write_file(struct file *file) |
| 445 | { |
| 446 | int ret; |
| 447 | |
| 448 | sb_start_write(file->f_path.mnt->mnt_sb); |
| 449 | ret = __mnt_want_write_file(file); |
| 450 | if (ret) |
| 451 | sb_end_write(file->f_path.mnt->mnt_sb); |
| 452 | return ret; |
| 453 | } |
| 454 | EXPORT_SYMBOL_GPL(mnt_want_write_file); |
| 455 | |
| 456 | /** |
| 457 | * __mnt_drop_write - give up write access to a mount |
| 458 | * @mnt: the mount on which to give up write access |
| 459 | * |
| 460 | * Tells the low-level filesystem that we are done |
| 461 | * performing writes to it. Must be matched with |
| 462 | * __mnt_want_write() call above. |
| 463 | */ |
| 464 | void __mnt_drop_write(struct vfsmount *mnt) |
| 465 | { |
| 466 | preempt_disable(); |
| 467 | mnt_dec_writers(real_mount(mnt)); |
| 468 | preempt_enable(); |
| 469 | } |
| 470 | |
| 471 | /** |
| 472 | * mnt_drop_write - give up write access to a mount |
| 473 | * @mnt: the mount on which to give up write access |
| 474 | * |
| 475 | * Tells the low-level filesystem that we are done performing writes to it and |
| 476 | * also allows filesystem to be frozen again. Must be matched with |
| 477 | * mnt_want_write() call above. |
| 478 | */ |
| 479 | void mnt_drop_write(struct vfsmount *mnt) |
| 480 | { |
| 481 | __mnt_drop_write(mnt); |
| 482 | sb_end_write(mnt->mnt_sb); |
| 483 | } |
| 484 | EXPORT_SYMBOL_GPL(mnt_drop_write); |
| 485 | |
| 486 | void __mnt_drop_write_file(struct file *file) |
| 487 | { |
| 488 | __mnt_drop_write(file->f_path.mnt); |
| 489 | } |
| 490 | |
| 491 | void mnt_drop_write_file(struct file *file) |
| 492 | { |
| 493 | mnt_drop_write(file->f_path.mnt); |
| 494 | } |
| 495 | EXPORT_SYMBOL(mnt_drop_write_file); |
| 496 | |
| 497 | static int mnt_make_readonly(struct mount *mnt) |
| 498 | { |
| 499 | int ret = 0; |
| 500 | |
| 501 | lock_mount_hash(); |
| 502 | mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; |
| 503 | /* |
| 504 | * After storing MNT_WRITE_HOLD, we'll read the counters. This store |
| 505 | * should be visible before we do. |
| 506 | */ |
| 507 | smp_mb(); |
| 508 | |
| 509 | /* |
| 510 | * With writers on hold, if this value is zero, then there are |
| 511 | * definitely no active writers (although held writers may subsequently |
| 512 | * increment the count, they'll have to wait, and decrement it after |
| 513 | * seeing MNT_READONLY). |
| 514 | * |
| 515 | * It is OK to have counter incremented on one CPU and decremented on |
| 516 | * another: the sum will add up correctly. The danger would be when we |
| 517 | * sum up each counter, if we read a counter before it is incremented, |
| 518 | * but then read another CPU's count which it has been subsequently |
| 519 | * decremented from -- we would see more decrements than we should. |
| 520 | * MNT_WRITE_HOLD protects against this scenario, because |
| 521 | * mnt_want_write first increments count, then smp_mb, then spins on |
| 522 | * MNT_WRITE_HOLD, so it can't be decremented by another CPU while |
| 523 | * we're counting up here. |
| 524 | */ |
| 525 | if (mnt_get_writers(mnt) > 0) |
| 526 | ret = -EBUSY; |
| 527 | else |
| 528 | mnt->mnt.mnt_flags |= MNT_READONLY; |
| 529 | /* |
| 530 | * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers |
| 531 | * that become unheld will see MNT_READONLY. |
| 532 | */ |
| 533 | smp_wmb(); |
| 534 | mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; |
| 535 | unlock_mount_hash(); |
| 536 | return ret; |
| 537 | } |
| 538 | |
| 539 | static void __mnt_unmake_readonly(struct mount *mnt) |
| 540 | { |
| 541 | lock_mount_hash(); |
| 542 | mnt->mnt.mnt_flags &= ~MNT_READONLY; |
| 543 | unlock_mount_hash(); |
| 544 | } |
| 545 | |
| 546 | int sb_prepare_remount_readonly(struct super_block *sb) |
| 547 | { |
| 548 | struct mount *mnt; |
| 549 | int err = 0; |
| 550 | |
| 551 | /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ |
| 552 | if (atomic_long_read(&sb->s_remove_count)) |
| 553 | return -EBUSY; |
| 554 | |
| 555 | lock_mount_hash(); |
| 556 | list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { |
| 557 | if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { |
| 558 | mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; |
| 559 | smp_mb(); |
| 560 | if (mnt_get_writers(mnt) > 0) { |
| 561 | err = -EBUSY; |
| 562 | break; |
| 563 | } |
| 564 | } |
| 565 | } |
| 566 | if (!err && atomic_long_read(&sb->s_remove_count)) |
| 567 | err = -EBUSY; |
| 568 | |
| 569 | if (!err) { |
| 570 | sb->s_readonly_remount = 1; |
| 571 | smp_wmb(); |
| 572 | } |
| 573 | list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { |
| 574 | if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) |
| 575 | mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; |
| 576 | } |
| 577 | unlock_mount_hash(); |
| 578 | |
| 579 | return err; |
| 580 | } |
| 581 | |
| 582 | static void free_vfsmnt(struct mount *mnt) |
| 583 | { |
| 584 | kfree_const(mnt->mnt_devname); |
| 585 | #ifdef CONFIG_SMP |
| 586 | free_percpu(mnt->mnt_pcp); |
| 587 | #endif |
| 588 | kmem_cache_free(mnt_cache, mnt); |
| 589 | } |
| 590 | |
| 591 | static void delayed_free_vfsmnt(struct rcu_head *head) |
| 592 | { |
| 593 | free_vfsmnt(container_of(head, struct mount, mnt_rcu)); |
| 594 | } |
| 595 | |
| 596 | /* call under rcu_read_lock */ |
| 597 | int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) |
| 598 | { |
| 599 | struct mount *mnt; |
| 600 | if (read_seqretry(&mount_lock, seq)) |
| 601 | return 1; |
| 602 | if (bastard == NULL) |
| 603 | return 0; |
| 604 | mnt = real_mount(bastard); |
| 605 | mnt_add_count(mnt, 1); |
| 606 | if (likely(!read_seqretry(&mount_lock, seq))) |
| 607 | return 0; |
| 608 | if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { |
| 609 | mnt_add_count(mnt, -1); |
| 610 | return 1; |
| 611 | } |
| 612 | return -1; |
| 613 | } |
| 614 | |
| 615 | /* call under rcu_read_lock */ |
| 616 | bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) |
| 617 | { |
| 618 | int res = __legitimize_mnt(bastard, seq); |
| 619 | if (likely(!res)) |
| 620 | return true; |
| 621 | if (unlikely(res < 0)) { |
| 622 | rcu_read_unlock(); |
| 623 | mntput(bastard); |
| 624 | rcu_read_lock(); |
| 625 | } |
| 626 | return false; |
| 627 | } |
| 628 | |
| 629 | /* |
| 630 | * find the first mount at @dentry on vfsmount @mnt. |
| 631 | * call under rcu_read_lock() |
| 632 | */ |
| 633 | struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) |
| 634 | { |
| 635 | struct hlist_head *head = m_hash(mnt, dentry); |
| 636 | struct mount *p; |
| 637 | |
| 638 | hlist_for_each_entry_rcu(p, head, mnt_hash) |
| 639 | if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) |
| 640 | return p; |
| 641 | return NULL; |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * lookup_mnt - Return the first child mount mounted at path |
| 646 | * |
| 647 | * "First" means first mounted chronologically. If you create the |
| 648 | * following mounts: |
| 649 | * |
| 650 | * mount /dev/sda1 /mnt |
| 651 | * mount /dev/sda2 /mnt |
| 652 | * mount /dev/sda3 /mnt |
| 653 | * |
| 654 | * Then lookup_mnt() on the base /mnt dentry in the root mount will |
| 655 | * return successively the root dentry and vfsmount of /dev/sda1, then |
| 656 | * /dev/sda2, then /dev/sda3, then NULL. |
| 657 | * |
| 658 | * lookup_mnt takes a reference to the found vfsmount. |
| 659 | */ |
| 660 | struct vfsmount *lookup_mnt(struct path *path) |
| 661 | { |
| 662 | struct mount *child_mnt; |
| 663 | struct vfsmount *m; |
| 664 | unsigned seq; |
| 665 | |
| 666 | rcu_read_lock(); |
| 667 | do { |
| 668 | seq = read_seqbegin(&mount_lock); |
| 669 | child_mnt = __lookup_mnt(path->mnt, path->dentry); |
| 670 | m = child_mnt ? &child_mnt->mnt : NULL; |
| 671 | } while (!legitimize_mnt(m, seq)); |
| 672 | rcu_read_unlock(); |
| 673 | return m; |
| 674 | } |
| 675 | |
| 676 | /* |
| 677 | * __is_local_mountpoint - Test to see if dentry is a mountpoint in the |
| 678 | * current mount namespace. |
| 679 | * |
| 680 | * The common case is dentries are not mountpoints at all and that |
| 681 | * test is handled inline. For the slow case when we are actually |
| 682 | * dealing with a mountpoint of some kind, walk through all of the |
| 683 | * mounts in the current mount namespace and test to see if the dentry |
| 684 | * is a mountpoint. |
| 685 | * |
| 686 | * The mount_hashtable is not usable in the context because we |
| 687 | * need to identify all mounts that may be in the current mount |
| 688 | * namespace not just a mount that happens to have some specified |
| 689 | * parent mount. |
| 690 | */ |
| 691 | bool __is_local_mountpoint(struct dentry *dentry) |
| 692 | { |
| 693 | struct mnt_namespace *ns = current->nsproxy->mnt_ns; |
| 694 | struct mount *mnt; |
| 695 | bool is_covered = false; |
| 696 | |
| 697 | if (!d_mountpoint(dentry)) |
| 698 | goto out; |
| 699 | |
| 700 | down_read(&namespace_sem); |
| 701 | list_for_each_entry(mnt, &ns->list, mnt_list) { |
| 702 | is_covered = (mnt->mnt_mountpoint == dentry); |
| 703 | if (is_covered) |
| 704 | break; |
| 705 | } |
| 706 | up_read(&namespace_sem); |
| 707 | out: |
| 708 | return is_covered; |
| 709 | } |
| 710 | |
| 711 | static struct mountpoint *lookup_mountpoint(struct dentry *dentry) |
| 712 | { |
| 713 | struct hlist_head *chain = mp_hash(dentry); |
| 714 | struct mountpoint *mp; |
| 715 | |
| 716 | hlist_for_each_entry(mp, chain, m_hash) { |
| 717 | if (mp->m_dentry == dentry) { |
| 718 | /* might be worth a WARN_ON() */ |
| 719 | if (d_unlinked(dentry)) |
| 720 | return ERR_PTR(-ENOENT); |
| 721 | mp->m_count++; |
| 722 | return mp; |
| 723 | } |
| 724 | } |
| 725 | return NULL; |
| 726 | } |
| 727 | |
| 728 | static struct mountpoint *get_mountpoint(struct dentry *dentry) |
| 729 | { |
| 730 | struct mountpoint *mp, *new = NULL; |
| 731 | int ret; |
| 732 | |
| 733 | if (d_mountpoint(dentry)) { |
| 734 | mountpoint: |
| 735 | read_seqlock_excl(&mount_lock); |
| 736 | mp = lookup_mountpoint(dentry); |
| 737 | read_sequnlock_excl(&mount_lock); |
| 738 | if (mp) |
| 739 | goto done; |
| 740 | } |
| 741 | |
| 742 | if (!new) |
| 743 | new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); |
| 744 | if (!new) |
| 745 | return ERR_PTR(-ENOMEM); |
| 746 | |
| 747 | |
| 748 | /* Exactly one processes may set d_mounted */ |
| 749 | ret = d_set_mounted(dentry); |
| 750 | |
| 751 | /* Someone else set d_mounted? */ |
| 752 | if (ret == -EBUSY) |
| 753 | goto mountpoint; |
| 754 | |
| 755 | /* The dentry is not available as a mountpoint? */ |
| 756 | mp = ERR_PTR(ret); |
| 757 | if (ret) |
| 758 | goto done; |
| 759 | |
| 760 | /* Add the new mountpoint to the hash table */ |
| 761 | read_seqlock_excl(&mount_lock); |
| 762 | new->m_dentry = dentry; |
| 763 | new->m_count = 1; |
| 764 | hlist_add_head(&new->m_hash, mp_hash(dentry)); |
| 765 | INIT_HLIST_HEAD(&new->m_list); |
| 766 | read_sequnlock_excl(&mount_lock); |
| 767 | |
| 768 | mp = new; |
| 769 | new = NULL; |
| 770 | done: |
| 771 | kfree(new); |
| 772 | return mp; |
| 773 | } |
| 774 | |
| 775 | static void put_mountpoint(struct mountpoint *mp) |
| 776 | { |
| 777 | if (!--mp->m_count) { |
| 778 | struct dentry *dentry = mp->m_dentry; |
| 779 | BUG_ON(!hlist_empty(&mp->m_list)); |
| 780 | spin_lock(&dentry->d_lock); |
| 781 | dentry->d_flags &= ~DCACHE_MOUNTED; |
| 782 | spin_unlock(&dentry->d_lock); |
| 783 | hlist_del(&mp->m_hash); |
| 784 | kfree(mp); |
| 785 | } |
| 786 | } |
| 787 | |
| 788 | static inline int check_mnt(struct mount *mnt) |
| 789 | { |
| 790 | return mnt->mnt_ns == current->nsproxy->mnt_ns; |
| 791 | } |
| 792 | |
| 793 | /* |
| 794 | * vfsmount lock must be held for write |
| 795 | */ |
| 796 | static void touch_mnt_namespace(struct mnt_namespace *ns) |
| 797 | { |
| 798 | if (ns) { |
| 799 | ns->event = ++event; |
| 800 | wake_up_interruptible(&ns->poll); |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | /* |
| 805 | * vfsmount lock must be held for write |
| 806 | */ |
| 807 | static void __touch_mnt_namespace(struct mnt_namespace *ns) |
| 808 | { |
| 809 | if (ns && ns->event != event) { |
| 810 | ns->event = event; |
| 811 | wake_up_interruptible(&ns->poll); |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | /* |
| 816 | * vfsmount lock must be held for write |
| 817 | */ |
| 818 | static void unhash_mnt(struct mount *mnt) |
| 819 | { |
| 820 | mnt->mnt_parent = mnt; |
| 821 | mnt->mnt_mountpoint = mnt->mnt.mnt_root; |
| 822 | list_del_init(&mnt->mnt_child); |
| 823 | hlist_del_init_rcu(&mnt->mnt_hash); |
| 824 | hlist_del_init(&mnt->mnt_mp_list); |
| 825 | put_mountpoint(mnt->mnt_mp); |
| 826 | mnt->mnt_mp = NULL; |
| 827 | } |
| 828 | |
| 829 | /* |
| 830 | * vfsmount lock must be held for write |
| 831 | */ |
| 832 | static void detach_mnt(struct mount *mnt, struct path *old_path) |
| 833 | { |
| 834 | old_path->dentry = mnt->mnt_mountpoint; |
| 835 | old_path->mnt = &mnt->mnt_parent->mnt; |
| 836 | unhash_mnt(mnt); |
| 837 | } |
| 838 | |
| 839 | /* |
| 840 | * vfsmount lock must be held for write |
| 841 | */ |
| 842 | static void umount_mnt(struct mount *mnt) |
| 843 | { |
| 844 | /* old mountpoint will be dropped when we can do that */ |
| 845 | mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; |
| 846 | unhash_mnt(mnt); |
| 847 | } |
| 848 | |
| 849 | /* |
| 850 | * vfsmount lock must be held for write |
| 851 | */ |
| 852 | void mnt_set_mountpoint(struct mount *mnt, |
| 853 | struct mountpoint *mp, |
| 854 | struct mount *child_mnt) |
| 855 | { |
| 856 | mp->m_count++; |
| 857 | mnt_add_count(mnt, 1); /* essentially, that's mntget */ |
| 858 | child_mnt->mnt_mountpoint = dget(mp->m_dentry); |
| 859 | child_mnt->mnt_parent = mnt; |
| 860 | child_mnt->mnt_mp = mp; |
| 861 | hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); |
| 862 | } |
| 863 | |
| 864 | static void __attach_mnt(struct mount *mnt, struct mount *parent) |
| 865 | { |
| 866 | hlist_add_head_rcu(&mnt->mnt_hash, |
| 867 | m_hash(&parent->mnt, mnt->mnt_mountpoint)); |
| 868 | list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); |
| 869 | } |
| 870 | |
| 871 | /* |
| 872 | * vfsmount lock must be held for write |
| 873 | */ |
| 874 | static void attach_mnt(struct mount *mnt, |
| 875 | struct mount *parent, |
| 876 | struct mountpoint *mp) |
| 877 | { |
| 878 | mnt_set_mountpoint(parent, mp, mnt); |
| 879 | __attach_mnt(mnt, parent); |
| 880 | } |
| 881 | |
| 882 | void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) |
| 883 | { |
| 884 | struct mountpoint *old_mp = mnt->mnt_mp; |
| 885 | struct dentry *old_mountpoint = mnt->mnt_mountpoint; |
| 886 | struct mount *old_parent = mnt->mnt_parent; |
| 887 | |
| 888 | list_del_init(&mnt->mnt_child); |
| 889 | hlist_del_init(&mnt->mnt_mp_list); |
| 890 | hlist_del_init_rcu(&mnt->mnt_hash); |
| 891 | |
| 892 | attach_mnt(mnt, parent, mp); |
| 893 | |
| 894 | put_mountpoint(old_mp); |
| 895 | |
| 896 | /* |
| 897 | * Safely avoid even the suggestion this code might sleep or |
| 898 | * lock the mount hash by taking advantage of the knowledge that |
| 899 | * mnt_change_mountpoint will not release the final reference |
| 900 | * to a mountpoint. |
| 901 | * |
| 902 | * During mounting, the mount passed in as the parent mount will |
| 903 | * continue to use the old mountpoint and during unmounting, the |
| 904 | * old mountpoint will continue to exist until namespace_unlock, |
| 905 | * which happens well after mnt_change_mountpoint. |
| 906 | */ |
| 907 | spin_lock(&old_mountpoint->d_lock); |
| 908 | old_mountpoint->d_lockref.count--; |
| 909 | spin_unlock(&old_mountpoint->d_lock); |
| 910 | |
| 911 | mnt_add_count(old_parent, -1); |
| 912 | } |
| 913 | |
| 914 | /* |
| 915 | * vfsmount lock must be held for write |
| 916 | */ |
| 917 | static void commit_tree(struct mount *mnt) |
| 918 | { |
| 919 | struct mount *parent = mnt->mnt_parent; |
| 920 | struct mount *m; |
| 921 | LIST_HEAD(head); |
| 922 | struct mnt_namespace *n = parent->mnt_ns; |
| 923 | |
| 924 | BUG_ON(parent == mnt); |
| 925 | |
| 926 | list_add_tail(&head, &mnt->mnt_list); |
| 927 | list_for_each_entry(m, &head, mnt_list) |
| 928 | m->mnt_ns = n; |
| 929 | |
| 930 | list_splice(&head, n->list.prev); |
| 931 | |
| 932 | n->mounts += n->pending_mounts; |
| 933 | n->pending_mounts = 0; |
| 934 | |
| 935 | __attach_mnt(mnt, parent); |
| 936 | touch_mnt_namespace(n); |
| 937 | } |
| 938 | |
| 939 | static struct mount *next_mnt(struct mount *p, struct mount *root) |
| 940 | { |
| 941 | struct list_head *next = p->mnt_mounts.next; |
| 942 | if (next == &p->mnt_mounts) { |
| 943 | while (1) { |
| 944 | if (p == root) |
| 945 | return NULL; |
| 946 | next = p->mnt_child.next; |
| 947 | if (next != &p->mnt_parent->mnt_mounts) |
| 948 | break; |
| 949 | p = p->mnt_parent; |
| 950 | } |
| 951 | } |
| 952 | return list_entry(next, struct mount, mnt_child); |
| 953 | } |
| 954 | |
| 955 | static struct mount *skip_mnt_tree(struct mount *p) |
| 956 | { |
| 957 | struct list_head *prev = p->mnt_mounts.prev; |
| 958 | while (prev != &p->mnt_mounts) { |
| 959 | p = list_entry(prev, struct mount, mnt_child); |
| 960 | prev = p->mnt_mounts.prev; |
| 961 | } |
| 962 | return p; |
| 963 | } |
| 964 | |
| 965 | struct vfsmount * |
| 966 | vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) |
| 967 | { |
| 968 | struct mount *mnt; |
| 969 | struct dentry *root; |
| 970 | |
| 971 | if (!type) |
| 972 | return ERR_PTR(-ENODEV); |
| 973 | |
| 974 | mnt = alloc_vfsmnt(name); |
| 975 | if (!mnt) |
| 976 | return ERR_PTR(-ENOMEM); |
| 977 | |
| 978 | if (flags & MS_KERNMOUNT) |
| 979 | mnt->mnt.mnt_flags = MNT_INTERNAL; |
| 980 | |
| 981 | root = mount_fs(type, flags, name, data); |
| 982 | if (IS_ERR(root)) { |
| 983 | mnt_free_id(mnt); |
| 984 | free_vfsmnt(mnt); |
| 985 | return ERR_CAST(root); |
| 986 | } |
| 987 | |
| 988 | mnt->mnt.mnt_root = root; |
| 989 | mnt->mnt.mnt_sb = root->d_sb; |
| 990 | mnt->mnt_mountpoint = mnt->mnt.mnt_root; |
| 991 | mnt->mnt_parent = mnt; |
| 992 | lock_mount_hash(); |
| 993 | list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); |
| 994 | unlock_mount_hash(); |
| 995 | return &mnt->mnt; |
| 996 | } |
| 997 | EXPORT_SYMBOL_GPL(vfs_kern_mount); |
| 998 | |
| 999 | static struct mount *clone_mnt(struct mount *old, struct dentry *root, |
| 1000 | int flag) |
| 1001 | { |
| 1002 | struct super_block *sb = old->mnt.mnt_sb; |
| 1003 | struct mount *mnt; |
| 1004 | int err; |
| 1005 | |
| 1006 | mnt = alloc_vfsmnt(old->mnt_devname); |
| 1007 | if (!mnt) |
| 1008 | return ERR_PTR(-ENOMEM); |
| 1009 | |
| 1010 | if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) |
| 1011 | mnt->mnt_group_id = 0; /* not a peer of original */ |
| 1012 | else |
| 1013 | mnt->mnt_group_id = old->mnt_group_id; |
| 1014 | |
| 1015 | if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { |
| 1016 | err = mnt_alloc_group_id(mnt); |
| 1017 | if (err) |
| 1018 | goto out_free; |
| 1019 | } |
| 1020 | |
| 1021 | mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); |
| 1022 | /* Don't allow unprivileged users to change mount flags */ |
| 1023 | if (flag & CL_UNPRIVILEGED) { |
| 1024 | mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; |
| 1025 | |
| 1026 | if (mnt->mnt.mnt_flags & MNT_READONLY) |
| 1027 | mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; |
| 1028 | |
| 1029 | if (mnt->mnt.mnt_flags & MNT_NODEV) |
| 1030 | mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; |
| 1031 | |
| 1032 | if (mnt->mnt.mnt_flags & MNT_NOSUID) |
| 1033 | mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; |
| 1034 | |
| 1035 | if (mnt->mnt.mnt_flags & MNT_NOEXEC) |
| 1036 | mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; |
| 1037 | } |
| 1038 | |
| 1039 | /* Don't allow unprivileged users to reveal what is under a mount */ |
| 1040 | if ((flag & CL_UNPRIVILEGED) && |
| 1041 | (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) |
| 1042 | mnt->mnt.mnt_flags |= MNT_LOCKED; |
| 1043 | |
| 1044 | atomic_inc(&sb->s_active); |
| 1045 | mnt->mnt.mnt_sb = sb; |
| 1046 | mnt->mnt.mnt_root = dget(root); |
| 1047 | mnt->mnt_mountpoint = mnt->mnt.mnt_root; |
| 1048 | mnt->mnt_parent = mnt; |
| 1049 | lock_mount_hash(); |
| 1050 | list_add_tail(&mnt->mnt_instance, &sb->s_mounts); |
| 1051 | unlock_mount_hash(); |
| 1052 | |
| 1053 | if ((flag & CL_SLAVE) || |
| 1054 | ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { |
| 1055 | list_add(&mnt->mnt_slave, &old->mnt_slave_list); |
| 1056 | mnt->mnt_master = old; |
| 1057 | CLEAR_MNT_SHARED(mnt); |
| 1058 | } else if (!(flag & CL_PRIVATE)) { |
| 1059 | if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) |
| 1060 | list_add(&mnt->mnt_share, &old->mnt_share); |
| 1061 | if (IS_MNT_SLAVE(old)) |
| 1062 | list_add(&mnt->mnt_slave, &old->mnt_slave); |
| 1063 | mnt->mnt_master = old->mnt_master; |
| 1064 | } |
| 1065 | if (flag & CL_MAKE_SHARED) |
| 1066 | set_mnt_shared(mnt); |
| 1067 | |
| 1068 | /* stick the duplicate mount on the same expiry list |
| 1069 | * as the original if that was on one */ |
| 1070 | if (flag & CL_EXPIRE) { |
| 1071 | if (!list_empty(&old->mnt_expire)) |
| 1072 | list_add(&mnt->mnt_expire, &old->mnt_expire); |
| 1073 | } |
| 1074 | |
| 1075 | return mnt; |
| 1076 | |
| 1077 | out_free: |
| 1078 | mnt_free_id(mnt); |
| 1079 | free_vfsmnt(mnt); |
| 1080 | return ERR_PTR(err); |
| 1081 | } |
| 1082 | |
| 1083 | static void cleanup_mnt(struct mount *mnt) |
| 1084 | { |
| 1085 | /* |
| 1086 | * This probably indicates that somebody messed |
| 1087 | * up a mnt_want/drop_write() pair. If this |
| 1088 | * happens, the filesystem was probably unable |
| 1089 | * to make r/w->r/o transitions. |
| 1090 | */ |
| 1091 | /* |
| 1092 | * The locking used to deal with mnt_count decrement provides barriers, |
| 1093 | * so mnt_get_writers() below is safe. |
| 1094 | */ |
| 1095 | WARN_ON(mnt_get_writers(mnt)); |
| 1096 | if (unlikely(mnt->mnt_pins.first)) |
| 1097 | mnt_pin_kill(mnt); |
| 1098 | fsnotify_vfsmount_delete(&mnt->mnt); |
| 1099 | dput(mnt->mnt.mnt_root); |
| 1100 | deactivate_super(mnt->mnt.mnt_sb); |
| 1101 | mnt_free_id(mnt); |
| 1102 | call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); |
| 1103 | } |
| 1104 | |
| 1105 | static void __cleanup_mnt(struct rcu_head *head) |
| 1106 | { |
| 1107 | cleanup_mnt(container_of(head, struct mount, mnt_rcu)); |
| 1108 | } |
| 1109 | |
| 1110 | static LLIST_HEAD(delayed_mntput_list); |
| 1111 | static void delayed_mntput(struct work_struct *unused) |
| 1112 | { |
| 1113 | struct llist_node *node = llist_del_all(&delayed_mntput_list); |
| 1114 | struct llist_node *next; |
| 1115 | |
| 1116 | for (; node; node = next) { |
| 1117 | next = llist_next(node); |
| 1118 | cleanup_mnt(llist_entry(node, struct mount, mnt_llist)); |
| 1119 | } |
| 1120 | } |
| 1121 | static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); |
| 1122 | |
| 1123 | static void mntput_no_expire(struct mount *mnt) |
| 1124 | { |
| 1125 | rcu_read_lock(); |
| 1126 | mnt_add_count(mnt, -1); |
| 1127 | if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ |
| 1128 | rcu_read_unlock(); |
| 1129 | return; |
| 1130 | } |
| 1131 | lock_mount_hash(); |
| 1132 | if (mnt_get_count(mnt)) { |
| 1133 | rcu_read_unlock(); |
| 1134 | unlock_mount_hash(); |
| 1135 | return; |
| 1136 | } |
| 1137 | if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { |
| 1138 | rcu_read_unlock(); |
| 1139 | unlock_mount_hash(); |
| 1140 | return; |
| 1141 | } |
| 1142 | mnt->mnt.mnt_flags |= MNT_DOOMED; |
| 1143 | rcu_read_unlock(); |
| 1144 | |
| 1145 | list_del(&mnt->mnt_instance); |
| 1146 | |
| 1147 | if (unlikely(!list_empty(&mnt->mnt_mounts))) { |
| 1148 | struct mount *p, *tmp; |
| 1149 | list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { |
| 1150 | umount_mnt(p); |
| 1151 | } |
| 1152 | } |
| 1153 | unlock_mount_hash(); |
| 1154 | |
| 1155 | if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { |
| 1156 | struct task_struct *task = current; |
| 1157 | if (likely(!(task->flags & PF_KTHREAD))) { |
| 1158 | init_task_work(&mnt->mnt_rcu, __cleanup_mnt); |
| 1159 | if (!task_work_add(task, &mnt->mnt_rcu, true)) |
| 1160 | return; |
| 1161 | } |
| 1162 | if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) |
| 1163 | schedule_delayed_work(&delayed_mntput_work, 1); |
| 1164 | return; |
| 1165 | } |
| 1166 | cleanup_mnt(mnt); |
| 1167 | } |
| 1168 | |
| 1169 | void mntput(struct vfsmount *mnt) |
| 1170 | { |
| 1171 | if (mnt) { |
| 1172 | struct mount *m = real_mount(mnt); |
| 1173 | /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ |
| 1174 | if (unlikely(m->mnt_expiry_mark)) |
| 1175 | m->mnt_expiry_mark = 0; |
| 1176 | mntput_no_expire(m); |
| 1177 | } |
| 1178 | } |
| 1179 | EXPORT_SYMBOL(mntput); |
| 1180 | |
| 1181 | struct vfsmount *mntget(struct vfsmount *mnt) |
| 1182 | { |
| 1183 | if (mnt) |
| 1184 | mnt_add_count(real_mount(mnt), 1); |
| 1185 | return mnt; |
| 1186 | } |
| 1187 | EXPORT_SYMBOL(mntget); |
| 1188 | |
| 1189 | struct vfsmount *mnt_clone_internal(struct path *path) |
| 1190 | { |
| 1191 | struct mount *p; |
| 1192 | p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); |
| 1193 | if (IS_ERR(p)) |
| 1194 | return ERR_CAST(p); |
| 1195 | p->mnt.mnt_flags |= MNT_INTERNAL; |
| 1196 | return &p->mnt; |
| 1197 | } |
| 1198 | |
| 1199 | static inline void mangle(struct seq_file *m, const char *s) |
| 1200 | { |
| 1201 | seq_escape(m, s, " \t\n\\"); |
| 1202 | } |
| 1203 | |
| 1204 | /* |
| 1205 | * Simple .show_options callback for filesystems which don't want to |
| 1206 | * implement more complex mount option showing. |
| 1207 | * |
| 1208 | * See also save_mount_options(). |
| 1209 | */ |
| 1210 | int generic_show_options(struct seq_file *m, struct dentry *root) |
| 1211 | { |
| 1212 | const char *options; |
| 1213 | |
| 1214 | rcu_read_lock(); |
| 1215 | options = rcu_dereference(root->d_sb->s_options); |
| 1216 | |
| 1217 | if (options != NULL && options[0]) { |
| 1218 | seq_putc(m, ','); |
| 1219 | mangle(m, options); |
| 1220 | } |
| 1221 | rcu_read_unlock(); |
| 1222 | |
| 1223 | return 0; |
| 1224 | } |
| 1225 | EXPORT_SYMBOL(generic_show_options); |
| 1226 | |
| 1227 | /* |
| 1228 | * If filesystem uses generic_show_options(), this function should be |
| 1229 | * called from the fill_super() callback. |
| 1230 | * |
| 1231 | * The .remount_fs callback usually needs to be handled in a special |
| 1232 | * way, to make sure, that previous options are not overwritten if the |
| 1233 | * remount fails. |
| 1234 | * |
| 1235 | * Also note, that if the filesystem's .remount_fs function doesn't |
| 1236 | * reset all options to their default value, but changes only newly |
| 1237 | * given options, then the displayed options will not reflect reality |
| 1238 | * any more. |
| 1239 | */ |
| 1240 | void save_mount_options(struct super_block *sb, char *options) |
| 1241 | { |
| 1242 | BUG_ON(sb->s_options); |
| 1243 | rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); |
| 1244 | } |
| 1245 | EXPORT_SYMBOL(save_mount_options); |
| 1246 | |
| 1247 | void replace_mount_options(struct super_block *sb, char *options) |
| 1248 | { |
| 1249 | char *old = sb->s_options; |
| 1250 | rcu_assign_pointer(sb->s_options, options); |
| 1251 | if (old) { |
| 1252 | synchronize_rcu(); |
| 1253 | kfree(old); |
| 1254 | } |
| 1255 | } |
| 1256 | EXPORT_SYMBOL(replace_mount_options); |
| 1257 | |
| 1258 | #ifdef CONFIG_PROC_FS |
| 1259 | /* iterator; we want it to have access to namespace_sem, thus here... */ |
| 1260 | static void *m_start(struct seq_file *m, loff_t *pos) |
| 1261 | { |
| 1262 | struct proc_mounts *p = m->private; |
| 1263 | |
| 1264 | down_read(&namespace_sem); |
| 1265 | if (p->cached_event == p->ns->event) { |
| 1266 | void *v = p->cached_mount; |
| 1267 | if (*pos == p->cached_index) |
| 1268 | return v; |
| 1269 | if (*pos == p->cached_index + 1) { |
| 1270 | v = seq_list_next(v, &p->ns->list, &p->cached_index); |
| 1271 | return p->cached_mount = v; |
| 1272 | } |
| 1273 | } |
| 1274 | |
| 1275 | p->cached_event = p->ns->event; |
| 1276 | p->cached_mount = seq_list_start(&p->ns->list, *pos); |
| 1277 | p->cached_index = *pos; |
| 1278 | return p->cached_mount; |
| 1279 | } |
| 1280 | |
| 1281 | static void *m_next(struct seq_file *m, void *v, loff_t *pos) |
| 1282 | { |
| 1283 | struct proc_mounts *p = m->private; |
| 1284 | |
| 1285 | p->cached_mount = seq_list_next(v, &p->ns->list, pos); |
| 1286 | p->cached_index = *pos; |
| 1287 | return p->cached_mount; |
| 1288 | } |
| 1289 | |
| 1290 | static void m_stop(struct seq_file *m, void *v) |
| 1291 | { |
| 1292 | up_read(&namespace_sem); |
| 1293 | } |
| 1294 | |
| 1295 | static int m_show(struct seq_file *m, void *v) |
| 1296 | { |
| 1297 | struct proc_mounts *p = m->private; |
| 1298 | struct mount *r = list_entry(v, struct mount, mnt_list); |
| 1299 | return p->show(m, &r->mnt); |
| 1300 | } |
| 1301 | |
| 1302 | const struct seq_operations mounts_op = { |
| 1303 | .start = m_start, |
| 1304 | .next = m_next, |
| 1305 | .stop = m_stop, |
| 1306 | .show = m_show, |
| 1307 | }; |
| 1308 | #endif /* CONFIG_PROC_FS */ |
| 1309 | |
| 1310 | /** |
| 1311 | * may_umount_tree - check if a mount tree is busy |
| 1312 | * @mnt: root of mount tree |
| 1313 | * |
| 1314 | * This is called to check if a tree of mounts has any |
| 1315 | * open files, pwds, chroots or sub mounts that are |
| 1316 | * busy. |
| 1317 | */ |
| 1318 | int may_umount_tree(struct vfsmount *m) |
| 1319 | { |
| 1320 | struct mount *mnt = real_mount(m); |
| 1321 | int actual_refs = 0; |
| 1322 | int minimum_refs = 0; |
| 1323 | struct mount *p; |
| 1324 | BUG_ON(!m); |
| 1325 | |
| 1326 | /* write lock needed for mnt_get_count */ |
| 1327 | lock_mount_hash(); |
| 1328 | for (p = mnt; p; p = next_mnt(p, mnt)) { |
| 1329 | actual_refs += mnt_get_count(p); |
| 1330 | minimum_refs += 2; |
| 1331 | } |
| 1332 | unlock_mount_hash(); |
| 1333 | |
| 1334 | if (actual_refs > minimum_refs) |
| 1335 | return 0; |
| 1336 | |
| 1337 | return 1; |
| 1338 | } |
| 1339 | |
| 1340 | EXPORT_SYMBOL(may_umount_tree); |
| 1341 | |
| 1342 | /** |
| 1343 | * may_umount - check if a mount point is busy |
| 1344 | * @mnt: root of mount |
| 1345 | * |
| 1346 | * This is called to check if a mount point has any |
| 1347 | * open files, pwds, chroots or sub mounts. If the |
| 1348 | * mount has sub mounts this will return busy |
| 1349 | * regardless of whether the sub mounts are busy. |
| 1350 | * |
| 1351 | * Doesn't take quota and stuff into account. IOW, in some cases it will |
| 1352 | * give false negatives. The main reason why it's here is that we need |
| 1353 | * a non-destructive way to look for easily umountable filesystems. |
| 1354 | */ |
| 1355 | int may_umount(struct vfsmount *mnt) |
| 1356 | { |
| 1357 | int ret = 1; |
| 1358 | down_read(&namespace_sem); |
| 1359 | lock_mount_hash(); |
| 1360 | if (propagate_mount_busy(real_mount(mnt), 2)) |
| 1361 | ret = 0; |
| 1362 | unlock_mount_hash(); |
| 1363 | up_read(&namespace_sem); |
| 1364 | return ret; |
| 1365 | } |
| 1366 | |
| 1367 | EXPORT_SYMBOL(may_umount); |
| 1368 | |
| 1369 | static HLIST_HEAD(unmounted); /* protected by namespace_sem */ |
| 1370 | |
| 1371 | static void namespace_unlock(void) |
| 1372 | { |
| 1373 | struct hlist_head head; |
| 1374 | |
| 1375 | hlist_move_list(&unmounted, &head); |
| 1376 | |
| 1377 | up_write(&namespace_sem); |
| 1378 | |
| 1379 | if (likely(hlist_empty(&head))) |
| 1380 | return; |
| 1381 | |
| 1382 | synchronize_rcu(); |
| 1383 | |
| 1384 | group_pin_kill(&head); |
| 1385 | } |
| 1386 | |
| 1387 | static inline void namespace_lock(void) |
| 1388 | { |
| 1389 | down_write(&namespace_sem); |
| 1390 | } |
| 1391 | |
| 1392 | enum umount_tree_flags { |
| 1393 | UMOUNT_SYNC = 1, |
| 1394 | UMOUNT_PROPAGATE = 2, |
| 1395 | UMOUNT_CONNECTED = 4, |
| 1396 | }; |
| 1397 | |
| 1398 | static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) |
| 1399 | { |
| 1400 | /* Leaving mounts connected is only valid for lazy umounts */ |
| 1401 | if (how & UMOUNT_SYNC) |
| 1402 | return true; |
| 1403 | |
| 1404 | /* A mount without a parent has nothing to be connected to */ |
| 1405 | if (!mnt_has_parent(mnt)) |
| 1406 | return true; |
| 1407 | |
| 1408 | /* Because the reference counting rules change when mounts are |
| 1409 | * unmounted and connected, umounted mounts may not be |
| 1410 | * connected to mounted mounts. |
| 1411 | */ |
| 1412 | if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) |
| 1413 | return true; |
| 1414 | |
| 1415 | /* Has it been requested that the mount remain connected? */ |
| 1416 | if (how & UMOUNT_CONNECTED) |
| 1417 | return false; |
| 1418 | |
| 1419 | /* Is the mount locked such that it needs to remain connected? */ |
| 1420 | if (IS_MNT_LOCKED(mnt)) |
| 1421 | return false; |
| 1422 | |
| 1423 | /* By default disconnect the mount */ |
| 1424 | return true; |
| 1425 | } |
| 1426 | |
| 1427 | /* |
| 1428 | * mount_lock must be held |
| 1429 | * namespace_sem must be held for write |
| 1430 | */ |
| 1431 | static void umount_tree(struct mount *mnt, enum umount_tree_flags how) |
| 1432 | { |
| 1433 | LIST_HEAD(tmp_list); |
| 1434 | struct mount *p; |
| 1435 | |
| 1436 | if (how & UMOUNT_PROPAGATE) |
| 1437 | propagate_mount_unlock(mnt); |
| 1438 | |
| 1439 | /* Gather the mounts to umount */ |
| 1440 | for (p = mnt; p; p = next_mnt(p, mnt)) { |
| 1441 | p->mnt.mnt_flags |= MNT_UMOUNT; |
| 1442 | list_move(&p->mnt_list, &tmp_list); |
| 1443 | } |
| 1444 | |
| 1445 | /* Hide the mounts from mnt_mounts */ |
| 1446 | list_for_each_entry(p, &tmp_list, mnt_list) { |
| 1447 | list_del_init(&p->mnt_child); |
| 1448 | } |
| 1449 | |
| 1450 | /* Add propogated mounts to the tmp_list */ |
| 1451 | if (how & UMOUNT_PROPAGATE) |
| 1452 | propagate_umount(&tmp_list); |
| 1453 | |
| 1454 | while (!list_empty(&tmp_list)) { |
| 1455 | struct mnt_namespace *ns; |
| 1456 | bool disconnect; |
| 1457 | p = list_first_entry(&tmp_list, struct mount, mnt_list); |
| 1458 | list_del_init(&p->mnt_expire); |
| 1459 | list_del_init(&p->mnt_list); |
| 1460 | ns = p->mnt_ns; |
| 1461 | if (ns) { |
| 1462 | ns->mounts--; |
| 1463 | __touch_mnt_namespace(ns); |
| 1464 | } |
| 1465 | p->mnt_ns = NULL; |
| 1466 | if (how & UMOUNT_SYNC) |
| 1467 | p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; |
| 1468 | |
| 1469 | disconnect = disconnect_mount(p, how); |
| 1470 | |
| 1471 | pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, |
| 1472 | disconnect ? &unmounted : NULL); |
| 1473 | if (mnt_has_parent(p)) { |
| 1474 | mnt_add_count(p->mnt_parent, -1); |
| 1475 | if (!disconnect) { |
| 1476 | /* Don't forget about p */ |
| 1477 | list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); |
| 1478 | } else { |
| 1479 | umount_mnt(p); |
| 1480 | } |
| 1481 | } |
| 1482 | change_mnt_propagation(p, MS_PRIVATE); |
| 1483 | } |
| 1484 | } |
| 1485 | |
| 1486 | static void shrink_submounts(struct mount *mnt); |
| 1487 | |
| 1488 | static int do_umount(struct mount *mnt, int flags) |
| 1489 | { |
| 1490 | struct super_block *sb = mnt->mnt.mnt_sb; |
| 1491 | int retval; |
| 1492 | |
| 1493 | retval = security_sb_umount(&mnt->mnt, flags); |
| 1494 | if (retval) |
| 1495 | return retval; |
| 1496 | |
| 1497 | /* |
| 1498 | * Allow userspace to request a mountpoint be expired rather than |
| 1499 | * unmounting unconditionally. Unmount only happens if: |
| 1500 | * (1) the mark is already set (the mark is cleared by mntput()) |
| 1501 | * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] |
| 1502 | */ |
| 1503 | if (flags & MNT_EXPIRE) { |
| 1504 | if (&mnt->mnt == current->fs->root.mnt || |
| 1505 | flags & (MNT_FORCE | MNT_DETACH)) |
| 1506 | return -EINVAL; |
| 1507 | |
| 1508 | /* |
| 1509 | * probably don't strictly need the lock here if we examined |
| 1510 | * all race cases, but it's a slowpath. |
| 1511 | */ |
| 1512 | lock_mount_hash(); |
| 1513 | if (mnt_get_count(mnt) != 2) { |
| 1514 | unlock_mount_hash(); |
| 1515 | return -EBUSY; |
| 1516 | } |
| 1517 | unlock_mount_hash(); |
| 1518 | |
| 1519 | if (!xchg(&mnt->mnt_expiry_mark, 1)) |
| 1520 | return -EAGAIN; |
| 1521 | } |
| 1522 | |
| 1523 | /* |
| 1524 | * If we may have to abort operations to get out of this |
| 1525 | * mount, and they will themselves hold resources we must |
| 1526 | * allow the fs to do things. In the Unix tradition of |
| 1527 | * 'Gee thats tricky lets do it in userspace' the umount_begin |
| 1528 | * might fail to complete on the first run through as other tasks |
| 1529 | * must return, and the like. Thats for the mount program to worry |
| 1530 | * about for the moment. |
| 1531 | */ |
| 1532 | |
| 1533 | if (flags & MNT_FORCE && sb->s_op->umount_begin) { |
| 1534 | sb->s_op->umount_begin(sb); |
| 1535 | } |
| 1536 | |
| 1537 | /* |
| 1538 | * No sense to grab the lock for this test, but test itself looks |
| 1539 | * somewhat bogus. Suggestions for better replacement? |
| 1540 | * Ho-hum... In principle, we might treat that as umount + switch |
| 1541 | * to rootfs. GC would eventually take care of the old vfsmount. |
| 1542 | * Actually it makes sense, especially if rootfs would contain a |
| 1543 | * /reboot - static binary that would close all descriptors and |
| 1544 | * call reboot(9). Then init(8) could umount root and exec /reboot. |
| 1545 | */ |
| 1546 | if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { |
| 1547 | /* |
| 1548 | * Special case for "unmounting" root ... |
| 1549 | * we just try to remount it readonly. |
| 1550 | */ |
| 1551 | if (!capable(CAP_SYS_ADMIN)) |
| 1552 | return -EPERM; |
| 1553 | down_write(&sb->s_umount); |
| 1554 | if (!(sb->s_flags & MS_RDONLY)) |
| 1555 | retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); |
| 1556 | up_write(&sb->s_umount); |
| 1557 | return retval; |
| 1558 | } |
| 1559 | |
| 1560 | namespace_lock(); |
| 1561 | lock_mount_hash(); |
| 1562 | event++; |
| 1563 | |
| 1564 | if (flags & MNT_DETACH) { |
| 1565 | if (!list_empty(&mnt->mnt_list)) |
| 1566 | umount_tree(mnt, UMOUNT_PROPAGATE); |
| 1567 | retval = 0; |
| 1568 | } else { |
| 1569 | shrink_submounts(mnt); |
| 1570 | retval = -EBUSY; |
| 1571 | if (!propagate_mount_busy(mnt, 2)) { |
| 1572 | if (!list_empty(&mnt->mnt_list)) |
| 1573 | umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); |
| 1574 | retval = 0; |
| 1575 | } |
| 1576 | } |
| 1577 | unlock_mount_hash(); |
| 1578 | namespace_unlock(); |
| 1579 | return retval; |
| 1580 | } |
| 1581 | |
| 1582 | /* |
| 1583 | * __detach_mounts - lazily unmount all mounts on the specified dentry |
| 1584 | * |
| 1585 | * During unlink, rmdir, and d_drop it is possible to loose the path |
| 1586 | * to an existing mountpoint, and wind up leaking the mount. |
| 1587 | * detach_mounts allows lazily unmounting those mounts instead of |
| 1588 | * leaking them. |
| 1589 | * |
| 1590 | * The caller may hold dentry->d_inode->i_mutex. |
| 1591 | */ |
| 1592 | void __detach_mounts(struct dentry *dentry) |
| 1593 | { |
| 1594 | struct mountpoint *mp; |
| 1595 | struct mount *mnt; |
| 1596 | |
| 1597 | namespace_lock(); |
| 1598 | lock_mount_hash(); |
| 1599 | mp = lookup_mountpoint(dentry); |
| 1600 | if (IS_ERR_OR_NULL(mp)) |
| 1601 | goto out_unlock; |
| 1602 | |
| 1603 | event++; |
| 1604 | while (!hlist_empty(&mp->m_list)) { |
| 1605 | mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); |
| 1606 | if (mnt->mnt.mnt_flags & MNT_UMOUNT) { |
| 1607 | hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); |
| 1608 | umount_mnt(mnt); |
| 1609 | } |
| 1610 | else umount_tree(mnt, UMOUNT_CONNECTED); |
| 1611 | } |
| 1612 | put_mountpoint(mp); |
| 1613 | out_unlock: |
| 1614 | unlock_mount_hash(); |
| 1615 | namespace_unlock(); |
| 1616 | } |
| 1617 | |
| 1618 | /* |
| 1619 | * Is the caller allowed to modify his namespace? |
| 1620 | */ |
| 1621 | static inline bool may_mount(void) |
| 1622 | { |
| 1623 | return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); |
| 1624 | } |
| 1625 | |
| 1626 | /* |
| 1627 | * Now umount can handle mount points as well as block devices. |
| 1628 | * This is important for filesystems which use unnamed block devices. |
| 1629 | * |
| 1630 | * We now support a flag for forced unmount like the other 'big iron' |
| 1631 | * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD |
| 1632 | */ |
| 1633 | |
| 1634 | SYSCALL_DEFINE2(umount, char __user *, name, int, flags) |
| 1635 | { |
| 1636 | struct path path; |
| 1637 | struct mount *mnt; |
| 1638 | int retval; |
| 1639 | int lookup_flags = 0; |
| 1640 | |
| 1641 | if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) |
| 1642 | return -EINVAL; |
| 1643 | |
| 1644 | if (!may_mount()) |
| 1645 | return -EPERM; |
| 1646 | |
| 1647 | if (!(flags & UMOUNT_NOFOLLOW)) |
| 1648 | lookup_flags |= LOOKUP_FOLLOW; |
| 1649 | |
| 1650 | retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); |
| 1651 | if (retval) |
| 1652 | goto out; |
| 1653 | mnt = real_mount(path.mnt); |
| 1654 | retval = -EINVAL; |
| 1655 | if (path.dentry != path.mnt->mnt_root) |
| 1656 | goto dput_and_out; |
| 1657 | if (!check_mnt(mnt)) |
| 1658 | goto dput_and_out; |
| 1659 | if (mnt->mnt.mnt_flags & MNT_LOCKED) |
| 1660 | goto dput_and_out; |
| 1661 | retval = -EPERM; |
| 1662 | if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) |
| 1663 | goto dput_and_out; |
| 1664 | |
| 1665 | retval = do_umount(mnt, flags); |
| 1666 | dput_and_out: |
| 1667 | /* we mustn't call path_put() as that would clear mnt_expiry_mark */ |
| 1668 | dput(path.dentry); |
| 1669 | mntput_no_expire(mnt); |
| 1670 | out: |
| 1671 | return retval; |
| 1672 | } |
| 1673 | |
| 1674 | #ifdef __ARCH_WANT_SYS_OLDUMOUNT |
| 1675 | |
| 1676 | /* |
| 1677 | * The 2.0 compatible umount. No flags. |
| 1678 | */ |
| 1679 | SYSCALL_DEFINE1(oldumount, char __user *, name) |
| 1680 | { |
| 1681 | return sys_umount(name, 0); |
| 1682 | } |
| 1683 | |
| 1684 | #endif |
| 1685 | |
| 1686 | static bool is_mnt_ns_file(struct dentry *dentry) |
| 1687 | { |
| 1688 | /* Is this a proxy for a mount namespace? */ |
| 1689 | return dentry->d_op == &ns_dentry_operations && |
| 1690 | dentry->d_fsdata == &mntns_operations; |
| 1691 | } |
| 1692 | |
| 1693 | struct mnt_namespace *to_mnt_ns(struct ns_common *ns) |
| 1694 | { |
| 1695 | return container_of(ns, struct mnt_namespace, ns); |
| 1696 | } |
| 1697 | |
| 1698 | static bool mnt_ns_loop(struct dentry *dentry) |
| 1699 | { |
| 1700 | /* Could bind mounting the mount namespace inode cause a |
| 1701 | * mount namespace loop? |
| 1702 | */ |
| 1703 | struct mnt_namespace *mnt_ns; |
| 1704 | if (!is_mnt_ns_file(dentry)) |
| 1705 | return false; |
| 1706 | |
| 1707 | mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); |
| 1708 | return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; |
| 1709 | } |
| 1710 | |
| 1711 | struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, |
| 1712 | int flag) |
| 1713 | { |
| 1714 | struct mount *res, *p, *q, *r, *parent; |
| 1715 | |
| 1716 | if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) |
| 1717 | return ERR_PTR(-EINVAL); |
| 1718 | |
| 1719 | if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) |
| 1720 | return ERR_PTR(-EINVAL); |
| 1721 | |
| 1722 | res = q = clone_mnt(mnt, dentry, flag); |
| 1723 | if (IS_ERR(q)) |
| 1724 | return q; |
| 1725 | |
| 1726 | q->mnt_mountpoint = mnt->mnt_mountpoint; |
| 1727 | |
| 1728 | p = mnt; |
| 1729 | list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { |
| 1730 | struct mount *s; |
| 1731 | if (!is_subdir(r->mnt_mountpoint, dentry)) |
| 1732 | continue; |
| 1733 | |
| 1734 | for (s = r; s; s = next_mnt(s, r)) { |
| 1735 | if (!(flag & CL_COPY_UNBINDABLE) && |
| 1736 | IS_MNT_UNBINDABLE(s)) { |
| 1737 | s = skip_mnt_tree(s); |
| 1738 | continue; |
| 1739 | } |
| 1740 | if (!(flag & CL_COPY_MNT_NS_FILE) && |
| 1741 | is_mnt_ns_file(s->mnt.mnt_root)) { |
| 1742 | s = skip_mnt_tree(s); |
| 1743 | continue; |
| 1744 | } |
| 1745 | while (p != s->mnt_parent) { |
| 1746 | p = p->mnt_parent; |
| 1747 | q = q->mnt_parent; |
| 1748 | } |
| 1749 | p = s; |
| 1750 | parent = q; |
| 1751 | q = clone_mnt(p, p->mnt.mnt_root, flag); |
| 1752 | if (IS_ERR(q)) |
| 1753 | goto out; |
| 1754 | lock_mount_hash(); |
| 1755 | list_add_tail(&q->mnt_list, &res->mnt_list); |
| 1756 | attach_mnt(q, parent, p->mnt_mp); |
| 1757 | unlock_mount_hash(); |
| 1758 | } |
| 1759 | } |
| 1760 | return res; |
| 1761 | out: |
| 1762 | if (res) { |
| 1763 | lock_mount_hash(); |
| 1764 | umount_tree(res, UMOUNT_SYNC); |
| 1765 | unlock_mount_hash(); |
| 1766 | } |
| 1767 | return q; |
| 1768 | } |
| 1769 | |
| 1770 | /* Caller should check returned pointer for errors */ |
| 1771 | |
| 1772 | struct vfsmount *collect_mounts(struct path *path) |
| 1773 | { |
| 1774 | struct mount *tree; |
| 1775 | namespace_lock(); |
| 1776 | if (!check_mnt(real_mount(path->mnt))) |
| 1777 | tree = ERR_PTR(-EINVAL); |
| 1778 | else |
| 1779 | tree = copy_tree(real_mount(path->mnt), path->dentry, |
| 1780 | CL_COPY_ALL | CL_PRIVATE); |
| 1781 | namespace_unlock(); |
| 1782 | if (IS_ERR(tree)) |
| 1783 | return ERR_CAST(tree); |
| 1784 | return &tree->mnt; |
| 1785 | } |
| 1786 | |
| 1787 | void drop_collected_mounts(struct vfsmount *mnt) |
| 1788 | { |
| 1789 | namespace_lock(); |
| 1790 | lock_mount_hash(); |
| 1791 | umount_tree(real_mount(mnt), UMOUNT_SYNC); |
| 1792 | unlock_mount_hash(); |
| 1793 | namespace_unlock(); |
| 1794 | } |
| 1795 | |
| 1796 | /** |
| 1797 | * clone_private_mount - create a private clone of a path |
| 1798 | * |
| 1799 | * This creates a new vfsmount, which will be the clone of @path. The new will |
| 1800 | * not be attached anywhere in the namespace and will be private (i.e. changes |
| 1801 | * to the originating mount won't be propagated into this). |
| 1802 | * |
| 1803 | * Release with mntput(). |
| 1804 | */ |
| 1805 | struct vfsmount *clone_private_mount(struct path *path) |
| 1806 | { |
| 1807 | struct mount *old_mnt = real_mount(path->mnt); |
| 1808 | struct mount *new_mnt; |
| 1809 | |
| 1810 | if (IS_MNT_UNBINDABLE(old_mnt)) |
| 1811 | return ERR_PTR(-EINVAL); |
| 1812 | |
| 1813 | down_read(&namespace_sem); |
| 1814 | new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); |
| 1815 | up_read(&namespace_sem); |
| 1816 | if (IS_ERR(new_mnt)) |
| 1817 | return ERR_CAST(new_mnt); |
| 1818 | |
| 1819 | return &new_mnt->mnt; |
| 1820 | } |
| 1821 | EXPORT_SYMBOL_GPL(clone_private_mount); |
| 1822 | |
| 1823 | int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, |
| 1824 | struct vfsmount *root) |
| 1825 | { |
| 1826 | struct mount *mnt; |
| 1827 | int res = f(root, arg); |
| 1828 | if (res) |
| 1829 | return res; |
| 1830 | list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { |
| 1831 | res = f(&mnt->mnt, arg); |
| 1832 | if (res) |
| 1833 | return res; |
| 1834 | } |
| 1835 | return 0; |
| 1836 | } |
| 1837 | |
| 1838 | static void cleanup_group_ids(struct mount *mnt, struct mount *end) |
| 1839 | { |
| 1840 | struct mount *p; |
| 1841 | |
| 1842 | for (p = mnt; p != end; p = next_mnt(p, mnt)) { |
| 1843 | if (p->mnt_group_id && !IS_MNT_SHARED(p)) |
| 1844 | mnt_release_group_id(p); |
| 1845 | } |
| 1846 | } |
| 1847 | |
| 1848 | static int invent_group_ids(struct mount *mnt, bool recurse) |
| 1849 | { |
| 1850 | struct mount *p; |
| 1851 | |
| 1852 | for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { |
| 1853 | if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { |
| 1854 | int err = mnt_alloc_group_id(p); |
| 1855 | if (err) { |
| 1856 | cleanup_group_ids(mnt, p); |
| 1857 | return err; |
| 1858 | } |
| 1859 | } |
| 1860 | } |
| 1861 | |
| 1862 | return 0; |
| 1863 | } |
| 1864 | |
| 1865 | int count_mounts(struct mnt_namespace *ns, struct mount *mnt) |
| 1866 | { |
| 1867 | unsigned int max = READ_ONCE(sysctl_mount_max); |
| 1868 | unsigned int mounts = 0, old, pending, sum; |
| 1869 | struct mount *p; |
| 1870 | |
| 1871 | for (p = mnt; p; p = next_mnt(p, mnt)) |
| 1872 | mounts++; |
| 1873 | |
| 1874 | old = ns->mounts; |
| 1875 | pending = ns->pending_mounts; |
| 1876 | sum = old + pending; |
| 1877 | if ((old > sum) || |
| 1878 | (pending > sum) || |
| 1879 | (max < sum) || |
| 1880 | (mounts > (max - sum))) |
| 1881 | return -ENOSPC; |
| 1882 | |
| 1883 | ns->pending_mounts = pending + mounts; |
| 1884 | return 0; |
| 1885 | } |
| 1886 | |
| 1887 | /* |
| 1888 | * @source_mnt : mount tree to be attached |
| 1889 | * @nd : place the mount tree @source_mnt is attached |
| 1890 | * @parent_nd : if non-null, detach the source_mnt from its parent and |
| 1891 | * store the parent mount and mountpoint dentry. |
| 1892 | * (done when source_mnt is moved) |
| 1893 | * |
| 1894 | * NOTE: in the table below explains the semantics when a source mount |
| 1895 | * of a given type is attached to a destination mount of a given type. |
| 1896 | * --------------------------------------------------------------------------- |
| 1897 | * | BIND MOUNT OPERATION | |
| 1898 | * |************************************************************************** |
| 1899 | * | source-->| shared | private | slave | unbindable | |
| 1900 | * | dest | | | | | |
| 1901 | * | | | | | | | |
| 1902 | * | v | | | | | |
| 1903 | * |************************************************************************** |
| 1904 | * | shared | shared (++) | shared (+) | shared(+++)| invalid | |
| 1905 | * | | | | | | |
| 1906 | * |non-shared| shared (+) | private | slave (*) | invalid | |
| 1907 | * *************************************************************************** |
| 1908 | * A bind operation clones the source mount and mounts the clone on the |
| 1909 | * destination mount. |
| 1910 | * |
| 1911 | * (++) the cloned mount is propagated to all the mounts in the propagation |
| 1912 | * tree of the destination mount and the cloned mount is added to |
| 1913 | * the peer group of the source mount. |
| 1914 | * (+) the cloned mount is created under the destination mount and is marked |
| 1915 | * as shared. The cloned mount is added to the peer group of the source |
| 1916 | * mount. |
| 1917 | * (+++) the mount is propagated to all the mounts in the propagation tree |
| 1918 | * of the destination mount and the cloned mount is made slave |
| 1919 | * of the same master as that of the source mount. The cloned mount |
| 1920 | * is marked as 'shared and slave'. |
| 1921 | * (*) the cloned mount is made a slave of the same master as that of the |
| 1922 | * source mount. |
| 1923 | * |
| 1924 | * --------------------------------------------------------------------------- |
| 1925 | * | MOVE MOUNT OPERATION | |
| 1926 | * |************************************************************************** |
| 1927 | * | source-->| shared | private | slave | unbindable | |
| 1928 | * | dest | | | | | |
| 1929 | * | | | | | | | |
| 1930 | * | v | | | | | |
| 1931 | * |************************************************************************** |
| 1932 | * | shared | shared (+) | shared (+) | shared(+++) | invalid | |
| 1933 | * | | | | | | |
| 1934 | * |non-shared| shared (+*) | private | slave (*) | unbindable | |
| 1935 | * *************************************************************************** |
| 1936 | * |
| 1937 | * (+) the mount is moved to the destination. And is then propagated to |
| 1938 | * all the mounts in the propagation tree of the destination mount. |
| 1939 | * (+*) the mount is moved to the destination. |
| 1940 | * (+++) the mount is moved to the destination and is then propagated to |
| 1941 | * all the mounts belonging to the destination mount's propagation tree. |
| 1942 | * the mount is marked as 'shared and slave'. |
| 1943 | * (*) the mount continues to be a slave at the new location. |
| 1944 | * |
| 1945 | * if the source mount is a tree, the operations explained above is |
| 1946 | * applied to each mount in the tree. |
| 1947 | * Must be called without spinlocks held, since this function can sleep |
| 1948 | * in allocations. |
| 1949 | */ |
| 1950 | static int attach_recursive_mnt(struct mount *source_mnt, |
| 1951 | struct mount *dest_mnt, |
| 1952 | struct mountpoint *dest_mp, |
| 1953 | struct path *parent_path) |
| 1954 | { |
| 1955 | HLIST_HEAD(tree_list); |
| 1956 | struct mnt_namespace *ns = dest_mnt->mnt_ns; |
| 1957 | struct mountpoint *smp; |
| 1958 | struct mount *child, *p; |
| 1959 | struct hlist_node *n; |
| 1960 | int err; |
| 1961 | |
| 1962 | /* Preallocate a mountpoint in case the new mounts need |
| 1963 | * to be tucked under other mounts. |
| 1964 | */ |
| 1965 | smp = get_mountpoint(source_mnt->mnt.mnt_root); |
| 1966 | if (IS_ERR(smp)) |
| 1967 | return PTR_ERR(smp); |
| 1968 | |
| 1969 | /* Is there space to add these mounts to the mount namespace? */ |
| 1970 | if (!parent_path) { |
| 1971 | err = count_mounts(ns, source_mnt); |
| 1972 | if (err) |
| 1973 | goto out; |
| 1974 | } |
| 1975 | |
| 1976 | if (IS_MNT_SHARED(dest_mnt)) { |
| 1977 | err = invent_group_ids(source_mnt, true); |
| 1978 | if (err) |
| 1979 | goto out; |
| 1980 | err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); |
| 1981 | lock_mount_hash(); |
| 1982 | if (err) |
| 1983 | goto out_cleanup_ids; |
| 1984 | for (p = source_mnt; p; p = next_mnt(p, source_mnt)) |
| 1985 | set_mnt_shared(p); |
| 1986 | } else { |
| 1987 | lock_mount_hash(); |
| 1988 | } |
| 1989 | if (parent_path) { |
| 1990 | detach_mnt(source_mnt, parent_path); |
| 1991 | attach_mnt(source_mnt, dest_mnt, dest_mp); |
| 1992 | touch_mnt_namespace(source_mnt->mnt_ns); |
| 1993 | } else { |
| 1994 | mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); |
| 1995 | commit_tree(source_mnt); |
| 1996 | } |
| 1997 | |
| 1998 | hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { |
| 1999 | struct mount *q; |
| 2000 | hlist_del_init(&child->mnt_hash); |
| 2001 | q = __lookup_mnt(&child->mnt_parent->mnt, |
| 2002 | child->mnt_mountpoint); |
| 2003 | if (q) |
| 2004 | mnt_change_mountpoint(child, smp, q); |
| 2005 | commit_tree(child); |
| 2006 | } |
| 2007 | put_mountpoint(smp); |
| 2008 | unlock_mount_hash(); |
| 2009 | |
| 2010 | return 0; |
| 2011 | |
| 2012 | out_cleanup_ids: |
| 2013 | while (!hlist_empty(&tree_list)) { |
| 2014 | child = hlist_entry(tree_list.first, struct mount, mnt_hash); |
| 2015 | child->mnt_parent->mnt_ns->pending_mounts = 0; |
| 2016 | umount_tree(child, UMOUNT_SYNC); |
| 2017 | } |
| 2018 | unlock_mount_hash(); |
| 2019 | cleanup_group_ids(source_mnt, NULL); |
| 2020 | out: |
| 2021 | ns->pending_mounts = 0; |
| 2022 | |
| 2023 | read_seqlock_excl(&mount_lock); |
| 2024 | put_mountpoint(smp); |
| 2025 | read_sequnlock_excl(&mount_lock); |
| 2026 | |
| 2027 | return err; |
| 2028 | } |
| 2029 | |
| 2030 | static struct mountpoint *lock_mount(struct path *path) |
| 2031 | { |
| 2032 | struct vfsmount *mnt; |
| 2033 | struct dentry *dentry = path->dentry; |
| 2034 | retry: |
| 2035 | mutex_lock(&dentry->d_inode->i_mutex); |
| 2036 | if (unlikely(cant_mount(dentry))) { |
| 2037 | mutex_unlock(&dentry->d_inode->i_mutex); |
| 2038 | return ERR_PTR(-ENOENT); |
| 2039 | } |
| 2040 | namespace_lock(); |
| 2041 | mnt = lookup_mnt(path); |
| 2042 | if (likely(!mnt)) { |
| 2043 | struct mountpoint *mp = get_mountpoint(dentry); |
| 2044 | if (IS_ERR(mp)) { |
| 2045 | namespace_unlock(); |
| 2046 | mutex_unlock(&dentry->d_inode->i_mutex); |
| 2047 | return mp; |
| 2048 | } |
| 2049 | return mp; |
| 2050 | } |
| 2051 | namespace_unlock(); |
| 2052 | mutex_unlock(&path->dentry->d_inode->i_mutex); |
| 2053 | path_put(path); |
| 2054 | path->mnt = mnt; |
| 2055 | dentry = path->dentry = dget(mnt->mnt_root); |
| 2056 | goto retry; |
| 2057 | } |
| 2058 | |
| 2059 | static void unlock_mount(struct mountpoint *where) |
| 2060 | { |
| 2061 | struct dentry *dentry = where->m_dentry; |
| 2062 | |
| 2063 | read_seqlock_excl(&mount_lock); |
| 2064 | put_mountpoint(where); |
| 2065 | read_sequnlock_excl(&mount_lock); |
| 2066 | |
| 2067 | namespace_unlock(); |
| 2068 | mutex_unlock(&dentry->d_inode->i_mutex); |
| 2069 | } |
| 2070 | |
| 2071 | static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) |
| 2072 | { |
| 2073 | if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) |
| 2074 | return -EINVAL; |
| 2075 | |
| 2076 | if (d_is_dir(mp->m_dentry) != |
| 2077 | d_is_dir(mnt->mnt.mnt_root)) |
| 2078 | return -ENOTDIR; |
| 2079 | |
| 2080 | return attach_recursive_mnt(mnt, p, mp, NULL); |
| 2081 | } |
| 2082 | |
| 2083 | /* |
| 2084 | * Sanity check the flags to change_mnt_propagation. |
| 2085 | */ |
| 2086 | |
| 2087 | static int flags_to_propagation_type(int flags) |
| 2088 | { |
| 2089 | int type = flags & ~(MS_REC | MS_SILENT); |
| 2090 | |
| 2091 | /* Fail if any non-propagation flags are set */ |
| 2092 | if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) |
| 2093 | return 0; |
| 2094 | /* Only one propagation flag should be set */ |
| 2095 | if (!is_power_of_2(type)) |
| 2096 | return 0; |
| 2097 | return type; |
| 2098 | } |
| 2099 | |
| 2100 | /* |
| 2101 | * recursively change the type of the mountpoint. |
| 2102 | */ |
| 2103 | static int do_change_type(struct path *path, int flag) |
| 2104 | { |
| 2105 | struct mount *m; |
| 2106 | struct mount *mnt = real_mount(path->mnt); |
| 2107 | int recurse = flag & MS_REC; |
| 2108 | int type; |
| 2109 | int err = 0; |
| 2110 | |
| 2111 | if (path->dentry != path->mnt->mnt_root) |
| 2112 | return -EINVAL; |
| 2113 | |
| 2114 | type = flags_to_propagation_type(flag); |
| 2115 | if (!type) |
| 2116 | return -EINVAL; |
| 2117 | |
| 2118 | namespace_lock(); |
| 2119 | if (type == MS_SHARED) { |
| 2120 | err = invent_group_ids(mnt, recurse); |
| 2121 | if (err) |
| 2122 | goto out_unlock; |
| 2123 | } |
| 2124 | |
| 2125 | lock_mount_hash(); |
| 2126 | for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) |
| 2127 | change_mnt_propagation(m, type); |
| 2128 | unlock_mount_hash(); |
| 2129 | |
| 2130 | out_unlock: |
| 2131 | namespace_unlock(); |
| 2132 | return err; |
| 2133 | } |
| 2134 | |
| 2135 | static bool has_locked_children(struct mount *mnt, struct dentry *dentry) |
| 2136 | { |
| 2137 | struct mount *child; |
| 2138 | list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { |
| 2139 | if (!is_subdir(child->mnt_mountpoint, dentry)) |
| 2140 | continue; |
| 2141 | |
| 2142 | if (child->mnt.mnt_flags & MNT_LOCKED) |
| 2143 | return true; |
| 2144 | } |
| 2145 | return false; |
| 2146 | } |
| 2147 | |
| 2148 | /* |
| 2149 | * do loopback mount. |
| 2150 | */ |
| 2151 | static int do_loopback(struct path *path, const char *old_name, |
| 2152 | int recurse) |
| 2153 | { |
| 2154 | struct path old_path; |
| 2155 | struct mount *mnt = NULL, *old, *parent; |
| 2156 | struct mountpoint *mp; |
| 2157 | int err; |
| 2158 | if (!old_name || !*old_name) |
| 2159 | return -EINVAL; |
| 2160 | err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); |
| 2161 | if (err) |
| 2162 | return err; |
| 2163 | |
| 2164 | err = -EINVAL; |
| 2165 | if (mnt_ns_loop(old_path.dentry)) |
| 2166 | goto out; |
| 2167 | |
| 2168 | mp = lock_mount(path); |
| 2169 | err = PTR_ERR(mp); |
| 2170 | if (IS_ERR(mp)) |
| 2171 | goto out; |
| 2172 | |
| 2173 | old = real_mount(old_path.mnt); |
| 2174 | parent = real_mount(path->mnt); |
| 2175 | |
| 2176 | err = -EINVAL; |
| 2177 | if (IS_MNT_UNBINDABLE(old)) |
| 2178 | goto out2; |
| 2179 | |
| 2180 | if (!check_mnt(parent)) |
| 2181 | goto out2; |
| 2182 | |
| 2183 | if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) |
| 2184 | goto out2; |
| 2185 | |
| 2186 | if (!recurse && has_locked_children(old, old_path.dentry)) |
| 2187 | goto out2; |
| 2188 | |
| 2189 | if (recurse) |
| 2190 | mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); |
| 2191 | else |
| 2192 | mnt = clone_mnt(old, old_path.dentry, 0); |
| 2193 | |
| 2194 | if (IS_ERR(mnt)) { |
| 2195 | err = PTR_ERR(mnt); |
| 2196 | goto out2; |
| 2197 | } |
| 2198 | |
| 2199 | mnt->mnt.mnt_flags &= ~MNT_LOCKED; |
| 2200 | |
| 2201 | err = graft_tree(mnt, parent, mp); |
| 2202 | if (err) { |
| 2203 | lock_mount_hash(); |
| 2204 | umount_tree(mnt, UMOUNT_SYNC); |
| 2205 | unlock_mount_hash(); |
| 2206 | } |
| 2207 | out2: |
| 2208 | unlock_mount(mp); |
| 2209 | out: |
| 2210 | path_put(&old_path); |
| 2211 | return err; |
| 2212 | } |
| 2213 | |
| 2214 | static int change_mount_flags(struct vfsmount *mnt, int ms_flags) |
| 2215 | { |
| 2216 | int error = 0; |
| 2217 | int readonly_request = 0; |
| 2218 | |
| 2219 | if (ms_flags & MS_RDONLY) |
| 2220 | readonly_request = 1; |
| 2221 | if (readonly_request == __mnt_is_readonly(mnt)) |
| 2222 | return 0; |
| 2223 | |
| 2224 | if (readonly_request) |
| 2225 | error = mnt_make_readonly(real_mount(mnt)); |
| 2226 | else |
| 2227 | __mnt_unmake_readonly(real_mount(mnt)); |
| 2228 | return error; |
| 2229 | } |
| 2230 | |
| 2231 | /* |
| 2232 | * change filesystem flags. dir should be a physical root of filesystem. |
| 2233 | * If you've mounted a non-root directory somewhere and want to do remount |
| 2234 | * on it - tough luck. |
| 2235 | */ |
| 2236 | static int do_remount(struct path *path, int flags, int mnt_flags, |
| 2237 | void *data) |
| 2238 | { |
| 2239 | int err; |
| 2240 | struct super_block *sb = path->mnt->mnt_sb; |
| 2241 | struct mount *mnt = real_mount(path->mnt); |
| 2242 | |
| 2243 | if (!check_mnt(mnt)) |
| 2244 | return -EINVAL; |
| 2245 | |
| 2246 | if (path->dentry != path->mnt->mnt_root) |
| 2247 | return -EINVAL; |
| 2248 | |
| 2249 | /* Don't allow changing of locked mnt flags. |
| 2250 | * |
| 2251 | * No locks need to be held here while testing the various |
| 2252 | * MNT_LOCK flags because those flags can never be cleared |
| 2253 | * once they are set. |
| 2254 | */ |
| 2255 | if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && |
| 2256 | !(mnt_flags & MNT_READONLY)) { |
| 2257 | return -EPERM; |
| 2258 | } |
| 2259 | if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && |
| 2260 | !(mnt_flags & MNT_NODEV)) { |
| 2261 | /* Was the nodev implicitly added in mount? */ |
| 2262 | if ((mnt->mnt_ns->user_ns != &init_user_ns) && |
| 2263 | !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) { |
| 2264 | mnt_flags |= MNT_NODEV; |
| 2265 | } else { |
| 2266 | return -EPERM; |
| 2267 | } |
| 2268 | } |
| 2269 | if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && |
| 2270 | !(mnt_flags & MNT_NOSUID)) { |
| 2271 | return -EPERM; |
| 2272 | } |
| 2273 | if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && |
| 2274 | !(mnt_flags & MNT_NOEXEC)) { |
| 2275 | return -EPERM; |
| 2276 | } |
| 2277 | if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && |
| 2278 | ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { |
| 2279 | return -EPERM; |
| 2280 | } |
| 2281 | |
| 2282 | err = security_sb_remount(sb, data); |
| 2283 | if (err) |
| 2284 | return err; |
| 2285 | |
| 2286 | down_write(&sb->s_umount); |
| 2287 | if (flags & MS_BIND) |
| 2288 | err = change_mount_flags(path->mnt, flags); |
| 2289 | else if (!capable(CAP_SYS_ADMIN)) |
| 2290 | err = -EPERM; |
| 2291 | else |
| 2292 | err = do_remount_sb(sb, flags, data, 0); |
| 2293 | if (!err) { |
| 2294 | lock_mount_hash(); |
| 2295 | mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; |
| 2296 | mnt->mnt.mnt_flags = mnt_flags; |
| 2297 | touch_mnt_namespace(mnt->mnt_ns); |
| 2298 | unlock_mount_hash(); |
| 2299 | } |
| 2300 | up_write(&sb->s_umount); |
| 2301 | return err; |
| 2302 | } |
| 2303 | |
| 2304 | static inline int tree_contains_unbindable(struct mount *mnt) |
| 2305 | { |
| 2306 | struct mount *p; |
| 2307 | for (p = mnt; p; p = next_mnt(p, mnt)) { |
| 2308 | if (IS_MNT_UNBINDABLE(p)) |
| 2309 | return 1; |
| 2310 | } |
| 2311 | return 0; |
| 2312 | } |
| 2313 | |
| 2314 | static int do_move_mount(struct path *path, const char *old_name) |
| 2315 | { |
| 2316 | struct path old_path, parent_path; |
| 2317 | struct mount *p; |
| 2318 | struct mount *old; |
| 2319 | struct mountpoint *mp; |
| 2320 | int err; |
| 2321 | if (!old_name || !*old_name) |
| 2322 | return -EINVAL; |
| 2323 | err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); |
| 2324 | if (err) |
| 2325 | return err; |
| 2326 | |
| 2327 | mp = lock_mount(path); |
| 2328 | err = PTR_ERR(mp); |
| 2329 | if (IS_ERR(mp)) |
| 2330 | goto out; |
| 2331 | |
| 2332 | old = real_mount(old_path.mnt); |
| 2333 | p = real_mount(path->mnt); |
| 2334 | |
| 2335 | err = -EINVAL; |
| 2336 | if (!check_mnt(p) || !check_mnt(old)) |
| 2337 | goto out1; |
| 2338 | |
| 2339 | if (old->mnt.mnt_flags & MNT_LOCKED) |
| 2340 | goto out1; |
| 2341 | |
| 2342 | err = -EINVAL; |
| 2343 | if (old_path.dentry != old_path.mnt->mnt_root) |
| 2344 | goto out1; |
| 2345 | |
| 2346 | if (!mnt_has_parent(old)) |
| 2347 | goto out1; |
| 2348 | |
| 2349 | if (d_is_dir(path->dentry) != |
| 2350 | d_is_dir(old_path.dentry)) |
| 2351 | goto out1; |
| 2352 | /* |
| 2353 | * Don't move a mount residing in a shared parent. |
| 2354 | */ |
| 2355 | if (IS_MNT_SHARED(old->mnt_parent)) |
| 2356 | goto out1; |
| 2357 | /* |
| 2358 | * Don't move a mount tree containing unbindable mounts to a destination |
| 2359 | * mount which is shared. |
| 2360 | */ |
| 2361 | if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) |
| 2362 | goto out1; |
| 2363 | err = -ELOOP; |
| 2364 | for (; mnt_has_parent(p); p = p->mnt_parent) |
| 2365 | if (p == old) |
| 2366 | goto out1; |
| 2367 | |
| 2368 | err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); |
| 2369 | if (err) |
| 2370 | goto out1; |
| 2371 | |
| 2372 | /* if the mount is moved, it should no longer be expire |
| 2373 | * automatically */ |
| 2374 | list_del_init(&old->mnt_expire); |
| 2375 | out1: |
| 2376 | unlock_mount(mp); |
| 2377 | out: |
| 2378 | if (!err) |
| 2379 | path_put(&parent_path); |
| 2380 | path_put(&old_path); |
| 2381 | return err; |
| 2382 | } |
| 2383 | |
| 2384 | static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) |
| 2385 | { |
| 2386 | int err; |
| 2387 | const char *subtype = strchr(fstype, '.'); |
| 2388 | if (subtype) { |
| 2389 | subtype++; |
| 2390 | err = -EINVAL; |
| 2391 | if (!subtype[0]) |
| 2392 | goto err; |
| 2393 | } else |
| 2394 | subtype = ""; |
| 2395 | |
| 2396 | mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); |
| 2397 | err = -ENOMEM; |
| 2398 | if (!mnt->mnt_sb->s_subtype) |
| 2399 | goto err; |
| 2400 | return mnt; |
| 2401 | |
| 2402 | err: |
| 2403 | mntput(mnt); |
| 2404 | return ERR_PTR(err); |
| 2405 | } |
| 2406 | |
| 2407 | /* |
| 2408 | * add a mount into a namespace's mount tree |
| 2409 | */ |
| 2410 | static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) |
| 2411 | { |
| 2412 | struct mountpoint *mp; |
| 2413 | struct mount *parent; |
| 2414 | int err; |
| 2415 | |
| 2416 | mnt_flags &= ~MNT_INTERNAL_FLAGS; |
| 2417 | |
| 2418 | mp = lock_mount(path); |
| 2419 | if (IS_ERR(mp)) |
| 2420 | return PTR_ERR(mp); |
| 2421 | |
| 2422 | parent = real_mount(path->mnt); |
| 2423 | err = -EINVAL; |
| 2424 | if (unlikely(!check_mnt(parent))) { |
| 2425 | /* that's acceptable only for automounts done in private ns */ |
| 2426 | if (!(mnt_flags & MNT_SHRINKABLE)) |
| 2427 | goto unlock; |
| 2428 | /* ... and for those we'd better have mountpoint still alive */ |
| 2429 | if (!parent->mnt_ns) |
| 2430 | goto unlock; |
| 2431 | } |
| 2432 | |
| 2433 | /* Refuse the same filesystem on the same mount point */ |
| 2434 | err = -EBUSY; |
| 2435 | if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && |
| 2436 | path->mnt->mnt_root == path->dentry) |
| 2437 | goto unlock; |
| 2438 | |
| 2439 | err = -EINVAL; |
| 2440 | if (d_is_symlink(newmnt->mnt.mnt_root)) |
| 2441 | goto unlock; |
| 2442 | |
| 2443 | newmnt->mnt.mnt_flags = mnt_flags; |
| 2444 | err = graft_tree(newmnt, parent, mp); |
| 2445 | |
| 2446 | unlock: |
| 2447 | unlock_mount(mp); |
| 2448 | return err; |
| 2449 | } |
| 2450 | |
| 2451 | static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags); |
| 2452 | |
| 2453 | /* |
| 2454 | * create a new mount for userspace and request it to be added into the |
| 2455 | * namespace's tree |
| 2456 | */ |
| 2457 | static int do_new_mount(struct path *path, const char *fstype, int flags, |
| 2458 | int mnt_flags, const char *name, void *data) |
| 2459 | { |
| 2460 | struct file_system_type *type; |
| 2461 | struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; |
| 2462 | struct vfsmount *mnt; |
| 2463 | int err; |
| 2464 | |
| 2465 | if (!fstype) |
| 2466 | return -EINVAL; |
| 2467 | |
| 2468 | type = get_fs_type(fstype); |
| 2469 | if (!type) |
| 2470 | return -ENODEV; |
| 2471 | |
| 2472 | if (user_ns != &init_user_ns) { |
| 2473 | if (!(type->fs_flags & FS_USERNS_MOUNT)) { |
| 2474 | put_filesystem(type); |
| 2475 | return -EPERM; |
| 2476 | } |
| 2477 | /* Only in special cases allow devices from mounts |
| 2478 | * created outside the initial user namespace. |
| 2479 | */ |
| 2480 | if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { |
| 2481 | flags |= MS_NODEV; |
| 2482 | mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV; |
| 2483 | } |
| 2484 | if (type->fs_flags & FS_USERNS_VISIBLE) { |
| 2485 | if (!fs_fully_visible(type, &mnt_flags)) { |
| 2486 | put_filesystem(type); |
| 2487 | return -EPERM; |
| 2488 | } |
| 2489 | } |
| 2490 | } |
| 2491 | |
| 2492 | mnt = vfs_kern_mount(type, flags, name, data); |
| 2493 | if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && |
| 2494 | !mnt->mnt_sb->s_subtype) |
| 2495 | mnt = fs_set_subtype(mnt, fstype); |
| 2496 | |
| 2497 | put_filesystem(type); |
| 2498 | if (IS_ERR(mnt)) |
| 2499 | return PTR_ERR(mnt); |
| 2500 | |
| 2501 | err = do_add_mount(real_mount(mnt), path, mnt_flags); |
| 2502 | if (err) |
| 2503 | mntput(mnt); |
| 2504 | return err; |
| 2505 | } |
| 2506 | |
| 2507 | int finish_automount(struct vfsmount *m, struct path *path) |
| 2508 | { |
| 2509 | struct mount *mnt = real_mount(m); |
| 2510 | int err; |
| 2511 | /* The new mount record should have at least 2 refs to prevent it being |
| 2512 | * expired before we get a chance to add it |
| 2513 | */ |
| 2514 | BUG_ON(mnt_get_count(mnt) < 2); |
| 2515 | |
| 2516 | if (m->mnt_sb == path->mnt->mnt_sb && |
| 2517 | m->mnt_root == path->dentry) { |
| 2518 | err = -ELOOP; |
| 2519 | goto fail; |
| 2520 | } |
| 2521 | |
| 2522 | err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); |
| 2523 | if (!err) |
| 2524 | return 0; |
| 2525 | fail: |
| 2526 | /* remove m from any expiration list it may be on */ |
| 2527 | if (!list_empty(&mnt->mnt_expire)) { |
| 2528 | namespace_lock(); |
| 2529 | list_del_init(&mnt->mnt_expire); |
| 2530 | namespace_unlock(); |
| 2531 | } |
| 2532 | mntput(m); |
| 2533 | mntput(m); |
| 2534 | return err; |
| 2535 | } |
| 2536 | |
| 2537 | /** |
| 2538 | * mnt_set_expiry - Put a mount on an expiration list |
| 2539 | * @mnt: The mount to list. |
| 2540 | * @expiry_list: The list to add the mount to. |
| 2541 | */ |
| 2542 | void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) |
| 2543 | { |
| 2544 | namespace_lock(); |
| 2545 | |
| 2546 | list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); |
| 2547 | |
| 2548 | namespace_unlock(); |
| 2549 | } |
| 2550 | EXPORT_SYMBOL(mnt_set_expiry); |
| 2551 | |
| 2552 | /* |
| 2553 | * process a list of expirable mountpoints with the intent of discarding any |
| 2554 | * mountpoints that aren't in use and haven't been touched since last we came |
| 2555 | * here |
| 2556 | */ |
| 2557 | void mark_mounts_for_expiry(struct list_head *mounts) |
| 2558 | { |
| 2559 | struct mount *mnt, *next; |
| 2560 | LIST_HEAD(graveyard); |
| 2561 | |
| 2562 | if (list_empty(mounts)) |
| 2563 | return; |
| 2564 | |
| 2565 | namespace_lock(); |
| 2566 | lock_mount_hash(); |
| 2567 | |
| 2568 | /* extract from the expiration list every vfsmount that matches the |
| 2569 | * following criteria: |
| 2570 | * - only referenced by its parent vfsmount |
| 2571 | * - still marked for expiry (marked on the last call here; marks are |
| 2572 | * cleared by mntput()) |
| 2573 | */ |
| 2574 | list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { |
| 2575 | if (!xchg(&mnt->mnt_expiry_mark, 1) || |
| 2576 | propagate_mount_busy(mnt, 1)) |
| 2577 | continue; |
| 2578 | list_move(&mnt->mnt_expire, &graveyard); |
| 2579 | } |
| 2580 | while (!list_empty(&graveyard)) { |
| 2581 | mnt = list_first_entry(&graveyard, struct mount, mnt_expire); |
| 2582 | touch_mnt_namespace(mnt->mnt_ns); |
| 2583 | umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); |
| 2584 | } |
| 2585 | unlock_mount_hash(); |
| 2586 | namespace_unlock(); |
| 2587 | } |
| 2588 | |
| 2589 | EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); |
| 2590 | |
| 2591 | /* |
| 2592 | * Ripoff of 'select_parent()' |
| 2593 | * |
| 2594 | * search the list of submounts for a given mountpoint, and move any |
| 2595 | * shrinkable submounts to the 'graveyard' list. |
| 2596 | */ |
| 2597 | static int select_submounts(struct mount *parent, struct list_head *graveyard) |
| 2598 | { |
| 2599 | struct mount *this_parent = parent; |
| 2600 | struct list_head *next; |
| 2601 | int found = 0; |
| 2602 | |
| 2603 | repeat: |
| 2604 | next = this_parent->mnt_mounts.next; |
| 2605 | resume: |
| 2606 | while (next != &this_parent->mnt_mounts) { |
| 2607 | struct list_head *tmp = next; |
| 2608 | struct mount *mnt = list_entry(tmp, struct mount, mnt_child); |
| 2609 | |
| 2610 | next = tmp->next; |
| 2611 | if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) |
| 2612 | continue; |
| 2613 | /* |
| 2614 | * Descend a level if the d_mounts list is non-empty. |
| 2615 | */ |
| 2616 | if (!list_empty(&mnt->mnt_mounts)) { |
| 2617 | this_parent = mnt; |
| 2618 | goto repeat; |
| 2619 | } |
| 2620 | |
| 2621 | if (!propagate_mount_busy(mnt, 1)) { |
| 2622 | list_move_tail(&mnt->mnt_expire, graveyard); |
| 2623 | found++; |
| 2624 | } |
| 2625 | } |
| 2626 | /* |
| 2627 | * All done at this level ... ascend and resume the search |
| 2628 | */ |
| 2629 | if (this_parent != parent) { |
| 2630 | next = this_parent->mnt_child.next; |
| 2631 | this_parent = this_parent->mnt_parent; |
| 2632 | goto resume; |
| 2633 | } |
| 2634 | return found; |
| 2635 | } |
| 2636 | |
| 2637 | /* |
| 2638 | * process a list of expirable mountpoints with the intent of discarding any |
| 2639 | * submounts of a specific parent mountpoint |
| 2640 | * |
| 2641 | * mount_lock must be held for write |
| 2642 | */ |
| 2643 | static void shrink_submounts(struct mount *mnt) |
| 2644 | { |
| 2645 | LIST_HEAD(graveyard); |
| 2646 | struct mount *m; |
| 2647 | |
| 2648 | /* extract submounts of 'mountpoint' from the expiration list */ |
| 2649 | while (select_submounts(mnt, &graveyard)) { |
| 2650 | while (!list_empty(&graveyard)) { |
| 2651 | m = list_first_entry(&graveyard, struct mount, |
| 2652 | mnt_expire); |
| 2653 | touch_mnt_namespace(m->mnt_ns); |
| 2654 | umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); |
| 2655 | } |
| 2656 | } |
| 2657 | } |
| 2658 | |
| 2659 | /* |
| 2660 | * Some copy_from_user() implementations do not return the exact number of |
| 2661 | * bytes remaining to copy on a fault. But copy_mount_options() requires that. |
| 2662 | * Note that this function differs from copy_from_user() in that it will oops |
| 2663 | * on bad values of `to', rather than returning a short copy. |
| 2664 | */ |
| 2665 | static long exact_copy_from_user(void *to, const void __user * from, |
| 2666 | unsigned long n) |
| 2667 | { |
| 2668 | char *t = to; |
| 2669 | const char __user *f = from; |
| 2670 | char c; |
| 2671 | |
| 2672 | if (!access_ok(VERIFY_READ, from, n)) |
| 2673 | return n; |
| 2674 | |
| 2675 | while (n) { |
| 2676 | if (__get_user(c, f)) { |
| 2677 | memset(t, 0, n); |
| 2678 | break; |
| 2679 | } |
| 2680 | *t++ = c; |
| 2681 | f++; |
| 2682 | n--; |
| 2683 | } |
| 2684 | return n; |
| 2685 | } |
| 2686 | |
| 2687 | int copy_mount_options(const void __user * data, unsigned long *where) |
| 2688 | { |
| 2689 | int i; |
| 2690 | unsigned long page; |
| 2691 | unsigned long size; |
| 2692 | |
| 2693 | *where = 0; |
| 2694 | if (!data) |
| 2695 | return 0; |
| 2696 | |
| 2697 | if (!(page = __get_free_page(GFP_KERNEL))) |
| 2698 | return -ENOMEM; |
| 2699 | |
| 2700 | /* We only care that *some* data at the address the user |
| 2701 | * gave us is valid. Just in case, we'll zero |
| 2702 | * the remainder of the page. |
| 2703 | */ |
| 2704 | /* copy_from_user cannot cross TASK_SIZE ! */ |
| 2705 | size = TASK_SIZE - (unsigned long)data; |
| 2706 | if (size > PAGE_SIZE) |
| 2707 | size = PAGE_SIZE; |
| 2708 | |
| 2709 | i = size - exact_copy_from_user((void *)page, data, size); |
| 2710 | if (!i) { |
| 2711 | free_page(page); |
| 2712 | return -EFAULT; |
| 2713 | } |
| 2714 | if (i != PAGE_SIZE) |
| 2715 | memset((char *)page + i, 0, PAGE_SIZE - i); |
| 2716 | *where = page; |
| 2717 | return 0; |
| 2718 | } |
| 2719 | |
| 2720 | char *copy_mount_string(const void __user *data) |
| 2721 | { |
| 2722 | return data ? strndup_user(data, PAGE_SIZE) : NULL; |
| 2723 | } |
| 2724 | |
| 2725 | /* |
| 2726 | * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to |
| 2727 | * be given to the mount() call (ie: read-only, no-dev, no-suid etc). |
| 2728 | * |
| 2729 | * data is a (void *) that can point to any structure up to |
| 2730 | * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent |
| 2731 | * information (or be NULL). |
| 2732 | * |
| 2733 | * Pre-0.97 versions of mount() didn't have a flags word. |
| 2734 | * When the flags word was introduced its top half was required |
| 2735 | * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. |
| 2736 | * Therefore, if this magic number is present, it carries no information |
| 2737 | * and must be discarded. |
| 2738 | */ |
| 2739 | long do_mount(const char *dev_name, const char __user *dir_name, |
| 2740 | const char *type_page, unsigned long flags, void *data_page) |
| 2741 | { |
| 2742 | struct path path; |
| 2743 | int retval = 0; |
| 2744 | int mnt_flags = 0; |
| 2745 | |
| 2746 | /* Discard magic */ |
| 2747 | if ((flags & MS_MGC_MSK) == MS_MGC_VAL) |
| 2748 | flags &= ~MS_MGC_MSK; |
| 2749 | |
| 2750 | /* Basic sanity checks */ |
| 2751 | if (data_page) |
| 2752 | ((char *)data_page)[PAGE_SIZE - 1] = 0; |
| 2753 | |
| 2754 | /* ... and get the mountpoint */ |
| 2755 | retval = user_path(dir_name, &path); |
| 2756 | if (retval) |
| 2757 | return retval; |
| 2758 | |
| 2759 | retval = security_sb_mount(dev_name, &path, |
| 2760 | type_page, flags, data_page); |
| 2761 | if (!retval && !may_mount()) |
| 2762 | retval = -EPERM; |
| 2763 | if (retval) |
| 2764 | goto dput_out; |
| 2765 | |
| 2766 | /* Default to relatime unless overriden */ |
| 2767 | if (!(flags & MS_NOATIME)) |
| 2768 | mnt_flags |= MNT_RELATIME; |
| 2769 | |
| 2770 | /* Separate the per-mountpoint flags */ |
| 2771 | if (flags & MS_NOSUID) |
| 2772 | mnt_flags |= MNT_NOSUID; |
| 2773 | if (flags & MS_NODEV) |
| 2774 | mnt_flags |= MNT_NODEV; |
| 2775 | if (flags & MS_NOEXEC) |
| 2776 | mnt_flags |= MNT_NOEXEC; |
| 2777 | if (flags & MS_NOATIME) |
| 2778 | mnt_flags |= MNT_NOATIME; |
| 2779 | if (flags & MS_NODIRATIME) |
| 2780 | mnt_flags |= MNT_NODIRATIME; |
| 2781 | if (flags & MS_STRICTATIME) |
| 2782 | mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); |
| 2783 | if (flags & MS_RDONLY) |
| 2784 | mnt_flags |= MNT_READONLY; |
| 2785 | |
| 2786 | /* The default atime for remount is preservation */ |
| 2787 | if ((flags & MS_REMOUNT) && |
| 2788 | ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | |
| 2789 | MS_STRICTATIME)) == 0)) { |
| 2790 | mnt_flags &= ~MNT_ATIME_MASK; |
| 2791 | mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; |
| 2792 | } |
| 2793 | |
| 2794 | flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | |
| 2795 | MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | |
| 2796 | MS_STRICTATIME); |
| 2797 | |
| 2798 | if (flags & MS_REMOUNT) |
| 2799 | retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, |
| 2800 | data_page); |
| 2801 | else if (flags & MS_BIND) |
| 2802 | retval = do_loopback(&path, dev_name, flags & MS_REC); |
| 2803 | else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) |
| 2804 | retval = do_change_type(&path, flags); |
| 2805 | else if (flags & MS_MOVE) |
| 2806 | retval = do_move_mount(&path, dev_name); |
| 2807 | else |
| 2808 | retval = do_new_mount(&path, type_page, flags, mnt_flags, |
| 2809 | dev_name, data_page); |
| 2810 | dput_out: |
| 2811 | path_put(&path); |
| 2812 | return retval; |
| 2813 | } |
| 2814 | |
| 2815 | static void free_mnt_ns(struct mnt_namespace *ns) |
| 2816 | { |
| 2817 | ns_free_inum(&ns->ns); |
| 2818 | put_user_ns(ns->user_ns); |
| 2819 | kfree(ns); |
| 2820 | } |
| 2821 | |
| 2822 | /* |
| 2823 | * Assign a sequence number so we can detect when we attempt to bind |
| 2824 | * mount a reference to an older mount namespace into the current |
| 2825 | * mount namespace, preventing reference counting loops. A 64bit |
| 2826 | * number incrementing at 10Ghz will take 12,427 years to wrap which |
| 2827 | * is effectively never, so we can ignore the possibility. |
| 2828 | */ |
| 2829 | static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); |
| 2830 | |
| 2831 | static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) |
| 2832 | { |
| 2833 | struct mnt_namespace *new_ns; |
| 2834 | int ret; |
| 2835 | |
| 2836 | new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); |
| 2837 | if (!new_ns) |
| 2838 | return ERR_PTR(-ENOMEM); |
| 2839 | ret = ns_alloc_inum(&new_ns->ns); |
| 2840 | if (ret) { |
| 2841 | kfree(new_ns); |
| 2842 | return ERR_PTR(ret); |
| 2843 | } |
| 2844 | new_ns->ns.ops = &mntns_operations; |
| 2845 | new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); |
| 2846 | atomic_set(&new_ns->count, 1); |
| 2847 | new_ns->root = NULL; |
| 2848 | INIT_LIST_HEAD(&new_ns->list); |
| 2849 | init_waitqueue_head(&new_ns->poll); |
| 2850 | new_ns->event = 0; |
| 2851 | new_ns->user_ns = get_user_ns(user_ns); |
| 2852 | new_ns->mounts = 0; |
| 2853 | new_ns->pending_mounts = 0; |
| 2854 | return new_ns; |
| 2855 | } |
| 2856 | |
| 2857 | struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, |
| 2858 | struct user_namespace *user_ns, struct fs_struct *new_fs) |
| 2859 | { |
| 2860 | struct mnt_namespace *new_ns; |
| 2861 | struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; |
| 2862 | struct mount *p, *q; |
| 2863 | struct mount *old; |
| 2864 | struct mount *new; |
| 2865 | int copy_flags; |
| 2866 | |
| 2867 | BUG_ON(!ns); |
| 2868 | |
| 2869 | if (likely(!(flags & CLONE_NEWNS))) { |
| 2870 | get_mnt_ns(ns); |
| 2871 | return ns; |
| 2872 | } |
| 2873 | |
| 2874 | old = ns->root; |
| 2875 | |
| 2876 | new_ns = alloc_mnt_ns(user_ns); |
| 2877 | if (IS_ERR(new_ns)) |
| 2878 | return new_ns; |
| 2879 | |
| 2880 | namespace_lock(); |
| 2881 | /* First pass: copy the tree topology */ |
| 2882 | copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; |
| 2883 | if (user_ns != ns->user_ns) |
| 2884 | copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; |
| 2885 | new = copy_tree(old, old->mnt.mnt_root, copy_flags); |
| 2886 | if (IS_ERR(new)) { |
| 2887 | namespace_unlock(); |
| 2888 | free_mnt_ns(new_ns); |
| 2889 | return ERR_CAST(new); |
| 2890 | } |
| 2891 | new_ns->root = new; |
| 2892 | list_add_tail(&new_ns->list, &new->mnt_list); |
| 2893 | |
| 2894 | /* |
| 2895 | * Second pass: switch the tsk->fs->* elements and mark new vfsmounts |
| 2896 | * as belonging to new namespace. We have already acquired a private |
| 2897 | * fs_struct, so tsk->fs->lock is not needed. |
| 2898 | */ |
| 2899 | p = old; |
| 2900 | q = new; |
| 2901 | while (p) { |
| 2902 | q->mnt_ns = new_ns; |
| 2903 | new_ns->mounts++; |
| 2904 | if (new_fs) { |
| 2905 | if (&p->mnt == new_fs->root.mnt) { |
| 2906 | new_fs->root.mnt = mntget(&q->mnt); |
| 2907 | rootmnt = &p->mnt; |
| 2908 | } |
| 2909 | if (&p->mnt == new_fs->pwd.mnt) { |
| 2910 | new_fs->pwd.mnt = mntget(&q->mnt); |
| 2911 | pwdmnt = &p->mnt; |
| 2912 | } |
| 2913 | } |
| 2914 | p = next_mnt(p, old); |
| 2915 | q = next_mnt(q, new); |
| 2916 | if (!q) |
| 2917 | break; |
| 2918 | while (p->mnt.mnt_root != q->mnt.mnt_root) |
| 2919 | p = next_mnt(p, old); |
| 2920 | } |
| 2921 | namespace_unlock(); |
| 2922 | |
| 2923 | if (rootmnt) |
| 2924 | mntput(rootmnt); |
| 2925 | if (pwdmnt) |
| 2926 | mntput(pwdmnt); |
| 2927 | |
| 2928 | return new_ns; |
| 2929 | } |
| 2930 | |
| 2931 | /** |
| 2932 | * create_mnt_ns - creates a private namespace and adds a root filesystem |
| 2933 | * @mnt: pointer to the new root filesystem mountpoint |
| 2934 | */ |
| 2935 | static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) |
| 2936 | { |
| 2937 | struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); |
| 2938 | if (!IS_ERR(new_ns)) { |
| 2939 | struct mount *mnt = real_mount(m); |
| 2940 | mnt->mnt_ns = new_ns; |
| 2941 | new_ns->root = mnt; |
| 2942 | new_ns->mounts++; |
| 2943 | list_add(&mnt->mnt_list, &new_ns->list); |
| 2944 | } else { |
| 2945 | mntput(m); |
| 2946 | } |
| 2947 | return new_ns; |
| 2948 | } |
| 2949 | |
| 2950 | struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) |
| 2951 | { |
| 2952 | struct mnt_namespace *ns; |
| 2953 | struct super_block *s; |
| 2954 | struct path path; |
| 2955 | int err; |
| 2956 | |
| 2957 | ns = create_mnt_ns(mnt); |
| 2958 | if (IS_ERR(ns)) |
| 2959 | return ERR_CAST(ns); |
| 2960 | |
| 2961 | err = vfs_path_lookup(mnt->mnt_root, mnt, |
| 2962 | name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); |
| 2963 | |
| 2964 | put_mnt_ns(ns); |
| 2965 | |
| 2966 | if (err) |
| 2967 | return ERR_PTR(err); |
| 2968 | |
| 2969 | /* trade a vfsmount reference for active sb one */ |
| 2970 | s = path.mnt->mnt_sb; |
| 2971 | atomic_inc(&s->s_active); |
| 2972 | mntput(path.mnt); |
| 2973 | /* lock the sucker */ |
| 2974 | down_write(&s->s_umount); |
| 2975 | /* ... and return the root of (sub)tree on it */ |
| 2976 | return path.dentry; |
| 2977 | } |
| 2978 | EXPORT_SYMBOL(mount_subtree); |
| 2979 | |
| 2980 | SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, |
| 2981 | char __user *, type, unsigned long, flags, void __user *, data) |
| 2982 | { |
| 2983 | int ret; |
| 2984 | char *kernel_type; |
| 2985 | char *kernel_dev; |
| 2986 | unsigned long data_page; |
| 2987 | |
| 2988 | kernel_type = copy_mount_string(type); |
| 2989 | ret = PTR_ERR(kernel_type); |
| 2990 | if (IS_ERR(kernel_type)) |
| 2991 | goto out_type; |
| 2992 | |
| 2993 | kernel_dev = copy_mount_string(dev_name); |
| 2994 | ret = PTR_ERR(kernel_dev); |
| 2995 | if (IS_ERR(kernel_dev)) |
| 2996 | goto out_dev; |
| 2997 | |
| 2998 | ret = copy_mount_options(data, &data_page); |
| 2999 | if (ret < 0) |
| 3000 | goto out_data; |
| 3001 | |
| 3002 | ret = do_mount(kernel_dev, dir_name, kernel_type, flags, |
| 3003 | (void *) data_page); |
| 3004 | |
| 3005 | free_page(data_page); |
| 3006 | out_data: |
| 3007 | kfree(kernel_dev); |
| 3008 | out_dev: |
| 3009 | kfree(kernel_type); |
| 3010 | out_type: |
| 3011 | return ret; |
| 3012 | } |
| 3013 | |
| 3014 | /* |
| 3015 | * Return true if path is reachable from root |
| 3016 | * |
| 3017 | * namespace_sem or mount_lock is held |
| 3018 | */ |
| 3019 | bool is_path_reachable(struct mount *mnt, struct dentry *dentry, |
| 3020 | const struct path *root) |
| 3021 | { |
| 3022 | while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { |
| 3023 | dentry = mnt->mnt_mountpoint; |
| 3024 | mnt = mnt->mnt_parent; |
| 3025 | } |
| 3026 | return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); |
| 3027 | } |
| 3028 | |
| 3029 | int path_is_under(struct path *path1, struct path *path2) |
| 3030 | { |
| 3031 | int res; |
| 3032 | read_seqlock_excl(&mount_lock); |
| 3033 | res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); |
| 3034 | read_sequnlock_excl(&mount_lock); |
| 3035 | return res; |
| 3036 | } |
| 3037 | EXPORT_SYMBOL(path_is_under); |
| 3038 | |
| 3039 | /* |
| 3040 | * pivot_root Semantics: |
| 3041 | * Moves the root file system of the current process to the directory put_old, |
| 3042 | * makes new_root as the new root file system of the current process, and sets |
| 3043 | * root/cwd of all processes which had them on the current root to new_root. |
| 3044 | * |
| 3045 | * Restrictions: |
| 3046 | * The new_root and put_old must be directories, and must not be on the |
| 3047 | * same file system as the current process root. The put_old must be |
| 3048 | * underneath new_root, i.e. adding a non-zero number of /.. to the string |
| 3049 | * pointed to by put_old must yield the same directory as new_root. No other |
| 3050 | * file system may be mounted on put_old. After all, new_root is a mountpoint. |
| 3051 | * |
| 3052 | * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. |
| 3053 | * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives |
| 3054 | * in this situation. |
| 3055 | * |
| 3056 | * Notes: |
| 3057 | * - we don't move root/cwd if they are not at the root (reason: if something |
| 3058 | * cared enough to change them, it's probably wrong to force them elsewhere) |
| 3059 | * - it's okay to pick a root that isn't the root of a file system, e.g. |
| 3060 | * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, |
| 3061 | * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root |
| 3062 | * first. |
| 3063 | */ |
| 3064 | SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, |
| 3065 | const char __user *, put_old) |
| 3066 | { |
| 3067 | struct path new, old, parent_path, root_parent, root; |
| 3068 | struct mount *new_mnt, *root_mnt, *old_mnt; |
| 3069 | struct mountpoint *old_mp, *root_mp; |
| 3070 | int error; |
| 3071 | |
| 3072 | if (!may_mount()) |
| 3073 | return -EPERM; |
| 3074 | |
| 3075 | error = user_path_dir(new_root, &new); |
| 3076 | if (error) |
| 3077 | goto out0; |
| 3078 | |
| 3079 | error = user_path_dir(put_old, &old); |
| 3080 | if (error) |
| 3081 | goto out1; |
| 3082 | |
| 3083 | error = security_sb_pivotroot(&old, &new); |
| 3084 | if (error) |
| 3085 | goto out2; |
| 3086 | |
| 3087 | get_fs_root(current->fs, &root); |
| 3088 | old_mp = lock_mount(&old); |
| 3089 | error = PTR_ERR(old_mp); |
| 3090 | if (IS_ERR(old_mp)) |
| 3091 | goto out3; |
| 3092 | |
| 3093 | error = -EINVAL; |
| 3094 | new_mnt = real_mount(new.mnt); |
| 3095 | root_mnt = real_mount(root.mnt); |
| 3096 | old_mnt = real_mount(old.mnt); |
| 3097 | if (IS_MNT_SHARED(old_mnt) || |
| 3098 | IS_MNT_SHARED(new_mnt->mnt_parent) || |
| 3099 | IS_MNT_SHARED(root_mnt->mnt_parent)) |
| 3100 | goto out4; |
| 3101 | if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) |
| 3102 | goto out4; |
| 3103 | if (new_mnt->mnt.mnt_flags & MNT_LOCKED) |
| 3104 | goto out4; |
| 3105 | error = -ENOENT; |
| 3106 | if (d_unlinked(new.dentry)) |
| 3107 | goto out4; |
| 3108 | error = -EBUSY; |
| 3109 | if (new_mnt == root_mnt || old_mnt == root_mnt) |
| 3110 | goto out4; /* loop, on the same file system */ |
| 3111 | error = -EINVAL; |
| 3112 | if (root.mnt->mnt_root != root.dentry) |
| 3113 | goto out4; /* not a mountpoint */ |
| 3114 | if (!mnt_has_parent(root_mnt)) |
| 3115 | goto out4; /* not attached */ |
| 3116 | root_mp = root_mnt->mnt_mp; |
| 3117 | if (new.mnt->mnt_root != new.dentry) |
| 3118 | goto out4; /* not a mountpoint */ |
| 3119 | if (!mnt_has_parent(new_mnt)) |
| 3120 | goto out4; /* not attached */ |
| 3121 | /* make sure we can reach put_old from new_root */ |
| 3122 | if (!is_path_reachable(old_mnt, old.dentry, &new)) |
| 3123 | goto out4; |
| 3124 | /* make certain new is below the root */ |
| 3125 | if (!is_path_reachable(new_mnt, new.dentry, &root)) |
| 3126 | goto out4; |
| 3127 | root_mp->m_count++; /* pin it so it won't go away */ |
| 3128 | lock_mount_hash(); |
| 3129 | detach_mnt(new_mnt, &parent_path); |
| 3130 | detach_mnt(root_mnt, &root_parent); |
| 3131 | if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { |
| 3132 | new_mnt->mnt.mnt_flags |= MNT_LOCKED; |
| 3133 | root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; |
| 3134 | } |
| 3135 | /* mount old root on put_old */ |
| 3136 | attach_mnt(root_mnt, old_mnt, old_mp); |
| 3137 | /* mount new_root on / */ |
| 3138 | attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); |
| 3139 | touch_mnt_namespace(current->nsproxy->mnt_ns); |
| 3140 | /* A moved mount should not expire automatically */ |
| 3141 | list_del_init(&new_mnt->mnt_expire); |
| 3142 | put_mountpoint(root_mp); |
| 3143 | unlock_mount_hash(); |
| 3144 | chroot_fs_refs(&root, &new); |
| 3145 | error = 0; |
| 3146 | out4: |
| 3147 | unlock_mount(old_mp); |
| 3148 | if (!error) { |
| 3149 | path_put(&root_parent); |
| 3150 | path_put(&parent_path); |
| 3151 | } |
| 3152 | out3: |
| 3153 | path_put(&root); |
| 3154 | out2: |
| 3155 | path_put(&old); |
| 3156 | out1: |
| 3157 | path_put(&new); |
| 3158 | out0: |
| 3159 | return error; |
| 3160 | } |
| 3161 | |
| 3162 | static void __init init_mount_tree(void) |
| 3163 | { |
| 3164 | struct vfsmount *mnt; |
| 3165 | struct mnt_namespace *ns; |
| 3166 | struct path root; |
| 3167 | struct file_system_type *type; |
| 3168 | |
| 3169 | type = get_fs_type("rootfs"); |
| 3170 | if (!type) |
| 3171 | panic("Can't find rootfs type"); |
| 3172 | mnt = vfs_kern_mount(type, 0, "rootfs", NULL); |
| 3173 | put_filesystem(type); |
| 3174 | if (IS_ERR(mnt)) |
| 3175 | panic("Can't create rootfs"); |
| 3176 | |
| 3177 | ns = create_mnt_ns(mnt); |
| 3178 | if (IS_ERR(ns)) |
| 3179 | panic("Can't allocate initial namespace"); |
| 3180 | |
| 3181 | init_task.nsproxy->mnt_ns = ns; |
| 3182 | get_mnt_ns(ns); |
| 3183 | |
| 3184 | root.mnt = mnt; |
| 3185 | root.dentry = mnt->mnt_root; |
| 3186 | mnt->mnt_flags |= MNT_LOCKED; |
| 3187 | |
| 3188 | set_fs_pwd(current->fs, &root); |
| 3189 | set_fs_root(current->fs, &root); |
| 3190 | } |
| 3191 | |
| 3192 | void __init mnt_init(void) |
| 3193 | { |
| 3194 | unsigned u; |
| 3195 | int err; |
| 3196 | |
| 3197 | mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), |
| 3198 | 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); |
| 3199 | |
| 3200 | mount_hashtable = alloc_large_system_hash("Mount-cache", |
| 3201 | sizeof(struct hlist_head), |
| 3202 | mhash_entries, 19, |
| 3203 | 0, |
| 3204 | &m_hash_shift, &m_hash_mask, 0, 0); |
| 3205 | mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", |
| 3206 | sizeof(struct hlist_head), |
| 3207 | mphash_entries, 19, |
| 3208 | 0, |
| 3209 | &mp_hash_shift, &mp_hash_mask, 0, 0); |
| 3210 | |
| 3211 | if (!mount_hashtable || !mountpoint_hashtable) |
| 3212 | panic("Failed to allocate mount hash table\n"); |
| 3213 | |
| 3214 | for (u = 0; u <= m_hash_mask; u++) |
| 3215 | INIT_HLIST_HEAD(&mount_hashtable[u]); |
| 3216 | for (u = 0; u <= mp_hash_mask; u++) |
| 3217 | INIT_HLIST_HEAD(&mountpoint_hashtable[u]); |
| 3218 | |
| 3219 | kernfs_init(); |
| 3220 | |
| 3221 | err = sysfs_init(); |
| 3222 | if (err) |
| 3223 | printk(KERN_WARNING "%s: sysfs_init error: %d\n", |
| 3224 | __func__, err); |
| 3225 | fs_kobj = kobject_create_and_add("fs", NULL); |
| 3226 | if (!fs_kobj) |
| 3227 | printk(KERN_WARNING "%s: kobj create error\n", __func__); |
| 3228 | init_rootfs(); |
| 3229 | init_mount_tree(); |
| 3230 | } |
| 3231 | |
| 3232 | void put_mnt_ns(struct mnt_namespace *ns) |
| 3233 | { |
| 3234 | if (!atomic_dec_and_test(&ns->count)) |
| 3235 | return; |
| 3236 | drop_collected_mounts(&ns->root->mnt); |
| 3237 | free_mnt_ns(ns); |
| 3238 | } |
| 3239 | |
| 3240 | struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) |
| 3241 | { |
| 3242 | struct vfsmount *mnt; |
| 3243 | mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); |
| 3244 | if (!IS_ERR(mnt)) { |
| 3245 | /* |
| 3246 | * it is a longterm mount, don't release mnt until |
| 3247 | * we unmount before file sys is unregistered |
| 3248 | */ |
| 3249 | real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; |
| 3250 | } |
| 3251 | return mnt; |
| 3252 | } |
| 3253 | EXPORT_SYMBOL_GPL(kern_mount_data); |
| 3254 | |
| 3255 | void kern_unmount(struct vfsmount *mnt) |
| 3256 | { |
| 3257 | /* release long term mount so mount point can be released */ |
| 3258 | if (!IS_ERR_OR_NULL(mnt)) { |
| 3259 | real_mount(mnt)->mnt_ns = NULL; |
| 3260 | synchronize_rcu(); /* yecchhh... */ |
| 3261 | mntput(mnt); |
| 3262 | } |
| 3263 | } |
| 3264 | EXPORT_SYMBOL(kern_unmount); |
| 3265 | |
| 3266 | bool our_mnt(struct vfsmount *mnt) |
| 3267 | { |
| 3268 | return check_mnt(real_mount(mnt)); |
| 3269 | } |
| 3270 | |
| 3271 | bool current_chrooted(void) |
| 3272 | { |
| 3273 | /* Does the current process have a non-standard root */ |
| 3274 | struct path ns_root; |
| 3275 | struct path fs_root; |
| 3276 | bool chrooted; |
| 3277 | |
| 3278 | /* Find the namespace root */ |
| 3279 | ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; |
| 3280 | ns_root.dentry = ns_root.mnt->mnt_root; |
| 3281 | path_get(&ns_root); |
| 3282 | while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) |
| 3283 | ; |
| 3284 | |
| 3285 | get_fs_root(current->fs, &fs_root); |
| 3286 | |
| 3287 | chrooted = !path_equal(&fs_root, &ns_root); |
| 3288 | |
| 3289 | path_put(&fs_root); |
| 3290 | path_put(&ns_root); |
| 3291 | |
| 3292 | return chrooted; |
| 3293 | } |
| 3294 | |
| 3295 | static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags) |
| 3296 | { |
| 3297 | struct mnt_namespace *ns = current->nsproxy->mnt_ns; |
| 3298 | int new_flags = *new_mnt_flags; |
| 3299 | struct mount *mnt; |
| 3300 | bool visible = false; |
| 3301 | |
| 3302 | if (unlikely(!ns)) |
| 3303 | return false; |
| 3304 | |
| 3305 | down_read(&namespace_sem); |
| 3306 | list_for_each_entry(mnt, &ns->list, mnt_list) { |
| 3307 | struct mount *child; |
| 3308 | int mnt_flags; |
| 3309 | |
| 3310 | if (mnt->mnt.mnt_sb->s_type != type) |
| 3311 | continue; |
| 3312 | |
| 3313 | /* This mount is not fully visible if it's root directory |
| 3314 | * is not the root directory of the filesystem. |
| 3315 | */ |
| 3316 | if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) |
| 3317 | continue; |
| 3318 | |
| 3319 | /* Read the mount flags and filter out flags that |
| 3320 | * may safely be ignored. |
| 3321 | */ |
| 3322 | mnt_flags = mnt->mnt.mnt_flags; |
| 3323 | if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC) |
| 3324 | mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC); |
| 3325 | |
| 3326 | /* Don't miss readonly hidden in the superblock flags */ |
| 3327 | if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY) |
| 3328 | mnt_flags |= MNT_LOCK_READONLY; |
| 3329 | |
| 3330 | /* Verify the mount flags are equal to or more permissive |
| 3331 | * than the proposed new mount. |
| 3332 | */ |
| 3333 | if ((mnt_flags & MNT_LOCK_READONLY) && |
| 3334 | !(new_flags & MNT_READONLY)) |
| 3335 | continue; |
| 3336 | if ((mnt_flags & MNT_LOCK_NODEV) && |
| 3337 | !(new_flags & MNT_NODEV)) |
| 3338 | continue; |
| 3339 | if ((mnt_flags & MNT_LOCK_NOSUID) && |
| 3340 | !(new_flags & MNT_NOSUID)) |
| 3341 | continue; |
| 3342 | if ((mnt_flags & MNT_LOCK_NOEXEC) && |
| 3343 | !(new_flags & MNT_NOEXEC)) |
| 3344 | continue; |
| 3345 | if ((mnt_flags & MNT_LOCK_ATIME) && |
| 3346 | ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) |
| 3347 | continue; |
| 3348 | |
| 3349 | /* This mount is not fully visible if there are any |
| 3350 | * locked child mounts that cover anything except for |
| 3351 | * empty directories. |
| 3352 | */ |
| 3353 | list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { |
| 3354 | struct inode *inode = child->mnt_mountpoint->d_inode; |
| 3355 | /* Only worry about locked mounts */ |
| 3356 | if (!(child->mnt.mnt_flags & MNT_LOCKED)) |
| 3357 | continue; |
| 3358 | /* Is the directory permanetly empty? */ |
| 3359 | if (!is_empty_dir_inode(inode)) |
| 3360 | goto next; |
| 3361 | } |
| 3362 | /* Preserve the locked attributes */ |
| 3363 | *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ |
| 3364 | MNT_LOCK_NODEV | \ |
| 3365 | MNT_LOCK_NOSUID | \ |
| 3366 | MNT_LOCK_NOEXEC | \ |
| 3367 | MNT_LOCK_ATIME); |
| 3368 | visible = true; |
| 3369 | goto found; |
| 3370 | next: ; |
| 3371 | } |
| 3372 | found: |
| 3373 | up_read(&namespace_sem); |
| 3374 | return visible; |
| 3375 | } |
| 3376 | |
| 3377 | static struct ns_common *mntns_get(struct task_struct *task) |
| 3378 | { |
| 3379 | struct ns_common *ns = NULL; |
| 3380 | struct nsproxy *nsproxy; |
| 3381 | |
| 3382 | task_lock(task); |
| 3383 | nsproxy = task->nsproxy; |
| 3384 | if (nsproxy) { |
| 3385 | ns = &nsproxy->mnt_ns->ns; |
| 3386 | get_mnt_ns(to_mnt_ns(ns)); |
| 3387 | } |
| 3388 | task_unlock(task); |
| 3389 | |
| 3390 | return ns; |
| 3391 | } |
| 3392 | |
| 3393 | static void mntns_put(struct ns_common *ns) |
| 3394 | { |
| 3395 | put_mnt_ns(to_mnt_ns(ns)); |
| 3396 | } |
| 3397 | |
| 3398 | static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) |
| 3399 | { |
| 3400 | struct fs_struct *fs = current->fs; |
| 3401 | struct mnt_namespace *mnt_ns = to_mnt_ns(ns); |
| 3402 | struct path root; |
| 3403 | |
| 3404 | if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || |
| 3405 | !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || |
| 3406 | !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) |
| 3407 | return -EPERM; |
| 3408 | |
| 3409 | if (fs->users != 1) |
| 3410 | return -EINVAL; |
| 3411 | |
| 3412 | get_mnt_ns(mnt_ns); |
| 3413 | put_mnt_ns(nsproxy->mnt_ns); |
| 3414 | nsproxy->mnt_ns = mnt_ns; |
| 3415 | |
| 3416 | /* Find the root */ |
| 3417 | root.mnt = &mnt_ns->root->mnt; |
| 3418 | root.dentry = mnt_ns->root->mnt.mnt_root; |
| 3419 | path_get(&root); |
| 3420 | while(d_mountpoint(root.dentry) && follow_down_one(&root)) |
| 3421 | ; |
| 3422 | |
| 3423 | /* Update the pwd and root */ |
| 3424 | set_fs_pwd(fs, &root); |
| 3425 | set_fs_root(fs, &root); |
| 3426 | |
| 3427 | path_put(&root); |
| 3428 | return 0; |
| 3429 | } |
| 3430 | |
| 3431 | const struct proc_ns_operations mntns_operations = { |
| 3432 | .name = "mnt", |
| 3433 | .type = CLONE_NEWNS, |
| 3434 | .get = mntns_get, |
| 3435 | .put = mntns_put, |
| 3436 | .install = mntns_install, |
| 3437 | }; |