Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * SWIOTLB-based DMA API implementation |
| 3 | * |
| 4 | * Copyright (C) 2012 ARM Ltd. |
| 5 | * Author: Catalin Marinas <catalin.marinas@arm.com> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | |
| 20 | #include <linux/gfp.h> |
| 21 | #include <linux/acpi.h> |
| 22 | #include <linux/export.h> |
| 23 | #include <linux/slab.h> |
| 24 | #include <linux/genalloc.h> |
| 25 | #include <linux/dma-mapping.h> |
| 26 | #include <linux/dma-contiguous.h> |
| 27 | #include <linux/vmalloc.h> |
| 28 | #include <linux/swiotlb.h> |
| 29 | |
| 30 | #include <asm/cacheflush.h> |
| 31 | |
| 32 | static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot, |
| 33 | bool coherent) |
| 34 | { |
| 35 | if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs)) |
| 36 | return pgprot_writecombine(prot); |
| 37 | return prot; |
| 38 | } |
| 39 | |
| 40 | static struct gen_pool *atomic_pool; |
| 41 | |
| 42 | #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K |
| 43 | static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE; |
| 44 | |
| 45 | static int __init early_coherent_pool(char *p) |
| 46 | { |
| 47 | atomic_pool_size = memparse(p, &p); |
| 48 | return 0; |
| 49 | } |
| 50 | early_param("coherent_pool", early_coherent_pool); |
| 51 | |
| 52 | static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) |
| 53 | { |
| 54 | unsigned long val; |
| 55 | void *ptr = NULL; |
| 56 | |
| 57 | if (!atomic_pool) { |
| 58 | WARN(1, "coherent pool not initialised!\n"); |
| 59 | return NULL; |
| 60 | } |
| 61 | |
| 62 | val = gen_pool_alloc(atomic_pool, size); |
| 63 | if (val) { |
| 64 | phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); |
| 65 | |
| 66 | *ret_page = phys_to_page(phys); |
| 67 | ptr = (void *)val; |
| 68 | memset(ptr, 0, size); |
| 69 | } |
| 70 | |
| 71 | return ptr; |
| 72 | } |
| 73 | |
| 74 | static bool __in_atomic_pool(void *start, size_t size) |
| 75 | { |
| 76 | return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); |
| 77 | } |
| 78 | |
| 79 | static int __free_from_pool(void *start, size_t size) |
| 80 | { |
| 81 | if (!__in_atomic_pool(start, size)) |
| 82 | return 0; |
| 83 | |
| 84 | gen_pool_free(atomic_pool, (unsigned long)start, size); |
| 85 | |
| 86 | return 1; |
| 87 | } |
| 88 | |
| 89 | static void *__dma_alloc_coherent(struct device *dev, size_t size, |
| 90 | dma_addr_t *dma_handle, gfp_t flags, |
| 91 | struct dma_attrs *attrs) |
| 92 | { |
| 93 | if (dev == NULL) { |
| 94 | WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); |
| 95 | return NULL; |
| 96 | } |
| 97 | |
| 98 | if (IS_ENABLED(CONFIG_ZONE_DMA) && |
| 99 | dev->coherent_dma_mask <= DMA_BIT_MASK(32)) |
| 100 | flags |= GFP_DMA; |
| 101 | if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) { |
| 102 | struct page *page; |
| 103 | void *addr; |
| 104 | |
| 105 | page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, |
| 106 | get_order(size)); |
| 107 | if (!page) |
| 108 | return NULL; |
| 109 | |
| 110 | *dma_handle = phys_to_dma(dev, page_to_phys(page)); |
| 111 | addr = page_address(page); |
| 112 | memset(addr, 0, size); |
| 113 | return addr; |
| 114 | } else { |
| 115 | return swiotlb_alloc_coherent(dev, size, dma_handle, flags); |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | static void __dma_free_coherent(struct device *dev, size_t size, |
| 120 | void *vaddr, dma_addr_t dma_handle, |
| 121 | struct dma_attrs *attrs) |
| 122 | { |
| 123 | bool freed; |
| 124 | phys_addr_t paddr = dma_to_phys(dev, dma_handle); |
| 125 | |
| 126 | if (dev == NULL) { |
| 127 | WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); |
| 128 | return; |
| 129 | } |
| 130 | |
| 131 | freed = dma_release_from_contiguous(dev, |
| 132 | phys_to_page(paddr), |
| 133 | size >> PAGE_SHIFT); |
| 134 | if (!freed) |
| 135 | swiotlb_free_coherent(dev, size, vaddr, dma_handle); |
| 136 | } |
| 137 | |
| 138 | static void *__dma_alloc(struct device *dev, size_t size, |
| 139 | dma_addr_t *dma_handle, gfp_t flags, |
| 140 | struct dma_attrs *attrs) |
| 141 | { |
| 142 | struct page *page; |
| 143 | void *ptr, *coherent_ptr; |
| 144 | bool coherent = is_device_dma_coherent(dev); |
| 145 | pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false); |
| 146 | |
| 147 | size = PAGE_ALIGN(size); |
| 148 | |
| 149 | if (!coherent && !gfpflags_allow_blocking(flags)) { |
| 150 | struct page *page = NULL; |
| 151 | void *addr = __alloc_from_pool(size, &page, flags); |
| 152 | |
| 153 | if (addr) |
| 154 | *dma_handle = phys_to_dma(dev, page_to_phys(page)); |
| 155 | |
| 156 | return addr; |
| 157 | } |
| 158 | |
| 159 | ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs); |
| 160 | if (!ptr) |
| 161 | goto no_mem; |
| 162 | |
| 163 | /* no need for non-cacheable mapping if coherent */ |
| 164 | if (coherent) |
| 165 | return ptr; |
| 166 | |
| 167 | /* remove any dirty cache lines on the kernel alias */ |
| 168 | __dma_flush_range(ptr, ptr + size); |
| 169 | |
| 170 | /* create a coherent mapping */ |
| 171 | page = virt_to_page(ptr); |
| 172 | coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP, |
| 173 | prot, NULL); |
| 174 | if (!coherent_ptr) |
| 175 | goto no_map; |
| 176 | |
| 177 | return coherent_ptr; |
| 178 | |
| 179 | no_map: |
| 180 | __dma_free_coherent(dev, size, ptr, *dma_handle, attrs); |
| 181 | no_mem: |
| 182 | *dma_handle = DMA_ERROR_CODE; |
| 183 | return NULL; |
| 184 | } |
| 185 | |
| 186 | static void __dma_free(struct device *dev, size_t size, |
| 187 | void *vaddr, dma_addr_t dma_handle, |
| 188 | struct dma_attrs *attrs) |
| 189 | { |
| 190 | void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle)); |
| 191 | |
| 192 | size = PAGE_ALIGN(size); |
| 193 | |
| 194 | if (!is_device_dma_coherent(dev)) { |
| 195 | if (__free_from_pool(vaddr, size)) |
| 196 | return; |
| 197 | vunmap(vaddr); |
| 198 | } |
| 199 | __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs); |
| 200 | } |
| 201 | |
| 202 | static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page, |
| 203 | unsigned long offset, size_t size, |
| 204 | enum dma_data_direction dir, |
| 205 | struct dma_attrs *attrs) |
| 206 | { |
| 207 | dma_addr_t dev_addr; |
| 208 | |
| 209 | dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs); |
| 210 | if (!is_device_dma_coherent(dev)) |
| 211 | __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); |
| 212 | |
| 213 | return dev_addr; |
| 214 | } |
| 215 | |
| 216 | |
| 217 | static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr, |
| 218 | size_t size, enum dma_data_direction dir, |
| 219 | struct dma_attrs *attrs) |
| 220 | { |
| 221 | if (!is_device_dma_coherent(dev)) |
| 222 | __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); |
| 223 | swiotlb_unmap_page(dev, dev_addr, size, dir, attrs); |
| 224 | } |
| 225 | |
| 226 | static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, |
| 227 | int nelems, enum dma_data_direction dir, |
| 228 | struct dma_attrs *attrs) |
| 229 | { |
| 230 | struct scatterlist *sg; |
| 231 | int i, ret; |
| 232 | |
| 233 | ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs); |
| 234 | if (!is_device_dma_coherent(dev)) |
| 235 | for_each_sg(sgl, sg, ret, i) |
| 236 | __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), |
| 237 | sg->length, dir); |
| 238 | |
| 239 | return ret; |
| 240 | } |
| 241 | |
| 242 | static void __swiotlb_unmap_sg_attrs(struct device *dev, |
| 243 | struct scatterlist *sgl, int nelems, |
| 244 | enum dma_data_direction dir, |
| 245 | struct dma_attrs *attrs) |
| 246 | { |
| 247 | struct scatterlist *sg; |
| 248 | int i; |
| 249 | |
| 250 | if (!is_device_dma_coherent(dev)) |
| 251 | for_each_sg(sgl, sg, nelems, i) |
| 252 | __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), |
| 253 | sg->length, dir); |
| 254 | swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs); |
| 255 | } |
| 256 | |
| 257 | static void __swiotlb_sync_single_for_cpu(struct device *dev, |
| 258 | dma_addr_t dev_addr, size_t size, |
| 259 | enum dma_data_direction dir) |
| 260 | { |
| 261 | if (!is_device_dma_coherent(dev)) |
| 262 | __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); |
| 263 | swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir); |
| 264 | } |
| 265 | |
| 266 | static void __swiotlb_sync_single_for_device(struct device *dev, |
| 267 | dma_addr_t dev_addr, size_t size, |
| 268 | enum dma_data_direction dir) |
| 269 | { |
| 270 | swiotlb_sync_single_for_device(dev, dev_addr, size, dir); |
| 271 | if (!is_device_dma_coherent(dev)) |
| 272 | __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); |
| 273 | } |
| 274 | |
| 275 | static void __swiotlb_sync_sg_for_cpu(struct device *dev, |
| 276 | struct scatterlist *sgl, int nelems, |
| 277 | enum dma_data_direction dir) |
| 278 | { |
| 279 | struct scatterlist *sg; |
| 280 | int i; |
| 281 | |
| 282 | if (!is_device_dma_coherent(dev)) |
| 283 | for_each_sg(sgl, sg, nelems, i) |
| 284 | __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), |
| 285 | sg->length, dir); |
| 286 | swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir); |
| 287 | } |
| 288 | |
| 289 | static void __swiotlb_sync_sg_for_device(struct device *dev, |
| 290 | struct scatterlist *sgl, int nelems, |
| 291 | enum dma_data_direction dir) |
| 292 | { |
| 293 | struct scatterlist *sg; |
| 294 | int i; |
| 295 | |
| 296 | swiotlb_sync_sg_for_device(dev, sgl, nelems, dir); |
| 297 | if (!is_device_dma_coherent(dev)) |
| 298 | for_each_sg(sgl, sg, nelems, i) |
| 299 | __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), |
| 300 | sg->length, dir); |
| 301 | } |
| 302 | |
| 303 | static int __swiotlb_mmap(struct device *dev, |
| 304 | struct vm_area_struct *vma, |
| 305 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 306 | struct dma_attrs *attrs) |
| 307 | { |
| 308 | int ret = -ENXIO; |
| 309 | unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> |
| 310 | PAGE_SHIFT; |
| 311 | unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 312 | unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT; |
| 313 | unsigned long off = vma->vm_pgoff; |
| 314 | |
| 315 | vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, |
| 316 | is_device_dma_coherent(dev)); |
| 317 | |
| 318 | if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) |
| 319 | return ret; |
| 320 | |
| 321 | if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { |
| 322 | ret = remap_pfn_range(vma, vma->vm_start, |
| 323 | pfn + off, |
| 324 | vma->vm_end - vma->vm_start, |
| 325 | vma->vm_page_prot); |
| 326 | } |
| 327 | |
| 328 | return ret; |
| 329 | } |
| 330 | |
| 331 | static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, |
| 332 | void *cpu_addr, dma_addr_t handle, size_t size, |
| 333 | struct dma_attrs *attrs) |
| 334 | { |
| 335 | int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); |
| 336 | |
| 337 | if (!ret) |
| 338 | sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)), |
| 339 | PAGE_ALIGN(size), 0); |
| 340 | |
| 341 | return ret; |
| 342 | } |
| 343 | |
| 344 | static struct dma_map_ops swiotlb_dma_ops = { |
| 345 | .alloc = __dma_alloc, |
| 346 | .free = __dma_free, |
| 347 | .mmap = __swiotlb_mmap, |
| 348 | .get_sgtable = __swiotlb_get_sgtable, |
| 349 | .map_page = __swiotlb_map_page, |
| 350 | .unmap_page = __swiotlb_unmap_page, |
| 351 | .map_sg = __swiotlb_map_sg_attrs, |
| 352 | .unmap_sg = __swiotlb_unmap_sg_attrs, |
| 353 | .sync_single_for_cpu = __swiotlb_sync_single_for_cpu, |
| 354 | .sync_single_for_device = __swiotlb_sync_single_for_device, |
| 355 | .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu, |
| 356 | .sync_sg_for_device = __swiotlb_sync_sg_for_device, |
| 357 | .dma_supported = swiotlb_dma_supported, |
| 358 | .mapping_error = swiotlb_dma_mapping_error, |
| 359 | }; |
| 360 | |
| 361 | static int __init atomic_pool_init(void) |
| 362 | { |
| 363 | pgprot_t prot = __pgprot(PROT_NORMAL_NC); |
| 364 | unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT; |
| 365 | struct page *page; |
| 366 | void *addr; |
| 367 | unsigned int pool_size_order = get_order(atomic_pool_size); |
| 368 | |
| 369 | if (dev_get_cma_area(NULL)) |
| 370 | page = dma_alloc_from_contiguous(NULL, nr_pages, |
| 371 | pool_size_order); |
| 372 | else |
| 373 | page = alloc_pages(GFP_DMA, pool_size_order); |
| 374 | |
| 375 | if (page) { |
| 376 | int ret; |
| 377 | void *page_addr = page_address(page); |
| 378 | |
| 379 | memset(page_addr, 0, atomic_pool_size); |
| 380 | __dma_flush_range(page_addr, page_addr + atomic_pool_size); |
| 381 | |
| 382 | atomic_pool = gen_pool_create(PAGE_SHIFT, -1); |
| 383 | if (!atomic_pool) |
| 384 | goto free_page; |
| 385 | |
| 386 | addr = dma_common_contiguous_remap(page, atomic_pool_size, |
| 387 | VM_USERMAP, prot, atomic_pool_init); |
| 388 | |
| 389 | if (!addr) |
| 390 | goto destroy_genpool; |
| 391 | |
| 392 | ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr, |
| 393 | page_to_phys(page), |
| 394 | atomic_pool_size, -1); |
| 395 | if (ret) |
| 396 | goto remove_mapping; |
| 397 | |
| 398 | gen_pool_set_algo(atomic_pool, |
| 399 | gen_pool_first_fit_order_align, |
| 400 | (void *)PAGE_SHIFT); |
| 401 | |
| 402 | pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n", |
| 403 | atomic_pool_size / 1024); |
| 404 | return 0; |
| 405 | } |
| 406 | goto out; |
| 407 | |
| 408 | remove_mapping: |
| 409 | dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP); |
| 410 | destroy_genpool: |
| 411 | gen_pool_destroy(atomic_pool); |
| 412 | atomic_pool = NULL; |
| 413 | free_page: |
| 414 | if (!dma_release_from_contiguous(NULL, page, nr_pages)) |
| 415 | __free_pages(page, pool_size_order); |
| 416 | out: |
| 417 | pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", |
| 418 | atomic_pool_size / 1024); |
| 419 | return -ENOMEM; |
| 420 | } |
| 421 | |
| 422 | /******************************************** |
| 423 | * The following APIs are for dummy DMA ops * |
| 424 | ********************************************/ |
| 425 | |
| 426 | static void *__dummy_alloc(struct device *dev, size_t size, |
| 427 | dma_addr_t *dma_handle, gfp_t flags, |
| 428 | struct dma_attrs *attrs) |
| 429 | { |
| 430 | return NULL; |
| 431 | } |
| 432 | |
| 433 | static void __dummy_free(struct device *dev, size_t size, |
| 434 | void *vaddr, dma_addr_t dma_handle, |
| 435 | struct dma_attrs *attrs) |
| 436 | { |
| 437 | } |
| 438 | |
| 439 | static int __dummy_mmap(struct device *dev, |
| 440 | struct vm_area_struct *vma, |
| 441 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 442 | struct dma_attrs *attrs) |
| 443 | { |
| 444 | return -ENXIO; |
| 445 | } |
| 446 | |
| 447 | static dma_addr_t __dummy_map_page(struct device *dev, struct page *page, |
| 448 | unsigned long offset, size_t size, |
| 449 | enum dma_data_direction dir, |
| 450 | struct dma_attrs *attrs) |
| 451 | { |
| 452 | return DMA_ERROR_CODE; |
| 453 | } |
| 454 | |
| 455 | static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr, |
| 456 | size_t size, enum dma_data_direction dir, |
| 457 | struct dma_attrs *attrs) |
| 458 | { |
| 459 | } |
| 460 | |
| 461 | static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl, |
| 462 | int nelems, enum dma_data_direction dir, |
| 463 | struct dma_attrs *attrs) |
| 464 | { |
| 465 | return 0; |
| 466 | } |
| 467 | |
| 468 | static void __dummy_unmap_sg(struct device *dev, |
| 469 | struct scatterlist *sgl, int nelems, |
| 470 | enum dma_data_direction dir, |
| 471 | struct dma_attrs *attrs) |
| 472 | { |
| 473 | } |
| 474 | |
| 475 | static void __dummy_sync_single(struct device *dev, |
| 476 | dma_addr_t dev_addr, size_t size, |
| 477 | enum dma_data_direction dir) |
| 478 | { |
| 479 | } |
| 480 | |
| 481 | static void __dummy_sync_sg(struct device *dev, |
| 482 | struct scatterlist *sgl, int nelems, |
| 483 | enum dma_data_direction dir) |
| 484 | { |
| 485 | } |
| 486 | |
| 487 | static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr) |
| 488 | { |
| 489 | return 1; |
| 490 | } |
| 491 | |
| 492 | static int __dummy_dma_supported(struct device *hwdev, u64 mask) |
| 493 | { |
| 494 | return 0; |
| 495 | } |
| 496 | |
| 497 | struct dma_map_ops dummy_dma_ops = { |
| 498 | .alloc = __dummy_alloc, |
| 499 | .free = __dummy_free, |
| 500 | .mmap = __dummy_mmap, |
| 501 | .map_page = __dummy_map_page, |
| 502 | .unmap_page = __dummy_unmap_page, |
| 503 | .map_sg = __dummy_map_sg, |
| 504 | .unmap_sg = __dummy_unmap_sg, |
| 505 | .sync_single_for_cpu = __dummy_sync_single, |
| 506 | .sync_single_for_device = __dummy_sync_single, |
| 507 | .sync_sg_for_cpu = __dummy_sync_sg, |
| 508 | .sync_sg_for_device = __dummy_sync_sg, |
| 509 | .mapping_error = __dummy_mapping_error, |
| 510 | .dma_supported = __dummy_dma_supported, |
| 511 | }; |
| 512 | EXPORT_SYMBOL(dummy_dma_ops); |
| 513 | |
| 514 | static int __init arm64_dma_init(void) |
| 515 | { |
| 516 | return atomic_pool_init(); |
| 517 | } |
| 518 | arch_initcall(arm64_dma_init); |
| 519 | |
| 520 | #define PREALLOC_DMA_DEBUG_ENTRIES 4096 |
| 521 | |
| 522 | static int __init dma_debug_do_init(void) |
| 523 | { |
| 524 | dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); |
| 525 | return 0; |
| 526 | } |
| 527 | fs_initcall(dma_debug_do_init); |
| 528 | |
| 529 | |
| 530 | #ifdef CONFIG_IOMMU_DMA |
| 531 | #include <linux/dma-iommu.h> |
| 532 | #include <linux/platform_device.h> |
| 533 | #include <linux/amba/bus.h> |
| 534 | |
| 535 | /* Thankfully, all cache ops are by VA so we can ignore phys here */ |
| 536 | static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) |
| 537 | { |
| 538 | __dma_flush_range(virt, virt + PAGE_SIZE); |
| 539 | } |
| 540 | |
| 541 | static void *__iommu_alloc_attrs(struct device *dev, size_t size, |
| 542 | dma_addr_t *handle, gfp_t gfp, |
| 543 | struct dma_attrs *attrs) |
| 544 | { |
| 545 | bool coherent = is_device_dma_coherent(dev); |
| 546 | int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent); |
| 547 | size_t iosize = size; |
| 548 | void *addr; |
| 549 | |
| 550 | if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) |
| 551 | return NULL; |
| 552 | |
| 553 | size = PAGE_ALIGN(size); |
| 554 | |
| 555 | /* |
| 556 | * Some drivers rely on this, and we probably don't want the |
| 557 | * possibility of stale kernel data being read by devices anyway. |
| 558 | */ |
| 559 | gfp |= __GFP_ZERO; |
| 560 | |
| 561 | if (gfpflags_allow_blocking(gfp)) { |
| 562 | struct page **pages; |
| 563 | pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); |
| 564 | |
| 565 | pages = iommu_dma_alloc(dev, iosize, gfp, ioprot, handle, |
| 566 | flush_page); |
| 567 | if (!pages) |
| 568 | return NULL; |
| 569 | |
| 570 | addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, |
| 571 | __builtin_return_address(0)); |
| 572 | if (!addr) |
| 573 | iommu_dma_free(dev, pages, iosize, handle); |
| 574 | } else { |
| 575 | struct page *page; |
| 576 | /* |
| 577 | * In atomic context we can't remap anything, so we'll only |
| 578 | * get the virtually contiguous buffer we need by way of a |
| 579 | * physically contiguous allocation. |
| 580 | */ |
| 581 | if (coherent) { |
| 582 | page = alloc_pages(gfp, get_order(size)); |
| 583 | addr = page ? page_address(page) : NULL; |
| 584 | } else { |
| 585 | addr = __alloc_from_pool(size, &page, gfp); |
| 586 | } |
| 587 | if (!addr) |
| 588 | return NULL; |
| 589 | |
| 590 | *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); |
| 591 | if (iommu_dma_mapping_error(dev, *handle)) { |
| 592 | if (coherent) |
| 593 | __free_pages(page, get_order(size)); |
| 594 | else |
| 595 | __free_from_pool(addr, size); |
| 596 | addr = NULL; |
| 597 | } |
| 598 | } |
| 599 | return addr; |
| 600 | } |
| 601 | |
| 602 | static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, |
| 603 | dma_addr_t handle, struct dma_attrs *attrs) |
| 604 | { |
| 605 | size_t iosize = size; |
| 606 | |
| 607 | size = PAGE_ALIGN(size); |
| 608 | /* |
| 609 | * @cpu_addr will be one of 3 things depending on how it was allocated: |
| 610 | * - A remapped array of pages from iommu_dma_alloc(), for all |
| 611 | * non-atomic allocations. |
| 612 | * - A non-cacheable alias from the atomic pool, for atomic |
| 613 | * allocations by non-coherent devices. |
| 614 | * - A normal lowmem address, for atomic allocations by |
| 615 | * coherent devices. |
| 616 | * Hence how dodgy the below logic looks... |
| 617 | */ |
| 618 | if (__in_atomic_pool(cpu_addr, size)) { |
| 619 | iommu_dma_unmap_page(dev, handle, iosize, 0, NULL); |
| 620 | __free_from_pool(cpu_addr, size); |
| 621 | } else if (is_vmalloc_addr(cpu_addr)){ |
| 622 | struct vm_struct *area = find_vm_area(cpu_addr); |
| 623 | |
| 624 | if (WARN_ON(!area || !area->pages)) |
| 625 | return; |
| 626 | iommu_dma_free(dev, area->pages, iosize, &handle); |
| 627 | dma_common_free_remap(cpu_addr, size, VM_USERMAP); |
| 628 | } else { |
| 629 | iommu_dma_unmap_page(dev, handle, iosize, 0, NULL); |
| 630 | __free_pages(virt_to_page(cpu_addr), get_order(size)); |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, |
| 635 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 636 | struct dma_attrs *attrs) |
| 637 | { |
| 638 | struct vm_struct *area; |
| 639 | int ret; |
| 640 | |
| 641 | vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, |
| 642 | is_device_dma_coherent(dev)); |
| 643 | |
| 644 | if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) |
| 645 | return ret; |
| 646 | |
| 647 | area = find_vm_area(cpu_addr); |
| 648 | if (WARN_ON(!area || !area->pages)) |
| 649 | return -ENXIO; |
| 650 | |
| 651 | return iommu_dma_mmap(area->pages, size, vma); |
| 652 | } |
| 653 | |
| 654 | static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, |
| 655 | void *cpu_addr, dma_addr_t dma_addr, |
| 656 | size_t size, struct dma_attrs *attrs) |
| 657 | { |
| 658 | unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 659 | struct vm_struct *area = find_vm_area(cpu_addr); |
| 660 | |
| 661 | if (WARN_ON(!area || !area->pages)) |
| 662 | return -ENXIO; |
| 663 | |
| 664 | return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, |
| 665 | GFP_KERNEL); |
| 666 | } |
| 667 | |
| 668 | static void __iommu_sync_single_for_cpu(struct device *dev, |
| 669 | dma_addr_t dev_addr, size_t size, |
| 670 | enum dma_data_direction dir) |
| 671 | { |
| 672 | phys_addr_t phys; |
| 673 | |
| 674 | if (is_device_dma_coherent(dev)) |
| 675 | return; |
| 676 | |
| 677 | phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); |
| 678 | __dma_unmap_area(phys_to_virt(phys), size, dir); |
| 679 | } |
| 680 | |
| 681 | static void __iommu_sync_single_for_device(struct device *dev, |
| 682 | dma_addr_t dev_addr, size_t size, |
| 683 | enum dma_data_direction dir) |
| 684 | { |
| 685 | phys_addr_t phys; |
| 686 | |
| 687 | if (is_device_dma_coherent(dev)) |
| 688 | return; |
| 689 | |
| 690 | phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); |
| 691 | __dma_map_area(phys_to_virt(phys), size, dir); |
| 692 | } |
| 693 | |
| 694 | static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, |
| 695 | unsigned long offset, size_t size, |
| 696 | enum dma_data_direction dir, |
| 697 | struct dma_attrs *attrs) |
| 698 | { |
| 699 | bool coherent = is_device_dma_coherent(dev); |
| 700 | int prot = dma_direction_to_prot(dir, coherent); |
| 701 | dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); |
| 702 | |
| 703 | if (!iommu_dma_mapping_error(dev, dev_addr) && |
| 704 | !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) |
| 705 | __iommu_sync_single_for_device(dev, dev_addr, size, dir); |
| 706 | |
| 707 | return dev_addr; |
| 708 | } |
| 709 | |
| 710 | static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, |
| 711 | size_t size, enum dma_data_direction dir, |
| 712 | struct dma_attrs *attrs) |
| 713 | { |
| 714 | if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) |
| 715 | __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); |
| 716 | |
| 717 | iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); |
| 718 | } |
| 719 | |
| 720 | static void __iommu_sync_sg_for_cpu(struct device *dev, |
| 721 | struct scatterlist *sgl, int nelems, |
| 722 | enum dma_data_direction dir) |
| 723 | { |
| 724 | struct scatterlist *sg; |
| 725 | int i; |
| 726 | |
| 727 | if (is_device_dma_coherent(dev)) |
| 728 | return; |
| 729 | |
| 730 | for_each_sg(sgl, sg, nelems, i) |
| 731 | __dma_unmap_area(sg_virt(sg), sg->length, dir); |
| 732 | } |
| 733 | |
| 734 | static void __iommu_sync_sg_for_device(struct device *dev, |
| 735 | struct scatterlist *sgl, int nelems, |
| 736 | enum dma_data_direction dir) |
| 737 | { |
| 738 | struct scatterlist *sg; |
| 739 | int i; |
| 740 | |
| 741 | if (is_device_dma_coherent(dev)) |
| 742 | return; |
| 743 | |
| 744 | for_each_sg(sgl, sg, nelems, i) |
| 745 | __dma_map_area(sg_virt(sg), sg->length, dir); |
| 746 | } |
| 747 | |
| 748 | static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, |
| 749 | int nelems, enum dma_data_direction dir, |
| 750 | struct dma_attrs *attrs) |
| 751 | { |
| 752 | bool coherent = is_device_dma_coherent(dev); |
| 753 | |
| 754 | if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) |
| 755 | __iommu_sync_sg_for_device(dev, sgl, nelems, dir); |
| 756 | |
| 757 | return iommu_dma_map_sg(dev, sgl, nelems, |
| 758 | dma_direction_to_prot(dir, coherent)); |
| 759 | } |
| 760 | |
| 761 | static void __iommu_unmap_sg_attrs(struct device *dev, |
| 762 | struct scatterlist *sgl, int nelems, |
| 763 | enum dma_data_direction dir, |
| 764 | struct dma_attrs *attrs) |
| 765 | { |
| 766 | if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) |
| 767 | __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); |
| 768 | |
| 769 | iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); |
| 770 | } |
| 771 | |
| 772 | static struct dma_map_ops iommu_dma_ops = { |
| 773 | .alloc = __iommu_alloc_attrs, |
| 774 | .free = __iommu_free_attrs, |
| 775 | .mmap = __iommu_mmap_attrs, |
| 776 | .get_sgtable = __iommu_get_sgtable, |
| 777 | .map_page = __iommu_map_page, |
| 778 | .unmap_page = __iommu_unmap_page, |
| 779 | .map_sg = __iommu_map_sg_attrs, |
| 780 | .unmap_sg = __iommu_unmap_sg_attrs, |
| 781 | .sync_single_for_cpu = __iommu_sync_single_for_cpu, |
| 782 | .sync_single_for_device = __iommu_sync_single_for_device, |
| 783 | .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, |
| 784 | .sync_sg_for_device = __iommu_sync_sg_for_device, |
| 785 | .dma_supported = iommu_dma_supported, |
| 786 | .mapping_error = iommu_dma_mapping_error, |
| 787 | }; |
| 788 | |
| 789 | /* |
| 790 | * TODO: Right now __iommu_setup_dma_ops() gets called too early to do |
| 791 | * everything it needs to - the device is only partially created and the |
| 792 | * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we |
| 793 | * need this delayed attachment dance. Once IOMMU probe ordering is sorted |
| 794 | * to move the arch_setup_dma_ops() call later, all the notifier bits below |
| 795 | * become unnecessary, and will go away. |
| 796 | */ |
| 797 | struct iommu_dma_notifier_data { |
| 798 | struct list_head list; |
| 799 | struct device *dev; |
| 800 | const struct iommu_ops *ops; |
| 801 | u64 dma_base; |
| 802 | u64 size; |
| 803 | }; |
| 804 | static LIST_HEAD(iommu_dma_masters); |
| 805 | static DEFINE_MUTEX(iommu_dma_notifier_lock); |
| 806 | |
| 807 | /* |
| 808 | * Temporarily "borrow" a domain feature flag to to tell if we had to resort |
| 809 | * to creating our own domain here, in case we need to clean it up again. |
| 810 | */ |
| 811 | #define __IOMMU_DOMAIN_FAKE_DEFAULT (1U << 31) |
| 812 | |
| 813 | static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops, |
| 814 | u64 dma_base, u64 size) |
| 815 | { |
| 816 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 817 | |
| 818 | /* |
| 819 | * Best case: The device is either part of a group which was |
| 820 | * already attached to a domain in a previous call, or it's |
| 821 | * been put in a default DMA domain by the IOMMU core. |
| 822 | */ |
| 823 | if (!domain) { |
| 824 | /* |
| 825 | * Urgh. The IOMMU core isn't going to do default domains |
| 826 | * for non-PCI devices anyway, until it has some means of |
| 827 | * abstracting the entirely implementation-specific |
| 828 | * sideband data/SoC topology/unicorn dust that may or |
| 829 | * may not differentiate upstream masters. |
| 830 | * So until then, HORRIBLE HACKS! |
| 831 | */ |
| 832 | domain = ops->domain_alloc(IOMMU_DOMAIN_DMA); |
| 833 | if (!domain) |
| 834 | goto out_no_domain; |
| 835 | |
| 836 | domain->ops = ops; |
| 837 | domain->type = IOMMU_DOMAIN_DMA | __IOMMU_DOMAIN_FAKE_DEFAULT; |
| 838 | |
| 839 | if (iommu_attach_device(domain, dev)) |
| 840 | goto out_put_domain; |
| 841 | } |
| 842 | |
| 843 | if (iommu_dma_init_domain(domain, dma_base, size)) |
| 844 | goto out_detach; |
| 845 | |
| 846 | dev->archdata.dma_ops = &iommu_dma_ops; |
| 847 | return true; |
| 848 | |
| 849 | out_detach: |
| 850 | iommu_detach_device(domain, dev); |
| 851 | out_put_domain: |
| 852 | if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT) |
| 853 | iommu_domain_free(domain); |
| 854 | out_no_domain: |
| 855 | pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", |
| 856 | dev_name(dev)); |
| 857 | return false; |
| 858 | } |
| 859 | |
| 860 | static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops, |
| 861 | u64 dma_base, u64 size) |
| 862 | { |
| 863 | struct iommu_dma_notifier_data *iommudata; |
| 864 | |
| 865 | iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL); |
| 866 | if (!iommudata) |
| 867 | return; |
| 868 | |
| 869 | iommudata->dev = dev; |
| 870 | iommudata->ops = ops; |
| 871 | iommudata->dma_base = dma_base; |
| 872 | iommudata->size = size; |
| 873 | |
| 874 | mutex_lock(&iommu_dma_notifier_lock); |
| 875 | list_add(&iommudata->list, &iommu_dma_masters); |
| 876 | mutex_unlock(&iommu_dma_notifier_lock); |
| 877 | } |
| 878 | |
| 879 | static int __iommu_attach_notifier(struct notifier_block *nb, |
| 880 | unsigned long action, void *data) |
| 881 | { |
| 882 | struct iommu_dma_notifier_data *master, *tmp; |
| 883 | |
| 884 | if (action != BUS_NOTIFY_ADD_DEVICE) |
| 885 | return 0; |
| 886 | |
| 887 | mutex_lock(&iommu_dma_notifier_lock); |
| 888 | list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) { |
| 889 | if (do_iommu_attach(master->dev, master->ops, |
| 890 | master->dma_base, master->size)) { |
| 891 | list_del(&master->list); |
| 892 | kfree(master); |
| 893 | } |
| 894 | } |
| 895 | mutex_unlock(&iommu_dma_notifier_lock); |
| 896 | return 0; |
| 897 | } |
| 898 | |
| 899 | static int register_iommu_dma_ops_notifier(struct bus_type *bus) |
| 900 | { |
| 901 | struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL); |
| 902 | int ret; |
| 903 | |
| 904 | if (!nb) |
| 905 | return -ENOMEM; |
| 906 | /* |
| 907 | * The device must be attached to a domain before the driver probe |
| 908 | * routine gets a chance to start allocating DMA buffers. However, |
| 909 | * the IOMMU driver also needs a chance to configure the iommu_group |
| 910 | * via its add_device callback first, so we need to make the attach |
| 911 | * happen between those two points. Since the IOMMU core uses a bus |
| 912 | * notifier with default priority for add_device, do the same but |
| 913 | * with a lower priority to ensure the appropriate ordering. |
| 914 | */ |
| 915 | nb->notifier_call = __iommu_attach_notifier; |
| 916 | nb->priority = -100; |
| 917 | |
| 918 | ret = bus_register_notifier(bus, nb); |
| 919 | if (ret) { |
| 920 | pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n", |
| 921 | bus->name); |
| 922 | kfree(nb); |
| 923 | } |
| 924 | return ret; |
| 925 | } |
| 926 | |
| 927 | static int __init __iommu_dma_init(void) |
| 928 | { |
| 929 | int ret; |
| 930 | |
| 931 | ret = iommu_dma_init(); |
| 932 | if (!ret) |
| 933 | ret = register_iommu_dma_ops_notifier(&platform_bus_type); |
| 934 | if (!ret) |
| 935 | ret = register_iommu_dma_ops_notifier(&amba_bustype); |
| 936 | |
| 937 | /* handle devices queued before this arch_initcall */ |
| 938 | if (!ret) |
| 939 | __iommu_attach_notifier(NULL, BUS_NOTIFY_ADD_DEVICE, NULL); |
| 940 | return ret; |
| 941 | } |
| 942 | arch_initcall(__iommu_dma_init); |
| 943 | |
| 944 | static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, |
| 945 | const struct iommu_ops *ops) |
| 946 | { |
| 947 | struct iommu_group *group; |
| 948 | |
| 949 | if (!ops) |
| 950 | return; |
| 951 | /* |
| 952 | * TODO: As a concession to the future, we're ready to handle being |
| 953 | * called both early and late (i.e. after bus_add_device). Once all |
| 954 | * the platform bus code is reworked to call us late and the notifier |
| 955 | * junk above goes away, move the body of do_iommu_attach here. |
| 956 | */ |
| 957 | group = iommu_group_get(dev); |
| 958 | if (group) { |
| 959 | do_iommu_attach(dev, ops, dma_base, size); |
| 960 | iommu_group_put(group); |
| 961 | } else { |
| 962 | queue_iommu_attach(dev, ops, dma_base, size); |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | void arch_teardown_dma_ops(struct device *dev) |
| 967 | { |
| 968 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 969 | |
| 970 | if (domain) { |
| 971 | iommu_detach_device(domain, dev); |
| 972 | if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT) |
| 973 | iommu_domain_free(domain); |
| 974 | } |
| 975 | |
| 976 | dev->archdata.dma_ops = NULL; |
| 977 | } |
| 978 | |
| 979 | #else |
| 980 | |
| 981 | static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, |
| 982 | struct iommu_ops *iommu) |
| 983 | { } |
| 984 | |
| 985 | #endif /* CONFIG_IOMMU_DMA */ |
| 986 | |
| 987 | void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, |
| 988 | struct iommu_ops *iommu, bool coherent) |
| 989 | { |
| 990 | if (!dev->archdata.dma_ops) |
| 991 | dev->archdata.dma_ops = &swiotlb_dma_ops; |
| 992 | |
| 993 | dev->archdata.dma_coherent = coherent; |
| 994 | __iommu_setup_dma_ops(dev, dma_base, size, iommu); |
| 995 | } |