Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | #ifndef __ALPHA_UACCESS_H |
| 2 | #define __ALPHA_UACCESS_H |
| 3 | |
| 4 | #include <linux/errno.h> |
| 5 | #include <linux/sched.h> |
| 6 | |
| 7 | |
| 8 | /* |
| 9 | * The fs value determines whether argument validity checking should be |
| 10 | * performed or not. If get_fs() == USER_DS, checking is performed, with |
| 11 | * get_fs() == KERNEL_DS, checking is bypassed. |
| 12 | * |
| 13 | * Or at least it did once upon a time. Nowadays it is a mask that |
| 14 | * defines which bits of the address space are off limits. This is a |
| 15 | * wee bit faster than the above. |
| 16 | * |
| 17 | * For historical reasons, these macros are grossly misnamed. |
| 18 | */ |
| 19 | |
| 20 | #define KERNEL_DS ((mm_segment_t) { 0UL }) |
| 21 | #define USER_DS ((mm_segment_t) { -0x40000000000UL }) |
| 22 | |
| 23 | #define VERIFY_READ 0 |
| 24 | #define VERIFY_WRITE 1 |
| 25 | |
| 26 | #define get_fs() (current_thread_info()->addr_limit) |
| 27 | #define get_ds() (KERNEL_DS) |
| 28 | #define set_fs(x) (current_thread_info()->addr_limit = (x)) |
| 29 | |
| 30 | #define segment_eq(a, b) ((a).seg == (b).seg) |
| 31 | |
| 32 | /* |
| 33 | * Is a address valid? This does a straightforward calculation rather |
| 34 | * than tests. |
| 35 | * |
| 36 | * Address valid if: |
| 37 | * - "addr" doesn't have any high-bits set |
| 38 | * - AND "size" doesn't have any high-bits set |
| 39 | * - AND "addr+size" doesn't have any high-bits set |
| 40 | * - OR we are in kernel mode. |
| 41 | */ |
| 42 | #define __access_ok(addr, size, segment) \ |
| 43 | (((segment).seg & (addr | size | (addr+size))) == 0) |
| 44 | |
| 45 | #define access_ok(type, addr, size) \ |
| 46 | ({ \ |
| 47 | __chk_user_ptr(addr); \ |
| 48 | __access_ok(((unsigned long)(addr)), (size), get_fs()); \ |
| 49 | }) |
| 50 | |
| 51 | /* |
| 52 | * These are the main single-value transfer routines. They automatically |
| 53 | * use the right size if we just have the right pointer type. |
| 54 | * |
| 55 | * As the alpha uses the same address space for kernel and user |
| 56 | * data, we can just do these as direct assignments. (Of course, the |
| 57 | * exception handling means that it's no longer "just"...) |
| 58 | * |
| 59 | * Careful to not |
| 60 | * (a) re-use the arguments for side effects (sizeof/typeof is ok) |
| 61 | * (b) require any knowledge of processes at this stage |
| 62 | */ |
| 63 | #define put_user(x, ptr) \ |
| 64 | __put_user_check((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)), get_fs()) |
| 65 | #define get_user(x, ptr) \ |
| 66 | __get_user_check((x), (ptr), sizeof(*(ptr)), get_fs()) |
| 67 | |
| 68 | /* |
| 69 | * The "__xxx" versions do not do address space checking, useful when |
| 70 | * doing multiple accesses to the same area (the programmer has to do the |
| 71 | * checks by hand with "access_ok()") |
| 72 | */ |
| 73 | #define __put_user(x, ptr) \ |
| 74 | __put_user_nocheck((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr))) |
| 75 | #define __get_user(x, ptr) \ |
| 76 | __get_user_nocheck((x), (ptr), sizeof(*(ptr))) |
| 77 | |
| 78 | /* |
| 79 | * The "lda %1, 2b-1b(%0)" bits are magic to get the assembler to |
| 80 | * encode the bits we need for resolving the exception. See the |
| 81 | * more extensive comments with fixup_inline_exception below for |
| 82 | * more information. |
| 83 | */ |
| 84 | |
| 85 | extern void __get_user_unknown(void); |
| 86 | |
| 87 | #define __get_user_nocheck(x, ptr, size) \ |
| 88 | ({ \ |
| 89 | long __gu_err = 0; \ |
| 90 | unsigned long __gu_val; \ |
| 91 | __chk_user_ptr(ptr); \ |
| 92 | switch (size) { \ |
| 93 | case 1: __get_user_8(ptr); break; \ |
| 94 | case 2: __get_user_16(ptr); break; \ |
| 95 | case 4: __get_user_32(ptr); break; \ |
| 96 | case 8: __get_user_64(ptr); break; \ |
| 97 | default: __get_user_unknown(); break; \ |
| 98 | } \ |
| 99 | (x) = (__force __typeof__(*(ptr))) __gu_val; \ |
| 100 | __gu_err; \ |
| 101 | }) |
| 102 | |
| 103 | #define __get_user_check(x, ptr, size, segment) \ |
| 104 | ({ \ |
| 105 | long __gu_err = -EFAULT; \ |
| 106 | unsigned long __gu_val = 0; \ |
| 107 | const __typeof__(*(ptr)) __user *__gu_addr = (ptr); \ |
| 108 | if (__access_ok((unsigned long)__gu_addr, size, segment)) { \ |
| 109 | __gu_err = 0; \ |
| 110 | switch (size) { \ |
| 111 | case 1: __get_user_8(__gu_addr); break; \ |
| 112 | case 2: __get_user_16(__gu_addr); break; \ |
| 113 | case 4: __get_user_32(__gu_addr); break; \ |
| 114 | case 8: __get_user_64(__gu_addr); break; \ |
| 115 | default: __get_user_unknown(); break; \ |
| 116 | } \ |
| 117 | } \ |
| 118 | (x) = (__force __typeof__(*(ptr))) __gu_val; \ |
| 119 | __gu_err; \ |
| 120 | }) |
| 121 | |
| 122 | struct __large_struct { unsigned long buf[100]; }; |
| 123 | #define __m(x) (*(struct __large_struct __user *)(x)) |
| 124 | |
| 125 | #define __get_user_64(addr) \ |
| 126 | __asm__("1: ldq %0,%2\n" \ |
| 127 | "2:\n" \ |
| 128 | ".section __ex_table,\"a\"\n" \ |
| 129 | " .long 1b - .\n" \ |
| 130 | " lda %0, 2b-1b(%1)\n" \ |
| 131 | ".previous" \ |
| 132 | : "=r"(__gu_val), "=r"(__gu_err) \ |
| 133 | : "m"(__m(addr)), "1"(__gu_err)) |
| 134 | |
| 135 | #define __get_user_32(addr) \ |
| 136 | __asm__("1: ldl %0,%2\n" \ |
| 137 | "2:\n" \ |
| 138 | ".section __ex_table,\"a\"\n" \ |
| 139 | " .long 1b - .\n" \ |
| 140 | " lda %0, 2b-1b(%1)\n" \ |
| 141 | ".previous" \ |
| 142 | : "=r"(__gu_val), "=r"(__gu_err) \ |
| 143 | : "m"(__m(addr)), "1"(__gu_err)) |
| 144 | |
| 145 | #ifdef __alpha_bwx__ |
| 146 | /* Those lucky bastards with ev56 and later CPUs can do byte/word moves. */ |
| 147 | |
| 148 | #define __get_user_16(addr) \ |
| 149 | __asm__("1: ldwu %0,%2\n" \ |
| 150 | "2:\n" \ |
| 151 | ".section __ex_table,\"a\"\n" \ |
| 152 | " .long 1b - .\n" \ |
| 153 | " lda %0, 2b-1b(%1)\n" \ |
| 154 | ".previous" \ |
| 155 | : "=r"(__gu_val), "=r"(__gu_err) \ |
| 156 | : "m"(__m(addr)), "1"(__gu_err)) |
| 157 | |
| 158 | #define __get_user_8(addr) \ |
| 159 | __asm__("1: ldbu %0,%2\n" \ |
| 160 | "2:\n" \ |
| 161 | ".section __ex_table,\"a\"\n" \ |
| 162 | " .long 1b - .\n" \ |
| 163 | " lda %0, 2b-1b(%1)\n" \ |
| 164 | ".previous" \ |
| 165 | : "=r"(__gu_val), "=r"(__gu_err) \ |
| 166 | : "m"(__m(addr)), "1"(__gu_err)) |
| 167 | #else |
| 168 | /* Unfortunately, we can't get an unaligned access trap for the sub-word |
| 169 | load, so we have to do a general unaligned operation. */ |
| 170 | |
| 171 | #define __get_user_16(addr) \ |
| 172 | { \ |
| 173 | long __gu_tmp; \ |
| 174 | __asm__("1: ldq_u %0,0(%3)\n" \ |
| 175 | "2: ldq_u %1,1(%3)\n" \ |
| 176 | " extwl %0,%3,%0\n" \ |
| 177 | " extwh %1,%3,%1\n" \ |
| 178 | " or %0,%1,%0\n" \ |
| 179 | "3:\n" \ |
| 180 | ".section __ex_table,\"a\"\n" \ |
| 181 | " .long 1b - .\n" \ |
| 182 | " lda %0, 3b-1b(%2)\n" \ |
| 183 | " .long 2b - .\n" \ |
| 184 | " lda %0, 3b-2b(%2)\n" \ |
| 185 | ".previous" \ |
| 186 | : "=&r"(__gu_val), "=&r"(__gu_tmp), "=r"(__gu_err) \ |
| 187 | : "r"(addr), "2"(__gu_err)); \ |
| 188 | } |
| 189 | |
| 190 | #define __get_user_8(addr) \ |
| 191 | __asm__("1: ldq_u %0,0(%2)\n" \ |
| 192 | " extbl %0,%2,%0\n" \ |
| 193 | "2:\n" \ |
| 194 | ".section __ex_table,\"a\"\n" \ |
| 195 | " .long 1b - .\n" \ |
| 196 | " lda %0, 2b-1b(%1)\n" \ |
| 197 | ".previous" \ |
| 198 | : "=&r"(__gu_val), "=r"(__gu_err) \ |
| 199 | : "r"(addr), "1"(__gu_err)) |
| 200 | #endif |
| 201 | |
| 202 | extern void __put_user_unknown(void); |
| 203 | |
| 204 | #define __put_user_nocheck(x, ptr, size) \ |
| 205 | ({ \ |
| 206 | long __pu_err = 0; \ |
| 207 | __chk_user_ptr(ptr); \ |
| 208 | switch (size) { \ |
| 209 | case 1: __put_user_8(x, ptr); break; \ |
| 210 | case 2: __put_user_16(x, ptr); break; \ |
| 211 | case 4: __put_user_32(x, ptr); break; \ |
| 212 | case 8: __put_user_64(x, ptr); break; \ |
| 213 | default: __put_user_unknown(); break; \ |
| 214 | } \ |
| 215 | __pu_err; \ |
| 216 | }) |
| 217 | |
| 218 | #define __put_user_check(x, ptr, size, segment) \ |
| 219 | ({ \ |
| 220 | long __pu_err = -EFAULT; \ |
| 221 | __typeof__(*(ptr)) __user *__pu_addr = (ptr); \ |
| 222 | if (__access_ok((unsigned long)__pu_addr, size, segment)) { \ |
| 223 | __pu_err = 0; \ |
| 224 | switch (size) { \ |
| 225 | case 1: __put_user_8(x, __pu_addr); break; \ |
| 226 | case 2: __put_user_16(x, __pu_addr); break; \ |
| 227 | case 4: __put_user_32(x, __pu_addr); break; \ |
| 228 | case 8: __put_user_64(x, __pu_addr); break; \ |
| 229 | default: __put_user_unknown(); break; \ |
| 230 | } \ |
| 231 | } \ |
| 232 | __pu_err; \ |
| 233 | }) |
| 234 | |
| 235 | /* |
| 236 | * The "__put_user_xx()" macros tell gcc they read from memory |
| 237 | * instead of writing: this is because they do not write to |
| 238 | * any memory gcc knows about, so there are no aliasing issues |
| 239 | */ |
| 240 | #define __put_user_64(x, addr) \ |
| 241 | __asm__ __volatile__("1: stq %r2,%1\n" \ |
| 242 | "2:\n" \ |
| 243 | ".section __ex_table,\"a\"\n" \ |
| 244 | " .long 1b - .\n" \ |
| 245 | " lda $31,2b-1b(%0)\n" \ |
| 246 | ".previous" \ |
| 247 | : "=r"(__pu_err) \ |
| 248 | : "m" (__m(addr)), "rJ" (x), "0"(__pu_err)) |
| 249 | |
| 250 | #define __put_user_32(x, addr) \ |
| 251 | __asm__ __volatile__("1: stl %r2,%1\n" \ |
| 252 | "2:\n" \ |
| 253 | ".section __ex_table,\"a\"\n" \ |
| 254 | " .long 1b - .\n" \ |
| 255 | " lda $31,2b-1b(%0)\n" \ |
| 256 | ".previous" \ |
| 257 | : "=r"(__pu_err) \ |
| 258 | : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) |
| 259 | |
| 260 | #ifdef __alpha_bwx__ |
| 261 | /* Those lucky bastards with ev56 and later CPUs can do byte/word moves. */ |
| 262 | |
| 263 | #define __put_user_16(x, addr) \ |
| 264 | __asm__ __volatile__("1: stw %r2,%1\n" \ |
| 265 | "2:\n" \ |
| 266 | ".section __ex_table,\"a\"\n" \ |
| 267 | " .long 1b - .\n" \ |
| 268 | " lda $31,2b-1b(%0)\n" \ |
| 269 | ".previous" \ |
| 270 | : "=r"(__pu_err) \ |
| 271 | : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) |
| 272 | |
| 273 | #define __put_user_8(x, addr) \ |
| 274 | __asm__ __volatile__("1: stb %r2,%1\n" \ |
| 275 | "2:\n" \ |
| 276 | ".section __ex_table,\"a\"\n" \ |
| 277 | " .long 1b - .\n" \ |
| 278 | " lda $31,2b-1b(%0)\n" \ |
| 279 | ".previous" \ |
| 280 | : "=r"(__pu_err) \ |
| 281 | : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) |
| 282 | #else |
| 283 | /* Unfortunately, we can't get an unaligned access trap for the sub-word |
| 284 | write, so we have to do a general unaligned operation. */ |
| 285 | |
| 286 | #define __put_user_16(x, addr) \ |
| 287 | { \ |
| 288 | long __pu_tmp1, __pu_tmp2, __pu_tmp3, __pu_tmp4; \ |
| 289 | __asm__ __volatile__( \ |
| 290 | "1: ldq_u %2,1(%5)\n" \ |
| 291 | "2: ldq_u %1,0(%5)\n" \ |
| 292 | " inswh %6,%5,%4\n" \ |
| 293 | " inswl %6,%5,%3\n" \ |
| 294 | " mskwh %2,%5,%2\n" \ |
| 295 | " mskwl %1,%5,%1\n" \ |
| 296 | " or %2,%4,%2\n" \ |
| 297 | " or %1,%3,%1\n" \ |
| 298 | "3: stq_u %2,1(%5)\n" \ |
| 299 | "4: stq_u %1,0(%5)\n" \ |
| 300 | "5:\n" \ |
| 301 | ".section __ex_table,\"a\"\n" \ |
| 302 | " .long 1b - .\n" \ |
| 303 | " lda $31, 5b-1b(%0)\n" \ |
| 304 | " .long 2b - .\n" \ |
| 305 | " lda $31, 5b-2b(%0)\n" \ |
| 306 | " .long 3b - .\n" \ |
| 307 | " lda $31, 5b-3b(%0)\n" \ |
| 308 | " .long 4b - .\n" \ |
| 309 | " lda $31, 5b-4b(%0)\n" \ |
| 310 | ".previous" \ |
| 311 | : "=r"(__pu_err), "=&r"(__pu_tmp1), \ |
| 312 | "=&r"(__pu_tmp2), "=&r"(__pu_tmp3), \ |
| 313 | "=&r"(__pu_tmp4) \ |
| 314 | : "r"(addr), "r"((unsigned long)(x)), "0"(__pu_err)); \ |
| 315 | } |
| 316 | |
| 317 | #define __put_user_8(x, addr) \ |
| 318 | { \ |
| 319 | long __pu_tmp1, __pu_tmp2; \ |
| 320 | __asm__ __volatile__( \ |
| 321 | "1: ldq_u %1,0(%4)\n" \ |
| 322 | " insbl %3,%4,%2\n" \ |
| 323 | " mskbl %1,%4,%1\n" \ |
| 324 | " or %1,%2,%1\n" \ |
| 325 | "2: stq_u %1,0(%4)\n" \ |
| 326 | "3:\n" \ |
| 327 | ".section __ex_table,\"a\"\n" \ |
| 328 | " .long 1b - .\n" \ |
| 329 | " lda $31, 3b-1b(%0)\n" \ |
| 330 | " .long 2b - .\n" \ |
| 331 | " lda $31, 3b-2b(%0)\n" \ |
| 332 | ".previous" \ |
| 333 | : "=r"(__pu_err), \ |
| 334 | "=&r"(__pu_tmp1), "=&r"(__pu_tmp2) \ |
| 335 | : "r"((unsigned long)(x)), "r"(addr), "0"(__pu_err)); \ |
| 336 | } |
| 337 | #endif |
| 338 | |
| 339 | |
| 340 | /* |
| 341 | * Complex access routines |
| 342 | */ |
| 343 | |
| 344 | /* This little bit of silliness is to get the GP loaded for a function |
| 345 | that ordinarily wouldn't. Otherwise we could have it done by the macro |
| 346 | directly, which can be optimized the linker. */ |
| 347 | #ifdef MODULE |
| 348 | #define __module_address(sym) "r"(sym), |
| 349 | #define __module_call(ra, arg, sym) "jsr $" #ra ",(%" #arg ")," #sym |
| 350 | #else |
| 351 | #define __module_address(sym) |
| 352 | #define __module_call(ra, arg, sym) "bsr $" #ra "," #sym " !samegp" |
| 353 | #endif |
| 354 | |
| 355 | extern void __copy_user(void); |
| 356 | |
| 357 | extern inline long |
| 358 | __copy_tofrom_user_nocheck(void *to, const void *from, long len) |
| 359 | { |
| 360 | register void * __cu_to __asm__("$6") = to; |
| 361 | register const void * __cu_from __asm__("$7") = from; |
| 362 | register long __cu_len __asm__("$0") = len; |
| 363 | |
| 364 | __asm__ __volatile__( |
| 365 | __module_call(28, 3, __copy_user) |
| 366 | : "=r" (__cu_len), "=r" (__cu_from), "=r" (__cu_to) |
| 367 | : __module_address(__copy_user) |
| 368 | "0" (__cu_len), "1" (__cu_from), "2" (__cu_to) |
| 369 | : "$1", "$2", "$3", "$4", "$5", "$28", "memory"); |
| 370 | |
| 371 | return __cu_len; |
| 372 | } |
| 373 | |
| 374 | #define __copy_to_user(to, from, n) \ |
| 375 | ({ \ |
| 376 | __chk_user_ptr(to); \ |
| 377 | __copy_tofrom_user_nocheck((__force void *)(to), (from), (n)); \ |
| 378 | }) |
| 379 | #define __copy_from_user(to, from, n) \ |
| 380 | ({ \ |
| 381 | __chk_user_ptr(from); \ |
| 382 | __copy_tofrom_user_nocheck((to), (__force void *)(from), (n)); \ |
| 383 | }) |
| 384 | |
| 385 | #define __copy_to_user_inatomic __copy_to_user |
| 386 | #define __copy_from_user_inatomic __copy_from_user |
| 387 | |
| 388 | extern inline long |
| 389 | copy_to_user(void __user *to, const void *from, long n) |
| 390 | { |
| 391 | if (likely(__access_ok((unsigned long)to, n, get_fs()))) |
| 392 | n = __copy_tofrom_user_nocheck((__force void *)to, from, n); |
| 393 | return n; |
| 394 | } |
| 395 | |
| 396 | extern inline long |
| 397 | copy_from_user(void *to, const void __user *from, long n) |
| 398 | { |
| 399 | if (likely(__access_ok((unsigned long)from, n, get_fs()))) |
| 400 | n = __copy_tofrom_user_nocheck(to, (__force void *)from, n); |
| 401 | else |
| 402 | memset(to, 0, n); |
| 403 | return n; |
| 404 | } |
| 405 | |
| 406 | extern void __do_clear_user(void); |
| 407 | |
| 408 | extern inline long |
| 409 | __clear_user(void __user *to, long len) |
| 410 | { |
| 411 | register void __user * __cl_to __asm__("$6") = to; |
| 412 | register long __cl_len __asm__("$0") = len; |
| 413 | __asm__ __volatile__( |
| 414 | __module_call(28, 2, __do_clear_user) |
| 415 | : "=r"(__cl_len), "=r"(__cl_to) |
| 416 | : __module_address(__do_clear_user) |
| 417 | "0"(__cl_len), "1"(__cl_to) |
| 418 | : "$1", "$2", "$3", "$4", "$5", "$28", "memory"); |
| 419 | return __cl_len; |
| 420 | } |
| 421 | |
| 422 | extern inline long |
| 423 | clear_user(void __user *to, long len) |
| 424 | { |
| 425 | if (__access_ok((unsigned long)to, len, get_fs())) |
| 426 | len = __clear_user(to, len); |
| 427 | return len; |
| 428 | } |
| 429 | |
| 430 | #undef __module_address |
| 431 | #undef __module_call |
| 432 | |
| 433 | #define user_addr_max() \ |
| 434 | (segment_eq(get_fs(), USER_DS) ? TASK_SIZE : ~0UL) |
| 435 | |
| 436 | extern long strncpy_from_user(char *dest, const char __user *src, long count); |
| 437 | extern __must_check long strlen_user(const char __user *str); |
| 438 | extern __must_check long strnlen_user(const char __user *str, long n); |
| 439 | |
| 440 | /* |
| 441 | * About the exception table: |
| 442 | * |
| 443 | * - insn is a 32-bit pc-relative offset from the faulting insn. |
| 444 | * - nextinsn is a 16-bit offset off of the faulting instruction |
| 445 | * (not off of the *next* instruction as branches are). |
| 446 | * - errreg is the register in which to place -EFAULT. |
| 447 | * - valreg is the final target register for the load sequence |
| 448 | * and will be zeroed. |
| 449 | * |
| 450 | * Either errreg or valreg may be $31, in which case nothing happens. |
| 451 | * |
| 452 | * The exception fixup information "just so happens" to be arranged |
| 453 | * as in a MEM format instruction. This lets us emit our three |
| 454 | * values like so: |
| 455 | * |
| 456 | * lda valreg, nextinsn(errreg) |
| 457 | * |
| 458 | */ |
| 459 | |
| 460 | struct exception_table_entry |
| 461 | { |
| 462 | signed int insn; |
| 463 | union exception_fixup { |
| 464 | unsigned unit; |
| 465 | struct { |
| 466 | signed int nextinsn : 16; |
| 467 | unsigned int errreg : 5; |
| 468 | unsigned int valreg : 5; |
| 469 | } bits; |
| 470 | } fixup; |
| 471 | }; |
| 472 | |
| 473 | /* Returns the new pc */ |
| 474 | #define fixup_exception(map_reg, _fixup, pc) \ |
| 475 | ({ \ |
| 476 | if ((_fixup)->fixup.bits.valreg != 31) \ |
| 477 | map_reg((_fixup)->fixup.bits.valreg) = 0; \ |
| 478 | if ((_fixup)->fixup.bits.errreg != 31) \ |
| 479 | map_reg((_fixup)->fixup.bits.errreg) = -EFAULT; \ |
| 480 | (pc) + (_fixup)->fixup.bits.nextinsn; \ |
| 481 | }) |
| 482 | |
| 483 | #define ARCH_HAS_SORT_EXTABLE |
| 484 | #define ARCH_HAS_SEARCH_EXTABLE |
| 485 | |
| 486 | #endif /* __ALPHA_UACCESS_H */ |