Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) |
| 3 | * |
| 4 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
| 5 | * |
| 6 | * Interactivity improvements by Mike Galbraith |
| 7 | * (C) 2007 Mike Galbraith <efault@gmx.de> |
| 8 | * |
| 9 | * Various enhancements by Dmitry Adamushko. |
| 10 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> |
| 11 | * |
| 12 | * Group scheduling enhancements by Srivatsa Vaddagiri |
| 13 | * Copyright IBM Corporation, 2007 |
| 14 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> |
| 15 | * |
| 16 | * Scaled math optimizations by Thomas Gleixner |
| 17 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> |
| 18 | * |
| 19 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra |
| 20 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra |
| 21 | */ |
| 22 | |
| 23 | #include <linux/latencytop.h> |
| 24 | #include <linux/sched.h> |
| 25 | #include <linux/cpumask.h> |
| 26 | #include <linux/cpuidle.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/profile.h> |
| 29 | #include <linux/interrupt.h> |
| 30 | #include <linux/mempolicy.h> |
| 31 | #include <linux/migrate.h> |
| 32 | #include <linux/task_work.h> |
| 33 | |
| 34 | #include <trace/events/sched.h> |
| 35 | |
| 36 | #include "sched.h" |
| 37 | |
| 38 | /* |
| 39 | * Targeted preemption latency for CPU-bound tasks: |
| 40 | * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) |
| 41 | * |
| 42 | * NOTE: this latency value is not the same as the concept of |
| 43 | * 'timeslice length' - timeslices in CFS are of variable length |
| 44 | * and have no persistent notion like in traditional, time-slice |
| 45 | * based scheduling concepts. |
| 46 | * |
| 47 | * (to see the precise effective timeslice length of your workload, |
| 48 | * run vmstat and monitor the context-switches (cs) field) |
| 49 | */ |
| 50 | unsigned int sysctl_sched_latency = 6000000ULL; |
| 51 | unsigned int normalized_sysctl_sched_latency = 6000000ULL; |
| 52 | |
| 53 | /* |
| 54 | * The initial- and re-scaling of tunables is configurable |
| 55 | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) |
| 56 | * |
| 57 | * Options are: |
| 58 | * SCHED_TUNABLESCALING_NONE - unscaled, always *1 |
| 59 | * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) |
| 60 | * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus |
| 61 | */ |
| 62 | enum sched_tunable_scaling sysctl_sched_tunable_scaling |
| 63 | = SCHED_TUNABLESCALING_LOG; |
| 64 | |
| 65 | /* |
| 66 | * Minimal preemption granularity for CPU-bound tasks: |
| 67 | * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) |
| 68 | */ |
| 69 | unsigned int sysctl_sched_min_granularity = 750000ULL; |
| 70 | unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; |
| 71 | |
| 72 | /* |
| 73 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity |
| 74 | */ |
| 75 | static unsigned int sched_nr_latency = 8; |
| 76 | |
| 77 | /* |
| 78 | * After fork, child runs first. If set to 0 (default) then |
| 79 | * parent will (try to) run first. |
| 80 | */ |
| 81 | unsigned int sysctl_sched_child_runs_first __read_mostly; |
| 82 | |
| 83 | /* |
| 84 | * SCHED_OTHER wake-up granularity. |
| 85 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) |
| 86 | * |
| 87 | * This option delays the preemption effects of decoupled workloads |
| 88 | * and reduces their over-scheduling. Synchronous workloads will still |
| 89 | * have immediate wakeup/sleep latencies. |
| 90 | */ |
| 91 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; |
| 92 | unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; |
| 93 | |
| 94 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; |
| 95 | |
| 96 | /* |
| 97 | * The exponential sliding window over which load is averaged for shares |
| 98 | * distribution. |
| 99 | * (default: 10msec) |
| 100 | */ |
| 101 | unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; |
| 102 | |
| 103 | #ifdef CONFIG_CFS_BANDWIDTH |
| 104 | /* |
| 105 | * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool |
| 106 | * each time a cfs_rq requests quota. |
| 107 | * |
| 108 | * Note: in the case that the slice exceeds the runtime remaining (either due |
| 109 | * to consumption or the quota being specified to be smaller than the slice) |
| 110 | * we will always only issue the remaining available time. |
| 111 | * |
| 112 | * default: 5 msec, units: microseconds |
| 113 | */ |
| 114 | unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; |
| 115 | #endif |
| 116 | |
| 117 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
| 118 | { |
| 119 | lw->weight += inc; |
| 120 | lw->inv_weight = 0; |
| 121 | } |
| 122 | |
| 123 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) |
| 124 | { |
| 125 | lw->weight -= dec; |
| 126 | lw->inv_weight = 0; |
| 127 | } |
| 128 | |
| 129 | static inline void update_load_set(struct load_weight *lw, unsigned long w) |
| 130 | { |
| 131 | lw->weight = w; |
| 132 | lw->inv_weight = 0; |
| 133 | } |
| 134 | |
| 135 | /* |
| 136 | * Increase the granularity value when there are more CPUs, |
| 137 | * because with more CPUs the 'effective latency' as visible |
| 138 | * to users decreases. But the relationship is not linear, |
| 139 | * so pick a second-best guess by going with the log2 of the |
| 140 | * number of CPUs. |
| 141 | * |
| 142 | * This idea comes from the SD scheduler of Con Kolivas: |
| 143 | */ |
| 144 | static unsigned int get_update_sysctl_factor(void) |
| 145 | { |
| 146 | unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); |
| 147 | unsigned int factor; |
| 148 | |
| 149 | switch (sysctl_sched_tunable_scaling) { |
| 150 | case SCHED_TUNABLESCALING_NONE: |
| 151 | factor = 1; |
| 152 | break; |
| 153 | case SCHED_TUNABLESCALING_LINEAR: |
| 154 | factor = cpus; |
| 155 | break; |
| 156 | case SCHED_TUNABLESCALING_LOG: |
| 157 | default: |
| 158 | factor = 1 + ilog2(cpus); |
| 159 | break; |
| 160 | } |
| 161 | |
| 162 | return factor; |
| 163 | } |
| 164 | |
| 165 | static void update_sysctl(void) |
| 166 | { |
| 167 | unsigned int factor = get_update_sysctl_factor(); |
| 168 | |
| 169 | #define SET_SYSCTL(name) \ |
| 170 | (sysctl_##name = (factor) * normalized_sysctl_##name) |
| 171 | SET_SYSCTL(sched_min_granularity); |
| 172 | SET_SYSCTL(sched_latency); |
| 173 | SET_SYSCTL(sched_wakeup_granularity); |
| 174 | #undef SET_SYSCTL |
| 175 | } |
| 176 | |
| 177 | void sched_init_granularity(void) |
| 178 | { |
| 179 | update_sysctl(); |
| 180 | } |
| 181 | |
| 182 | #define WMULT_CONST (~0U) |
| 183 | #define WMULT_SHIFT 32 |
| 184 | |
| 185 | static void __update_inv_weight(struct load_weight *lw) |
| 186 | { |
| 187 | unsigned long w; |
| 188 | |
| 189 | if (likely(lw->inv_weight)) |
| 190 | return; |
| 191 | |
| 192 | w = scale_load_down(lw->weight); |
| 193 | |
| 194 | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) |
| 195 | lw->inv_weight = 1; |
| 196 | else if (unlikely(!w)) |
| 197 | lw->inv_weight = WMULT_CONST; |
| 198 | else |
| 199 | lw->inv_weight = WMULT_CONST / w; |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * delta_exec * weight / lw.weight |
| 204 | * OR |
| 205 | * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT |
| 206 | * |
| 207 | * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case |
| 208 | * we're guaranteed shift stays positive because inv_weight is guaranteed to |
| 209 | * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. |
| 210 | * |
| 211 | * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus |
| 212 | * weight/lw.weight <= 1, and therefore our shift will also be positive. |
| 213 | */ |
| 214 | static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) |
| 215 | { |
| 216 | u64 fact = scale_load_down(weight); |
| 217 | int shift = WMULT_SHIFT; |
| 218 | |
| 219 | __update_inv_weight(lw); |
| 220 | |
| 221 | if (unlikely(fact >> 32)) { |
| 222 | while (fact >> 32) { |
| 223 | fact >>= 1; |
| 224 | shift--; |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | /* hint to use a 32x32->64 mul */ |
| 229 | fact = (u64)(u32)fact * lw->inv_weight; |
| 230 | |
| 231 | while (fact >> 32) { |
| 232 | fact >>= 1; |
| 233 | shift--; |
| 234 | } |
| 235 | |
| 236 | return mul_u64_u32_shr(delta_exec, fact, shift); |
| 237 | } |
| 238 | |
| 239 | |
| 240 | const struct sched_class fair_sched_class; |
| 241 | |
| 242 | /************************************************************** |
| 243 | * CFS operations on generic schedulable entities: |
| 244 | */ |
| 245 | |
| 246 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 247 | |
| 248 | /* cpu runqueue to which this cfs_rq is attached */ |
| 249 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
| 250 | { |
| 251 | return cfs_rq->rq; |
| 252 | } |
| 253 | |
| 254 | /* An entity is a task if it doesn't "own" a runqueue */ |
| 255 | #define entity_is_task(se) (!se->my_q) |
| 256 | |
| 257 | static inline struct task_struct *task_of(struct sched_entity *se) |
| 258 | { |
| 259 | #ifdef CONFIG_SCHED_DEBUG |
| 260 | WARN_ON_ONCE(!entity_is_task(se)); |
| 261 | #endif |
| 262 | return container_of(se, struct task_struct, se); |
| 263 | } |
| 264 | |
| 265 | /* Walk up scheduling entities hierarchy */ |
| 266 | #define for_each_sched_entity(se) \ |
| 267 | for (; se; se = se->parent) |
| 268 | |
| 269 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) |
| 270 | { |
| 271 | return p->se.cfs_rq; |
| 272 | } |
| 273 | |
| 274 | /* runqueue on which this entity is (to be) queued */ |
| 275 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) |
| 276 | { |
| 277 | return se->cfs_rq; |
| 278 | } |
| 279 | |
| 280 | /* runqueue "owned" by this group */ |
| 281 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) |
| 282 | { |
| 283 | return grp->my_q; |
| 284 | } |
| 285 | |
| 286 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
| 287 | { |
| 288 | if (!cfs_rq->on_list) { |
| 289 | /* |
| 290 | * Ensure we either appear before our parent (if already |
| 291 | * enqueued) or force our parent to appear after us when it is |
| 292 | * enqueued. The fact that we always enqueue bottom-up |
| 293 | * reduces this to two cases. |
| 294 | */ |
| 295 | if (cfs_rq->tg->parent && |
| 296 | cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { |
| 297 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, |
| 298 | &rq_of(cfs_rq)->leaf_cfs_rq_list); |
| 299 | } else { |
| 300 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, |
| 301 | &rq_of(cfs_rq)->leaf_cfs_rq_list); |
| 302 | } |
| 303 | |
| 304 | cfs_rq->on_list = 1; |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
| 309 | { |
| 310 | if (cfs_rq->on_list) { |
| 311 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); |
| 312 | cfs_rq->on_list = 0; |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ |
| 317 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ |
| 318 | list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) |
| 319 | |
| 320 | /* Do the two (enqueued) entities belong to the same group ? */ |
| 321 | static inline struct cfs_rq * |
| 322 | is_same_group(struct sched_entity *se, struct sched_entity *pse) |
| 323 | { |
| 324 | if (se->cfs_rq == pse->cfs_rq) |
| 325 | return se->cfs_rq; |
| 326 | |
| 327 | return NULL; |
| 328 | } |
| 329 | |
| 330 | static inline struct sched_entity *parent_entity(struct sched_entity *se) |
| 331 | { |
| 332 | return se->parent; |
| 333 | } |
| 334 | |
| 335 | static void |
| 336 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) |
| 337 | { |
| 338 | int se_depth, pse_depth; |
| 339 | |
| 340 | /* |
| 341 | * preemption test can be made between sibling entities who are in the |
| 342 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of |
| 343 | * both tasks until we find their ancestors who are siblings of common |
| 344 | * parent. |
| 345 | */ |
| 346 | |
| 347 | /* First walk up until both entities are at same depth */ |
| 348 | se_depth = (*se)->depth; |
| 349 | pse_depth = (*pse)->depth; |
| 350 | |
| 351 | while (se_depth > pse_depth) { |
| 352 | se_depth--; |
| 353 | *se = parent_entity(*se); |
| 354 | } |
| 355 | |
| 356 | while (pse_depth > se_depth) { |
| 357 | pse_depth--; |
| 358 | *pse = parent_entity(*pse); |
| 359 | } |
| 360 | |
| 361 | while (!is_same_group(*se, *pse)) { |
| 362 | *se = parent_entity(*se); |
| 363 | *pse = parent_entity(*pse); |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
| 368 | |
| 369 | static inline struct task_struct *task_of(struct sched_entity *se) |
| 370 | { |
| 371 | return container_of(se, struct task_struct, se); |
| 372 | } |
| 373 | |
| 374 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
| 375 | { |
| 376 | return container_of(cfs_rq, struct rq, cfs); |
| 377 | } |
| 378 | |
| 379 | #define entity_is_task(se) 1 |
| 380 | |
| 381 | #define for_each_sched_entity(se) \ |
| 382 | for (; se; se = NULL) |
| 383 | |
| 384 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) |
| 385 | { |
| 386 | return &task_rq(p)->cfs; |
| 387 | } |
| 388 | |
| 389 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) |
| 390 | { |
| 391 | struct task_struct *p = task_of(se); |
| 392 | struct rq *rq = task_rq(p); |
| 393 | |
| 394 | return &rq->cfs; |
| 395 | } |
| 396 | |
| 397 | /* runqueue "owned" by this group */ |
| 398 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) |
| 399 | { |
| 400 | return NULL; |
| 401 | } |
| 402 | |
| 403 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
| 404 | { |
| 405 | } |
| 406 | |
| 407 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
| 408 | { |
| 409 | } |
| 410 | |
| 411 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ |
| 412 | for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) |
| 413 | |
| 414 | static inline struct sched_entity *parent_entity(struct sched_entity *se) |
| 415 | { |
| 416 | return NULL; |
| 417 | } |
| 418 | |
| 419 | static inline void |
| 420 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) |
| 421 | { |
| 422 | } |
| 423 | |
| 424 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 425 | |
| 426 | static __always_inline |
| 427 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); |
| 428 | |
| 429 | /************************************************************** |
| 430 | * Scheduling class tree data structure manipulation methods: |
| 431 | */ |
| 432 | |
| 433 | static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) |
| 434 | { |
| 435 | s64 delta = (s64)(vruntime - max_vruntime); |
| 436 | if (delta > 0) |
| 437 | max_vruntime = vruntime; |
| 438 | |
| 439 | return max_vruntime; |
| 440 | } |
| 441 | |
| 442 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) |
| 443 | { |
| 444 | s64 delta = (s64)(vruntime - min_vruntime); |
| 445 | if (delta < 0) |
| 446 | min_vruntime = vruntime; |
| 447 | |
| 448 | return min_vruntime; |
| 449 | } |
| 450 | |
| 451 | static inline int entity_before(struct sched_entity *a, |
| 452 | struct sched_entity *b) |
| 453 | { |
| 454 | return (s64)(a->vruntime - b->vruntime) < 0; |
| 455 | } |
| 456 | |
| 457 | static void update_min_vruntime(struct cfs_rq *cfs_rq) |
| 458 | { |
| 459 | u64 vruntime = cfs_rq->min_vruntime; |
| 460 | |
| 461 | if (cfs_rq->curr) |
| 462 | vruntime = cfs_rq->curr->vruntime; |
| 463 | |
| 464 | if (cfs_rq->rb_leftmost) { |
| 465 | struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, |
| 466 | struct sched_entity, |
| 467 | run_node); |
| 468 | |
| 469 | if (!cfs_rq->curr) |
| 470 | vruntime = se->vruntime; |
| 471 | else |
| 472 | vruntime = min_vruntime(vruntime, se->vruntime); |
| 473 | } |
| 474 | |
| 475 | /* ensure we never gain time by being placed backwards. */ |
| 476 | cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); |
| 477 | #ifndef CONFIG_64BIT |
| 478 | smp_wmb(); |
| 479 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; |
| 480 | #endif |
| 481 | } |
| 482 | |
| 483 | /* |
| 484 | * Enqueue an entity into the rb-tree: |
| 485 | */ |
| 486 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 487 | { |
| 488 | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; |
| 489 | struct rb_node *parent = NULL; |
| 490 | struct sched_entity *entry; |
| 491 | int leftmost = 1; |
| 492 | |
| 493 | /* |
| 494 | * Find the right place in the rbtree: |
| 495 | */ |
| 496 | while (*link) { |
| 497 | parent = *link; |
| 498 | entry = rb_entry(parent, struct sched_entity, run_node); |
| 499 | /* |
| 500 | * We dont care about collisions. Nodes with |
| 501 | * the same key stay together. |
| 502 | */ |
| 503 | if (entity_before(se, entry)) { |
| 504 | link = &parent->rb_left; |
| 505 | } else { |
| 506 | link = &parent->rb_right; |
| 507 | leftmost = 0; |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | /* |
| 512 | * Maintain a cache of leftmost tree entries (it is frequently |
| 513 | * used): |
| 514 | */ |
| 515 | if (leftmost) |
| 516 | cfs_rq->rb_leftmost = &se->run_node; |
| 517 | |
| 518 | rb_link_node(&se->run_node, parent, link); |
| 519 | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); |
| 520 | } |
| 521 | |
| 522 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 523 | { |
| 524 | if (cfs_rq->rb_leftmost == &se->run_node) { |
| 525 | struct rb_node *next_node; |
| 526 | |
| 527 | next_node = rb_next(&se->run_node); |
| 528 | cfs_rq->rb_leftmost = next_node; |
| 529 | } |
| 530 | |
| 531 | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); |
| 532 | } |
| 533 | |
| 534 | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) |
| 535 | { |
| 536 | struct rb_node *left = cfs_rq->rb_leftmost; |
| 537 | |
| 538 | if (!left) |
| 539 | return NULL; |
| 540 | |
| 541 | return rb_entry(left, struct sched_entity, run_node); |
| 542 | } |
| 543 | |
| 544 | static struct sched_entity *__pick_next_entity(struct sched_entity *se) |
| 545 | { |
| 546 | struct rb_node *next = rb_next(&se->run_node); |
| 547 | |
| 548 | if (!next) |
| 549 | return NULL; |
| 550 | |
| 551 | return rb_entry(next, struct sched_entity, run_node); |
| 552 | } |
| 553 | |
| 554 | #ifdef CONFIG_SCHED_DEBUG |
| 555 | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) |
| 556 | { |
| 557 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); |
| 558 | |
| 559 | if (!last) |
| 560 | return NULL; |
| 561 | |
| 562 | return rb_entry(last, struct sched_entity, run_node); |
| 563 | } |
| 564 | |
| 565 | /************************************************************** |
| 566 | * Scheduling class statistics methods: |
| 567 | */ |
| 568 | |
| 569 | int sched_proc_update_handler(struct ctl_table *table, int write, |
| 570 | void __user *buffer, size_t *lenp, |
| 571 | loff_t *ppos) |
| 572 | { |
| 573 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 574 | unsigned int factor = get_update_sysctl_factor(); |
| 575 | |
| 576 | if (ret || !write) |
| 577 | return ret; |
| 578 | |
| 579 | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, |
| 580 | sysctl_sched_min_granularity); |
| 581 | |
| 582 | #define WRT_SYSCTL(name) \ |
| 583 | (normalized_sysctl_##name = sysctl_##name / (factor)) |
| 584 | WRT_SYSCTL(sched_min_granularity); |
| 585 | WRT_SYSCTL(sched_latency); |
| 586 | WRT_SYSCTL(sched_wakeup_granularity); |
| 587 | #undef WRT_SYSCTL |
| 588 | |
| 589 | return 0; |
| 590 | } |
| 591 | #endif |
| 592 | |
| 593 | /* |
| 594 | * delta /= w |
| 595 | */ |
| 596 | static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) |
| 597 | { |
| 598 | if (unlikely(se->load.weight != NICE_0_LOAD)) |
| 599 | delta = __calc_delta(delta, NICE_0_LOAD, &se->load); |
| 600 | |
| 601 | return delta; |
| 602 | } |
| 603 | |
| 604 | /* |
| 605 | * The idea is to set a period in which each task runs once. |
| 606 | * |
| 607 | * When there are too many tasks (sched_nr_latency) we have to stretch |
| 608 | * this period because otherwise the slices get too small. |
| 609 | * |
| 610 | * p = (nr <= nl) ? l : l*nr/nl |
| 611 | */ |
| 612 | static u64 __sched_period(unsigned long nr_running) |
| 613 | { |
| 614 | if (unlikely(nr_running > sched_nr_latency)) |
| 615 | return nr_running * sysctl_sched_min_granularity; |
| 616 | else |
| 617 | return sysctl_sched_latency; |
| 618 | } |
| 619 | |
| 620 | /* |
| 621 | * We calculate the wall-time slice from the period by taking a part |
| 622 | * proportional to the weight. |
| 623 | * |
| 624 | * s = p*P[w/rw] |
| 625 | */ |
| 626 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 627 | { |
| 628 | u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); |
| 629 | |
| 630 | for_each_sched_entity(se) { |
| 631 | struct load_weight *load; |
| 632 | struct load_weight lw; |
| 633 | |
| 634 | cfs_rq = cfs_rq_of(se); |
| 635 | load = &cfs_rq->load; |
| 636 | |
| 637 | if (unlikely(!se->on_rq)) { |
| 638 | lw = cfs_rq->load; |
| 639 | |
| 640 | update_load_add(&lw, se->load.weight); |
| 641 | load = &lw; |
| 642 | } |
| 643 | slice = __calc_delta(slice, se->load.weight, load); |
| 644 | } |
| 645 | return slice; |
| 646 | } |
| 647 | |
| 648 | /* |
| 649 | * We calculate the vruntime slice of a to-be-inserted task. |
| 650 | * |
| 651 | * vs = s/w |
| 652 | */ |
| 653 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 654 | { |
| 655 | return calc_delta_fair(sched_slice(cfs_rq, se), se); |
| 656 | } |
| 657 | |
| 658 | #ifdef CONFIG_SMP |
| 659 | static int select_idle_sibling(struct task_struct *p, int cpu); |
| 660 | static unsigned long task_h_load(struct task_struct *p); |
| 661 | |
| 662 | /* |
| 663 | * We choose a half-life close to 1 scheduling period. |
| 664 | * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are |
| 665 | * dependent on this value. |
| 666 | */ |
| 667 | #define LOAD_AVG_PERIOD 32 |
| 668 | #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ |
| 669 | #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */ |
| 670 | |
| 671 | /* Give new sched_entity start runnable values to heavy its load in infant time */ |
| 672 | void init_entity_runnable_average(struct sched_entity *se) |
| 673 | { |
| 674 | struct sched_avg *sa = &se->avg; |
| 675 | |
| 676 | sa->last_update_time = 0; |
| 677 | /* |
| 678 | * sched_avg's period_contrib should be strictly less then 1024, so |
| 679 | * we give it 1023 to make sure it is almost a period (1024us), and |
| 680 | * will definitely be update (after enqueue). |
| 681 | */ |
| 682 | sa->period_contrib = 1023; |
| 683 | sa->load_avg = scale_load_down(se->load.weight); |
| 684 | sa->load_sum = sa->load_avg * LOAD_AVG_MAX; |
| 685 | sa->util_avg = scale_load_down(SCHED_LOAD_SCALE); |
| 686 | sa->util_sum = sa->util_avg * LOAD_AVG_MAX; |
| 687 | /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ |
| 688 | } |
| 689 | |
| 690 | #else |
| 691 | void init_entity_runnable_average(struct sched_entity *se) |
| 692 | { |
| 693 | } |
| 694 | #endif |
| 695 | |
| 696 | /* |
| 697 | * Update the current task's runtime statistics. |
| 698 | */ |
| 699 | static void update_curr(struct cfs_rq *cfs_rq) |
| 700 | { |
| 701 | struct sched_entity *curr = cfs_rq->curr; |
| 702 | u64 now = rq_clock_task(rq_of(cfs_rq)); |
| 703 | u64 delta_exec; |
| 704 | |
| 705 | if (unlikely(!curr)) |
| 706 | return; |
| 707 | |
| 708 | delta_exec = now - curr->exec_start; |
| 709 | if (unlikely((s64)delta_exec <= 0)) |
| 710 | return; |
| 711 | |
| 712 | curr->exec_start = now; |
| 713 | |
| 714 | schedstat_set(curr->statistics.exec_max, |
| 715 | max(delta_exec, curr->statistics.exec_max)); |
| 716 | |
| 717 | curr->sum_exec_runtime += delta_exec; |
| 718 | schedstat_add(cfs_rq, exec_clock, delta_exec); |
| 719 | |
| 720 | curr->vruntime += calc_delta_fair(delta_exec, curr); |
| 721 | update_min_vruntime(cfs_rq); |
| 722 | |
| 723 | if (entity_is_task(curr)) { |
| 724 | struct task_struct *curtask = task_of(curr); |
| 725 | |
| 726 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); |
| 727 | cpuacct_charge(curtask, delta_exec); |
| 728 | account_group_exec_runtime(curtask, delta_exec); |
| 729 | } |
| 730 | |
| 731 | account_cfs_rq_runtime(cfs_rq, delta_exec); |
| 732 | } |
| 733 | |
| 734 | static void update_curr_fair(struct rq *rq) |
| 735 | { |
| 736 | update_curr(cfs_rq_of(&rq->curr->se)); |
| 737 | } |
| 738 | |
| 739 | static inline void |
| 740 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 741 | { |
| 742 | schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); |
| 743 | } |
| 744 | |
| 745 | /* |
| 746 | * Task is being enqueued - update stats: |
| 747 | */ |
| 748 | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 749 | { |
| 750 | /* |
| 751 | * Are we enqueueing a waiting task? (for current tasks |
| 752 | * a dequeue/enqueue event is a NOP) |
| 753 | */ |
| 754 | if (se != cfs_rq->curr) |
| 755 | update_stats_wait_start(cfs_rq, se); |
| 756 | } |
| 757 | |
| 758 | static void |
| 759 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 760 | { |
| 761 | schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, |
| 762 | rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); |
| 763 | schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); |
| 764 | schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + |
| 765 | rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); |
| 766 | #ifdef CONFIG_SCHEDSTATS |
| 767 | if (entity_is_task(se)) { |
| 768 | trace_sched_stat_wait(task_of(se), |
| 769 | rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); |
| 770 | } |
| 771 | #endif |
| 772 | schedstat_set(se->statistics.wait_start, 0); |
| 773 | } |
| 774 | |
| 775 | static inline void |
| 776 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 777 | { |
| 778 | /* |
| 779 | * Mark the end of the wait period if dequeueing a |
| 780 | * waiting task: |
| 781 | */ |
| 782 | if (se != cfs_rq->curr) |
| 783 | update_stats_wait_end(cfs_rq, se); |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * We are picking a new current task - update its stats: |
| 788 | */ |
| 789 | static inline void |
| 790 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 791 | { |
| 792 | /* |
| 793 | * We are starting a new run period: |
| 794 | */ |
| 795 | se->exec_start = rq_clock_task(rq_of(cfs_rq)); |
| 796 | } |
| 797 | |
| 798 | /************************************************** |
| 799 | * Scheduling class queueing methods: |
| 800 | */ |
| 801 | |
| 802 | #ifdef CONFIG_NUMA_BALANCING |
| 803 | /* |
| 804 | * Approximate time to scan a full NUMA task in ms. The task scan period is |
| 805 | * calculated based on the tasks virtual memory size and |
| 806 | * numa_balancing_scan_size. |
| 807 | */ |
| 808 | unsigned int sysctl_numa_balancing_scan_period_min = 1000; |
| 809 | unsigned int sysctl_numa_balancing_scan_period_max = 60000; |
| 810 | |
| 811 | /* Portion of address space to scan in MB */ |
| 812 | unsigned int sysctl_numa_balancing_scan_size = 256; |
| 813 | |
| 814 | /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ |
| 815 | unsigned int sysctl_numa_balancing_scan_delay = 1000; |
| 816 | |
| 817 | static unsigned int task_nr_scan_windows(struct task_struct *p) |
| 818 | { |
| 819 | unsigned long rss = 0; |
| 820 | unsigned long nr_scan_pages; |
| 821 | |
| 822 | /* |
| 823 | * Calculations based on RSS as non-present and empty pages are skipped |
| 824 | * by the PTE scanner and NUMA hinting faults should be trapped based |
| 825 | * on resident pages |
| 826 | */ |
| 827 | nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); |
| 828 | rss = get_mm_rss(p->mm); |
| 829 | if (!rss) |
| 830 | rss = nr_scan_pages; |
| 831 | |
| 832 | rss = round_up(rss, nr_scan_pages); |
| 833 | return rss / nr_scan_pages; |
| 834 | } |
| 835 | |
| 836 | /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ |
| 837 | #define MAX_SCAN_WINDOW 2560 |
| 838 | |
| 839 | static unsigned int task_scan_min(struct task_struct *p) |
| 840 | { |
| 841 | unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); |
| 842 | unsigned int scan, floor; |
| 843 | unsigned int windows = 1; |
| 844 | |
| 845 | if (scan_size < MAX_SCAN_WINDOW) |
| 846 | windows = MAX_SCAN_WINDOW / scan_size; |
| 847 | floor = 1000 / windows; |
| 848 | |
| 849 | scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); |
| 850 | return max_t(unsigned int, floor, scan); |
| 851 | } |
| 852 | |
| 853 | static unsigned int task_scan_max(struct task_struct *p) |
| 854 | { |
| 855 | unsigned int smin = task_scan_min(p); |
| 856 | unsigned int smax; |
| 857 | |
| 858 | /* Watch for min being lower than max due to floor calculations */ |
| 859 | smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); |
| 860 | return max(smin, smax); |
| 861 | } |
| 862 | |
| 863 | static void account_numa_enqueue(struct rq *rq, struct task_struct *p) |
| 864 | { |
| 865 | rq->nr_numa_running += (p->numa_preferred_nid != -1); |
| 866 | rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); |
| 867 | } |
| 868 | |
| 869 | static void account_numa_dequeue(struct rq *rq, struct task_struct *p) |
| 870 | { |
| 871 | rq->nr_numa_running -= (p->numa_preferred_nid != -1); |
| 872 | rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); |
| 873 | } |
| 874 | |
| 875 | struct numa_group { |
| 876 | atomic_t refcount; |
| 877 | |
| 878 | spinlock_t lock; /* nr_tasks, tasks */ |
| 879 | int nr_tasks; |
| 880 | pid_t gid; |
| 881 | |
| 882 | struct rcu_head rcu; |
| 883 | nodemask_t active_nodes; |
| 884 | unsigned long total_faults; |
| 885 | /* |
| 886 | * Faults_cpu is used to decide whether memory should move |
| 887 | * towards the CPU. As a consequence, these stats are weighted |
| 888 | * more by CPU use than by memory faults. |
| 889 | */ |
| 890 | unsigned long *faults_cpu; |
| 891 | unsigned long faults[0]; |
| 892 | }; |
| 893 | |
| 894 | /* Shared or private faults. */ |
| 895 | #define NR_NUMA_HINT_FAULT_TYPES 2 |
| 896 | |
| 897 | /* Memory and CPU locality */ |
| 898 | #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) |
| 899 | |
| 900 | /* Averaged statistics, and temporary buffers. */ |
| 901 | #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) |
| 902 | |
| 903 | pid_t task_numa_group_id(struct task_struct *p) |
| 904 | { |
| 905 | return p->numa_group ? p->numa_group->gid : 0; |
| 906 | } |
| 907 | |
| 908 | /* |
| 909 | * The averaged statistics, shared & private, memory & cpu, |
| 910 | * occupy the first half of the array. The second half of the |
| 911 | * array is for current counters, which are averaged into the |
| 912 | * first set by task_numa_placement. |
| 913 | */ |
| 914 | static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) |
| 915 | { |
| 916 | return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; |
| 917 | } |
| 918 | |
| 919 | static inline unsigned long task_faults(struct task_struct *p, int nid) |
| 920 | { |
| 921 | if (!p->numa_faults) |
| 922 | return 0; |
| 923 | |
| 924 | return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
| 925 | p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; |
| 926 | } |
| 927 | |
| 928 | static inline unsigned long group_faults(struct task_struct *p, int nid) |
| 929 | { |
| 930 | if (!p->numa_group) |
| 931 | return 0; |
| 932 | |
| 933 | return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
| 934 | p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; |
| 935 | } |
| 936 | |
| 937 | static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) |
| 938 | { |
| 939 | return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + |
| 940 | group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; |
| 941 | } |
| 942 | |
| 943 | /* Handle placement on systems where not all nodes are directly connected. */ |
| 944 | static unsigned long score_nearby_nodes(struct task_struct *p, int nid, |
| 945 | int maxdist, bool task) |
| 946 | { |
| 947 | unsigned long score = 0; |
| 948 | int node; |
| 949 | |
| 950 | /* |
| 951 | * All nodes are directly connected, and the same distance |
| 952 | * from each other. No need for fancy placement algorithms. |
| 953 | */ |
| 954 | if (sched_numa_topology_type == NUMA_DIRECT) |
| 955 | return 0; |
| 956 | |
| 957 | /* |
| 958 | * This code is called for each node, introducing N^2 complexity, |
| 959 | * which should be ok given the number of nodes rarely exceeds 8. |
| 960 | */ |
| 961 | for_each_online_node(node) { |
| 962 | unsigned long faults; |
| 963 | int dist = node_distance(nid, node); |
| 964 | |
| 965 | /* |
| 966 | * The furthest away nodes in the system are not interesting |
| 967 | * for placement; nid was already counted. |
| 968 | */ |
| 969 | if (dist == sched_max_numa_distance || node == nid) |
| 970 | continue; |
| 971 | |
| 972 | /* |
| 973 | * On systems with a backplane NUMA topology, compare groups |
| 974 | * of nodes, and move tasks towards the group with the most |
| 975 | * memory accesses. When comparing two nodes at distance |
| 976 | * "hoplimit", only nodes closer by than "hoplimit" are part |
| 977 | * of each group. Skip other nodes. |
| 978 | */ |
| 979 | if (sched_numa_topology_type == NUMA_BACKPLANE && |
| 980 | dist > maxdist) |
| 981 | continue; |
| 982 | |
| 983 | /* Add up the faults from nearby nodes. */ |
| 984 | if (task) |
| 985 | faults = task_faults(p, node); |
| 986 | else |
| 987 | faults = group_faults(p, node); |
| 988 | |
| 989 | /* |
| 990 | * On systems with a glueless mesh NUMA topology, there are |
| 991 | * no fixed "groups of nodes". Instead, nodes that are not |
| 992 | * directly connected bounce traffic through intermediate |
| 993 | * nodes; a numa_group can occupy any set of nodes. |
| 994 | * The further away a node is, the less the faults count. |
| 995 | * This seems to result in good task placement. |
| 996 | */ |
| 997 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { |
| 998 | faults *= (sched_max_numa_distance - dist); |
| 999 | faults /= (sched_max_numa_distance - LOCAL_DISTANCE); |
| 1000 | } |
| 1001 | |
| 1002 | score += faults; |
| 1003 | } |
| 1004 | |
| 1005 | return score; |
| 1006 | } |
| 1007 | |
| 1008 | /* |
| 1009 | * These return the fraction of accesses done by a particular task, or |
| 1010 | * task group, on a particular numa node. The group weight is given a |
| 1011 | * larger multiplier, in order to group tasks together that are almost |
| 1012 | * evenly spread out between numa nodes. |
| 1013 | */ |
| 1014 | static inline unsigned long task_weight(struct task_struct *p, int nid, |
| 1015 | int dist) |
| 1016 | { |
| 1017 | unsigned long faults, total_faults; |
| 1018 | |
| 1019 | if (!p->numa_faults) |
| 1020 | return 0; |
| 1021 | |
| 1022 | total_faults = p->total_numa_faults; |
| 1023 | |
| 1024 | if (!total_faults) |
| 1025 | return 0; |
| 1026 | |
| 1027 | faults = task_faults(p, nid); |
| 1028 | faults += score_nearby_nodes(p, nid, dist, true); |
| 1029 | |
| 1030 | return 1000 * faults / total_faults; |
| 1031 | } |
| 1032 | |
| 1033 | static inline unsigned long group_weight(struct task_struct *p, int nid, |
| 1034 | int dist) |
| 1035 | { |
| 1036 | unsigned long faults, total_faults; |
| 1037 | |
| 1038 | if (!p->numa_group) |
| 1039 | return 0; |
| 1040 | |
| 1041 | total_faults = p->numa_group->total_faults; |
| 1042 | |
| 1043 | if (!total_faults) |
| 1044 | return 0; |
| 1045 | |
| 1046 | faults = group_faults(p, nid); |
| 1047 | faults += score_nearby_nodes(p, nid, dist, false); |
| 1048 | |
| 1049 | return 1000 * faults / total_faults; |
| 1050 | } |
| 1051 | |
| 1052 | bool should_numa_migrate_memory(struct task_struct *p, struct page * page, |
| 1053 | int src_nid, int dst_cpu) |
| 1054 | { |
| 1055 | struct numa_group *ng = p->numa_group; |
| 1056 | int dst_nid = cpu_to_node(dst_cpu); |
| 1057 | int last_cpupid, this_cpupid; |
| 1058 | |
| 1059 | this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); |
| 1060 | |
| 1061 | /* |
| 1062 | * Multi-stage node selection is used in conjunction with a periodic |
| 1063 | * migration fault to build a temporal task<->page relation. By using |
| 1064 | * a two-stage filter we remove short/unlikely relations. |
| 1065 | * |
| 1066 | * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate |
| 1067 | * a task's usage of a particular page (n_p) per total usage of this |
| 1068 | * page (n_t) (in a given time-span) to a probability. |
| 1069 | * |
| 1070 | * Our periodic faults will sample this probability and getting the |
| 1071 | * same result twice in a row, given these samples are fully |
| 1072 | * independent, is then given by P(n)^2, provided our sample period |
| 1073 | * is sufficiently short compared to the usage pattern. |
| 1074 | * |
| 1075 | * This quadric squishes small probabilities, making it less likely we |
| 1076 | * act on an unlikely task<->page relation. |
| 1077 | */ |
| 1078 | last_cpupid = page_cpupid_xchg_last(page, this_cpupid); |
| 1079 | if (!cpupid_pid_unset(last_cpupid) && |
| 1080 | cpupid_to_nid(last_cpupid) != dst_nid) |
| 1081 | return false; |
| 1082 | |
| 1083 | /* Always allow migrate on private faults */ |
| 1084 | if (cpupid_match_pid(p, last_cpupid)) |
| 1085 | return true; |
| 1086 | |
| 1087 | /* A shared fault, but p->numa_group has not been set up yet. */ |
| 1088 | if (!ng) |
| 1089 | return true; |
| 1090 | |
| 1091 | /* |
| 1092 | * Do not migrate if the destination is not a node that |
| 1093 | * is actively used by this numa group. |
| 1094 | */ |
| 1095 | if (!node_isset(dst_nid, ng->active_nodes)) |
| 1096 | return false; |
| 1097 | |
| 1098 | /* |
| 1099 | * Source is a node that is not actively used by this |
| 1100 | * numa group, while the destination is. Migrate. |
| 1101 | */ |
| 1102 | if (!node_isset(src_nid, ng->active_nodes)) |
| 1103 | return true; |
| 1104 | |
| 1105 | /* |
| 1106 | * Both source and destination are nodes in active |
| 1107 | * use by this numa group. Maximize memory bandwidth |
| 1108 | * by migrating from more heavily used groups, to less |
| 1109 | * heavily used ones, spreading the load around. |
| 1110 | * Use a 1/4 hysteresis to avoid spurious page movement. |
| 1111 | */ |
| 1112 | return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); |
| 1113 | } |
| 1114 | |
| 1115 | static unsigned long weighted_cpuload(const int cpu); |
| 1116 | static unsigned long source_load(int cpu, int type); |
| 1117 | static unsigned long target_load(int cpu, int type); |
| 1118 | static unsigned long capacity_of(int cpu); |
| 1119 | static long effective_load(struct task_group *tg, int cpu, long wl, long wg); |
| 1120 | |
| 1121 | /* Cached statistics for all CPUs within a node */ |
| 1122 | struct numa_stats { |
| 1123 | unsigned long nr_running; |
| 1124 | unsigned long load; |
| 1125 | |
| 1126 | /* Total compute capacity of CPUs on a node */ |
| 1127 | unsigned long compute_capacity; |
| 1128 | |
| 1129 | /* Approximate capacity in terms of runnable tasks on a node */ |
| 1130 | unsigned long task_capacity; |
| 1131 | int has_free_capacity; |
| 1132 | }; |
| 1133 | |
| 1134 | /* |
| 1135 | * XXX borrowed from update_sg_lb_stats |
| 1136 | */ |
| 1137 | static void update_numa_stats(struct numa_stats *ns, int nid) |
| 1138 | { |
| 1139 | int smt, cpu, cpus = 0; |
| 1140 | unsigned long capacity; |
| 1141 | |
| 1142 | memset(ns, 0, sizeof(*ns)); |
| 1143 | for_each_cpu(cpu, cpumask_of_node(nid)) { |
| 1144 | struct rq *rq = cpu_rq(cpu); |
| 1145 | |
| 1146 | ns->nr_running += rq->nr_running; |
| 1147 | ns->load += weighted_cpuload(cpu); |
| 1148 | ns->compute_capacity += capacity_of(cpu); |
| 1149 | |
| 1150 | cpus++; |
| 1151 | } |
| 1152 | |
| 1153 | /* |
| 1154 | * If we raced with hotplug and there are no CPUs left in our mask |
| 1155 | * the @ns structure is NULL'ed and task_numa_compare() will |
| 1156 | * not find this node attractive. |
| 1157 | * |
| 1158 | * We'll either bail at !has_free_capacity, or we'll detect a huge |
| 1159 | * imbalance and bail there. |
| 1160 | */ |
| 1161 | if (!cpus) |
| 1162 | return; |
| 1163 | |
| 1164 | /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ |
| 1165 | smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); |
| 1166 | capacity = cpus / smt; /* cores */ |
| 1167 | |
| 1168 | ns->task_capacity = min_t(unsigned, capacity, |
| 1169 | DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); |
| 1170 | ns->has_free_capacity = (ns->nr_running < ns->task_capacity); |
| 1171 | } |
| 1172 | |
| 1173 | struct task_numa_env { |
| 1174 | struct task_struct *p; |
| 1175 | |
| 1176 | int src_cpu, src_nid; |
| 1177 | int dst_cpu, dst_nid; |
| 1178 | |
| 1179 | struct numa_stats src_stats, dst_stats; |
| 1180 | |
| 1181 | int imbalance_pct; |
| 1182 | int dist; |
| 1183 | |
| 1184 | struct task_struct *best_task; |
| 1185 | long best_imp; |
| 1186 | int best_cpu; |
| 1187 | }; |
| 1188 | |
| 1189 | static void task_numa_assign(struct task_numa_env *env, |
| 1190 | struct task_struct *p, long imp) |
| 1191 | { |
| 1192 | if (env->best_task) |
| 1193 | put_task_struct(env->best_task); |
| 1194 | |
| 1195 | env->best_task = p; |
| 1196 | env->best_imp = imp; |
| 1197 | env->best_cpu = env->dst_cpu; |
| 1198 | } |
| 1199 | |
| 1200 | static bool load_too_imbalanced(long src_load, long dst_load, |
| 1201 | struct task_numa_env *env) |
| 1202 | { |
| 1203 | long imb, old_imb; |
| 1204 | long orig_src_load, orig_dst_load; |
| 1205 | long src_capacity, dst_capacity; |
| 1206 | |
| 1207 | /* |
| 1208 | * The load is corrected for the CPU capacity available on each node. |
| 1209 | * |
| 1210 | * src_load dst_load |
| 1211 | * ------------ vs --------- |
| 1212 | * src_capacity dst_capacity |
| 1213 | */ |
| 1214 | src_capacity = env->src_stats.compute_capacity; |
| 1215 | dst_capacity = env->dst_stats.compute_capacity; |
| 1216 | |
| 1217 | /* We care about the slope of the imbalance, not the direction. */ |
| 1218 | if (dst_load < src_load) |
| 1219 | swap(dst_load, src_load); |
| 1220 | |
| 1221 | /* Is the difference below the threshold? */ |
| 1222 | imb = dst_load * src_capacity * 100 - |
| 1223 | src_load * dst_capacity * env->imbalance_pct; |
| 1224 | if (imb <= 0) |
| 1225 | return false; |
| 1226 | |
| 1227 | /* |
| 1228 | * The imbalance is above the allowed threshold. |
| 1229 | * Compare it with the old imbalance. |
| 1230 | */ |
| 1231 | orig_src_load = env->src_stats.load; |
| 1232 | orig_dst_load = env->dst_stats.load; |
| 1233 | |
| 1234 | if (orig_dst_load < orig_src_load) |
| 1235 | swap(orig_dst_load, orig_src_load); |
| 1236 | |
| 1237 | old_imb = orig_dst_load * src_capacity * 100 - |
| 1238 | orig_src_load * dst_capacity * env->imbalance_pct; |
| 1239 | |
| 1240 | /* Would this change make things worse? */ |
| 1241 | return (imb > old_imb); |
| 1242 | } |
| 1243 | |
| 1244 | /* |
| 1245 | * This checks if the overall compute and NUMA accesses of the system would |
| 1246 | * be improved if the source tasks was migrated to the target dst_cpu taking |
| 1247 | * into account that it might be best if task running on the dst_cpu should |
| 1248 | * be exchanged with the source task |
| 1249 | */ |
| 1250 | static void task_numa_compare(struct task_numa_env *env, |
| 1251 | long taskimp, long groupimp) |
| 1252 | { |
| 1253 | struct rq *src_rq = cpu_rq(env->src_cpu); |
| 1254 | struct rq *dst_rq = cpu_rq(env->dst_cpu); |
| 1255 | struct task_struct *cur; |
| 1256 | long src_load, dst_load; |
| 1257 | long load; |
| 1258 | long imp = env->p->numa_group ? groupimp : taskimp; |
| 1259 | long moveimp = imp; |
| 1260 | int dist = env->dist; |
| 1261 | bool assigned = false; |
| 1262 | |
| 1263 | rcu_read_lock(); |
| 1264 | |
| 1265 | raw_spin_lock_irq(&dst_rq->lock); |
| 1266 | cur = dst_rq->curr; |
| 1267 | /* |
| 1268 | * No need to move the exiting task or idle task. |
| 1269 | */ |
| 1270 | if ((cur->flags & PF_EXITING) || is_idle_task(cur)) |
| 1271 | cur = NULL; |
| 1272 | else { |
| 1273 | /* |
| 1274 | * The task_struct must be protected here to protect the |
| 1275 | * p->numa_faults access in the task_weight since the |
| 1276 | * numa_faults could already be freed in the following path: |
| 1277 | * finish_task_switch() |
| 1278 | * --> put_task_struct() |
| 1279 | * --> __put_task_struct() |
| 1280 | * --> task_numa_free() |
| 1281 | */ |
| 1282 | get_task_struct(cur); |
| 1283 | } |
| 1284 | |
| 1285 | raw_spin_unlock_irq(&dst_rq->lock); |
| 1286 | |
| 1287 | /* |
| 1288 | * Because we have preemption enabled we can get migrated around and |
| 1289 | * end try selecting ourselves (current == env->p) as a swap candidate. |
| 1290 | */ |
| 1291 | if (cur == env->p) |
| 1292 | goto unlock; |
| 1293 | |
| 1294 | /* |
| 1295 | * "imp" is the fault differential for the source task between the |
| 1296 | * source and destination node. Calculate the total differential for |
| 1297 | * the source task and potential destination task. The more negative |
| 1298 | * the value is, the more rmeote accesses that would be expected to |
| 1299 | * be incurred if the tasks were swapped. |
| 1300 | */ |
| 1301 | if (cur) { |
| 1302 | /* Skip this swap candidate if cannot move to the source cpu */ |
| 1303 | if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) |
| 1304 | goto unlock; |
| 1305 | |
| 1306 | /* |
| 1307 | * If dst and source tasks are in the same NUMA group, or not |
| 1308 | * in any group then look only at task weights. |
| 1309 | */ |
| 1310 | if (cur->numa_group == env->p->numa_group) { |
| 1311 | imp = taskimp + task_weight(cur, env->src_nid, dist) - |
| 1312 | task_weight(cur, env->dst_nid, dist); |
| 1313 | /* |
| 1314 | * Add some hysteresis to prevent swapping the |
| 1315 | * tasks within a group over tiny differences. |
| 1316 | */ |
| 1317 | if (cur->numa_group) |
| 1318 | imp -= imp/16; |
| 1319 | } else { |
| 1320 | /* |
| 1321 | * Compare the group weights. If a task is all by |
| 1322 | * itself (not part of a group), use the task weight |
| 1323 | * instead. |
| 1324 | */ |
| 1325 | if (cur->numa_group) |
| 1326 | imp += group_weight(cur, env->src_nid, dist) - |
| 1327 | group_weight(cur, env->dst_nid, dist); |
| 1328 | else |
| 1329 | imp += task_weight(cur, env->src_nid, dist) - |
| 1330 | task_weight(cur, env->dst_nid, dist); |
| 1331 | } |
| 1332 | } |
| 1333 | |
| 1334 | if (imp <= env->best_imp && moveimp <= env->best_imp) |
| 1335 | goto unlock; |
| 1336 | |
| 1337 | if (!cur) { |
| 1338 | /* Is there capacity at our destination? */ |
| 1339 | if (env->src_stats.nr_running <= env->src_stats.task_capacity && |
| 1340 | !env->dst_stats.has_free_capacity) |
| 1341 | goto unlock; |
| 1342 | |
| 1343 | goto balance; |
| 1344 | } |
| 1345 | |
| 1346 | /* Balance doesn't matter much if we're running a task per cpu */ |
| 1347 | if (imp > env->best_imp && src_rq->nr_running == 1 && |
| 1348 | dst_rq->nr_running == 1) |
| 1349 | goto assign; |
| 1350 | |
| 1351 | /* |
| 1352 | * In the overloaded case, try and keep the load balanced. |
| 1353 | */ |
| 1354 | balance: |
| 1355 | load = task_h_load(env->p); |
| 1356 | dst_load = env->dst_stats.load + load; |
| 1357 | src_load = env->src_stats.load - load; |
| 1358 | |
| 1359 | if (moveimp > imp && moveimp > env->best_imp) { |
| 1360 | /* |
| 1361 | * If the improvement from just moving env->p direction is |
| 1362 | * better than swapping tasks around, check if a move is |
| 1363 | * possible. Store a slightly smaller score than moveimp, |
| 1364 | * so an actually idle CPU will win. |
| 1365 | */ |
| 1366 | if (!load_too_imbalanced(src_load, dst_load, env)) { |
| 1367 | imp = moveimp - 1; |
| 1368 | put_task_struct(cur); |
| 1369 | cur = NULL; |
| 1370 | goto assign; |
| 1371 | } |
| 1372 | } |
| 1373 | |
| 1374 | if (imp <= env->best_imp) |
| 1375 | goto unlock; |
| 1376 | |
| 1377 | if (cur) { |
| 1378 | load = task_h_load(cur); |
| 1379 | dst_load -= load; |
| 1380 | src_load += load; |
| 1381 | } |
| 1382 | |
| 1383 | if (load_too_imbalanced(src_load, dst_load, env)) |
| 1384 | goto unlock; |
| 1385 | |
| 1386 | /* |
| 1387 | * One idle CPU per node is evaluated for a task numa move. |
| 1388 | * Call select_idle_sibling to maybe find a better one. |
| 1389 | */ |
| 1390 | if (!cur) |
| 1391 | env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); |
| 1392 | |
| 1393 | assign: |
| 1394 | assigned = true; |
| 1395 | task_numa_assign(env, cur, imp); |
| 1396 | unlock: |
| 1397 | rcu_read_unlock(); |
| 1398 | /* |
| 1399 | * The dst_rq->curr isn't assigned. The protection for task_struct is |
| 1400 | * finished. |
| 1401 | */ |
| 1402 | if (cur && !assigned) |
| 1403 | put_task_struct(cur); |
| 1404 | } |
| 1405 | |
| 1406 | static void task_numa_find_cpu(struct task_numa_env *env, |
| 1407 | long taskimp, long groupimp) |
| 1408 | { |
| 1409 | int cpu; |
| 1410 | |
| 1411 | for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { |
| 1412 | /* Skip this CPU if the source task cannot migrate */ |
| 1413 | if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) |
| 1414 | continue; |
| 1415 | |
| 1416 | env->dst_cpu = cpu; |
| 1417 | task_numa_compare(env, taskimp, groupimp); |
| 1418 | } |
| 1419 | } |
| 1420 | |
| 1421 | /* Only move tasks to a NUMA node less busy than the current node. */ |
| 1422 | static bool numa_has_capacity(struct task_numa_env *env) |
| 1423 | { |
| 1424 | struct numa_stats *src = &env->src_stats; |
| 1425 | struct numa_stats *dst = &env->dst_stats; |
| 1426 | |
| 1427 | if (src->has_free_capacity && !dst->has_free_capacity) |
| 1428 | return false; |
| 1429 | |
| 1430 | /* |
| 1431 | * Only consider a task move if the source has a higher load |
| 1432 | * than the destination, corrected for CPU capacity on each node. |
| 1433 | * |
| 1434 | * src->load dst->load |
| 1435 | * --------------------- vs --------------------- |
| 1436 | * src->compute_capacity dst->compute_capacity |
| 1437 | */ |
| 1438 | if (src->load * dst->compute_capacity * env->imbalance_pct > |
| 1439 | |
| 1440 | dst->load * src->compute_capacity * 100) |
| 1441 | return true; |
| 1442 | |
| 1443 | return false; |
| 1444 | } |
| 1445 | |
| 1446 | static int task_numa_migrate(struct task_struct *p) |
| 1447 | { |
| 1448 | struct task_numa_env env = { |
| 1449 | .p = p, |
| 1450 | |
| 1451 | .src_cpu = task_cpu(p), |
| 1452 | .src_nid = task_node(p), |
| 1453 | |
| 1454 | .imbalance_pct = 112, |
| 1455 | |
| 1456 | .best_task = NULL, |
| 1457 | .best_imp = 0, |
| 1458 | .best_cpu = -1 |
| 1459 | }; |
| 1460 | struct sched_domain *sd; |
| 1461 | unsigned long taskweight, groupweight; |
| 1462 | int nid, ret, dist; |
| 1463 | long taskimp, groupimp; |
| 1464 | |
| 1465 | /* |
| 1466 | * Pick the lowest SD_NUMA domain, as that would have the smallest |
| 1467 | * imbalance and would be the first to start moving tasks about. |
| 1468 | * |
| 1469 | * And we want to avoid any moving of tasks about, as that would create |
| 1470 | * random movement of tasks -- counter the numa conditions we're trying |
| 1471 | * to satisfy here. |
| 1472 | */ |
| 1473 | rcu_read_lock(); |
| 1474 | sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); |
| 1475 | if (sd) |
| 1476 | env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; |
| 1477 | rcu_read_unlock(); |
| 1478 | |
| 1479 | /* |
| 1480 | * Cpusets can break the scheduler domain tree into smaller |
| 1481 | * balance domains, some of which do not cross NUMA boundaries. |
| 1482 | * Tasks that are "trapped" in such domains cannot be migrated |
| 1483 | * elsewhere, so there is no point in (re)trying. |
| 1484 | */ |
| 1485 | if (unlikely(!sd)) { |
| 1486 | p->numa_preferred_nid = task_node(p); |
| 1487 | return -EINVAL; |
| 1488 | } |
| 1489 | |
| 1490 | env.dst_nid = p->numa_preferred_nid; |
| 1491 | dist = env.dist = node_distance(env.src_nid, env.dst_nid); |
| 1492 | taskweight = task_weight(p, env.src_nid, dist); |
| 1493 | groupweight = group_weight(p, env.src_nid, dist); |
| 1494 | update_numa_stats(&env.src_stats, env.src_nid); |
| 1495 | taskimp = task_weight(p, env.dst_nid, dist) - taskweight; |
| 1496 | groupimp = group_weight(p, env.dst_nid, dist) - groupweight; |
| 1497 | update_numa_stats(&env.dst_stats, env.dst_nid); |
| 1498 | |
| 1499 | /* Try to find a spot on the preferred nid. */ |
| 1500 | if (numa_has_capacity(&env)) |
| 1501 | task_numa_find_cpu(&env, taskimp, groupimp); |
| 1502 | |
| 1503 | /* |
| 1504 | * Look at other nodes in these cases: |
| 1505 | * - there is no space available on the preferred_nid |
| 1506 | * - the task is part of a numa_group that is interleaved across |
| 1507 | * multiple NUMA nodes; in order to better consolidate the group, |
| 1508 | * we need to check other locations. |
| 1509 | */ |
| 1510 | if (env.best_cpu == -1 || (p->numa_group && |
| 1511 | nodes_weight(p->numa_group->active_nodes) > 1)) { |
| 1512 | for_each_online_node(nid) { |
| 1513 | if (nid == env.src_nid || nid == p->numa_preferred_nid) |
| 1514 | continue; |
| 1515 | |
| 1516 | dist = node_distance(env.src_nid, env.dst_nid); |
| 1517 | if (sched_numa_topology_type == NUMA_BACKPLANE && |
| 1518 | dist != env.dist) { |
| 1519 | taskweight = task_weight(p, env.src_nid, dist); |
| 1520 | groupweight = group_weight(p, env.src_nid, dist); |
| 1521 | } |
| 1522 | |
| 1523 | /* Only consider nodes where both task and groups benefit */ |
| 1524 | taskimp = task_weight(p, nid, dist) - taskweight; |
| 1525 | groupimp = group_weight(p, nid, dist) - groupweight; |
| 1526 | if (taskimp < 0 && groupimp < 0) |
| 1527 | continue; |
| 1528 | |
| 1529 | env.dist = dist; |
| 1530 | env.dst_nid = nid; |
| 1531 | update_numa_stats(&env.dst_stats, env.dst_nid); |
| 1532 | if (numa_has_capacity(&env)) |
| 1533 | task_numa_find_cpu(&env, taskimp, groupimp); |
| 1534 | } |
| 1535 | } |
| 1536 | |
| 1537 | /* |
| 1538 | * If the task is part of a workload that spans multiple NUMA nodes, |
| 1539 | * and is migrating into one of the workload's active nodes, remember |
| 1540 | * this node as the task's preferred numa node, so the workload can |
| 1541 | * settle down. |
| 1542 | * A task that migrated to a second choice node will be better off |
| 1543 | * trying for a better one later. Do not set the preferred node here. |
| 1544 | */ |
| 1545 | if (p->numa_group) { |
| 1546 | if (env.best_cpu == -1) |
| 1547 | nid = env.src_nid; |
| 1548 | else |
| 1549 | nid = env.dst_nid; |
| 1550 | |
| 1551 | if (node_isset(nid, p->numa_group->active_nodes)) |
| 1552 | sched_setnuma(p, env.dst_nid); |
| 1553 | } |
| 1554 | |
| 1555 | /* No better CPU than the current one was found. */ |
| 1556 | if (env.best_cpu == -1) |
| 1557 | return -EAGAIN; |
| 1558 | |
| 1559 | /* |
| 1560 | * Reset the scan period if the task is being rescheduled on an |
| 1561 | * alternative node to recheck if the tasks is now properly placed. |
| 1562 | */ |
| 1563 | p->numa_scan_period = task_scan_min(p); |
| 1564 | |
| 1565 | if (env.best_task == NULL) { |
| 1566 | ret = migrate_task_to(p, env.best_cpu); |
| 1567 | if (ret != 0) |
| 1568 | trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); |
| 1569 | return ret; |
| 1570 | } |
| 1571 | |
| 1572 | ret = migrate_swap(p, env.best_task); |
| 1573 | if (ret != 0) |
| 1574 | trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); |
| 1575 | put_task_struct(env.best_task); |
| 1576 | return ret; |
| 1577 | } |
| 1578 | |
| 1579 | /* Attempt to migrate a task to a CPU on the preferred node. */ |
| 1580 | static void numa_migrate_preferred(struct task_struct *p) |
| 1581 | { |
| 1582 | unsigned long interval = HZ; |
| 1583 | |
| 1584 | /* This task has no NUMA fault statistics yet */ |
| 1585 | if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) |
| 1586 | return; |
| 1587 | |
| 1588 | /* Periodically retry migrating the task to the preferred node */ |
| 1589 | interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); |
| 1590 | p->numa_migrate_retry = jiffies + interval; |
| 1591 | |
| 1592 | /* Success if task is already running on preferred CPU */ |
| 1593 | if (task_node(p) == p->numa_preferred_nid) |
| 1594 | return; |
| 1595 | |
| 1596 | /* Otherwise, try migrate to a CPU on the preferred node */ |
| 1597 | task_numa_migrate(p); |
| 1598 | } |
| 1599 | |
| 1600 | /* |
| 1601 | * Find the nodes on which the workload is actively running. We do this by |
| 1602 | * tracking the nodes from which NUMA hinting faults are triggered. This can |
| 1603 | * be different from the set of nodes where the workload's memory is currently |
| 1604 | * located. |
| 1605 | * |
| 1606 | * The bitmask is used to make smarter decisions on when to do NUMA page |
| 1607 | * migrations, To prevent flip-flopping, and excessive page migrations, nodes |
| 1608 | * are added when they cause over 6/16 of the maximum number of faults, but |
| 1609 | * only removed when they drop below 3/16. |
| 1610 | */ |
| 1611 | static void update_numa_active_node_mask(struct numa_group *numa_group) |
| 1612 | { |
| 1613 | unsigned long faults, max_faults = 0; |
| 1614 | int nid; |
| 1615 | |
| 1616 | for_each_online_node(nid) { |
| 1617 | faults = group_faults_cpu(numa_group, nid); |
| 1618 | if (faults > max_faults) |
| 1619 | max_faults = faults; |
| 1620 | } |
| 1621 | |
| 1622 | for_each_online_node(nid) { |
| 1623 | faults = group_faults_cpu(numa_group, nid); |
| 1624 | if (!node_isset(nid, numa_group->active_nodes)) { |
| 1625 | if (faults > max_faults * 6 / 16) |
| 1626 | node_set(nid, numa_group->active_nodes); |
| 1627 | } else if (faults < max_faults * 3 / 16) |
| 1628 | node_clear(nid, numa_group->active_nodes); |
| 1629 | } |
| 1630 | } |
| 1631 | |
| 1632 | /* |
| 1633 | * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS |
| 1634 | * increments. The more local the fault statistics are, the higher the scan |
| 1635 | * period will be for the next scan window. If local/(local+remote) ratio is |
| 1636 | * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) |
| 1637 | * the scan period will decrease. Aim for 70% local accesses. |
| 1638 | */ |
| 1639 | #define NUMA_PERIOD_SLOTS 10 |
| 1640 | #define NUMA_PERIOD_THRESHOLD 7 |
| 1641 | |
| 1642 | /* |
| 1643 | * Increase the scan period (slow down scanning) if the majority of |
| 1644 | * our memory is already on our local node, or if the majority of |
| 1645 | * the page accesses are shared with other processes. |
| 1646 | * Otherwise, decrease the scan period. |
| 1647 | */ |
| 1648 | static void update_task_scan_period(struct task_struct *p, |
| 1649 | unsigned long shared, unsigned long private) |
| 1650 | { |
| 1651 | unsigned int period_slot; |
| 1652 | int ratio; |
| 1653 | int diff; |
| 1654 | |
| 1655 | unsigned long remote = p->numa_faults_locality[0]; |
| 1656 | unsigned long local = p->numa_faults_locality[1]; |
| 1657 | |
| 1658 | /* |
| 1659 | * If there were no record hinting faults then either the task is |
| 1660 | * completely idle or all activity is areas that are not of interest |
| 1661 | * to automatic numa balancing. Related to that, if there were failed |
| 1662 | * migration then it implies we are migrating too quickly or the local |
| 1663 | * node is overloaded. In either case, scan slower |
| 1664 | */ |
| 1665 | if (local + shared == 0 || p->numa_faults_locality[2]) { |
| 1666 | p->numa_scan_period = min(p->numa_scan_period_max, |
| 1667 | p->numa_scan_period << 1); |
| 1668 | |
| 1669 | p->mm->numa_next_scan = jiffies + |
| 1670 | msecs_to_jiffies(p->numa_scan_period); |
| 1671 | |
| 1672 | return; |
| 1673 | } |
| 1674 | |
| 1675 | /* |
| 1676 | * Prepare to scale scan period relative to the current period. |
| 1677 | * == NUMA_PERIOD_THRESHOLD scan period stays the same |
| 1678 | * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) |
| 1679 | * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) |
| 1680 | */ |
| 1681 | period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); |
| 1682 | ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); |
| 1683 | if (ratio >= NUMA_PERIOD_THRESHOLD) { |
| 1684 | int slot = ratio - NUMA_PERIOD_THRESHOLD; |
| 1685 | if (!slot) |
| 1686 | slot = 1; |
| 1687 | diff = slot * period_slot; |
| 1688 | } else { |
| 1689 | diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; |
| 1690 | |
| 1691 | /* |
| 1692 | * Scale scan rate increases based on sharing. There is an |
| 1693 | * inverse relationship between the degree of sharing and |
| 1694 | * the adjustment made to the scanning period. Broadly |
| 1695 | * speaking the intent is that there is little point |
| 1696 | * scanning faster if shared accesses dominate as it may |
| 1697 | * simply bounce migrations uselessly |
| 1698 | */ |
| 1699 | ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); |
| 1700 | diff = (diff * ratio) / NUMA_PERIOD_SLOTS; |
| 1701 | } |
| 1702 | |
| 1703 | p->numa_scan_period = clamp(p->numa_scan_period + diff, |
| 1704 | task_scan_min(p), task_scan_max(p)); |
| 1705 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); |
| 1706 | } |
| 1707 | |
| 1708 | /* |
| 1709 | * Get the fraction of time the task has been running since the last |
| 1710 | * NUMA placement cycle. The scheduler keeps similar statistics, but |
| 1711 | * decays those on a 32ms period, which is orders of magnitude off |
| 1712 | * from the dozens-of-seconds NUMA balancing period. Use the scheduler |
| 1713 | * stats only if the task is so new there are no NUMA statistics yet. |
| 1714 | */ |
| 1715 | static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) |
| 1716 | { |
| 1717 | u64 runtime, delta, now; |
| 1718 | /* Use the start of this time slice to avoid calculations. */ |
| 1719 | now = p->se.exec_start; |
| 1720 | runtime = p->se.sum_exec_runtime; |
| 1721 | |
| 1722 | if (p->last_task_numa_placement) { |
| 1723 | delta = runtime - p->last_sum_exec_runtime; |
| 1724 | *period = now - p->last_task_numa_placement; |
| 1725 | } else { |
| 1726 | delta = p->se.avg.load_sum / p->se.load.weight; |
| 1727 | *period = LOAD_AVG_MAX; |
| 1728 | } |
| 1729 | |
| 1730 | p->last_sum_exec_runtime = runtime; |
| 1731 | p->last_task_numa_placement = now; |
| 1732 | |
| 1733 | return delta; |
| 1734 | } |
| 1735 | |
| 1736 | /* |
| 1737 | * Determine the preferred nid for a task in a numa_group. This needs to |
| 1738 | * be done in a way that produces consistent results with group_weight, |
| 1739 | * otherwise workloads might not converge. |
| 1740 | */ |
| 1741 | static int preferred_group_nid(struct task_struct *p, int nid) |
| 1742 | { |
| 1743 | nodemask_t nodes; |
| 1744 | int dist; |
| 1745 | |
| 1746 | /* Direct connections between all NUMA nodes. */ |
| 1747 | if (sched_numa_topology_type == NUMA_DIRECT) |
| 1748 | return nid; |
| 1749 | |
| 1750 | /* |
| 1751 | * On a system with glueless mesh NUMA topology, group_weight |
| 1752 | * scores nodes according to the number of NUMA hinting faults on |
| 1753 | * both the node itself, and on nearby nodes. |
| 1754 | */ |
| 1755 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { |
| 1756 | unsigned long score, max_score = 0; |
| 1757 | int node, max_node = nid; |
| 1758 | |
| 1759 | dist = sched_max_numa_distance; |
| 1760 | |
| 1761 | for_each_online_node(node) { |
| 1762 | score = group_weight(p, node, dist); |
| 1763 | if (score > max_score) { |
| 1764 | max_score = score; |
| 1765 | max_node = node; |
| 1766 | } |
| 1767 | } |
| 1768 | return max_node; |
| 1769 | } |
| 1770 | |
| 1771 | /* |
| 1772 | * Finding the preferred nid in a system with NUMA backplane |
| 1773 | * interconnect topology is more involved. The goal is to locate |
| 1774 | * tasks from numa_groups near each other in the system, and |
| 1775 | * untangle workloads from different sides of the system. This requires |
| 1776 | * searching down the hierarchy of node groups, recursively searching |
| 1777 | * inside the highest scoring group of nodes. The nodemask tricks |
| 1778 | * keep the complexity of the search down. |
| 1779 | */ |
| 1780 | nodes = node_online_map; |
| 1781 | for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { |
| 1782 | unsigned long max_faults = 0; |
| 1783 | nodemask_t max_group = NODE_MASK_NONE; |
| 1784 | int a, b; |
| 1785 | |
| 1786 | /* Are there nodes at this distance from each other? */ |
| 1787 | if (!find_numa_distance(dist)) |
| 1788 | continue; |
| 1789 | |
| 1790 | for_each_node_mask(a, nodes) { |
| 1791 | unsigned long faults = 0; |
| 1792 | nodemask_t this_group; |
| 1793 | nodes_clear(this_group); |
| 1794 | |
| 1795 | /* Sum group's NUMA faults; includes a==b case. */ |
| 1796 | for_each_node_mask(b, nodes) { |
| 1797 | if (node_distance(a, b) < dist) { |
| 1798 | faults += group_faults(p, b); |
| 1799 | node_set(b, this_group); |
| 1800 | node_clear(b, nodes); |
| 1801 | } |
| 1802 | } |
| 1803 | |
| 1804 | /* Remember the top group. */ |
| 1805 | if (faults > max_faults) { |
| 1806 | max_faults = faults; |
| 1807 | max_group = this_group; |
| 1808 | /* |
| 1809 | * subtle: at the smallest distance there is |
| 1810 | * just one node left in each "group", the |
| 1811 | * winner is the preferred nid. |
| 1812 | */ |
| 1813 | nid = a; |
| 1814 | } |
| 1815 | } |
| 1816 | /* Next round, evaluate the nodes within max_group. */ |
| 1817 | if (!max_faults) |
| 1818 | break; |
| 1819 | nodes = max_group; |
| 1820 | } |
| 1821 | return nid; |
| 1822 | } |
| 1823 | |
| 1824 | static void task_numa_placement(struct task_struct *p) |
| 1825 | { |
| 1826 | int seq, nid, max_nid = -1, max_group_nid = -1; |
| 1827 | unsigned long max_faults = 0, max_group_faults = 0; |
| 1828 | unsigned long fault_types[2] = { 0, 0 }; |
| 1829 | unsigned long total_faults; |
| 1830 | u64 runtime, period; |
| 1831 | spinlock_t *group_lock = NULL; |
| 1832 | |
| 1833 | /* |
| 1834 | * The p->mm->numa_scan_seq field gets updated without |
| 1835 | * exclusive access. Use READ_ONCE() here to ensure |
| 1836 | * that the field is read in a single access: |
| 1837 | */ |
| 1838 | seq = READ_ONCE(p->mm->numa_scan_seq); |
| 1839 | if (p->numa_scan_seq == seq) |
| 1840 | return; |
| 1841 | p->numa_scan_seq = seq; |
| 1842 | p->numa_scan_period_max = task_scan_max(p); |
| 1843 | |
| 1844 | total_faults = p->numa_faults_locality[0] + |
| 1845 | p->numa_faults_locality[1]; |
| 1846 | runtime = numa_get_avg_runtime(p, &period); |
| 1847 | |
| 1848 | /* If the task is part of a group prevent parallel updates to group stats */ |
| 1849 | if (p->numa_group) { |
| 1850 | group_lock = &p->numa_group->lock; |
| 1851 | spin_lock_irq(group_lock); |
| 1852 | } |
| 1853 | |
| 1854 | /* Find the node with the highest number of faults */ |
| 1855 | for_each_online_node(nid) { |
| 1856 | /* Keep track of the offsets in numa_faults array */ |
| 1857 | int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; |
| 1858 | unsigned long faults = 0, group_faults = 0; |
| 1859 | int priv; |
| 1860 | |
| 1861 | for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { |
| 1862 | long diff, f_diff, f_weight; |
| 1863 | |
| 1864 | mem_idx = task_faults_idx(NUMA_MEM, nid, priv); |
| 1865 | membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); |
| 1866 | cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); |
| 1867 | cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); |
| 1868 | |
| 1869 | /* Decay existing window, copy faults since last scan */ |
| 1870 | diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; |
| 1871 | fault_types[priv] += p->numa_faults[membuf_idx]; |
| 1872 | p->numa_faults[membuf_idx] = 0; |
| 1873 | |
| 1874 | /* |
| 1875 | * Normalize the faults_from, so all tasks in a group |
| 1876 | * count according to CPU use, instead of by the raw |
| 1877 | * number of faults. Tasks with little runtime have |
| 1878 | * little over-all impact on throughput, and thus their |
| 1879 | * faults are less important. |
| 1880 | */ |
| 1881 | f_weight = div64_u64(runtime << 16, period + 1); |
| 1882 | f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / |
| 1883 | (total_faults + 1); |
| 1884 | f_diff = f_weight - p->numa_faults[cpu_idx] / 2; |
| 1885 | p->numa_faults[cpubuf_idx] = 0; |
| 1886 | |
| 1887 | p->numa_faults[mem_idx] += diff; |
| 1888 | p->numa_faults[cpu_idx] += f_diff; |
| 1889 | faults += p->numa_faults[mem_idx]; |
| 1890 | p->total_numa_faults += diff; |
| 1891 | if (p->numa_group) { |
| 1892 | /* |
| 1893 | * safe because we can only change our own group |
| 1894 | * |
| 1895 | * mem_idx represents the offset for a given |
| 1896 | * nid and priv in a specific region because it |
| 1897 | * is at the beginning of the numa_faults array. |
| 1898 | */ |
| 1899 | p->numa_group->faults[mem_idx] += diff; |
| 1900 | p->numa_group->faults_cpu[mem_idx] += f_diff; |
| 1901 | p->numa_group->total_faults += diff; |
| 1902 | group_faults += p->numa_group->faults[mem_idx]; |
| 1903 | } |
| 1904 | } |
| 1905 | |
| 1906 | if (faults > max_faults) { |
| 1907 | max_faults = faults; |
| 1908 | max_nid = nid; |
| 1909 | } |
| 1910 | |
| 1911 | if (group_faults > max_group_faults) { |
| 1912 | max_group_faults = group_faults; |
| 1913 | max_group_nid = nid; |
| 1914 | } |
| 1915 | } |
| 1916 | |
| 1917 | update_task_scan_period(p, fault_types[0], fault_types[1]); |
| 1918 | |
| 1919 | if (p->numa_group) { |
| 1920 | update_numa_active_node_mask(p->numa_group); |
| 1921 | spin_unlock_irq(group_lock); |
| 1922 | max_nid = preferred_group_nid(p, max_group_nid); |
| 1923 | } |
| 1924 | |
| 1925 | if (max_faults) { |
| 1926 | /* Set the new preferred node */ |
| 1927 | if (max_nid != p->numa_preferred_nid) |
| 1928 | sched_setnuma(p, max_nid); |
| 1929 | |
| 1930 | if (task_node(p) != p->numa_preferred_nid) |
| 1931 | numa_migrate_preferred(p); |
| 1932 | } |
| 1933 | } |
| 1934 | |
| 1935 | static inline int get_numa_group(struct numa_group *grp) |
| 1936 | { |
| 1937 | return atomic_inc_not_zero(&grp->refcount); |
| 1938 | } |
| 1939 | |
| 1940 | static inline void put_numa_group(struct numa_group *grp) |
| 1941 | { |
| 1942 | if (atomic_dec_and_test(&grp->refcount)) |
| 1943 | kfree_rcu(grp, rcu); |
| 1944 | } |
| 1945 | |
| 1946 | static void task_numa_group(struct task_struct *p, int cpupid, int flags, |
| 1947 | int *priv) |
| 1948 | { |
| 1949 | struct numa_group *grp, *my_grp; |
| 1950 | struct task_struct *tsk; |
| 1951 | bool join = false; |
| 1952 | int cpu = cpupid_to_cpu(cpupid); |
| 1953 | int i; |
| 1954 | |
| 1955 | if (unlikely(!p->numa_group)) { |
| 1956 | unsigned int size = sizeof(struct numa_group) + |
| 1957 | 4*nr_node_ids*sizeof(unsigned long); |
| 1958 | |
| 1959 | grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); |
| 1960 | if (!grp) |
| 1961 | return; |
| 1962 | |
| 1963 | atomic_set(&grp->refcount, 1); |
| 1964 | spin_lock_init(&grp->lock); |
| 1965 | grp->gid = p->pid; |
| 1966 | /* Second half of the array tracks nids where faults happen */ |
| 1967 | grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * |
| 1968 | nr_node_ids; |
| 1969 | |
| 1970 | node_set(task_node(current), grp->active_nodes); |
| 1971 | |
| 1972 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
| 1973 | grp->faults[i] = p->numa_faults[i]; |
| 1974 | |
| 1975 | grp->total_faults = p->total_numa_faults; |
| 1976 | |
| 1977 | grp->nr_tasks++; |
| 1978 | rcu_assign_pointer(p->numa_group, grp); |
| 1979 | } |
| 1980 | |
| 1981 | rcu_read_lock(); |
| 1982 | tsk = READ_ONCE(cpu_rq(cpu)->curr); |
| 1983 | |
| 1984 | if (!cpupid_match_pid(tsk, cpupid)) |
| 1985 | goto no_join; |
| 1986 | |
| 1987 | grp = rcu_dereference(tsk->numa_group); |
| 1988 | if (!grp) |
| 1989 | goto no_join; |
| 1990 | |
| 1991 | my_grp = p->numa_group; |
| 1992 | if (grp == my_grp) |
| 1993 | goto no_join; |
| 1994 | |
| 1995 | /* |
| 1996 | * Only join the other group if its bigger; if we're the bigger group, |
| 1997 | * the other task will join us. |
| 1998 | */ |
| 1999 | if (my_grp->nr_tasks > grp->nr_tasks) |
| 2000 | goto no_join; |
| 2001 | |
| 2002 | /* |
| 2003 | * Tie-break on the grp address. |
| 2004 | */ |
| 2005 | if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) |
| 2006 | goto no_join; |
| 2007 | |
| 2008 | /* Always join threads in the same process. */ |
| 2009 | if (tsk->mm == current->mm) |
| 2010 | join = true; |
| 2011 | |
| 2012 | /* Simple filter to avoid false positives due to PID collisions */ |
| 2013 | if (flags & TNF_SHARED) |
| 2014 | join = true; |
| 2015 | |
| 2016 | /* Update priv based on whether false sharing was detected */ |
| 2017 | *priv = !join; |
| 2018 | |
| 2019 | if (join && !get_numa_group(grp)) |
| 2020 | goto no_join; |
| 2021 | |
| 2022 | rcu_read_unlock(); |
| 2023 | |
| 2024 | if (!join) |
| 2025 | return; |
| 2026 | |
| 2027 | BUG_ON(irqs_disabled()); |
| 2028 | double_lock_irq(&my_grp->lock, &grp->lock); |
| 2029 | |
| 2030 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { |
| 2031 | my_grp->faults[i] -= p->numa_faults[i]; |
| 2032 | grp->faults[i] += p->numa_faults[i]; |
| 2033 | } |
| 2034 | my_grp->total_faults -= p->total_numa_faults; |
| 2035 | grp->total_faults += p->total_numa_faults; |
| 2036 | |
| 2037 | my_grp->nr_tasks--; |
| 2038 | grp->nr_tasks++; |
| 2039 | |
| 2040 | spin_unlock(&my_grp->lock); |
| 2041 | spin_unlock_irq(&grp->lock); |
| 2042 | |
| 2043 | rcu_assign_pointer(p->numa_group, grp); |
| 2044 | |
| 2045 | put_numa_group(my_grp); |
| 2046 | return; |
| 2047 | |
| 2048 | no_join: |
| 2049 | rcu_read_unlock(); |
| 2050 | return; |
| 2051 | } |
| 2052 | |
| 2053 | void task_numa_free(struct task_struct *p) |
| 2054 | { |
| 2055 | struct numa_group *grp = p->numa_group; |
| 2056 | void *numa_faults = p->numa_faults; |
| 2057 | unsigned long flags; |
| 2058 | int i; |
| 2059 | |
| 2060 | if (grp) { |
| 2061 | spin_lock_irqsave(&grp->lock, flags); |
| 2062 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
| 2063 | grp->faults[i] -= p->numa_faults[i]; |
| 2064 | grp->total_faults -= p->total_numa_faults; |
| 2065 | |
| 2066 | grp->nr_tasks--; |
| 2067 | spin_unlock_irqrestore(&grp->lock, flags); |
| 2068 | RCU_INIT_POINTER(p->numa_group, NULL); |
| 2069 | put_numa_group(grp); |
| 2070 | } |
| 2071 | |
| 2072 | p->numa_faults = NULL; |
| 2073 | kfree(numa_faults); |
| 2074 | } |
| 2075 | |
| 2076 | /* |
| 2077 | * Got a PROT_NONE fault for a page on @node. |
| 2078 | */ |
| 2079 | void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) |
| 2080 | { |
| 2081 | struct task_struct *p = current; |
| 2082 | bool migrated = flags & TNF_MIGRATED; |
| 2083 | int cpu_node = task_node(current); |
| 2084 | int local = !!(flags & TNF_FAULT_LOCAL); |
| 2085 | int priv; |
| 2086 | |
| 2087 | if (!static_branch_likely(&sched_numa_balancing)) |
| 2088 | return; |
| 2089 | |
| 2090 | /* for example, ksmd faulting in a user's mm */ |
| 2091 | if (!p->mm) |
| 2092 | return; |
| 2093 | |
| 2094 | /* Allocate buffer to track faults on a per-node basis */ |
| 2095 | if (unlikely(!p->numa_faults)) { |
| 2096 | int size = sizeof(*p->numa_faults) * |
| 2097 | NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; |
| 2098 | |
| 2099 | p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); |
| 2100 | if (!p->numa_faults) |
| 2101 | return; |
| 2102 | |
| 2103 | p->total_numa_faults = 0; |
| 2104 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); |
| 2105 | } |
| 2106 | |
| 2107 | /* |
| 2108 | * First accesses are treated as private, otherwise consider accesses |
| 2109 | * to be private if the accessing pid has not changed |
| 2110 | */ |
| 2111 | if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { |
| 2112 | priv = 1; |
| 2113 | } else { |
| 2114 | priv = cpupid_match_pid(p, last_cpupid); |
| 2115 | if (!priv && !(flags & TNF_NO_GROUP)) |
| 2116 | task_numa_group(p, last_cpupid, flags, &priv); |
| 2117 | } |
| 2118 | |
| 2119 | /* |
| 2120 | * If a workload spans multiple NUMA nodes, a shared fault that |
| 2121 | * occurs wholly within the set of nodes that the workload is |
| 2122 | * actively using should be counted as local. This allows the |
| 2123 | * scan rate to slow down when a workload has settled down. |
| 2124 | */ |
| 2125 | if (!priv && !local && p->numa_group && |
| 2126 | node_isset(cpu_node, p->numa_group->active_nodes) && |
| 2127 | node_isset(mem_node, p->numa_group->active_nodes)) |
| 2128 | local = 1; |
| 2129 | |
| 2130 | task_numa_placement(p); |
| 2131 | |
| 2132 | /* |
| 2133 | * Retry task to preferred node migration periodically, in case it |
| 2134 | * case it previously failed, or the scheduler moved us. |
| 2135 | */ |
| 2136 | if (time_after(jiffies, p->numa_migrate_retry)) |
| 2137 | numa_migrate_preferred(p); |
| 2138 | |
| 2139 | if (migrated) |
| 2140 | p->numa_pages_migrated += pages; |
| 2141 | if (flags & TNF_MIGRATE_FAIL) |
| 2142 | p->numa_faults_locality[2] += pages; |
| 2143 | |
| 2144 | p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; |
| 2145 | p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; |
| 2146 | p->numa_faults_locality[local] += pages; |
| 2147 | } |
| 2148 | |
| 2149 | static void reset_ptenuma_scan(struct task_struct *p) |
| 2150 | { |
| 2151 | /* |
| 2152 | * We only did a read acquisition of the mmap sem, so |
| 2153 | * p->mm->numa_scan_seq is written to without exclusive access |
| 2154 | * and the update is not guaranteed to be atomic. That's not |
| 2155 | * much of an issue though, since this is just used for |
| 2156 | * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not |
| 2157 | * expensive, to avoid any form of compiler optimizations: |
| 2158 | */ |
| 2159 | WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); |
| 2160 | p->mm->numa_scan_offset = 0; |
| 2161 | } |
| 2162 | |
| 2163 | /* |
| 2164 | * The expensive part of numa migration is done from task_work context. |
| 2165 | * Triggered from task_tick_numa(). |
| 2166 | */ |
| 2167 | void task_numa_work(struct callback_head *work) |
| 2168 | { |
| 2169 | unsigned long migrate, next_scan, now = jiffies; |
| 2170 | struct task_struct *p = current; |
| 2171 | struct mm_struct *mm = p->mm; |
| 2172 | struct vm_area_struct *vma; |
| 2173 | unsigned long start, end; |
| 2174 | unsigned long nr_pte_updates = 0; |
| 2175 | long pages, virtpages; |
| 2176 | |
| 2177 | WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); |
| 2178 | |
| 2179 | work->next = work; /* protect against double add */ |
| 2180 | /* |
| 2181 | * Who cares about NUMA placement when they're dying. |
| 2182 | * |
| 2183 | * NOTE: make sure not to dereference p->mm before this check, |
| 2184 | * exit_task_work() happens _after_ exit_mm() so we could be called |
| 2185 | * without p->mm even though we still had it when we enqueued this |
| 2186 | * work. |
| 2187 | */ |
| 2188 | if (p->flags & PF_EXITING) |
| 2189 | return; |
| 2190 | |
| 2191 | if (!mm->numa_next_scan) { |
| 2192 | mm->numa_next_scan = now + |
| 2193 | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); |
| 2194 | } |
| 2195 | |
| 2196 | /* |
| 2197 | * Enforce maximal scan/migration frequency.. |
| 2198 | */ |
| 2199 | migrate = mm->numa_next_scan; |
| 2200 | if (time_before(now, migrate)) |
| 2201 | return; |
| 2202 | |
| 2203 | if (p->numa_scan_period == 0) { |
| 2204 | p->numa_scan_period_max = task_scan_max(p); |
| 2205 | p->numa_scan_period = task_scan_min(p); |
| 2206 | } |
| 2207 | |
| 2208 | next_scan = now + msecs_to_jiffies(p->numa_scan_period); |
| 2209 | if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) |
| 2210 | return; |
| 2211 | |
| 2212 | /* |
| 2213 | * Delay this task enough that another task of this mm will likely win |
| 2214 | * the next time around. |
| 2215 | */ |
| 2216 | p->node_stamp += 2 * TICK_NSEC; |
| 2217 | |
| 2218 | start = mm->numa_scan_offset; |
| 2219 | pages = sysctl_numa_balancing_scan_size; |
| 2220 | pages <<= 20 - PAGE_SHIFT; /* MB in pages */ |
| 2221 | virtpages = pages * 8; /* Scan up to this much virtual space */ |
| 2222 | if (!pages) |
| 2223 | return; |
| 2224 | |
| 2225 | |
| 2226 | down_read(&mm->mmap_sem); |
| 2227 | vma = find_vma(mm, start); |
| 2228 | if (!vma) { |
| 2229 | reset_ptenuma_scan(p); |
| 2230 | start = 0; |
| 2231 | vma = mm->mmap; |
| 2232 | } |
| 2233 | for (; vma; vma = vma->vm_next) { |
| 2234 | if (!vma_migratable(vma) || !vma_policy_mof(vma) || |
| 2235 | is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { |
| 2236 | continue; |
| 2237 | } |
| 2238 | |
| 2239 | /* |
| 2240 | * Shared library pages mapped by multiple processes are not |
| 2241 | * migrated as it is expected they are cache replicated. Avoid |
| 2242 | * hinting faults in read-only file-backed mappings or the vdso |
| 2243 | * as migrating the pages will be of marginal benefit. |
| 2244 | */ |
| 2245 | if (!vma->vm_mm || |
| 2246 | (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) |
| 2247 | continue; |
| 2248 | |
| 2249 | /* |
| 2250 | * Skip inaccessible VMAs to avoid any confusion between |
| 2251 | * PROT_NONE and NUMA hinting ptes |
| 2252 | */ |
| 2253 | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) |
| 2254 | continue; |
| 2255 | |
| 2256 | do { |
| 2257 | start = max(start, vma->vm_start); |
| 2258 | end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); |
| 2259 | end = min(end, vma->vm_end); |
| 2260 | nr_pte_updates = change_prot_numa(vma, start, end); |
| 2261 | |
| 2262 | /* |
| 2263 | * Try to scan sysctl_numa_balancing_size worth of |
| 2264 | * hpages that have at least one present PTE that |
| 2265 | * is not already pte-numa. If the VMA contains |
| 2266 | * areas that are unused or already full of prot_numa |
| 2267 | * PTEs, scan up to virtpages, to skip through those |
| 2268 | * areas faster. |
| 2269 | */ |
| 2270 | if (nr_pte_updates) |
| 2271 | pages -= (end - start) >> PAGE_SHIFT; |
| 2272 | virtpages -= (end - start) >> PAGE_SHIFT; |
| 2273 | |
| 2274 | start = end; |
| 2275 | if (pages <= 0 || virtpages <= 0) |
| 2276 | goto out; |
| 2277 | |
| 2278 | cond_resched(); |
| 2279 | } while (end != vma->vm_end); |
| 2280 | } |
| 2281 | |
| 2282 | out: |
| 2283 | /* |
| 2284 | * It is possible to reach the end of the VMA list but the last few |
| 2285 | * VMAs are not guaranteed to the vma_migratable. If they are not, we |
| 2286 | * would find the !migratable VMA on the next scan but not reset the |
| 2287 | * scanner to the start so check it now. |
| 2288 | */ |
| 2289 | if (vma) |
| 2290 | mm->numa_scan_offset = start; |
| 2291 | else |
| 2292 | reset_ptenuma_scan(p); |
| 2293 | up_read(&mm->mmap_sem); |
| 2294 | } |
| 2295 | |
| 2296 | /* |
| 2297 | * Drive the periodic memory faults.. |
| 2298 | */ |
| 2299 | void task_tick_numa(struct rq *rq, struct task_struct *curr) |
| 2300 | { |
| 2301 | struct callback_head *work = &curr->numa_work; |
| 2302 | u64 period, now; |
| 2303 | |
| 2304 | /* |
| 2305 | * We don't care about NUMA placement if we don't have memory. |
| 2306 | */ |
| 2307 | if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) |
| 2308 | return; |
| 2309 | |
| 2310 | /* |
| 2311 | * Using runtime rather than walltime has the dual advantage that |
| 2312 | * we (mostly) drive the selection from busy threads and that the |
| 2313 | * task needs to have done some actual work before we bother with |
| 2314 | * NUMA placement. |
| 2315 | */ |
| 2316 | now = curr->se.sum_exec_runtime; |
| 2317 | period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; |
| 2318 | |
| 2319 | if (now > curr->node_stamp + period) { |
| 2320 | if (!curr->node_stamp) |
| 2321 | curr->numa_scan_period = task_scan_min(curr); |
| 2322 | curr->node_stamp += period; |
| 2323 | |
| 2324 | if (!time_before(jiffies, curr->mm->numa_next_scan)) { |
| 2325 | init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ |
| 2326 | task_work_add(curr, work, true); |
| 2327 | } |
| 2328 | } |
| 2329 | } |
| 2330 | #else |
| 2331 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) |
| 2332 | { |
| 2333 | } |
| 2334 | |
| 2335 | static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) |
| 2336 | { |
| 2337 | } |
| 2338 | |
| 2339 | static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) |
| 2340 | { |
| 2341 | } |
| 2342 | #endif /* CONFIG_NUMA_BALANCING */ |
| 2343 | |
| 2344 | static void |
| 2345 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 2346 | { |
| 2347 | update_load_add(&cfs_rq->load, se->load.weight); |
| 2348 | if (!parent_entity(se)) |
| 2349 | update_load_add(&rq_of(cfs_rq)->load, se->load.weight); |
| 2350 | #ifdef CONFIG_SMP |
| 2351 | if (entity_is_task(se)) { |
| 2352 | struct rq *rq = rq_of(cfs_rq); |
| 2353 | |
| 2354 | account_numa_enqueue(rq, task_of(se)); |
| 2355 | list_add(&se->group_node, &rq->cfs_tasks); |
| 2356 | } |
| 2357 | #endif |
| 2358 | cfs_rq->nr_running++; |
| 2359 | } |
| 2360 | |
| 2361 | static void |
| 2362 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 2363 | { |
| 2364 | update_load_sub(&cfs_rq->load, se->load.weight); |
| 2365 | if (!parent_entity(se)) |
| 2366 | update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); |
| 2367 | if (entity_is_task(se)) { |
| 2368 | account_numa_dequeue(rq_of(cfs_rq), task_of(se)); |
| 2369 | list_del_init(&se->group_node); |
| 2370 | } |
| 2371 | cfs_rq->nr_running--; |
| 2372 | } |
| 2373 | |
| 2374 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 2375 | # ifdef CONFIG_SMP |
| 2376 | static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) |
| 2377 | { |
| 2378 | long tg_weight; |
| 2379 | |
| 2380 | /* |
| 2381 | * Use this CPU's real-time load instead of the last load contribution |
| 2382 | * as the updating of the contribution is delayed, and we will use the |
| 2383 | * the real-time load to calc the share. See update_tg_load_avg(). |
| 2384 | */ |
| 2385 | tg_weight = atomic_long_read(&tg->load_avg); |
| 2386 | tg_weight -= cfs_rq->tg_load_avg_contrib; |
| 2387 | tg_weight += cfs_rq->load.weight; |
| 2388 | |
| 2389 | return tg_weight; |
| 2390 | } |
| 2391 | |
| 2392 | static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) |
| 2393 | { |
| 2394 | long tg_weight, load, shares; |
| 2395 | |
| 2396 | tg_weight = calc_tg_weight(tg, cfs_rq); |
| 2397 | load = cfs_rq->load.weight; |
| 2398 | |
| 2399 | shares = (tg->shares * load); |
| 2400 | if (tg_weight) |
| 2401 | shares /= tg_weight; |
| 2402 | |
| 2403 | if (shares < MIN_SHARES) |
| 2404 | shares = MIN_SHARES; |
| 2405 | if (shares > tg->shares) |
| 2406 | shares = tg->shares; |
| 2407 | |
| 2408 | return shares; |
| 2409 | } |
| 2410 | # else /* CONFIG_SMP */ |
| 2411 | static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) |
| 2412 | { |
| 2413 | return tg->shares; |
| 2414 | } |
| 2415 | # endif /* CONFIG_SMP */ |
| 2416 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, |
| 2417 | unsigned long weight) |
| 2418 | { |
| 2419 | if (se->on_rq) { |
| 2420 | /* commit outstanding execution time */ |
| 2421 | if (cfs_rq->curr == se) |
| 2422 | update_curr(cfs_rq); |
| 2423 | account_entity_dequeue(cfs_rq, se); |
| 2424 | } |
| 2425 | |
| 2426 | update_load_set(&se->load, weight); |
| 2427 | |
| 2428 | if (se->on_rq) |
| 2429 | account_entity_enqueue(cfs_rq, se); |
| 2430 | } |
| 2431 | |
| 2432 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); |
| 2433 | |
| 2434 | static void update_cfs_shares(struct cfs_rq *cfs_rq) |
| 2435 | { |
| 2436 | struct task_group *tg; |
| 2437 | struct sched_entity *se; |
| 2438 | long shares; |
| 2439 | |
| 2440 | tg = cfs_rq->tg; |
| 2441 | se = tg->se[cpu_of(rq_of(cfs_rq))]; |
| 2442 | if (!se || throttled_hierarchy(cfs_rq)) |
| 2443 | return; |
| 2444 | #ifndef CONFIG_SMP |
| 2445 | if (likely(se->load.weight == tg->shares)) |
| 2446 | return; |
| 2447 | #endif |
| 2448 | shares = calc_cfs_shares(cfs_rq, tg); |
| 2449 | |
| 2450 | reweight_entity(cfs_rq_of(se), se, shares); |
| 2451 | } |
| 2452 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
| 2453 | static inline void update_cfs_shares(struct cfs_rq *cfs_rq) |
| 2454 | { |
| 2455 | } |
| 2456 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 2457 | |
| 2458 | #ifdef CONFIG_SMP |
| 2459 | /* Precomputed fixed inverse multiplies for multiplication by y^n */ |
| 2460 | static const u32 runnable_avg_yN_inv[] = { |
| 2461 | 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, |
| 2462 | 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, |
| 2463 | 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, |
| 2464 | 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, |
| 2465 | 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, |
| 2466 | 0x85aac367, 0x82cd8698, |
| 2467 | }; |
| 2468 | |
| 2469 | /* |
| 2470 | * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent |
| 2471 | * over-estimates when re-combining. |
| 2472 | */ |
| 2473 | static const u32 runnable_avg_yN_sum[] = { |
| 2474 | 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, |
| 2475 | 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, |
| 2476 | 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, |
| 2477 | }; |
| 2478 | |
| 2479 | /* |
| 2480 | * Approximate: |
| 2481 | * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) |
| 2482 | */ |
| 2483 | static __always_inline u64 decay_load(u64 val, u64 n) |
| 2484 | { |
| 2485 | unsigned int local_n; |
| 2486 | |
| 2487 | if (!n) |
| 2488 | return val; |
| 2489 | else if (unlikely(n > LOAD_AVG_PERIOD * 63)) |
| 2490 | return 0; |
| 2491 | |
| 2492 | /* after bounds checking we can collapse to 32-bit */ |
| 2493 | local_n = n; |
| 2494 | |
| 2495 | /* |
| 2496 | * As y^PERIOD = 1/2, we can combine |
| 2497 | * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) |
| 2498 | * With a look-up table which covers y^n (n<PERIOD) |
| 2499 | * |
| 2500 | * To achieve constant time decay_load. |
| 2501 | */ |
| 2502 | if (unlikely(local_n >= LOAD_AVG_PERIOD)) { |
| 2503 | val >>= local_n / LOAD_AVG_PERIOD; |
| 2504 | local_n %= LOAD_AVG_PERIOD; |
| 2505 | } |
| 2506 | |
| 2507 | val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); |
| 2508 | return val; |
| 2509 | } |
| 2510 | |
| 2511 | /* |
| 2512 | * For updates fully spanning n periods, the contribution to runnable |
| 2513 | * average will be: \Sum 1024*y^n |
| 2514 | * |
| 2515 | * We can compute this reasonably efficiently by combining: |
| 2516 | * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} |
| 2517 | */ |
| 2518 | static u32 __compute_runnable_contrib(u64 n) |
| 2519 | { |
| 2520 | u32 contrib = 0; |
| 2521 | |
| 2522 | if (likely(n <= LOAD_AVG_PERIOD)) |
| 2523 | return runnable_avg_yN_sum[n]; |
| 2524 | else if (unlikely(n >= LOAD_AVG_MAX_N)) |
| 2525 | return LOAD_AVG_MAX; |
| 2526 | |
| 2527 | /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ |
| 2528 | do { |
| 2529 | contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ |
| 2530 | contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; |
| 2531 | |
| 2532 | n -= LOAD_AVG_PERIOD; |
| 2533 | } while (n > LOAD_AVG_PERIOD); |
| 2534 | |
| 2535 | contrib = decay_load(contrib, n); |
| 2536 | return contrib + runnable_avg_yN_sum[n]; |
| 2537 | } |
| 2538 | |
| 2539 | #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10 |
| 2540 | #error "load tracking assumes 2^10 as unit" |
| 2541 | #endif |
| 2542 | |
| 2543 | #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) |
| 2544 | |
| 2545 | /* |
| 2546 | * We can represent the historical contribution to runnable average as the |
| 2547 | * coefficients of a geometric series. To do this we sub-divide our runnable |
| 2548 | * history into segments of approximately 1ms (1024us); label the segment that |
| 2549 | * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. |
| 2550 | * |
| 2551 | * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... |
| 2552 | * p0 p1 p2 |
| 2553 | * (now) (~1ms ago) (~2ms ago) |
| 2554 | * |
| 2555 | * Let u_i denote the fraction of p_i that the entity was runnable. |
| 2556 | * |
| 2557 | * We then designate the fractions u_i as our co-efficients, yielding the |
| 2558 | * following representation of historical load: |
| 2559 | * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... |
| 2560 | * |
| 2561 | * We choose y based on the with of a reasonably scheduling period, fixing: |
| 2562 | * y^32 = 0.5 |
| 2563 | * |
| 2564 | * This means that the contribution to load ~32ms ago (u_32) will be weighted |
| 2565 | * approximately half as much as the contribution to load within the last ms |
| 2566 | * (u_0). |
| 2567 | * |
| 2568 | * When a period "rolls over" and we have new u_0`, multiplying the previous |
| 2569 | * sum again by y is sufficient to update: |
| 2570 | * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) |
| 2571 | * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] |
| 2572 | */ |
| 2573 | static __always_inline int |
| 2574 | __update_load_avg(u64 now, int cpu, struct sched_avg *sa, |
| 2575 | unsigned long weight, int running, struct cfs_rq *cfs_rq) |
| 2576 | { |
| 2577 | u64 delta, scaled_delta, periods; |
| 2578 | u32 contrib; |
| 2579 | unsigned int delta_w, scaled_delta_w, decayed = 0; |
| 2580 | unsigned long scale_freq, scale_cpu; |
| 2581 | |
| 2582 | delta = now - sa->last_update_time; |
| 2583 | /* |
| 2584 | * This should only happen when time goes backwards, which it |
| 2585 | * unfortunately does during sched clock init when we swap over to TSC. |
| 2586 | */ |
| 2587 | if ((s64)delta < 0) { |
| 2588 | sa->last_update_time = now; |
| 2589 | return 0; |
| 2590 | } |
| 2591 | |
| 2592 | /* |
| 2593 | * Use 1024ns as the unit of measurement since it's a reasonable |
| 2594 | * approximation of 1us and fast to compute. |
| 2595 | */ |
| 2596 | delta >>= 10; |
| 2597 | if (!delta) |
| 2598 | return 0; |
| 2599 | sa->last_update_time = now; |
| 2600 | |
| 2601 | scale_freq = arch_scale_freq_capacity(NULL, cpu); |
| 2602 | scale_cpu = arch_scale_cpu_capacity(NULL, cpu); |
| 2603 | |
| 2604 | /* delta_w is the amount already accumulated against our next period */ |
| 2605 | delta_w = sa->period_contrib; |
| 2606 | if (delta + delta_w >= 1024) { |
| 2607 | decayed = 1; |
| 2608 | |
| 2609 | /* how much left for next period will start over, we don't know yet */ |
| 2610 | sa->period_contrib = 0; |
| 2611 | |
| 2612 | /* |
| 2613 | * Now that we know we're crossing a period boundary, figure |
| 2614 | * out how much from delta we need to complete the current |
| 2615 | * period and accrue it. |
| 2616 | */ |
| 2617 | delta_w = 1024 - delta_w; |
| 2618 | scaled_delta_w = cap_scale(delta_w, scale_freq); |
| 2619 | if (weight) { |
| 2620 | sa->load_sum += weight * scaled_delta_w; |
| 2621 | if (cfs_rq) { |
| 2622 | cfs_rq->runnable_load_sum += |
| 2623 | weight * scaled_delta_w; |
| 2624 | } |
| 2625 | } |
| 2626 | if (running) |
| 2627 | sa->util_sum += scaled_delta_w * scale_cpu; |
| 2628 | |
| 2629 | delta -= delta_w; |
| 2630 | |
| 2631 | /* Figure out how many additional periods this update spans */ |
| 2632 | periods = delta / 1024; |
| 2633 | delta %= 1024; |
| 2634 | |
| 2635 | sa->load_sum = decay_load(sa->load_sum, periods + 1); |
| 2636 | if (cfs_rq) { |
| 2637 | cfs_rq->runnable_load_sum = |
| 2638 | decay_load(cfs_rq->runnable_load_sum, periods + 1); |
| 2639 | } |
| 2640 | sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1); |
| 2641 | |
| 2642 | /* Efficiently calculate \sum (1..n_period) 1024*y^i */ |
| 2643 | contrib = __compute_runnable_contrib(periods); |
| 2644 | contrib = cap_scale(contrib, scale_freq); |
| 2645 | if (weight) { |
| 2646 | sa->load_sum += weight * contrib; |
| 2647 | if (cfs_rq) |
| 2648 | cfs_rq->runnable_load_sum += weight * contrib; |
| 2649 | } |
| 2650 | if (running) |
| 2651 | sa->util_sum += contrib * scale_cpu; |
| 2652 | } |
| 2653 | |
| 2654 | /* Remainder of delta accrued against u_0` */ |
| 2655 | scaled_delta = cap_scale(delta, scale_freq); |
| 2656 | if (weight) { |
| 2657 | sa->load_sum += weight * scaled_delta; |
| 2658 | if (cfs_rq) |
| 2659 | cfs_rq->runnable_load_sum += weight * scaled_delta; |
| 2660 | } |
| 2661 | if (running) |
| 2662 | sa->util_sum += scaled_delta * scale_cpu; |
| 2663 | |
| 2664 | sa->period_contrib += delta; |
| 2665 | |
| 2666 | if (decayed) { |
| 2667 | sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); |
| 2668 | if (cfs_rq) { |
| 2669 | cfs_rq->runnable_load_avg = |
| 2670 | div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); |
| 2671 | } |
| 2672 | sa->util_avg = sa->util_sum / LOAD_AVG_MAX; |
| 2673 | } |
| 2674 | |
| 2675 | return decayed; |
| 2676 | } |
| 2677 | |
| 2678 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 2679 | /* |
| 2680 | * Updating tg's load_avg is necessary before update_cfs_share (which is done) |
| 2681 | * and effective_load (which is not done because it is too costly). |
| 2682 | */ |
| 2683 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) |
| 2684 | { |
| 2685 | long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; |
| 2686 | |
| 2687 | if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { |
| 2688 | atomic_long_add(delta, &cfs_rq->tg->load_avg); |
| 2689 | cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; |
| 2690 | } |
| 2691 | } |
| 2692 | |
| 2693 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
| 2694 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} |
| 2695 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 2696 | |
| 2697 | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); |
| 2698 | |
| 2699 | /* |
| 2700 | * Unsigned subtract and clamp on underflow. |
| 2701 | * |
| 2702 | * Explicitly do a load-store to ensure the intermediate value never hits |
| 2703 | * memory. This allows lockless observations without ever seeing the negative |
| 2704 | * values. |
| 2705 | */ |
| 2706 | #define sub_positive(_ptr, _val) do { \ |
| 2707 | typeof(_ptr) ptr = (_ptr); \ |
| 2708 | typeof(*ptr) val = (_val); \ |
| 2709 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ |
| 2710 | res = var - val; \ |
| 2711 | if (res > var) \ |
| 2712 | res = 0; \ |
| 2713 | WRITE_ONCE(*ptr, res); \ |
| 2714 | } while (0) |
| 2715 | |
| 2716 | /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */ |
| 2717 | static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) |
| 2718 | { |
| 2719 | struct sched_avg *sa = &cfs_rq->avg; |
| 2720 | int decayed, removed = 0; |
| 2721 | |
| 2722 | if (atomic_long_read(&cfs_rq->removed_load_avg)) { |
| 2723 | s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); |
| 2724 | sub_positive(&sa->load_avg, r); |
| 2725 | sub_positive(&sa->load_sum, r * LOAD_AVG_MAX); |
| 2726 | removed = 1; |
| 2727 | } |
| 2728 | |
| 2729 | if (atomic_long_read(&cfs_rq->removed_util_avg)) { |
| 2730 | long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); |
| 2731 | sub_positive(&sa->util_avg, r); |
| 2732 | sub_positive(&sa->util_sum, r * LOAD_AVG_MAX); |
| 2733 | } |
| 2734 | |
| 2735 | decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, |
| 2736 | scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq); |
| 2737 | |
| 2738 | #ifndef CONFIG_64BIT |
| 2739 | smp_wmb(); |
| 2740 | cfs_rq->load_last_update_time_copy = sa->last_update_time; |
| 2741 | #endif |
| 2742 | |
| 2743 | return decayed || removed; |
| 2744 | } |
| 2745 | |
| 2746 | /* Update task and its cfs_rq load average */ |
| 2747 | static inline void update_load_avg(struct sched_entity *se, int update_tg) |
| 2748 | { |
| 2749 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 2750 | u64 now = cfs_rq_clock_task(cfs_rq); |
| 2751 | int cpu = cpu_of(rq_of(cfs_rq)); |
| 2752 | |
| 2753 | /* |
| 2754 | * Track task load average for carrying it to new CPU after migrated, and |
| 2755 | * track group sched_entity load average for task_h_load calc in migration |
| 2756 | */ |
| 2757 | __update_load_avg(now, cpu, &se->avg, |
| 2758 | se->on_rq * scale_load_down(se->load.weight), |
| 2759 | cfs_rq->curr == se, NULL); |
| 2760 | |
| 2761 | if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg) |
| 2762 | update_tg_load_avg(cfs_rq, 0); |
| 2763 | } |
| 2764 | |
| 2765 | static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 2766 | { |
| 2767 | if (!sched_feat(ATTACH_AGE_LOAD)) |
| 2768 | goto skip_aging; |
| 2769 | |
| 2770 | /* |
| 2771 | * If we got migrated (either between CPUs or between cgroups) we'll |
| 2772 | * have aged the average right before clearing @last_update_time. |
| 2773 | */ |
| 2774 | if (se->avg.last_update_time) { |
| 2775 | __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), |
| 2776 | &se->avg, 0, 0, NULL); |
| 2777 | |
| 2778 | /* |
| 2779 | * XXX: we could have just aged the entire load away if we've been |
| 2780 | * absent from the fair class for too long. |
| 2781 | */ |
| 2782 | } |
| 2783 | |
| 2784 | skip_aging: |
| 2785 | se->avg.last_update_time = cfs_rq->avg.last_update_time; |
| 2786 | cfs_rq->avg.load_avg += se->avg.load_avg; |
| 2787 | cfs_rq->avg.load_sum += se->avg.load_sum; |
| 2788 | cfs_rq->avg.util_avg += se->avg.util_avg; |
| 2789 | cfs_rq->avg.util_sum += se->avg.util_sum; |
| 2790 | } |
| 2791 | |
| 2792 | static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 2793 | { |
| 2794 | __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), |
| 2795 | &se->avg, se->on_rq * scale_load_down(se->load.weight), |
| 2796 | cfs_rq->curr == se, NULL); |
| 2797 | |
| 2798 | sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); |
| 2799 | sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum); |
| 2800 | sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); |
| 2801 | sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); |
| 2802 | } |
| 2803 | |
| 2804 | /* Add the load generated by se into cfs_rq's load average */ |
| 2805 | static inline void |
| 2806 | enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 2807 | { |
| 2808 | struct sched_avg *sa = &se->avg; |
| 2809 | u64 now = cfs_rq_clock_task(cfs_rq); |
| 2810 | int migrated, decayed; |
| 2811 | |
| 2812 | migrated = !sa->last_update_time; |
| 2813 | if (!migrated) { |
| 2814 | __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, |
| 2815 | se->on_rq * scale_load_down(se->load.weight), |
| 2816 | cfs_rq->curr == se, NULL); |
| 2817 | } |
| 2818 | |
| 2819 | decayed = update_cfs_rq_load_avg(now, cfs_rq); |
| 2820 | |
| 2821 | cfs_rq->runnable_load_avg += sa->load_avg; |
| 2822 | cfs_rq->runnable_load_sum += sa->load_sum; |
| 2823 | |
| 2824 | if (migrated) |
| 2825 | attach_entity_load_avg(cfs_rq, se); |
| 2826 | |
| 2827 | if (decayed || migrated) |
| 2828 | update_tg_load_avg(cfs_rq, 0); |
| 2829 | } |
| 2830 | |
| 2831 | /* Remove the runnable load generated by se from cfs_rq's runnable load average */ |
| 2832 | static inline void |
| 2833 | dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 2834 | { |
| 2835 | update_load_avg(se, 1); |
| 2836 | |
| 2837 | cfs_rq->runnable_load_avg = |
| 2838 | max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); |
| 2839 | cfs_rq->runnable_load_sum = |
| 2840 | max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); |
| 2841 | } |
| 2842 | |
| 2843 | /* |
| 2844 | * Task first catches up with cfs_rq, and then subtract |
| 2845 | * itself from the cfs_rq (task must be off the queue now). |
| 2846 | */ |
| 2847 | void remove_entity_load_avg(struct sched_entity *se) |
| 2848 | { |
| 2849 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 2850 | u64 last_update_time; |
| 2851 | |
| 2852 | #ifndef CONFIG_64BIT |
| 2853 | u64 last_update_time_copy; |
| 2854 | |
| 2855 | do { |
| 2856 | last_update_time_copy = cfs_rq->load_last_update_time_copy; |
| 2857 | smp_rmb(); |
| 2858 | last_update_time = cfs_rq->avg.last_update_time; |
| 2859 | } while (last_update_time != last_update_time_copy); |
| 2860 | #else |
| 2861 | last_update_time = cfs_rq->avg.last_update_time; |
| 2862 | #endif |
| 2863 | |
| 2864 | __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL); |
| 2865 | atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); |
| 2866 | atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); |
| 2867 | } |
| 2868 | |
| 2869 | /* |
| 2870 | * Update the rq's load with the elapsed running time before entering |
| 2871 | * idle. if the last scheduled task is not a CFS task, idle_enter will |
| 2872 | * be the only way to update the runnable statistic. |
| 2873 | */ |
| 2874 | void idle_enter_fair(struct rq *this_rq) |
| 2875 | { |
| 2876 | } |
| 2877 | |
| 2878 | /* |
| 2879 | * Update the rq's load with the elapsed idle time before a task is |
| 2880 | * scheduled. if the newly scheduled task is not a CFS task, idle_exit will |
| 2881 | * be the only way to update the runnable statistic. |
| 2882 | */ |
| 2883 | void idle_exit_fair(struct rq *this_rq) |
| 2884 | { |
| 2885 | } |
| 2886 | |
| 2887 | static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) |
| 2888 | { |
| 2889 | return cfs_rq->runnable_load_avg; |
| 2890 | } |
| 2891 | |
| 2892 | static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) |
| 2893 | { |
| 2894 | return cfs_rq->avg.load_avg; |
| 2895 | } |
| 2896 | |
| 2897 | static int idle_balance(struct rq *this_rq); |
| 2898 | |
| 2899 | #else /* CONFIG_SMP */ |
| 2900 | |
| 2901 | static inline void update_load_avg(struct sched_entity *se, int update_tg) {} |
| 2902 | static inline void |
| 2903 | enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} |
| 2904 | static inline void |
| 2905 | dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} |
| 2906 | static inline void remove_entity_load_avg(struct sched_entity *se) {} |
| 2907 | |
| 2908 | static inline void |
| 2909 | attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} |
| 2910 | static inline void |
| 2911 | detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} |
| 2912 | |
| 2913 | static inline int idle_balance(struct rq *rq) |
| 2914 | { |
| 2915 | return 0; |
| 2916 | } |
| 2917 | |
| 2918 | #endif /* CONFIG_SMP */ |
| 2919 | |
| 2920 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 2921 | { |
| 2922 | #ifdef CONFIG_SCHEDSTATS |
| 2923 | struct task_struct *tsk = NULL; |
| 2924 | |
| 2925 | if (entity_is_task(se)) |
| 2926 | tsk = task_of(se); |
| 2927 | |
| 2928 | if (se->statistics.sleep_start) { |
| 2929 | u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; |
| 2930 | |
| 2931 | if ((s64)delta < 0) |
| 2932 | delta = 0; |
| 2933 | |
| 2934 | if (unlikely(delta > se->statistics.sleep_max)) |
| 2935 | se->statistics.sleep_max = delta; |
| 2936 | |
| 2937 | se->statistics.sleep_start = 0; |
| 2938 | se->statistics.sum_sleep_runtime += delta; |
| 2939 | |
| 2940 | if (tsk) { |
| 2941 | account_scheduler_latency(tsk, delta >> 10, 1); |
| 2942 | trace_sched_stat_sleep(tsk, delta); |
| 2943 | } |
| 2944 | } |
| 2945 | if (se->statistics.block_start) { |
| 2946 | u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; |
| 2947 | |
| 2948 | if ((s64)delta < 0) |
| 2949 | delta = 0; |
| 2950 | |
| 2951 | if (unlikely(delta > se->statistics.block_max)) |
| 2952 | se->statistics.block_max = delta; |
| 2953 | |
| 2954 | se->statistics.block_start = 0; |
| 2955 | se->statistics.sum_sleep_runtime += delta; |
| 2956 | |
| 2957 | if (tsk) { |
| 2958 | if (tsk->in_iowait) { |
| 2959 | se->statistics.iowait_sum += delta; |
| 2960 | se->statistics.iowait_count++; |
| 2961 | trace_sched_stat_iowait(tsk, delta); |
| 2962 | } |
| 2963 | |
| 2964 | trace_sched_stat_blocked(tsk, delta); |
| 2965 | |
| 2966 | /* |
| 2967 | * Blocking time is in units of nanosecs, so shift by |
| 2968 | * 20 to get a milliseconds-range estimation of the |
| 2969 | * amount of time that the task spent sleeping: |
| 2970 | */ |
| 2971 | if (unlikely(prof_on == SLEEP_PROFILING)) { |
| 2972 | profile_hits(SLEEP_PROFILING, |
| 2973 | (void *)get_wchan(tsk), |
| 2974 | delta >> 20); |
| 2975 | } |
| 2976 | account_scheduler_latency(tsk, delta >> 10, 0); |
| 2977 | } |
| 2978 | } |
| 2979 | #endif |
| 2980 | } |
| 2981 | |
| 2982 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 2983 | { |
| 2984 | #ifdef CONFIG_SCHED_DEBUG |
| 2985 | s64 d = se->vruntime - cfs_rq->min_vruntime; |
| 2986 | |
| 2987 | if (d < 0) |
| 2988 | d = -d; |
| 2989 | |
| 2990 | if (d > 3*sysctl_sched_latency) |
| 2991 | schedstat_inc(cfs_rq, nr_spread_over); |
| 2992 | #endif |
| 2993 | } |
| 2994 | |
| 2995 | static void |
| 2996 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) |
| 2997 | { |
| 2998 | u64 vruntime = cfs_rq->min_vruntime; |
| 2999 | |
| 3000 | /* |
| 3001 | * The 'current' period is already promised to the current tasks, |
| 3002 | * however the extra weight of the new task will slow them down a |
| 3003 | * little, place the new task so that it fits in the slot that |
| 3004 | * stays open at the end. |
| 3005 | */ |
| 3006 | if (initial && sched_feat(START_DEBIT)) |
| 3007 | vruntime += sched_vslice(cfs_rq, se); |
| 3008 | |
| 3009 | /* sleeps up to a single latency don't count. */ |
| 3010 | if (!initial) { |
| 3011 | unsigned long thresh = sysctl_sched_latency; |
| 3012 | |
| 3013 | /* |
| 3014 | * Halve their sleep time's effect, to allow |
| 3015 | * for a gentler effect of sleepers: |
| 3016 | */ |
| 3017 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) |
| 3018 | thresh >>= 1; |
| 3019 | |
| 3020 | vruntime -= thresh; |
| 3021 | } |
| 3022 | |
| 3023 | /* ensure we never gain time by being placed backwards. */ |
| 3024 | se->vruntime = max_vruntime(se->vruntime, vruntime); |
| 3025 | } |
| 3026 | |
| 3027 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); |
| 3028 | |
| 3029 | static void |
| 3030 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
| 3031 | { |
| 3032 | /* |
| 3033 | * Update the normalized vruntime before updating min_vruntime |
| 3034 | * through calling update_curr(). |
| 3035 | */ |
| 3036 | if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) |
| 3037 | se->vruntime += cfs_rq->min_vruntime; |
| 3038 | |
| 3039 | /* |
| 3040 | * Update run-time statistics of the 'current'. |
| 3041 | */ |
| 3042 | update_curr(cfs_rq); |
| 3043 | enqueue_entity_load_avg(cfs_rq, se); |
| 3044 | account_entity_enqueue(cfs_rq, se); |
| 3045 | update_cfs_shares(cfs_rq); |
| 3046 | |
| 3047 | if (flags & ENQUEUE_WAKEUP) { |
| 3048 | place_entity(cfs_rq, se, 0); |
| 3049 | enqueue_sleeper(cfs_rq, se); |
| 3050 | } |
| 3051 | |
| 3052 | update_stats_enqueue(cfs_rq, se); |
| 3053 | check_spread(cfs_rq, se); |
| 3054 | if (se != cfs_rq->curr) |
| 3055 | __enqueue_entity(cfs_rq, se); |
| 3056 | se->on_rq = 1; |
| 3057 | |
| 3058 | if (cfs_rq->nr_running == 1) { |
| 3059 | list_add_leaf_cfs_rq(cfs_rq); |
| 3060 | check_enqueue_throttle(cfs_rq); |
| 3061 | } |
| 3062 | } |
| 3063 | |
| 3064 | static void __clear_buddies_last(struct sched_entity *se) |
| 3065 | { |
| 3066 | for_each_sched_entity(se) { |
| 3067 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 3068 | if (cfs_rq->last != se) |
| 3069 | break; |
| 3070 | |
| 3071 | cfs_rq->last = NULL; |
| 3072 | } |
| 3073 | } |
| 3074 | |
| 3075 | static void __clear_buddies_next(struct sched_entity *se) |
| 3076 | { |
| 3077 | for_each_sched_entity(se) { |
| 3078 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 3079 | if (cfs_rq->next != se) |
| 3080 | break; |
| 3081 | |
| 3082 | cfs_rq->next = NULL; |
| 3083 | } |
| 3084 | } |
| 3085 | |
| 3086 | static void __clear_buddies_skip(struct sched_entity *se) |
| 3087 | { |
| 3088 | for_each_sched_entity(se) { |
| 3089 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 3090 | if (cfs_rq->skip != se) |
| 3091 | break; |
| 3092 | |
| 3093 | cfs_rq->skip = NULL; |
| 3094 | } |
| 3095 | } |
| 3096 | |
| 3097 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 3098 | { |
| 3099 | if (cfs_rq->last == se) |
| 3100 | __clear_buddies_last(se); |
| 3101 | |
| 3102 | if (cfs_rq->next == se) |
| 3103 | __clear_buddies_next(se); |
| 3104 | |
| 3105 | if (cfs_rq->skip == se) |
| 3106 | __clear_buddies_skip(se); |
| 3107 | } |
| 3108 | |
| 3109 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
| 3110 | |
| 3111 | static void |
| 3112 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
| 3113 | { |
| 3114 | /* |
| 3115 | * Update run-time statistics of the 'current'. |
| 3116 | */ |
| 3117 | update_curr(cfs_rq); |
| 3118 | dequeue_entity_load_avg(cfs_rq, se); |
| 3119 | |
| 3120 | update_stats_dequeue(cfs_rq, se); |
| 3121 | if (flags & DEQUEUE_SLEEP) { |
| 3122 | #ifdef CONFIG_SCHEDSTATS |
| 3123 | if (entity_is_task(se)) { |
| 3124 | struct task_struct *tsk = task_of(se); |
| 3125 | |
| 3126 | if (tsk->state & TASK_INTERRUPTIBLE) |
| 3127 | se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); |
| 3128 | if (tsk->state & TASK_UNINTERRUPTIBLE) |
| 3129 | se->statistics.block_start = rq_clock(rq_of(cfs_rq)); |
| 3130 | } |
| 3131 | #endif |
| 3132 | } |
| 3133 | |
| 3134 | clear_buddies(cfs_rq, se); |
| 3135 | |
| 3136 | if (se != cfs_rq->curr) |
| 3137 | __dequeue_entity(cfs_rq, se); |
| 3138 | se->on_rq = 0; |
| 3139 | account_entity_dequeue(cfs_rq, se); |
| 3140 | |
| 3141 | /* |
| 3142 | * Normalize the entity after updating the min_vruntime because the |
| 3143 | * update can refer to the ->curr item and we need to reflect this |
| 3144 | * movement in our normalized position. |
| 3145 | */ |
| 3146 | if (!(flags & DEQUEUE_SLEEP)) |
| 3147 | se->vruntime -= cfs_rq->min_vruntime; |
| 3148 | |
| 3149 | /* return excess runtime on last dequeue */ |
| 3150 | return_cfs_rq_runtime(cfs_rq); |
| 3151 | |
| 3152 | update_min_vruntime(cfs_rq); |
| 3153 | update_cfs_shares(cfs_rq); |
| 3154 | } |
| 3155 | |
| 3156 | /* |
| 3157 | * Preempt the current task with a newly woken task if needed: |
| 3158 | */ |
| 3159 | static void |
| 3160 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) |
| 3161 | { |
| 3162 | unsigned long ideal_runtime, delta_exec; |
| 3163 | struct sched_entity *se; |
| 3164 | s64 delta; |
| 3165 | |
| 3166 | ideal_runtime = sched_slice(cfs_rq, curr); |
| 3167 | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; |
| 3168 | if (delta_exec > ideal_runtime) { |
| 3169 | resched_curr(rq_of(cfs_rq)); |
| 3170 | /* |
| 3171 | * The current task ran long enough, ensure it doesn't get |
| 3172 | * re-elected due to buddy favours. |
| 3173 | */ |
| 3174 | clear_buddies(cfs_rq, curr); |
| 3175 | return; |
| 3176 | } |
| 3177 | |
| 3178 | /* |
| 3179 | * Ensure that a task that missed wakeup preemption by a |
| 3180 | * narrow margin doesn't have to wait for a full slice. |
| 3181 | * This also mitigates buddy induced latencies under load. |
| 3182 | */ |
| 3183 | if (delta_exec < sysctl_sched_min_granularity) |
| 3184 | return; |
| 3185 | |
| 3186 | se = __pick_first_entity(cfs_rq); |
| 3187 | delta = curr->vruntime - se->vruntime; |
| 3188 | |
| 3189 | if (delta < 0) |
| 3190 | return; |
| 3191 | |
| 3192 | if (delta > ideal_runtime) |
| 3193 | resched_curr(rq_of(cfs_rq)); |
| 3194 | } |
| 3195 | |
| 3196 | static void |
| 3197 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 3198 | { |
| 3199 | /* 'current' is not kept within the tree. */ |
| 3200 | if (se->on_rq) { |
| 3201 | /* |
| 3202 | * Any task has to be enqueued before it get to execute on |
| 3203 | * a CPU. So account for the time it spent waiting on the |
| 3204 | * runqueue. |
| 3205 | */ |
| 3206 | update_stats_wait_end(cfs_rq, se); |
| 3207 | __dequeue_entity(cfs_rq, se); |
| 3208 | update_load_avg(se, 1); |
| 3209 | } |
| 3210 | |
| 3211 | update_stats_curr_start(cfs_rq, se); |
| 3212 | cfs_rq->curr = se; |
| 3213 | #ifdef CONFIG_SCHEDSTATS |
| 3214 | /* |
| 3215 | * Track our maximum slice length, if the CPU's load is at |
| 3216 | * least twice that of our own weight (i.e. dont track it |
| 3217 | * when there are only lesser-weight tasks around): |
| 3218 | */ |
| 3219 | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { |
| 3220 | se->statistics.slice_max = max(se->statistics.slice_max, |
| 3221 | se->sum_exec_runtime - se->prev_sum_exec_runtime); |
| 3222 | } |
| 3223 | #endif |
| 3224 | se->prev_sum_exec_runtime = se->sum_exec_runtime; |
| 3225 | } |
| 3226 | |
| 3227 | static int |
| 3228 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); |
| 3229 | |
| 3230 | /* |
| 3231 | * Pick the next process, keeping these things in mind, in this order: |
| 3232 | * 1) keep things fair between processes/task groups |
| 3233 | * 2) pick the "next" process, since someone really wants that to run |
| 3234 | * 3) pick the "last" process, for cache locality |
| 3235 | * 4) do not run the "skip" process, if something else is available |
| 3236 | */ |
| 3237 | static struct sched_entity * |
| 3238 | pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) |
| 3239 | { |
| 3240 | struct sched_entity *left = __pick_first_entity(cfs_rq); |
| 3241 | struct sched_entity *se; |
| 3242 | |
| 3243 | /* |
| 3244 | * If curr is set we have to see if its left of the leftmost entity |
| 3245 | * still in the tree, provided there was anything in the tree at all. |
| 3246 | */ |
| 3247 | if (!left || (curr && entity_before(curr, left))) |
| 3248 | left = curr; |
| 3249 | |
| 3250 | se = left; /* ideally we run the leftmost entity */ |
| 3251 | |
| 3252 | /* |
| 3253 | * Avoid running the skip buddy, if running something else can |
| 3254 | * be done without getting too unfair. |
| 3255 | */ |
| 3256 | if (cfs_rq->skip == se) { |
| 3257 | struct sched_entity *second; |
| 3258 | |
| 3259 | if (se == curr) { |
| 3260 | second = __pick_first_entity(cfs_rq); |
| 3261 | } else { |
| 3262 | second = __pick_next_entity(se); |
| 3263 | if (!second || (curr && entity_before(curr, second))) |
| 3264 | second = curr; |
| 3265 | } |
| 3266 | |
| 3267 | if (second && wakeup_preempt_entity(second, left) < 1) |
| 3268 | se = second; |
| 3269 | } |
| 3270 | |
| 3271 | /* |
| 3272 | * Prefer last buddy, try to return the CPU to a preempted task. |
| 3273 | */ |
| 3274 | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) |
| 3275 | se = cfs_rq->last; |
| 3276 | |
| 3277 | /* |
| 3278 | * Someone really wants this to run. If it's not unfair, run it. |
| 3279 | */ |
| 3280 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) |
| 3281 | se = cfs_rq->next; |
| 3282 | |
| 3283 | clear_buddies(cfs_rq, se); |
| 3284 | |
| 3285 | return se; |
| 3286 | } |
| 3287 | |
| 3288 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
| 3289 | |
| 3290 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) |
| 3291 | { |
| 3292 | /* |
| 3293 | * If still on the runqueue then deactivate_task() |
| 3294 | * was not called and update_curr() has to be done: |
| 3295 | */ |
| 3296 | if (prev->on_rq) |
| 3297 | update_curr(cfs_rq); |
| 3298 | |
| 3299 | /* throttle cfs_rqs exceeding runtime */ |
| 3300 | check_cfs_rq_runtime(cfs_rq); |
| 3301 | |
| 3302 | check_spread(cfs_rq, prev); |
| 3303 | if (prev->on_rq) { |
| 3304 | update_stats_wait_start(cfs_rq, prev); |
| 3305 | /* Put 'current' back into the tree. */ |
| 3306 | __enqueue_entity(cfs_rq, prev); |
| 3307 | /* in !on_rq case, update occurred at dequeue */ |
| 3308 | update_load_avg(prev, 0); |
| 3309 | } |
| 3310 | cfs_rq->curr = NULL; |
| 3311 | } |
| 3312 | |
| 3313 | static void |
| 3314 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) |
| 3315 | { |
| 3316 | /* |
| 3317 | * Update run-time statistics of the 'current'. |
| 3318 | */ |
| 3319 | update_curr(cfs_rq); |
| 3320 | |
| 3321 | /* |
| 3322 | * Ensure that runnable average is periodically updated. |
| 3323 | */ |
| 3324 | update_load_avg(curr, 1); |
| 3325 | update_cfs_shares(cfs_rq); |
| 3326 | |
| 3327 | #ifdef CONFIG_SCHED_HRTICK |
| 3328 | /* |
| 3329 | * queued ticks are scheduled to match the slice, so don't bother |
| 3330 | * validating it and just reschedule. |
| 3331 | */ |
| 3332 | if (queued) { |
| 3333 | resched_curr(rq_of(cfs_rq)); |
| 3334 | return; |
| 3335 | } |
| 3336 | /* |
| 3337 | * don't let the period tick interfere with the hrtick preemption |
| 3338 | */ |
| 3339 | if (!sched_feat(DOUBLE_TICK) && |
| 3340 | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) |
| 3341 | return; |
| 3342 | #endif |
| 3343 | |
| 3344 | if (cfs_rq->nr_running > 1) |
| 3345 | check_preempt_tick(cfs_rq, curr); |
| 3346 | } |
| 3347 | |
| 3348 | |
| 3349 | /************************************************** |
| 3350 | * CFS bandwidth control machinery |
| 3351 | */ |
| 3352 | |
| 3353 | #ifdef CONFIG_CFS_BANDWIDTH |
| 3354 | |
| 3355 | #ifdef HAVE_JUMP_LABEL |
| 3356 | static struct static_key __cfs_bandwidth_used; |
| 3357 | |
| 3358 | static inline bool cfs_bandwidth_used(void) |
| 3359 | { |
| 3360 | return static_key_false(&__cfs_bandwidth_used); |
| 3361 | } |
| 3362 | |
| 3363 | void cfs_bandwidth_usage_inc(void) |
| 3364 | { |
| 3365 | static_key_slow_inc(&__cfs_bandwidth_used); |
| 3366 | } |
| 3367 | |
| 3368 | void cfs_bandwidth_usage_dec(void) |
| 3369 | { |
| 3370 | static_key_slow_dec(&__cfs_bandwidth_used); |
| 3371 | } |
| 3372 | #else /* HAVE_JUMP_LABEL */ |
| 3373 | static bool cfs_bandwidth_used(void) |
| 3374 | { |
| 3375 | return true; |
| 3376 | } |
| 3377 | |
| 3378 | void cfs_bandwidth_usage_inc(void) {} |
| 3379 | void cfs_bandwidth_usage_dec(void) {} |
| 3380 | #endif /* HAVE_JUMP_LABEL */ |
| 3381 | |
| 3382 | /* |
| 3383 | * default period for cfs group bandwidth. |
| 3384 | * default: 0.1s, units: nanoseconds |
| 3385 | */ |
| 3386 | static inline u64 default_cfs_period(void) |
| 3387 | { |
| 3388 | return 100000000ULL; |
| 3389 | } |
| 3390 | |
| 3391 | static inline u64 sched_cfs_bandwidth_slice(void) |
| 3392 | { |
| 3393 | return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; |
| 3394 | } |
| 3395 | |
| 3396 | /* |
| 3397 | * Replenish runtime according to assigned quota and update expiration time. |
| 3398 | * We use sched_clock_cpu directly instead of rq->clock to avoid adding |
| 3399 | * additional synchronization around rq->lock. |
| 3400 | * |
| 3401 | * requires cfs_b->lock |
| 3402 | */ |
| 3403 | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) |
| 3404 | { |
| 3405 | u64 now; |
| 3406 | |
| 3407 | if (cfs_b->quota == RUNTIME_INF) |
| 3408 | return; |
| 3409 | |
| 3410 | now = sched_clock_cpu(smp_processor_id()); |
| 3411 | cfs_b->runtime = cfs_b->quota; |
| 3412 | cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); |
| 3413 | } |
| 3414 | |
| 3415 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
| 3416 | { |
| 3417 | return &tg->cfs_bandwidth; |
| 3418 | } |
| 3419 | |
| 3420 | /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ |
| 3421 | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) |
| 3422 | { |
| 3423 | if (unlikely(cfs_rq->throttle_count)) |
| 3424 | return cfs_rq->throttled_clock_task; |
| 3425 | |
| 3426 | return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; |
| 3427 | } |
| 3428 | |
| 3429 | /* returns 0 on failure to allocate runtime */ |
| 3430 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
| 3431 | { |
| 3432 | struct task_group *tg = cfs_rq->tg; |
| 3433 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); |
| 3434 | u64 amount = 0, min_amount, expires; |
| 3435 | |
| 3436 | /* note: this is a positive sum as runtime_remaining <= 0 */ |
| 3437 | min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; |
| 3438 | |
| 3439 | raw_spin_lock(&cfs_b->lock); |
| 3440 | if (cfs_b->quota == RUNTIME_INF) |
| 3441 | amount = min_amount; |
| 3442 | else { |
| 3443 | start_cfs_bandwidth(cfs_b); |
| 3444 | |
| 3445 | if (cfs_b->runtime > 0) { |
| 3446 | amount = min(cfs_b->runtime, min_amount); |
| 3447 | cfs_b->runtime -= amount; |
| 3448 | cfs_b->idle = 0; |
| 3449 | } |
| 3450 | } |
| 3451 | expires = cfs_b->runtime_expires; |
| 3452 | raw_spin_unlock(&cfs_b->lock); |
| 3453 | |
| 3454 | cfs_rq->runtime_remaining += amount; |
| 3455 | /* |
| 3456 | * we may have advanced our local expiration to account for allowed |
| 3457 | * spread between our sched_clock and the one on which runtime was |
| 3458 | * issued. |
| 3459 | */ |
| 3460 | if ((s64)(expires - cfs_rq->runtime_expires) > 0) |
| 3461 | cfs_rq->runtime_expires = expires; |
| 3462 | |
| 3463 | return cfs_rq->runtime_remaining > 0; |
| 3464 | } |
| 3465 | |
| 3466 | /* |
| 3467 | * Note: This depends on the synchronization provided by sched_clock and the |
| 3468 | * fact that rq->clock snapshots this value. |
| 3469 | */ |
| 3470 | static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
| 3471 | { |
| 3472 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); |
| 3473 | |
| 3474 | /* if the deadline is ahead of our clock, nothing to do */ |
| 3475 | if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) |
| 3476 | return; |
| 3477 | |
| 3478 | if (cfs_rq->runtime_remaining < 0) |
| 3479 | return; |
| 3480 | |
| 3481 | /* |
| 3482 | * If the local deadline has passed we have to consider the |
| 3483 | * possibility that our sched_clock is 'fast' and the global deadline |
| 3484 | * has not truly expired. |
| 3485 | * |
| 3486 | * Fortunately we can check determine whether this the case by checking |
| 3487 | * whether the global deadline has advanced. It is valid to compare |
| 3488 | * cfs_b->runtime_expires without any locks since we only care about |
| 3489 | * exact equality, so a partial write will still work. |
| 3490 | */ |
| 3491 | |
| 3492 | if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { |
| 3493 | /* extend local deadline, drift is bounded above by 2 ticks */ |
| 3494 | cfs_rq->runtime_expires += TICK_NSEC; |
| 3495 | } else { |
| 3496 | /* global deadline is ahead, expiration has passed */ |
| 3497 | cfs_rq->runtime_remaining = 0; |
| 3498 | } |
| 3499 | } |
| 3500 | |
| 3501 | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
| 3502 | { |
| 3503 | /* dock delta_exec before expiring quota (as it could span periods) */ |
| 3504 | cfs_rq->runtime_remaining -= delta_exec; |
| 3505 | expire_cfs_rq_runtime(cfs_rq); |
| 3506 | |
| 3507 | if (likely(cfs_rq->runtime_remaining > 0)) |
| 3508 | return; |
| 3509 | |
| 3510 | /* |
| 3511 | * if we're unable to extend our runtime we resched so that the active |
| 3512 | * hierarchy can be throttled |
| 3513 | */ |
| 3514 | if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) |
| 3515 | resched_curr(rq_of(cfs_rq)); |
| 3516 | } |
| 3517 | |
| 3518 | static __always_inline |
| 3519 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
| 3520 | { |
| 3521 | if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) |
| 3522 | return; |
| 3523 | |
| 3524 | __account_cfs_rq_runtime(cfs_rq, delta_exec); |
| 3525 | } |
| 3526 | |
| 3527 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) |
| 3528 | { |
| 3529 | return cfs_bandwidth_used() && cfs_rq->throttled; |
| 3530 | } |
| 3531 | |
| 3532 | /* check whether cfs_rq, or any parent, is throttled */ |
| 3533 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) |
| 3534 | { |
| 3535 | return cfs_bandwidth_used() && cfs_rq->throttle_count; |
| 3536 | } |
| 3537 | |
| 3538 | /* |
| 3539 | * Ensure that neither of the group entities corresponding to src_cpu or |
| 3540 | * dest_cpu are members of a throttled hierarchy when performing group |
| 3541 | * load-balance operations. |
| 3542 | */ |
| 3543 | static inline int throttled_lb_pair(struct task_group *tg, |
| 3544 | int src_cpu, int dest_cpu) |
| 3545 | { |
| 3546 | struct cfs_rq *src_cfs_rq, *dest_cfs_rq; |
| 3547 | |
| 3548 | src_cfs_rq = tg->cfs_rq[src_cpu]; |
| 3549 | dest_cfs_rq = tg->cfs_rq[dest_cpu]; |
| 3550 | |
| 3551 | return throttled_hierarchy(src_cfs_rq) || |
| 3552 | throttled_hierarchy(dest_cfs_rq); |
| 3553 | } |
| 3554 | |
| 3555 | /* updated child weight may affect parent so we have to do this bottom up */ |
| 3556 | static int tg_unthrottle_up(struct task_group *tg, void *data) |
| 3557 | { |
| 3558 | struct rq *rq = data; |
| 3559 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; |
| 3560 | |
| 3561 | cfs_rq->throttle_count--; |
| 3562 | #ifdef CONFIG_SMP |
| 3563 | if (!cfs_rq->throttle_count) { |
| 3564 | /* adjust cfs_rq_clock_task() */ |
| 3565 | cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - |
| 3566 | cfs_rq->throttled_clock_task; |
| 3567 | } |
| 3568 | #endif |
| 3569 | |
| 3570 | return 0; |
| 3571 | } |
| 3572 | |
| 3573 | static int tg_throttle_down(struct task_group *tg, void *data) |
| 3574 | { |
| 3575 | struct rq *rq = data; |
| 3576 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; |
| 3577 | |
| 3578 | /* group is entering throttled state, stop time */ |
| 3579 | if (!cfs_rq->throttle_count) |
| 3580 | cfs_rq->throttled_clock_task = rq_clock_task(rq); |
| 3581 | cfs_rq->throttle_count++; |
| 3582 | |
| 3583 | return 0; |
| 3584 | } |
| 3585 | |
| 3586 | static void throttle_cfs_rq(struct cfs_rq *cfs_rq) |
| 3587 | { |
| 3588 | struct rq *rq = rq_of(cfs_rq); |
| 3589 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); |
| 3590 | struct sched_entity *se; |
| 3591 | long task_delta, dequeue = 1; |
| 3592 | bool empty; |
| 3593 | |
| 3594 | se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; |
| 3595 | |
| 3596 | /* freeze hierarchy runnable averages while throttled */ |
| 3597 | rcu_read_lock(); |
| 3598 | walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); |
| 3599 | rcu_read_unlock(); |
| 3600 | |
| 3601 | task_delta = cfs_rq->h_nr_running; |
| 3602 | for_each_sched_entity(se) { |
| 3603 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); |
| 3604 | /* throttled entity or throttle-on-deactivate */ |
| 3605 | if (!se->on_rq) |
| 3606 | break; |
| 3607 | |
| 3608 | if (dequeue) |
| 3609 | dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); |
| 3610 | qcfs_rq->h_nr_running -= task_delta; |
| 3611 | |
| 3612 | if (qcfs_rq->load.weight) |
| 3613 | dequeue = 0; |
| 3614 | } |
| 3615 | |
| 3616 | if (!se) |
| 3617 | sub_nr_running(rq, task_delta); |
| 3618 | |
| 3619 | cfs_rq->throttled = 1; |
| 3620 | cfs_rq->throttled_clock = rq_clock(rq); |
| 3621 | raw_spin_lock(&cfs_b->lock); |
| 3622 | empty = list_empty(&cfs_b->throttled_cfs_rq); |
| 3623 | |
| 3624 | /* |
| 3625 | * Add to the _head_ of the list, so that an already-started |
| 3626 | * distribute_cfs_runtime will not see us |
| 3627 | */ |
| 3628 | list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); |
| 3629 | |
| 3630 | /* |
| 3631 | * If we're the first throttled task, make sure the bandwidth |
| 3632 | * timer is running. |
| 3633 | */ |
| 3634 | if (empty) |
| 3635 | start_cfs_bandwidth(cfs_b); |
| 3636 | |
| 3637 | raw_spin_unlock(&cfs_b->lock); |
| 3638 | } |
| 3639 | |
| 3640 | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) |
| 3641 | { |
| 3642 | struct rq *rq = rq_of(cfs_rq); |
| 3643 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); |
| 3644 | struct sched_entity *se; |
| 3645 | int enqueue = 1; |
| 3646 | long task_delta; |
| 3647 | |
| 3648 | se = cfs_rq->tg->se[cpu_of(rq)]; |
| 3649 | |
| 3650 | cfs_rq->throttled = 0; |
| 3651 | |
| 3652 | update_rq_clock(rq); |
| 3653 | |
| 3654 | raw_spin_lock(&cfs_b->lock); |
| 3655 | cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; |
| 3656 | list_del_rcu(&cfs_rq->throttled_list); |
| 3657 | raw_spin_unlock(&cfs_b->lock); |
| 3658 | |
| 3659 | /* update hierarchical throttle state */ |
| 3660 | walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); |
| 3661 | |
| 3662 | if (!cfs_rq->load.weight) |
| 3663 | return; |
| 3664 | |
| 3665 | task_delta = cfs_rq->h_nr_running; |
| 3666 | for_each_sched_entity(se) { |
| 3667 | if (se->on_rq) |
| 3668 | enqueue = 0; |
| 3669 | |
| 3670 | cfs_rq = cfs_rq_of(se); |
| 3671 | if (enqueue) |
| 3672 | enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); |
| 3673 | cfs_rq->h_nr_running += task_delta; |
| 3674 | |
| 3675 | if (cfs_rq_throttled(cfs_rq)) |
| 3676 | break; |
| 3677 | } |
| 3678 | |
| 3679 | if (!se) |
| 3680 | add_nr_running(rq, task_delta); |
| 3681 | |
| 3682 | /* determine whether we need to wake up potentially idle cpu */ |
| 3683 | if (rq->curr == rq->idle && rq->cfs.nr_running) |
| 3684 | resched_curr(rq); |
| 3685 | } |
| 3686 | |
| 3687 | static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, |
| 3688 | u64 remaining, u64 expires) |
| 3689 | { |
| 3690 | struct cfs_rq *cfs_rq; |
| 3691 | u64 runtime; |
| 3692 | u64 starting_runtime = remaining; |
| 3693 | |
| 3694 | rcu_read_lock(); |
| 3695 | list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, |
| 3696 | throttled_list) { |
| 3697 | struct rq *rq = rq_of(cfs_rq); |
| 3698 | |
| 3699 | raw_spin_lock(&rq->lock); |
| 3700 | if (!cfs_rq_throttled(cfs_rq)) |
| 3701 | goto next; |
| 3702 | |
| 3703 | runtime = -cfs_rq->runtime_remaining + 1; |
| 3704 | if (runtime > remaining) |
| 3705 | runtime = remaining; |
| 3706 | remaining -= runtime; |
| 3707 | |
| 3708 | cfs_rq->runtime_remaining += runtime; |
| 3709 | cfs_rq->runtime_expires = expires; |
| 3710 | |
| 3711 | /* we check whether we're throttled above */ |
| 3712 | if (cfs_rq->runtime_remaining > 0) |
| 3713 | unthrottle_cfs_rq(cfs_rq); |
| 3714 | |
| 3715 | next: |
| 3716 | raw_spin_unlock(&rq->lock); |
| 3717 | |
| 3718 | if (!remaining) |
| 3719 | break; |
| 3720 | } |
| 3721 | rcu_read_unlock(); |
| 3722 | |
| 3723 | return starting_runtime - remaining; |
| 3724 | } |
| 3725 | |
| 3726 | /* |
| 3727 | * Responsible for refilling a task_group's bandwidth and unthrottling its |
| 3728 | * cfs_rqs as appropriate. If there has been no activity within the last |
| 3729 | * period the timer is deactivated until scheduling resumes; cfs_b->idle is |
| 3730 | * used to track this state. |
| 3731 | */ |
| 3732 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) |
| 3733 | { |
| 3734 | u64 runtime, runtime_expires; |
| 3735 | int throttled; |
| 3736 | |
| 3737 | /* no need to continue the timer with no bandwidth constraint */ |
| 3738 | if (cfs_b->quota == RUNTIME_INF) |
| 3739 | goto out_deactivate; |
| 3740 | |
| 3741 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); |
| 3742 | cfs_b->nr_periods += overrun; |
| 3743 | |
| 3744 | /* |
| 3745 | * idle depends on !throttled (for the case of a large deficit), and if |
| 3746 | * we're going inactive then everything else can be deferred |
| 3747 | */ |
| 3748 | if (cfs_b->idle && !throttled) |
| 3749 | goto out_deactivate; |
| 3750 | |
| 3751 | __refill_cfs_bandwidth_runtime(cfs_b); |
| 3752 | |
| 3753 | if (!throttled) { |
| 3754 | /* mark as potentially idle for the upcoming period */ |
| 3755 | cfs_b->idle = 1; |
| 3756 | return 0; |
| 3757 | } |
| 3758 | |
| 3759 | /* account preceding periods in which throttling occurred */ |
| 3760 | cfs_b->nr_throttled += overrun; |
| 3761 | |
| 3762 | runtime_expires = cfs_b->runtime_expires; |
| 3763 | |
| 3764 | /* |
| 3765 | * This check is repeated as we are holding onto the new bandwidth while |
| 3766 | * we unthrottle. This can potentially race with an unthrottled group |
| 3767 | * trying to acquire new bandwidth from the global pool. This can result |
| 3768 | * in us over-using our runtime if it is all used during this loop, but |
| 3769 | * only by limited amounts in that extreme case. |
| 3770 | */ |
| 3771 | while (throttled && cfs_b->runtime > 0) { |
| 3772 | runtime = cfs_b->runtime; |
| 3773 | raw_spin_unlock(&cfs_b->lock); |
| 3774 | /* we can't nest cfs_b->lock while distributing bandwidth */ |
| 3775 | runtime = distribute_cfs_runtime(cfs_b, runtime, |
| 3776 | runtime_expires); |
| 3777 | raw_spin_lock(&cfs_b->lock); |
| 3778 | |
| 3779 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); |
| 3780 | |
| 3781 | cfs_b->runtime -= min(runtime, cfs_b->runtime); |
| 3782 | } |
| 3783 | |
| 3784 | /* |
| 3785 | * While we are ensured activity in the period following an |
| 3786 | * unthrottle, this also covers the case in which the new bandwidth is |
| 3787 | * insufficient to cover the existing bandwidth deficit. (Forcing the |
| 3788 | * timer to remain active while there are any throttled entities.) |
| 3789 | */ |
| 3790 | cfs_b->idle = 0; |
| 3791 | |
| 3792 | return 0; |
| 3793 | |
| 3794 | out_deactivate: |
| 3795 | return 1; |
| 3796 | } |
| 3797 | |
| 3798 | /* a cfs_rq won't donate quota below this amount */ |
| 3799 | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; |
| 3800 | /* minimum remaining period time to redistribute slack quota */ |
| 3801 | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; |
| 3802 | /* how long we wait to gather additional slack before distributing */ |
| 3803 | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; |
| 3804 | |
| 3805 | /* |
| 3806 | * Are we near the end of the current quota period? |
| 3807 | * |
| 3808 | * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the |
| 3809 | * hrtimer base being cleared by hrtimer_start. In the case of |
| 3810 | * migrate_hrtimers, base is never cleared, so we are fine. |
| 3811 | */ |
| 3812 | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) |
| 3813 | { |
| 3814 | struct hrtimer *refresh_timer = &cfs_b->period_timer; |
| 3815 | u64 remaining; |
| 3816 | |
| 3817 | /* if the call-back is running a quota refresh is already occurring */ |
| 3818 | if (hrtimer_callback_running(refresh_timer)) |
| 3819 | return 1; |
| 3820 | |
| 3821 | /* is a quota refresh about to occur? */ |
| 3822 | remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); |
| 3823 | if (remaining < min_expire) |
| 3824 | return 1; |
| 3825 | |
| 3826 | return 0; |
| 3827 | } |
| 3828 | |
| 3829 | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) |
| 3830 | { |
| 3831 | u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; |
| 3832 | |
| 3833 | /* if there's a quota refresh soon don't bother with slack */ |
| 3834 | if (runtime_refresh_within(cfs_b, min_left)) |
| 3835 | return; |
| 3836 | |
| 3837 | hrtimer_start(&cfs_b->slack_timer, |
| 3838 | ns_to_ktime(cfs_bandwidth_slack_period), |
| 3839 | HRTIMER_MODE_REL); |
| 3840 | } |
| 3841 | |
| 3842 | /* we know any runtime found here is valid as update_curr() precedes return */ |
| 3843 | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
| 3844 | { |
| 3845 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); |
| 3846 | s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; |
| 3847 | |
| 3848 | if (slack_runtime <= 0) |
| 3849 | return; |
| 3850 | |
| 3851 | raw_spin_lock(&cfs_b->lock); |
| 3852 | if (cfs_b->quota != RUNTIME_INF && |
| 3853 | cfs_rq->runtime_expires == cfs_b->runtime_expires) { |
| 3854 | cfs_b->runtime += slack_runtime; |
| 3855 | |
| 3856 | /* we are under rq->lock, defer unthrottling using a timer */ |
| 3857 | if (cfs_b->runtime > sched_cfs_bandwidth_slice() && |
| 3858 | !list_empty(&cfs_b->throttled_cfs_rq)) |
| 3859 | start_cfs_slack_bandwidth(cfs_b); |
| 3860 | } |
| 3861 | raw_spin_unlock(&cfs_b->lock); |
| 3862 | |
| 3863 | /* even if it's not valid for return we don't want to try again */ |
| 3864 | cfs_rq->runtime_remaining -= slack_runtime; |
| 3865 | } |
| 3866 | |
| 3867 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
| 3868 | { |
| 3869 | if (!cfs_bandwidth_used()) |
| 3870 | return; |
| 3871 | |
| 3872 | if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) |
| 3873 | return; |
| 3874 | |
| 3875 | __return_cfs_rq_runtime(cfs_rq); |
| 3876 | } |
| 3877 | |
| 3878 | /* |
| 3879 | * This is done with a timer (instead of inline with bandwidth return) since |
| 3880 | * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. |
| 3881 | */ |
| 3882 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) |
| 3883 | { |
| 3884 | u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); |
| 3885 | u64 expires; |
| 3886 | |
| 3887 | /* confirm we're still not at a refresh boundary */ |
| 3888 | raw_spin_lock(&cfs_b->lock); |
| 3889 | if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { |
| 3890 | raw_spin_unlock(&cfs_b->lock); |
| 3891 | return; |
| 3892 | } |
| 3893 | |
| 3894 | if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) |
| 3895 | runtime = cfs_b->runtime; |
| 3896 | |
| 3897 | expires = cfs_b->runtime_expires; |
| 3898 | raw_spin_unlock(&cfs_b->lock); |
| 3899 | |
| 3900 | if (!runtime) |
| 3901 | return; |
| 3902 | |
| 3903 | runtime = distribute_cfs_runtime(cfs_b, runtime, expires); |
| 3904 | |
| 3905 | raw_spin_lock(&cfs_b->lock); |
| 3906 | if (expires == cfs_b->runtime_expires) |
| 3907 | cfs_b->runtime -= min(runtime, cfs_b->runtime); |
| 3908 | raw_spin_unlock(&cfs_b->lock); |
| 3909 | } |
| 3910 | |
| 3911 | /* |
| 3912 | * When a group wakes up we want to make sure that its quota is not already |
| 3913 | * expired/exceeded, otherwise it may be allowed to steal additional ticks of |
| 3914 | * runtime as update_curr() throttling can not not trigger until it's on-rq. |
| 3915 | */ |
| 3916 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) |
| 3917 | { |
| 3918 | if (!cfs_bandwidth_used()) |
| 3919 | return; |
| 3920 | |
| 3921 | /* Synchronize hierarchical throttle counter: */ |
| 3922 | if (unlikely(!cfs_rq->throttle_uptodate)) { |
| 3923 | struct rq *rq = rq_of(cfs_rq); |
| 3924 | struct cfs_rq *pcfs_rq; |
| 3925 | struct task_group *tg; |
| 3926 | |
| 3927 | cfs_rq->throttle_uptodate = 1; |
| 3928 | |
| 3929 | /* Get closest up-to-date node, because leaves go first: */ |
| 3930 | for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) { |
| 3931 | pcfs_rq = tg->cfs_rq[cpu_of(rq)]; |
| 3932 | if (pcfs_rq->throttle_uptodate) |
| 3933 | break; |
| 3934 | } |
| 3935 | if (tg) { |
| 3936 | cfs_rq->throttle_count = pcfs_rq->throttle_count; |
| 3937 | cfs_rq->throttled_clock_task = rq_clock_task(rq); |
| 3938 | } |
| 3939 | } |
| 3940 | |
| 3941 | /* an active group must be handled by the update_curr()->put() path */ |
| 3942 | if (!cfs_rq->runtime_enabled || cfs_rq->curr) |
| 3943 | return; |
| 3944 | |
| 3945 | /* ensure the group is not already throttled */ |
| 3946 | if (cfs_rq_throttled(cfs_rq)) |
| 3947 | return; |
| 3948 | |
| 3949 | /* update runtime allocation */ |
| 3950 | account_cfs_rq_runtime(cfs_rq, 0); |
| 3951 | if (cfs_rq->runtime_remaining <= 0) |
| 3952 | throttle_cfs_rq(cfs_rq); |
| 3953 | } |
| 3954 | |
| 3955 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ |
| 3956 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
| 3957 | { |
| 3958 | if (!cfs_bandwidth_used()) |
| 3959 | return false; |
| 3960 | |
| 3961 | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) |
| 3962 | return false; |
| 3963 | |
| 3964 | /* |
| 3965 | * it's possible for a throttled entity to be forced into a running |
| 3966 | * state (e.g. set_curr_task), in this case we're finished. |
| 3967 | */ |
| 3968 | if (cfs_rq_throttled(cfs_rq)) |
| 3969 | return true; |
| 3970 | |
| 3971 | throttle_cfs_rq(cfs_rq); |
| 3972 | return true; |
| 3973 | } |
| 3974 | |
| 3975 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) |
| 3976 | { |
| 3977 | struct cfs_bandwidth *cfs_b = |
| 3978 | container_of(timer, struct cfs_bandwidth, slack_timer); |
| 3979 | |
| 3980 | do_sched_cfs_slack_timer(cfs_b); |
| 3981 | |
| 3982 | return HRTIMER_NORESTART; |
| 3983 | } |
| 3984 | |
| 3985 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) |
| 3986 | { |
| 3987 | struct cfs_bandwidth *cfs_b = |
| 3988 | container_of(timer, struct cfs_bandwidth, period_timer); |
| 3989 | int overrun; |
| 3990 | int idle = 0; |
| 3991 | |
| 3992 | raw_spin_lock(&cfs_b->lock); |
| 3993 | for (;;) { |
| 3994 | overrun = hrtimer_forward_now(timer, cfs_b->period); |
| 3995 | if (!overrun) |
| 3996 | break; |
| 3997 | |
| 3998 | idle = do_sched_cfs_period_timer(cfs_b, overrun); |
| 3999 | } |
| 4000 | if (idle) |
| 4001 | cfs_b->period_active = 0; |
| 4002 | raw_spin_unlock(&cfs_b->lock); |
| 4003 | |
| 4004 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; |
| 4005 | } |
| 4006 | |
| 4007 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) |
| 4008 | { |
| 4009 | raw_spin_lock_init(&cfs_b->lock); |
| 4010 | cfs_b->runtime = 0; |
| 4011 | cfs_b->quota = RUNTIME_INF; |
| 4012 | cfs_b->period = ns_to_ktime(default_cfs_period()); |
| 4013 | |
| 4014 | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); |
| 4015 | hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); |
| 4016 | cfs_b->period_timer.function = sched_cfs_period_timer; |
| 4017 | hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| 4018 | cfs_b->slack_timer.function = sched_cfs_slack_timer; |
| 4019 | } |
| 4020 | |
| 4021 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
| 4022 | { |
| 4023 | cfs_rq->runtime_enabled = 0; |
| 4024 | INIT_LIST_HEAD(&cfs_rq->throttled_list); |
| 4025 | } |
| 4026 | |
| 4027 | void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) |
| 4028 | { |
| 4029 | lockdep_assert_held(&cfs_b->lock); |
| 4030 | |
| 4031 | if (!cfs_b->period_active) { |
| 4032 | cfs_b->period_active = 1; |
| 4033 | hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); |
| 4034 | hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); |
| 4035 | } |
| 4036 | } |
| 4037 | |
| 4038 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) |
| 4039 | { |
| 4040 | /* init_cfs_bandwidth() was not called */ |
| 4041 | if (!cfs_b->throttled_cfs_rq.next) |
| 4042 | return; |
| 4043 | |
| 4044 | hrtimer_cancel(&cfs_b->period_timer); |
| 4045 | hrtimer_cancel(&cfs_b->slack_timer); |
| 4046 | } |
| 4047 | |
| 4048 | static void __maybe_unused update_runtime_enabled(struct rq *rq) |
| 4049 | { |
| 4050 | struct cfs_rq *cfs_rq; |
| 4051 | |
| 4052 | for_each_leaf_cfs_rq(rq, cfs_rq) { |
| 4053 | struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; |
| 4054 | |
| 4055 | raw_spin_lock(&cfs_b->lock); |
| 4056 | cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; |
| 4057 | raw_spin_unlock(&cfs_b->lock); |
| 4058 | } |
| 4059 | } |
| 4060 | |
| 4061 | static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) |
| 4062 | { |
| 4063 | struct cfs_rq *cfs_rq; |
| 4064 | |
| 4065 | for_each_leaf_cfs_rq(rq, cfs_rq) { |
| 4066 | if (!cfs_rq->runtime_enabled) |
| 4067 | continue; |
| 4068 | |
| 4069 | /* |
| 4070 | * clock_task is not advancing so we just need to make sure |
| 4071 | * there's some valid quota amount |
| 4072 | */ |
| 4073 | cfs_rq->runtime_remaining = 1; |
| 4074 | /* |
| 4075 | * Offline rq is schedulable till cpu is completely disabled |
| 4076 | * in take_cpu_down(), so we prevent new cfs throttling here. |
| 4077 | */ |
| 4078 | cfs_rq->runtime_enabled = 0; |
| 4079 | |
| 4080 | if (cfs_rq_throttled(cfs_rq)) |
| 4081 | unthrottle_cfs_rq(cfs_rq); |
| 4082 | } |
| 4083 | } |
| 4084 | |
| 4085 | #else /* CONFIG_CFS_BANDWIDTH */ |
| 4086 | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) |
| 4087 | { |
| 4088 | return rq_clock_task(rq_of(cfs_rq)); |
| 4089 | } |
| 4090 | |
| 4091 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} |
| 4092 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } |
| 4093 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} |
| 4094 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} |
| 4095 | |
| 4096 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) |
| 4097 | { |
| 4098 | return 0; |
| 4099 | } |
| 4100 | |
| 4101 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) |
| 4102 | { |
| 4103 | return 0; |
| 4104 | } |
| 4105 | |
| 4106 | static inline int throttled_lb_pair(struct task_group *tg, |
| 4107 | int src_cpu, int dest_cpu) |
| 4108 | { |
| 4109 | return 0; |
| 4110 | } |
| 4111 | |
| 4112 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} |
| 4113 | |
| 4114 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 4115 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} |
| 4116 | #endif |
| 4117 | |
| 4118 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
| 4119 | { |
| 4120 | return NULL; |
| 4121 | } |
| 4122 | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} |
| 4123 | static inline void update_runtime_enabled(struct rq *rq) {} |
| 4124 | static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} |
| 4125 | |
| 4126 | #endif /* CONFIG_CFS_BANDWIDTH */ |
| 4127 | |
| 4128 | /************************************************** |
| 4129 | * CFS operations on tasks: |
| 4130 | */ |
| 4131 | |
| 4132 | #ifdef CONFIG_SCHED_HRTICK |
| 4133 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) |
| 4134 | { |
| 4135 | struct sched_entity *se = &p->se; |
| 4136 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 4137 | |
| 4138 | WARN_ON(task_rq(p) != rq); |
| 4139 | |
| 4140 | if (cfs_rq->nr_running > 1) { |
| 4141 | u64 slice = sched_slice(cfs_rq, se); |
| 4142 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; |
| 4143 | s64 delta = slice - ran; |
| 4144 | |
| 4145 | if (delta < 0) { |
| 4146 | if (rq->curr == p) |
| 4147 | resched_curr(rq); |
| 4148 | return; |
| 4149 | } |
| 4150 | hrtick_start(rq, delta); |
| 4151 | } |
| 4152 | } |
| 4153 | |
| 4154 | /* |
| 4155 | * called from enqueue/dequeue and updates the hrtick when the |
| 4156 | * current task is from our class and nr_running is low enough |
| 4157 | * to matter. |
| 4158 | */ |
| 4159 | static void hrtick_update(struct rq *rq) |
| 4160 | { |
| 4161 | struct task_struct *curr = rq->curr; |
| 4162 | |
| 4163 | if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) |
| 4164 | return; |
| 4165 | |
| 4166 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) |
| 4167 | hrtick_start_fair(rq, curr); |
| 4168 | } |
| 4169 | #else /* !CONFIG_SCHED_HRTICK */ |
| 4170 | static inline void |
| 4171 | hrtick_start_fair(struct rq *rq, struct task_struct *p) |
| 4172 | { |
| 4173 | } |
| 4174 | |
| 4175 | static inline void hrtick_update(struct rq *rq) |
| 4176 | { |
| 4177 | } |
| 4178 | #endif |
| 4179 | |
| 4180 | /* |
| 4181 | * The enqueue_task method is called before nr_running is |
| 4182 | * increased. Here we update the fair scheduling stats and |
| 4183 | * then put the task into the rbtree: |
| 4184 | */ |
| 4185 | static void |
| 4186 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
| 4187 | { |
| 4188 | struct cfs_rq *cfs_rq; |
| 4189 | struct sched_entity *se = &p->se; |
| 4190 | |
| 4191 | for_each_sched_entity(se) { |
| 4192 | if (se->on_rq) |
| 4193 | break; |
| 4194 | cfs_rq = cfs_rq_of(se); |
| 4195 | enqueue_entity(cfs_rq, se, flags); |
| 4196 | |
| 4197 | /* |
| 4198 | * end evaluation on encountering a throttled cfs_rq |
| 4199 | * |
| 4200 | * note: in the case of encountering a throttled cfs_rq we will |
| 4201 | * post the final h_nr_running increment below. |
| 4202 | */ |
| 4203 | if (cfs_rq_throttled(cfs_rq)) |
| 4204 | break; |
| 4205 | cfs_rq->h_nr_running++; |
| 4206 | |
| 4207 | flags = ENQUEUE_WAKEUP; |
| 4208 | } |
| 4209 | |
| 4210 | for_each_sched_entity(se) { |
| 4211 | cfs_rq = cfs_rq_of(se); |
| 4212 | cfs_rq->h_nr_running++; |
| 4213 | |
| 4214 | if (cfs_rq_throttled(cfs_rq)) |
| 4215 | break; |
| 4216 | |
| 4217 | update_load_avg(se, 1); |
| 4218 | update_cfs_shares(cfs_rq); |
| 4219 | } |
| 4220 | |
| 4221 | if (!se) |
| 4222 | add_nr_running(rq, 1); |
| 4223 | |
| 4224 | hrtick_update(rq); |
| 4225 | } |
| 4226 | |
| 4227 | static void set_next_buddy(struct sched_entity *se); |
| 4228 | |
| 4229 | /* |
| 4230 | * The dequeue_task method is called before nr_running is |
| 4231 | * decreased. We remove the task from the rbtree and |
| 4232 | * update the fair scheduling stats: |
| 4233 | */ |
| 4234 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
| 4235 | { |
| 4236 | struct cfs_rq *cfs_rq; |
| 4237 | struct sched_entity *se = &p->se; |
| 4238 | int task_sleep = flags & DEQUEUE_SLEEP; |
| 4239 | |
| 4240 | for_each_sched_entity(se) { |
| 4241 | cfs_rq = cfs_rq_of(se); |
| 4242 | dequeue_entity(cfs_rq, se, flags); |
| 4243 | |
| 4244 | /* |
| 4245 | * end evaluation on encountering a throttled cfs_rq |
| 4246 | * |
| 4247 | * note: in the case of encountering a throttled cfs_rq we will |
| 4248 | * post the final h_nr_running decrement below. |
| 4249 | */ |
| 4250 | if (cfs_rq_throttled(cfs_rq)) |
| 4251 | break; |
| 4252 | cfs_rq->h_nr_running--; |
| 4253 | |
| 4254 | /* Don't dequeue parent if it has other entities besides us */ |
| 4255 | if (cfs_rq->load.weight) { |
| 4256 | /* Avoid re-evaluating load for this entity: */ |
| 4257 | se = parent_entity(se); |
| 4258 | /* |
| 4259 | * Bias pick_next to pick a task from this cfs_rq, as |
| 4260 | * p is sleeping when it is within its sched_slice. |
| 4261 | */ |
| 4262 | if (task_sleep && se && !throttled_hierarchy(cfs_rq)) |
| 4263 | set_next_buddy(se); |
| 4264 | break; |
| 4265 | } |
| 4266 | flags |= DEQUEUE_SLEEP; |
| 4267 | } |
| 4268 | |
| 4269 | for_each_sched_entity(se) { |
| 4270 | cfs_rq = cfs_rq_of(se); |
| 4271 | cfs_rq->h_nr_running--; |
| 4272 | |
| 4273 | if (cfs_rq_throttled(cfs_rq)) |
| 4274 | break; |
| 4275 | |
| 4276 | update_load_avg(se, 1); |
| 4277 | update_cfs_shares(cfs_rq); |
| 4278 | } |
| 4279 | |
| 4280 | if (!se) |
| 4281 | sub_nr_running(rq, 1); |
| 4282 | |
| 4283 | hrtick_update(rq); |
| 4284 | } |
| 4285 | |
| 4286 | #ifdef CONFIG_SMP |
| 4287 | |
| 4288 | /* |
| 4289 | * per rq 'load' arrray crap; XXX kill this. |
| 4290 | */ |
| 4291 | |
| 4292 | /* |
| 4293 | * The exact cpuload at various idx values, calculated at every tick would be |
| 4294 | * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load |
| 4295 | * |
| 4296 | * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called |
| 4297 | * on nth tick when cpu may be busy, then we have: |
| 4298 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load |
| 4299 | * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load |
| 4300 | * |
| 4301 | * decay_load_missed() below does efficient calculation of |
| 4302 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load |
| 4303 | * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load |
| 4304 | * |
| 4305 | * The calculation is approximated on a 128 point scale. |
| 4306 | * degrade_zero_ticks is the number of ticks after which load at any |
| 4307 | * particular idx is approximated to be zero. |
| 4308 | * degrade_factor is a precomputed table, a row for each load idx. |
| 4309 | * Each column corresponds to degradation factor for a power of two ticks, |
| 4310 | * based on 128 point scale. |
| 4311 | * Example: |
| 4312 | * row 2, col 3 (=12) says that the degradation at load idx 2 after |
| 4313 | * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). |
| 4314 | * |
| 4315 | * With this power of 2 load factors, we can degrade the load n times |
| 4316 | * by looking at 1 bits in n and doing as many mult/shift instead of |
| 4317 | * n mult/shifts needed by the exact degradation. |
| 4318 | */ |
| 4319 | #define DEGRADE_SHIFT 7 |
| 4320 | static const unsigned char |
| 4321 | degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; |
| 4322 | static const unsigned char |
| 4323 | degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { |
| 4324 | {0, 0, 0, 0, 0, 0, 0, 0}, |
| 4325 | {64, 32, 8, 0, 0, 0, 0, 0}, |
| 4326 | {96, 72, 40, 12, 1, 0, 0}, |
| 4327 | {112, 98, 75, 43, 15, 1, 0}, |
| 4328 | {120, 112, 98, 76, 45, 16, 2} }; |
| 4329 | |
| 4330 | /* |
| 4331 | * Update cpu_load for any missed ticks, due to tickless idle. The backlog |
| 4332 | * would be when CPU is idle and so we just decay the old load without |
| 4333 | * adding any new load. |
| 4334 | */ |
| 4335 | static unsigned long |
| 4336 | decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) |
| 4337 | { |
| 4338 | int j = 0; |
| 4339 | |
| 4340 | if (!missed_updates) |
| 4341 | return load; |
| 4342 | |
| 4343 | if (missed_updates >= degrade_zero_ticks[idx]) |
| 4344 | return 0; |
| 4345 | |
| 4346 | if (idx == 1) |
| 4347 | return load >> missed_updates; |
| 4348 | |
| 4349 | while (missed_updates) { |
| 4350 | if (missed_updates % 2) |
| 4351 | load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; |
| 4352 | |
| 4353 | missed_updates >>= 1; |
| 4354 | j++; |
| 4355 | } |
| 4356 | return load; |
| 4357 | } |
| 4358 | |
| 4359 | /* |
| 4360 | * Update rq->cpu_load[] statistics. This function is usually called every |
| 4361 | * scheduler tick (TICK_NSEC). With tickless idle this will not be called |
| 4362 | * every tick. We fix it up based on jiffies. |
| 4363 | */ |
| 4364 | static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, |
| 4365 | unsigned long pending_updates) |
| 4366 | { |
| 4367 | int i, scale; |
| 4368 | |
| 4369 | this_rq->nr_load_updates++; |
| 4370 | |
| 4371 | /* Update our load: */ |
| 4372 | this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ |
| 4373 | for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { |
| 4374 | unsigned long old_load, new_load; |
| 4375 | |
| 4376 | /* scale is effectively 1 << i now, and >> i divides by scale */ |
| 4377 | |
| 4378 | old_load = this_rq->cpu_load[i]; |
| 4379 | old_load = decay_load_missed(old_load, pending_updates - 1, i); |
| 4380 | new_load = this_load; |
| 4381 | /* |
| 4382 | * Round up the averaging division if load is increasing. This |
| 4383 | * prevents us from getting stuck on 9 if the load is 10, for |
| 4384 | * example. |
| 4385 | */ |
| 4386 | if (new_load > old_load) |
| 4387 | new_load += scale - 1; |
| 4388 | |
| 4389 | this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; |
| 4390 | } |
| 4391 | |
| 4392 | sched_avg_update(this_rq); |
| 4393 | } |
| 4394 | |
| 4395 | /* Used instead of source_load when we know the type == 0 */ |
| 4396 | static unsigned long weighted_cpuload(const int cpu) |
| 4397 | { |
| 4398 | return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs); |
| 4399 | } |
| 4400 | |
| 4401 | #ifdef CONFIG_NO_HZ_COMMON |
| 4402 | /* |
| 4403 | * There is no sane way to deal with nohz on smp when using jiffies because the |
| 4404 | * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading |
| 4405 | * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. |
| 4406 | * |
| 4407 | * Therefore we cannot use the delta approach from the regular tick since that |
| 4408 | * would seriously skew the load calculation. However we'll make do for those |
| 4409 | * updates happening while idle (nohz_idle_balance) or coming out of idle |
| 4410 | * (tick_nohz_idle_exit). |
| 4411 | * |
| 4412 | * This means we might still be one tick off for nohz periods. |
| 4413 | */ |
| 4414 | |
| 4415 | /* |
| 4416 | * Called from nohz_idle_balance() to update the load ratings before doing the |
| 4417 | * idle balance. |
| 4418 | */ |
| 4419 | static void update_idle_cpu_load(struct rq *this_rq) |
| 4420 | { |
| 4421 | unsigned long curr_jiffies = READ_ONCE(jiffies); |
| 4422 | unsigned long load = weighted_cpuload(cpu_of(this_rq)); |
| 4423 | unsigned long pending_updates; |
| 4424 | |
| 4425 | /* |
| 4426 | * bail if there's load or we're actually up-to-date. |
| 4427 | */ |
| 4428 | if (load || curr_jiffies == this_rq->last_load_update_tick) |
| 4429 | return; |
| 4430 | |
| 4431 | pending_updates = curr_jiffies - this_rq->last_load_update_tick; |
| 4432 | this_rq->last_load_update_tick = curr_jiffies; |
| 4433 | |
| 4434 | __update_cpu_load(this_rq, load, pending_updates); |
| 4435 | } |
| 4436 | |
| 4437 | /* |
| 4438 | * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. |
| 4439 | */ |
| 4440 | void update_cpu_load_nohz(void) |
| 4441 | { |
| 4442 | struct rq *this_rq = this_rq(); |
| 4443 | unsigned long curr_jiffies = READ_ONCE(jiffies); |
| 4444 | unsigned long pending_updates; |
| 4445 | |
| 4446 | if (curr_jiffies == this_rq->last_load_update_tick) |
| 4447 | return; |
| 4448 | |
| 4449 | raw_spin_lock(&this_rq->lock); |
| 4450 | pending_updates = curr_jiffies - this_rq->last_load_update_tick; |
| 4451 | if (pending_updates) { |
| 4452 | this_rq->last_load_update_tick = curr_jiffies; |
| 4453 | /* |
| 4454 | * We were idle, this means load 0, the current load might be |
| 4455 | * !0 due to remote wakeups and the sort. |
| 4456 | */ |
| 4457 | __update_cpu_load(this_rq, 0, pending_updates); |
| 4458 | } |
| 4459 | raw_spin_unlock(&this_rq->lock); |
| 4460 | } |
| 4461 | #endif /* CONFIG_NO_HZ */ |
| 4462 | |
| 4463 | /* |
| 4464 | * Called from scheduler_tick() |
| 4465 | */ |
| 4466 | void update_cpu_load_active(struct rq *this_rq) |
| 4467 | { |
| 4468 | unsigned long load = weighted_cpuload(cpu_of(this_rq)); |
| 4469 | /* |
| 4470 | * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). |
| 4471 | */ |
| 4472 | this_rq->last_load_update_tick = jiffies; |
| 4473 | __update_cpu_load(this_rq, load, 1); |
| 4474 | } |
| 4475 | |
| 4476 | /* |
| 4477 | * Return a low guess at the load of a migration-source cpu weighted |
| 4478 | * according to the scheduling class and "nice" value. |
| 4479 | * |
| 4480 | * We want to under-estimate the load of migration sources, to |
| 4481 | * balance conservatively. |
| 4482 | */ |
| 4483 | static unsigned long source_load(int cpu, int type) |
| 4484 | { |
| 4485 | struct rq *rq = cpu_rq(cpu); |
| 4486 | unsigned long total = weighted_cpuload(cpu); |
| 4487 | |
| 4488 | if (type == 0 || !sched_feat(LB_BIAS)) |
| 4489 | return total; |
| 4490 | |
| 4491 | return min(rq->cpu_load[type-1], total); |
| 4492 | } |
| 4493 | |
| 4494 | /* |
| 4495 | * Return a high guess at the load of a migration-target cpu weighted |
| 4496 | * according to the scheduling class and "nice" value. |
| 4497 | */ |
| 4498 | static unsigned long target_load(int cpu, int type) |
| 4499 | { |
| 4500 | struct rq *rq = cpu_rq(cpu); |
| 4501 | unsigned long total = weighted_cpuload(cpu); |
| 4502 | |
| 4503 | if (type == 0 || !sched_feat(LB_BIAS)) |
| 4504 | return total; |
| 4505 | |
| 4506 | return max(rq->cpu_load[type-1], total); |
| 4507 | } |
| 4508 | |
| 4509 | static unsigned long capacity_of(int cpu) |
| 4510 | { |
| 4511 | return cpu_rq(cpu)->cpu_capacity; |
| 4512 | } |
| 4513 | |
| 4514 | static unsigned long capacity_orig_of(int cpu) |
| 4515 | { |
| 4516 | return cpu_rq(cpu)->cpu_capacity_orig; |
| 4517 | } |
| 4518 | |
| 4519 | static unsigned long cpu_avg_load_per_task(int cpu) |
| 4520 | { |
| 4521 | struct rq *rq = cpu_rq(cpu); |
| 4522 | unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); |
| 4523 | unsigned long load_avg = weighted_cpuload(cpu); |
| 4524 | |
| 4525 | if (nr_running) |
| 4526 | return load_avg / nr_running; |
| 4527 | |
| 4528 | return 0; |
| 4529 | } |
| 4530 | |
| 4531 | static void record_wakee(struct task_struct *p) |
| 4532 | { |
| 4533 | /* |
| 4534 | * Rough decay (wiping) for cost saving, don't worry |
| 4535 | * about the boundary, really active task won't care |
| 4536 | * about the loss. |
| 4537 | */ |
| 4538 | if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { |
| 4539 | current->wakee_flips >>= 1; |
| 4540 | current->wakee_flip_decay_ts = jiffies; |
| 4541 | } |
| 4542 | |
| 4543 | if (current->last_wakee != p) { |
| 4544 | current->last_wakee = p; |
| 4545 | current->wakee_flips++; |
| 4546 | } |
| 4547 | } |
| 4548 | |
| 4549 | static void task_waking_fair(struct task_struct *p) |
| 4550 | { |
| 4551 | struct sched_entity *se = &p->se; |
| 4552 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 4553 | u64 min_vruntime; |
| 4554 | |
| 4555 | #ifndef CONFIG_64BIT |
| 4556 | u64 min_vruntime_copy; |
| 4557 | |
| 4558 | do { |
| 4559 | min_vruntime_copy = cfs_rq->min_vruntime_copy; |
| 4560 | smp_rmb(); |
| 4561 | min_vruntime = cfs_rq->min_vruntime; |
| 4562 | } while (min_vruntime != min_vruntime_copy); |
| 4563 | #else |
| 4564 | min_vruntime = cfs_rq->min_vruntime; |
| 4565 | #endif |
| 4566 | |
| 4567 | se->vruntime -= min_vruntime; |
| 4568 | record_wakee(p); |
| 4569 | } |
| 4570 | |
| 4571 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 4572 | /* |
| 4573 | * effective_load() calculates the load change as seen from the root_task_group |
| 4574 | * |
| 4575 | * Adding load to a group doesn't make a group heavier, but can cause movement |
| 4576 | * of group shares between cpus. Assuming the shares were perfectly aligned one |
| 4577 | * can calculate the shift in shares. |
| 4578 | * |
| 4579 | * Calculate the effective load difference if @wl is added (subtracted) to @tg |
| 4580 | * on this @cpu and results in a total addition (subtraction) of @wg to the |
| 4581 | * total group weight. |
| 4582 | * |
| 4583 | * Given a runqueue weight distribution (rw_i) we can compute a shares |
| 4584 | * distribution (s_i) using: |
| 4585 | * |
| 4586 | * s_i = rw_i / \Sum rw_j (1) |
| 4587 | * |
| 4588 | * Suppose we have 4 CPUs and our @tg is a direct child of the root group and |
| 4589 | * has 7 equal weight tasks, distributed as below (rw_i), with the resulting |
| 4590 | * shares distribution (s_i): |
| 4591 | * |
| 4592 | * rw_i = { 2, 4, 1, 0 } |
| 4593 | * s_i = { 2/7, 4/7, 1/7, 0 } |
| 4594 | * |
| 4595 | * As per wake_affine() we're interested in the load of two CPUs (the CPU the |
| 4596 | * task used to run on and the CPU the waker is running on), we need to |
| 4597 | * compute the effect of waking a task on either CPU and, in case of a sync |
| 4598 | * wakeup, compute the effect of the current task going to sleep. |
| 4599 | * |
| 4600 | * So for a change of @wl to the local @cpu with an overall group weight change |
| 4601 | * of @wl we can compute the new shares distribution (s'_i) using: |
| 4602 | * |
| 4603 | * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) |
| 4604 | * |
| 4605 | * Suppose we're interested in CPUs 0 and 1, and want to compute the load |
| 4606 | * differences in waking a task to CPU 0. The additional task changes the |
| 4607 | * weight and shares distributions like: |
| 4608 | * |
| 4609 | * rw'_i = { 3, 4, 1, 0 } |
| 4610 | * s'_i = { 3/8, 4/8, 1/8, 0 } |
| 4611 | * |
| 4612 | * We can then compute the difference in effective weight by using: |
| 4613 | * |
| 4614 | * dw_i = S * (s'_i - s_i) (3) |
| 4615 | * |
| 4616 | * Where 'S' is the group weight as seen by its parent. |
| 4617 | * |
| 4618 | * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) |
| 4619 | * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - |
| 4620 | * 4/7) times the weight of the group. |
| 4621 | */ |
| 4622 | static long effective_load(struct task_group *tg, int cpu, long wl, long wg) |
| 4623 | { |
| 4624 | struct sched_entity *se = tg->se[cpu]; |
| 4625 | |
| 4626 | if (!tg->parent) /* the trivial, non-cgroup case */ |
| 4627 | return wl; |
| 4628 | |
| 4629 | for_each_sched_entity(se) { |
| 4630 | struct cfs_rq *cfs_rq = se->my_q; |
| 4631 | long W, w = cfs_rq_load_avg(cfs_rq); |
| 4632 | |
| 4633 | tg = cfs_rq->tg; |
| 4634 | |
| 4635 | /* |
| 4636 | * W = @wg + \Sum rw_j |
| 4637 | */ |
| 4638 | W = wg + atomic_long_read(&tg->load_avg); |
| 4639 | |
| 4640 | /* Ensure \Sum rw_j >= rw_i */ |
| 4641 | W -= cfs_rq->tg_load_avg_contrib; |
| 4642 | W += w; |
| 4643 | |
| 4644 | /* |
| 4645 | * w = rw_i + @wl |
| 4646 | */ |
| 4647 | w += wl; |
| 4648 | |
| 4649 | /* |
| 4650 | * wl = S * s'_i; see (2) |
| 4651 | */ |
| 4652 | if (W > 0 && w < W) |
| 4653 | wl = (w * (long)tg->shares) / W; |
| 4654 | else |
| 4655 | wl = tg->shares; |
| 4656 | |
| 4657 | /* |
| 4658 | * Per the above, wl is the new se->load.weight value; since |
| 4659 | * those are clipped to [MIN_SHARES, ...) do so now. See |
| 4660 | * calc_cfs_shares(). |
| 4661 | */ |
| 4662 | if (wl < MIN_SHARES) |
| 4663 | wl = MIN_SHARES; |
| 4664 | |
| 4665 | /* |
| 4666 | * wl = dw_i = S * (s'_i - s_i); see (3) |
| 4667 | */ |
| 4668 | wl -= se->avg.load_avg; |
| 4669 | |
| 4670 | /* |
| 4671 | * Recursively apply this logic to all parent groups to compute |
| 4672 | * the final effective load change on the root group. Since |
| 4673 | * only the @tg group gets extra weight, all parent groups can |
| 4674 | * only redistribute existing shares. @wl is the shift in shares |
| 4675 | * resulting from this level per the above. |
| 4676 | */ |
| 4677 | wg = 0; |
| 4678 | } |
| 4679 | |
| 4680 | return wl; |
| 4681 | } |
| 4682 | #else |
| 4683 | |
| 4684 | static long effective_load(struct task_group *tg, int cpu, long wl, long wg) |
| 4685 | { |
| 4686 | return wl; |
| 4687 | } |
| 4688 | |
| 4689 | #endif |
| 4690 | |
| 4691 | /* |
| 4692 | * Detect M:N waker/wakee relationships via a switching-frequency heuristic. |
| 4693 | * A waker of many should wake a different task than the one last awakened |
| 4694 | * at a frequency roughly N times higher than one of its wakees. In order |
| 4695 | * to determine whether we should let the load spread vs consolodating to |
| 4696 | * shared cache, we look for a minimum 'flip' frequency of llc_size in one |
| 4697 | * partner, and a factor of lls_size higher frequency in the other. With |
| 4698 | * both conditions met, we can be relatively sure that the relationship is |
| 4699 | * non-monogamous, with partner count exceeding socket size. Waker/wakee |
| 4700 | * being client/server, worker/dispatcher, interrupt source or whatever is |
| 4701 | * irrelevant, spread criteria is apparent partner count exceeds socket size. |
| 4702 | */ |
| 4703 | static int wake_wide(struct task_struct *p) |
| 4704 | { |
| 4705 | unsigned int master = current->wakee_flips; |
| 4706 | unsigned int slave = p->wakee_flips; |
| 4707 | int factor = this_cpu_read(sd_llc_size); |
| 4708 | |
| 4709 | if (master < slave) |
| 4710 | swap(master, slave); |
| 4711 | if (slave < factor || master < slave * factor) |
| 4712 | return 0; |
| 4713 | return 1; |
| 4714 | } |
| 4715 | |
| 4716 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) |
| 4717 | { |
| 4718 | s64 this_load, load; |
| 4719 | s64 this_eff_load, prev_eff_load; |
| 4720 | int idx, this_cpu, prev_cpu; |
| 4721 | struct task_group *tg; |
| 4722 | unsigned long weight; |
| 4723 | int balanced; |
| 4724 | |
| 4725 | idx = sd->wake_idx; |
| 4726 | this_cpu = smp_processor_id(); |
| 4727 | prev_cpu = task_cpu(p); |
| 4728 | load = source_load(prev_cpu, idx); |
| 4729 | this_load = target_load(this_cpu, idx); |
| 4730 | |
| 4731 | /* |
| 4732 | * If sync wakeup then subtract the (maximum possible) |
| 4733 | * effect of the currently running task from the load |
| 4734 | * of the current CPU: |
| 4735 | */ |
| 4736 | if (sync) { |
| 4737 | tg = task_group(current); |
| 4738 | weight = current->se.avg.load_avg; |
| 4739 | |
| 4740 | this_load += effective_load(tg, this_cpu, -weight, -weight); |
| 4741 | load += effective_load(tg, prev_cpu, 0, -weight); |
| 4742 | } |
| 4743 | |
| 4744 | tg = task_group(p); |
| 4745 | weight = p->se.avg.load_avg; |
| 4746 | |
| 4747 | /* |
| 4748 | * In low-load situations, where prev_cpu is idle and this_cpu is idle |
| 4749 | * due to the sync cause above having dropped this_load to 0, we'll |
| 4750 | * always have an imbalance, but there's really nothing you can do |
| 4751 | * about that, so that's good too. |
| 4752 | * |
| 4753 | * Otherwise check if either cpus are near enough in load to allow this |
| 4754 | * task to be woken on this_cpu. |
| 4755 | */ |
| 4756 | this_eff_load = 100; |
| 4757 | this_eff_load *= capacity_of(prev_cpu); |
| 4758 | |
| 4759 | prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; |
| 4760 | prev_eff_load *= capacity_of(this_cpu); |
| 4761 | |
| 4762 | if (this_load > 0) { |
| 4763 | this_eff_load *= this_load + |
| 4764 | effective_load(tg, this_cpu, weight, weight); |
| 4765 | |
| 4766 | prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); |
| 4767 | } |
| 4768 | |
| 4769 | balanced = this_eff_load <= prev_eff_load; |
| 4770 | |
| 4771 | schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); |
| 4772 | |
| 4773 | if (!balanced) |
| 4774 | return 0; |
| 4775 | |
| 4776 | schedstat_inc(sd, ttwu_move_affine); |
| 4777 | schedstat_inc(p, se.statistics.nr_wakeups_affine); |
| 4778 | |
| 4779 | return 1; |
| 4780 | } |
| 4781 | |
| 4782 | /* |
| 4783 | * find_idlest_group finds and returns the least busy CPU group within the |
| 4784 | * domain. |
| 4785 | */ |
| 4786 | static struct sched_group * |
| 4787 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, |
| 4788 | int this_cpu, int sd_flag) |
| 4789 | { |
| 4790 | struct sched_group *idlest = NULL, *group = sd->groups; |
| 4791 | unsigned long min_load = ULONG_MAX, this_load = 0; |
| 4792 | int load_idx = sd->forkexec_idx; |
| 4793 | int imbalance = 100 + (sd->imbalance_pct-100)/2; |
| 4794 | |
| 4795 | if (sd_flag & SD_BALANCE_WAKE) |
| 4796 | load_idx = sd->wake_idx; |
| 4797 | |
| 4798 | do { |
| 4799 | unsigned long load, avg_load; |
| 4800 | int local_group; |
| 4801 | int i; |
| 4802 | |
| 4803 | /* Skip over this group if it has no CPUs allowed */ |
| 4804 | if (!cpumask_intersects(sched_group_cpus(group), |
| 4805 | tsk_cpus_allowed(p))) |
| 4806 | continue; |
| 4807 | |
| 4808 | local_group = cpumask_test_cpu(this_cpu, |
| 4809 | sched_group_cpus(group)); |
| 4810 | |
| 4811 | /* Tally up the load of all CPUs in the group */ |
| 4812 | avg_load = 0; |
| 4813 | |
| 4814 | for_each_cpu(i, sched_group_cpus(group)) { |
| 4815 | /* Bias balancing toward cpus of our domain */ |
| 4816 | if (local_group) |
| 4817 | load = source_load(i, load_idx); |
| 4818 | else |
| 4819 | load = target_load(i, load_idx); |
| 4820 | |
| 4821 | avg_load += load; |
| 4822 | } |
| 4823 | |
| 4824 | /* Adjust by relative CPU capacity of the group */ |
| 4825 | avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; |
| 4826 | |
| 4827 | if (local_group) { |
| 4828 | this_load = avg_load; |
| 4829 | } else if (avg_load < min_load) { |
| 4830 | min_load = avg_load; |
| 4831 | idlest = group; |
| 4832 | } |
| 4833 | } while (group = group->next, group != sd->groups); |
| 4834 | |
| 4835 | if (!idlest || 100*this_load < imbalance*min_load) |
| 4836 | return NULL; |
| 4837 | return idlest; |
| 4838 | } |
| 4839 | |
| 4840 | /* |
| 4841 | * find_idlest_cpu - find the idlest cpu among the cpus in group. |
| 4842 | */ |
| 4843 | static int |
| 4844 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) |
| 4845 | { |
| 4846 | unsigned long load, min_load = ULONG_MAX; |
| 4847 | unsigned int min_exit_latency = UINT_MAX; |
| 4848 | u64 latest_idle_timestamp = 0; |
| 4849 | int least_loaded_cpu = this_cpu; |
| 4850 | int shallowest_idle_cpu = -1; |
| 4851 | int i; |
| 4852 | |
| 4853 | /* Traverse only the allowed CPUs */ |
| 4854 | for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { |
| 4855 | if (idle_cpu(i)) { |
| 4856 | struct rq *rq = cpu_rq(i); |
| 4857 | struct cpuidle_state *idle = idle_get_state(rq); |
| 4858 | if (idle && idle->exit_latency < min_exit_latency) { |
| 4859 | /* |
| 4860 | * We give priority to a CPU whose idle state |
| 4861 | * has the smallest exit latency irrespective |
| 4862 | * of any idle timestamp. |
| 4863 | */ |
| 4864 | min_exit_latency = idle->exit_latency; |
| 4865 | latest_idle_timestamp = rq->idle_stamp; |
| 4866 | shallowest_idle_cpu = i; |
| 4867 | } else if ((!idle || idle->exit_latency == min_exit_latency) && |
| 4868 | rq->idle_stamp > latest_idle_timestamp) { |
| 4869 | /* |
| 4870 | * If equal or no active idle state, then |
| 4871 | * the most recently idled CPU might have |
| 4872 | * a warmer cache. |
| 4873 | */ |
| 4874 | latest_idle_timestamp = rq->idle_stamp; |
| 4875 | shallowest_idle_cpu = i; |
| 4876 | } |
| 4877 | } else if (shallowest_idle_cpu == -1) { |
| 4878 | load = weighted_cpuload(i); |
| 4879 | if (load < min_load || (load == min_load && i == this_cpu)) { |
| 4880 | min_load = load; |
| 4881 | least_loaded_cpu = i; |
| 4882 | } |
| 4883 | } |
| 4884 | } |
| 4885 | |
| 4886 | return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; |
| 4887 | } |
| 4888 | |
| 4889 | /* |
| 4890 | * Try and locate an idle CPU in the sched_domain. |
| 4891 | */ |
| 4892 | static int select_idle_sibling(struct task_struct *p, int target) |
| 4893 | { |
| 4894 | struct sched_domain *sd; |
| 4895 | struct sched_group *sg; |
| 4896 | int i = task_cpu(p); |
| 4897 | |
| 4898 | if (idle_cpu(target)) |
| 4899 | return target; |
| 4900 | |
| 4901 | /* |
| 4902 | * If the prevous cpu is cache affine and idle, don't be stupid. |
| 4903 | */ |
| 4904 | if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) |
| 4905 | return i; |
| 4906 | |
| 4907 | /* |
| 4908 | * Otherwise, iterate the domains and find an elegible idle cpu. |
| 4909 | */ |
| 4910 | sd = rcu_dereference(per_cpu(sd_llc, target)); |
| 4911 | for_each_lower_domain(sd) { |
| 4912 | sg = sd->groups; |
| 4913 | do { |
| 4914 | if (!cpumask_intersects(sched_group_cpus(sg), |
| 4915 | tsk_cpus_allowed(p))) |
| 4916 | goto next; |
| 4917 | |
| 4918 | for_each_cpu(i, sched_group_cpus(sg)) { |
| 4919 | if (i == target || !idle_cpu(i)) |
| 4920 | goto next; |
| 4921 | } |
| 4922 | |
| 4923 | target = cpumask_first_and(sched_group_cpus(sg), |
| 4924 | tsk_cpus_allowed(p)); |
| 4925 | goto done; |
| 4926 | next: |
| 4927 | sg = sg->next; |
| 4928 | } while (sg != sd->groups); |
| 4929 | } |
| 4930 | done: |
| 4931 | return target; |
| 4932 | } |
| 4933 | |
| 4934 | /* |
| 4935 | * cpu_util returns the amount of capacity of a CPU that is used by CFS |
| 4936 | * tasks. The unit of the return value must be the one of capacity so we can |
| 4937 | * compare the utilization with the capacity of the CPU that is available for |
| 4938 | * CFS task (ie cpu_capacity). |
| 4939 | * |
| 4940 | * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the |
| 4941 | * recent utilization of currently non-runnable tasks on a CPU. It represents |
| 4942 | * the amount of utilization of a CPU in the range [0..capacity_orig] where |
| 4943 | * capacity_orig is the cpu_capacity available at the highest frequency |
| 4944 | * (arch_scale_freq_capacity()). |
| 4945 | * The utilization of a CPU converges towards a sum equal to or less than the |
| 4946 | * current capacity (capacity_curr <= capacity_orig) of the CPU because it is |
| 4947 | * the running time on this CPU scaled by capacity_curr. |
| 4948 | * |
| 4949 | * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even |
| 4950 | * higher than capacity_orig because of unfortunate rounding in |
| 4951 | * cfs.avg.util_avg or just after migrating tasks and new task wakeups until |
| 4952 | * the average stabilizes with the new running time. We need to check that the |
| 4953 | * utilization stays within the range of [0..capacity_orig] and cap it if |
| 4954 | * necessary. Without utilization capping, a group could be seen as overloaded |
| 4955 | * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of |
| 4956 | * available capacity. We allow utilization to overshoot capacity_curr (but not |
| 4957 | * capacity_orig) as it useful for predicting the capacity required after task |
| 4958 | * migrations (scheduler-driven DVFS). |
| 4959 | */ |
| 4960 | static int cpu_util(int cpu) |
| 4961 | { |
| 4962 | unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; |
| 4963 | unsigned long capacity = capacity_orig_of(cpu); |
| 4964 | |
| 4965 | return (util >= capacity) ? capacity : util; |
| 4966 | } |
| 4967 | |
| 4968 | /* |
| 4969 | * select_task_rq_fair: Select target runqueue for the waking task in domains |
| 4970 | * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, |
| 4971 | * SD_BALANCE_FORK, or SD_BALANCE_EXEC. |
| 4972 | * |
| 4973 | * Balances load by selecting the idlest cpu in the idlest group, or under |
| 4974 | * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. |
| 4975 | * |
| 4976 | * Returns the target cpu number. |
| 4977 | * |
| 4978 | * preempt must be disabled. |
| 4979 | */ |
| 4980 | static int |
| 4981 | select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) |
| 4982 | { |
| 4983 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; |
| 4984 | int cpu = smp_processor_id(); |
| 4985 | int new_cpu = prev_cpu; |
| 4986 | int want_affine = 0; |
| 4987 | int sync = wake_flags & WF_SYNC; |
| 4988 | |
| 4989 | if (sd_flag & SD_BALANCE_WAKE) |
| 4990 | want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); |
| 4991 | |
| 4992 | rcu_read_lock(); |
| 4993 | for_each_domain(cpu, tmp) { |
| 4994 | if (!(tmp->flags & SD_LOAD_BALANCE)) |
| 4995 | break; |
| 4996 | |
| 4997 | /* |
| 4998 | * If both cpu and prev_cpu are part of this domain, |
| 4999 | * cpu is a valid SD_WAKE_AFFINE target. |
| 5000 | */ |
| 5001 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && |
| 5002 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { |
| 5003 | affine_sd = tmp; |
| 5004 | break; |
| 5005 | } |
| 5006 | |
| 5007 | if (tmp->flags & sd_flag) |
| 5008 | sd = tmp; |
| 5009 | else if (!want_affine) |
| 5010 | break; |
| 5011 | } |
| 5012 | |
| 5013 | if (affine_sd) { |
| 5014 | sd = NULL; /* Prefer wake_affine over balance flags */ |
| 5015 | if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) |
| 5016 | new_cpu = cpu; |
| 5017 | } |
| 5018 | |
| 5019 | if (!sd) { |
| 5020 | if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ |
| 5021 | new_cpu = select_idle_sibling(p, new_cpu); |
| 5022 | |
| 5023 | } else while (sd) { |
| 5024 | struct sched_group *group; |
| 5025 | int weight; |
| 5026 | |
| 5027 | if (!(sd->flags & sd_flag)) { |
| 5028 | sd = sd->child; |
| 5029 | continue; |
| 5030 | } |
| 5031 | |
| 5032 | group = find_idlest_group(sd, p, cpu, sd_flag); |
| 5033 | if (!group) { |
| 5034 | sd = sd->child; |
| 5035 | continue; |
| 5036 | } |
| 5037 | |
| 5038 | new_cpu = find_idlest_cpu(group, p, cpu); |
| 5039 | if (new_cpu == -1 || new_cpu == cpu) { |
| 5040 | /* Now try balancing at a lower domain level of cpu */ |
| 5041 | sd = sd->child; |
| 5042 | continue; |
| 5043 | } |
| 5044 | |
| 5045 | /* Now try balancing at a lower domain level of new_cpu */ |
| 5046 | cpu = new_cpu; |
| 5047 | weight = sd->span_weight; |
| 5048 | sd = NULL; |
| 5049 | for_each_domain(cpu, tmp) { |
| 5050 | if (weight <= tmp->span_weight) |
| 5051 | break; |
| 5052 | if (tmp->flags & sd_flag) |
| 5053 | sd = tmp; |
| 5054 | } |
| 5055 | /* while loop will break here if sd == NULL */ |
| 5056 | } |
| 5057 | rcu_read_unlock(); |
| 5058 | |
| 5059 | return new_cpu; |
| 5060 | } |
| 5061 | |
| 5062 | /* |
| 5063 | * Called immediately before a task is migrated to a new cpu; task_cpu(p) and |
| 5064 | * cfs_rq_of(p) references at time of call are still valid and identify the |
| 5065 | * previous cpu. However, the caller only guarantees p->pi_lock is held; no |
| 5066 | * other assumptions, including the state of rq->lock, should be made. |
| 5067 | */ |
| 5068 | static void migrate_task_rq_fair(struct task_struct *p) |
| 5069 | { |
| 5070 | /* |
| 5071 | * We are supposed to update the task to "current" time, then its up to date |
| 5072 | * and ready to go to new CPU/cfs_rq. But we have difficulty in getting |
| 5073 | * what current time is, so simply throw away the out-of-date time. This |
| 5074 | * will result in the wakee task is less decayed, but giving the wakee more |
| 5075 | * load sounds not bad. |
| 5076 | */ |
| 5077 | remove_entity_load_avg(&p->se); |
| 5078 | |
| 5079 | /* Tell new CPU we are migrated */ |
| 5080 | p->se.avg.last_update_time = 0; |
| 5081 | |
| 5082 | /* We have migrated, no longer consider this task hot */ |
| 5083 | p->se.exec_start = 0; |
| 5084 | } |
| 5085 | |
| 5086 | static void task_dead_fair(struct task_struct *p) |
| 5087 | { |
| 5088 | remove_entity_load_avg(&p->se); |
| 5089 | } |
| 5090 | #endif /* CONFIG_SMP */ |
| 5091 | |
| 5092 | static unsigned long |
| 5093 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) |
| 5094 | { |
| 5095 | unsigned long gran = sysctl_sched_wakeup_granularity; |
| 5096 | |
| 5097 | /* |
| 5098 | * Since its curr running now, convert the gran from real-time |
| 5099 | * to virtual-time in his units. |
| 5100 | * |
| 5101 | * By using 'se' instead of 'curr' we penalize light tasks, so |
| 5102 | * they get preempted easier. That is, if 'se' < 'curr' then |
| 5103 | * the resulting gran will be larger, therefore penalizing the |
| 5104 | * lighter, if otoh 'se' > 'curr' then the resulting gran will |
| 5105 | * be smaller, again penalizing the lighter task. |
| 5106 | * |
| 5107 | * This is especially important for buddies when the leftmost |
| 5108 | * task is higher priority than the buddy. |
| 5109 | */ |
| 5110 | return calc_delta_fair(gran, se); |
| 5111 | } |
| 5112 | |
| 5113 | /* |
| 5114 | * Should 'se' preempt 'curr'. |
| 5115 | * |
| 5116 | * |s1 |
| 5117 | * |s2 |
| 5118 | * |s3 |
| 5119 | * g |
| 5120 | * |<--->|c |
| 5121 | * |
| 5122 | * w(c, s1) = -1 |
| 5123 | * w(c, s2) = 0 |
| 5124 | * w(c, s3) = 1 |
| 5125 | * |
| 5126 | */ |
| 5127 | static int |
| 5128 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) |
| 5129 | { |
| 5130 | s64 gran, vdiff = curr->vruntime - se->vruntime; |
| 5131 | |
| 5132 | if (vdiff <= 0) |
| 5133 | return -1; |
| 5134 | |
| 5135 | gran = wakeup_gran(curr, se); |
| 5136 | if (vdiff > gran) |
| 5137 | return 1; |
| 5138 | |
| 5139 | return 0; |
| 5140 | } |
| 5141 | |
| 5142 | static void set_last_buddy(struct sched_entity *se) |
| 5143 | { |
| 5144 | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) |
| 5145 | return; |
| 5146 | |
| 5147 | for_each_sched_entity(se) |
| 5148 | cfs_rq_of(se)->last = se; |
| 5149 | } |
| 5150 | |
| 5151 | static void set_next_buddy(struct sched_entity *se) |
| 5152 | { |
| 5153 | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) |
| 5154 | return; |
| 5155 | |
| 5156 | for_each_sched_entity(se) |
| 5157 | cfs_rq_of(se)->next = se; |
| 5158 | } |
| 5159 | |
| 5160 | static void set_skip_buddy(struct sched_entity *se) |
| 5161 | { |
| 5162 | for_each_sched_entity(se) |
| 5163 | cfs_rq_of(se)->skip = se; |
| 5164 | } |
| 5165 | |
| 5166 | /* |
| 5167 | * Preempt the current task with a newly woken task if needed: |
| 5168 | */ |
| 5169 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
| 5170 | { |
| 5171 | struct task_struct *curr = rq->curr; |
| 5172 | struct sched_entity *se = &curr->se, *pse = &p->se; |
| 5173 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
| 5174 | int scale = cfs_rq->nr_running >= sched_nr_latency; |
| 5175 | int next_buddy_marked = 0; |
| 5176 | |
| 5177 | if (unlikely(se == pse)) |
| 5178 | return; |
| 5179 | |
| 5180 | /* |
| 5181 | * This is possible from callers such as attach_tasks(), in which we |
| 5182 | * unconditionally check_prempt_curr() after an enqueue (which may have |
| 5183 | * lead to a throttle). This both saves work and prevents false |
| 5184 | * next-buddy nomination below. |
| 5185 | */ |
| 5186 | if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) |
| 5187 | return; |
| 5188 | |
| 5189 | if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { |
| 5190 | set_next_buddy(pse); |
| 5191 | next_buddy_marked = 1; |
| 5192 | } |
| 5193 | |
| 5194 | /* |
| 5195 | * We can come here with TIF_NEED_RESCHED already set from new task |
| 5196 | * wake up path. |
| 5197 | * |
| 5198 | * Note: this also catches the edge-case of curr being in a throttled |
| 5199 | * group (e.g. via set_curr_task), since update_curr() (in the |
| 5200 | * enqueue of curr) will have resulted in resched being set. This |
| 5201 | * prevents us from potentially nominating it as a false LAST_BUDDY |
| 5202 | * below. |
| 5203 | */ |
| 5204 | if (test_tsk_need_resched(curr)) |
| 5205 | return; |
| 5206 | |
| 5207 | /* Idle tasks are by definition preempted by non-idle tasks. */ |
| 5208 | if (unlikely(curr->policy == SCHED_IDLE) && |
| 5209 | likely(p->policy != SCHED_IDLE)) |
| 5210 | goto preempt; |
| 5211 | |
| 5212 | /* |
| 5213 | * Batch and idle tasks do not preempt non-idle tasks (their preemption |
| 5214 | * is driven by the tick): |
| 5215 | */ |
| 5216 | if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) |
| 5217 | return; |
| 5218 | |
| 5219 | find_matching_se(&se, &pse); |
| 5220 | update_curr(cfs_rq_of(se)); |
| 5221 | BUG_ON(!pse); |
| 5222 | if (wakeup_preempt_entity(se, pse) == 1) { |
| 5223 | /* |
| 5224 | * Bias pick_next to pick the sched entity that is |
| 5225 | * triggering this preemption. |
| 5226 | */ |
| 5227 | if (!next_buddy_marked) |
| 5228 | set_next_buddy(pse); |
| 5229 | goto preempt; |
| 5230 | } |
| 5231 | |
| 5232 | return; |
| 5233 | |
| 5234 | preempt: |
| 5235 | resched_curr(rq); |
| 5236 | /* |
| 5237 | * Only set the backward buddy when the current task is still |
| 5238 | * on the rq. This can happen when a wakeup gets interleaved |
| 5239 | * with schedule on the ->pre_schedule() or idle_balance() |
| 5240 | * point, either of which can * drop the rq lock. |
| 5241 | * |
| 5242 | * Also, during early boot the idle thread is in the fair class, |
| 5243 | * for obvious reasons its a bad idea to schedule back to it. |
| 5244 | */ |
| 5245 | if (unlikely(!se->on_rq || curr == rq->idle)) |
| 5246 | return; |
| 5247 | |
| 5248 | if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) |
| 5249 | set_last_buddy(se); |
| 5250 | } |
| 5251 | |
| 5252 | static struct task_struct * |
| 5253 | pick_next_task_fair(struct rq *rq, struct task_struct *prev) |
| 5254 | { |
| 5255 | struct cfs_rq *cfs_rq = &rq->cfs; |
| 5256 | struct sched_entity *se; |
| 5257 | struct task_struct *p; |
| 5258 | int new_tasks; |
| 5259 | |
| 5260 | again: |
| 5261 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 5262 | if (!cfs_rq->nr_running) |
| 5263 | goto idle; |
| 5264 | |
| 5265 | if (prev->sched_class != &fair_sched_class) |
| 5266 | goto simple; |
| 5267 | |
| 5268 | /* |
| 5269 | * Because of the set_next_buddy() in dequeue_task_fair() it is rather |
| 5270 | * likely that a next task is from the same cgroup as the current. |
| 5271 | * |
| 5272 | * Therefore attempt to avoid putting and setting the entire cgroup |
| 5273 | * hierarchy, only change the part that actually changes. |
| 5274 | */ |
| 5275 | |
| 5276 | do { |
| 5277 | struct sched_entity *curr = cfs_rq->curr; |
| 5278 | |
| 5279 | /* |
| 5280 | * Since we got here without doing put_prev_entity() we also |
| 5281 | * have to consider cfs_rq->curr. If it is still a runnable |
| 5282 | * entity, update_curr() will update its vruntime, otherwise |
| 5283 | * forget we've ever seen it. |
| 5284 | */ |
| 5285 | if (curr) { |
| 5286 | if (curr->on_rq) |
| 5287 | update_curr(cfs_rq); |
| 5288 | else |
| 5289 | curr = NULL; |
| 5290 | |
| 5291 | /* |
| 5292 | * This call to check_cfs_rq_runtime() will do the |
| 5293 | * throttle and dequeue its entity in the parent(s). |
| 5294 | * Therefore the 'simple' nr_running test will indeed |
| 5295 | * be correct. |
| 5296 | */ |
| 5297 | if (unlikely(check_cfs_rq_runtime(cfs_rq))) |
| 5298 | goto simple; |
| 5299 | } |
| 5300 | |
| 5301 | se = pick_next_entity(cfs_rq, curr); |
| 5302 | cfs_rq = group_cfs_rq(se); |
| 5303 | } while (cfs_rq); |
| 5304 | |
| 5305 | p = task_of(se); |
| 5306 | |
| 5307 | /* |
| 5308 | * Since we haven't yet done put_prev_entity and if the selected task |
| 5309 | * is a different task than we started out with, try and touch the |
| 5310 | * least amount of cfs_rqs. |
| 5311 | */ |
| 5312 | if (prev != p) { |
| 5313 | struct sched_entity *pse = &prev->se; |
| 5314 | |
| 5315 | while (!(cfs_rq = is_same_group(se, pse))) { |
| 5316 | int se_depth = se->depth; |
| 5317 | int pse_depth = pse->depth; |
| 5318 | |
| 5319 | if (se_depth <= pse_depth) { |
| 5320 | put_prev_entity(cfs_rq_of(pse), pse); |
| 5321 | pse = parent_entity(pse); |
| 5322 | } |
| 5323 | if (se_depth >= pse_depth) { |
| 5324 | set_next_entity(cfs_rq_of(se), se); |
| 5325 | se = parent_entity(se); |
| 5326 | } |
| 5327 | } |
| 5328 | |
| 5329 | put_prev_entity(cfs_rq, pse); |
| 5330 | set_next_entity(cfs_rq, se); |
| 5331 | } |
| 5332 | |
| 5333 | if (hrtick_enabled(rq)) |
| 5334 | hrtick_start_fair(rq, p); |
| 5335 | |
| 5336 | return p; |
| 5337 | simple: |
| 5338 | cfs_rq = &rq->cfs; |
| 5339 | #endif |
| 5340 | |
| 5341 | if (!cfs_rq->nr_running) |
| 5342 | goto idle; |
| 5343 | |
| 5344 | put_prev_task(rq, prev); |
| 5345 | |
| 5346 | do { |
| 5347 | se = pick_next_entity(cfs_rq, NULL); |
| 5348 | set_next_entity(cfs_rq, se); |
| 5349 | cfs_rq = group_cfs_rq(se); |
| 5350 | } while (cfs_rq); |
| 5351 | |
| 5352 | p = task_of(se); |
| 5353 | |
| 5354 | if (hrtick_enabled(rq)) |
| 5355 | hrtick_start_fair(rq, p); |
| 5356 | |
| 5357 | return p; |
| 5358 | |
| 5359 | idle: |
| 5360 | /* |
| 5361 | * This is OK, because current is on_cpu, which avoids it being picked |
| 5362 | * for load-balance and preemption/IRQs are still disabled avoiding |
| 5363 | * further scheduler activity on it and we're being very careful to |
| 5364 | * re-start the picking loop. |
| 5365 | */ |
| 5366 | lockdep_unpin_lock(&rq->lock); |
| 5367 | new_tasks = idle_balance(rq); |
| 5368 | lockdep_pin_lock(&rq->lock); |
| 5369 | /* |
| 5370 | * Because idle_balance() releases (and re-acquires) rq->lock, it is |
| 5371 | * possible for any higher priority task to appear. In that case we |
| 5372 | * must re-start the pick_next_entity() loop. |
| 5373 | */ |
| 5374 | if (new_tasks < 0) |
| 5375 | return RETRY_TASK; |
| 5376 | |
| 5377 | if (new_tasks > 0) |
| 5378 | goto again; |
| 5379 | |
| 5380 | return NULL; |
| 5381 | } |
| 5382 | |
| 5383 | /* |
| 5384 | * Account for a descheduled task: |
| 5385 | */ |
| 5386 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) |
| 5387 | { |
| 5388 | struct sched_entity *se = &prev->se; |
| 5389 | struct cfs_rq *cfs_rq; |
| 5390 | |
| 5391 | for_each_sched_entity(se) { |
| 5392 | cfs_rq = cfs_rq_of(se); |
| 5393 | put_prev_entity(cfs_rq, se); |
| 5394 | } |
| 5395 | } |
| 5396 | |
| 5397 | /* |
| 5398 | * sched_yield() is very simple |
| 5399 | * |
| 5400 | * The magic of dealing with the ->skip buddy is in pick_next_entity. |
| 5401 | */ |
| 5402 | static void yield_task_fair(struct rq *rq) |
| 5403 | { |
| 5404 | struct task_struct *curr = rq->curr; |
| 5405 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
| 5406 | struct sched_entity *se = &curr->se; |
| 5407 | |
| 5408 | /* |
| 5409 | * Are we the only task in the tree? |
| 5410 | */ |
| 5411 | if (unlikely(rq->nr_running == 1)) |
| 5412 | return; |
| 5413 | |
| 5414 | clear_buddies(cfs_rq, se); |
| 5415 | |
| 5416 | if (curr->policy != SCHED_BATCH) { |
| 5417 | update_rq_clock(rq); |
| 5418 | /* |
| 5419 | * Update run-time statistics of the 'current'. |
| 5420 | */ |
| 5421 | update_curr(cfs_rq); |
| 5422 | /* |
| 5423 | * Tell update_rq_clock() that we've just updated, |
| 5424 | * so we don't do microscopic update in schedule() |
| 5425 | * and double the fastpath cost. |
| 5426 | */ |
| 5427 | rq_clock_skip_update(rq, true); |
| 5428 | } |
| 5429 | |
| 5430 | set_skip_buddy(se); |
| 5431 | } |
| 5432 | |
| 5433 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) |
| 5434 | { |
| 5435 | struct sched_entity *se = &p->se; |
| 5436 | |
| 5437 | /* throttled hierarchies are not runnable */ |
| 5438 | if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) |
| 5439 | return false; |
| 5440 | |
| 5441 | /* Tell the scheduler that we'd really like pse to run next. */ |
| 5442 | set_next_buddy(se); |
| 5443 | |
| 5444 | yield_task_fair(rq); |
| 5445 | |
| 5446 | return true; |
| 5447 | } |
| 5448 | |
| 5449 | #ifdef CONFIG_SMP |
| 5450 | /************************************************** |
| 5451 | * Fair scheduling class load-balancing methods. |
| 5452 | * |
| 5453 | * BASICS |
| 5454 | * |
| 5455 | * The purpose of load-balancing is to achieve the same basic fairness the |
| 5456 | * per-cpu scheduler provides, namely provide a proportional amount of compute |
| 5457 | * time to each task. This is expressed in the following equation: |
| 5458 | * |
| 5459 | * W_i,n/P_i == W_j,n/P_j for all i,j (1) |
| 5460 | * |
| 5461 | * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight |
| 5462 | * W_i,0 is defined as: |
| 5463 | * |
| 5464 | * W_i,0 = \Sum_j w_i,j (2) |
| 5465 | * |
| 5466 | * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight |
| 5467 | * is derived from the nice value as per prio_to_weight[]. |
| 5468 | * |
| 5469 | * The weight average is an exponential decay average of the instantaneous |
| 5470 | * weight: |
| 5471 | * |
| 5472 | * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) |
| 5473 | * |
| 5474 | * C_i is the compute capacity of cpu i, typically it is the |
| 5475 | * fraction of 'recent' time available for SCHED_OTHER task execution. But it |
| 5476 | * can also include other factors [XXX]. |
| 5477 | * |
| 5478 | * To achieve this balance we define a measure of imbalance which follows |
| 5479 | * directly from (1): |
| 5480 | * |
| 5481 | * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) |
| 5482 | * |
| 5483 | * We them move tasks around to minimize the imbalance. In the continuous |
| 5484 | * function space it is obvious this converges, in the discrete case we get |
| 5485 | * a few fun cases generally called infeasible weight scenarios. |
| 5486 | * |
| 5487 | * [XXX expand on: |
| 5488 | * - infeasible weights; |
| 5489 | * - local vs global optima in the discrete case. ] |
| 5490 | * |
| 5491 | * |
| 5492 | * SCHED DOMAINS |
| 5493 | * |
| 5494 | * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) |
| 5495 | * for all i,j solution, we create a tree of cpus that follows the hardware |
| 5496 | * topology where each level pairs two lower groups (or better). This results |
| 5497 | * in O(log n) layers. Furthermore we reduce the number of cpus going up the |
| 5498 | * tree to only the first of the previous level and we decrease the frequency |
| 5499 | * of load-balance at each level inv. proportional to the number of cpus in |
| 5500 | * the groups. |
| 5501 | * |
| 5502 | * This yields: |
| 5503 | * |
| 5504 | * log_2 n 1 n |
| 5505 | * \Sum { --- * --- * 2^i } = O(n) (5) |
| 5506 | * i = 0 2^i 2^i |
| 5507 | * `- size of each group |
| 5508 | * | | `- number of cpus doing load-balance |
| 5509 | * | `- freq |
| 5510 | * `- sum over all levels |
| 5511 | * |
| 5512 | * Coupled with a limit on how many tasks we can migrate every balance pass, |
| 5513 | * this makes (5) the runtime complexity of the balancer. |
| 5514 | * |
| 5515 | * An important property here is that each CPU is still (indirectly) connected |
| 5516 | * to every other cpu in at most O(log n) steps: |
| 5517 | * |
| 5518 | * The adjacency matrix of the resulting graph is given by: |
| 5519 | * |
| 5520 | * log_2 n |
| 5521 | * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) |
| 5522 | * k = 0 |
| 5523 | * |
| 5524 | * And you'll find that: |
| 5525 | * |
| 5526 | * A^(log_2 n)_i,j != 0 for all i,j (7) |
| 5527 | * |
| 5528 | * Showing there's indeed a path between every cpu in at most O(log n) steps. |
| 5529 | * The task movement gives a factor of O(m), giving a convergence complexity |
| 5530 | * of: |
| 5531 | * |
| 5532 | * O(nm log n), n := nr_cpus, m := nr_tasks (8) |
| 5533 | * |
| 5534 | * |
| 5535 | * WORK CONSERVING |
| 5536 | * |
| 5537 | * In order to avoid CPUs going idle while there's still work to do, new idle |
| 5538 | * balancing is more aggressive and has the newly idle cpu iterate up the domain |
| 5539 | * tree itself instead of relying on other CPUs to bring it work. |
| 5540 | * |
| 5541 | * This adds some complexity to both (5) and (8) but it reduces the total idle |
| 5542 | * time. |
| 5543 | * |
| 5544 | * [XXX more?] |
| 5545 | * |
| 5546 | * |
| 5547 | * CGROUPS |
| 5548 | * |
| 5549 | * Cgroups make a horror show out of (2), instead of a simple sum we get: |
| 5550 | * |
| 5551 | * s_k,i |
| 5552 | * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) |
| 5553 | * S_k |
| 5554 | * |
| 5555 | * Where |
| 5556 | * |
| 5557 | * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) |
| 5558 | * |
| 5559 | * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. |
| 5560 | * |
| 5561 | * The big problem is S_k, its a global sum needed to compute a local (W_i) |
| 5562 | * property. |
| 5563 | * |
| 5564 | * [XXX write more on how we solve this.. _after_ merging pjt's patches that |
| 5565 | * rewrite all of this once again.] |
| 5566 | */ |
| 5567 | |
| 5568 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; |
| 5569 | |
| 5570 | enum fbq_type { regular, remote, all }; |
| 5571 | |
| 5572 | #define LBF_ALL_PINNED 0x01 |
| 5573 | #define LBF_NEED_BREAK 0x02 |
| 5574 | #define LBF_DST_PINNED 0x04 |
| 5575 | #define LBF_SOME_PINNED 0x08 |
| 5576 | |
| 5577 | struct lb_env { |
| 5578 | struct sched_domain *sd; |
| 5579 | |
| 5580 | struct rq *src_rq; |
| 5581 | int src_cpu; |
| 5582 | |
| 5583 | int dst_cpu; |
| 5584 | struct rq *dst_rq; |
| 5585 | |
| 5586 | struct cpumask *dst_grpmask; |
| 5587 | int new_dst_cpu; |
| 5588 | enum cpu_idle_type idle; |
| 5589 | long imbalance; |
| 5590 | /* The set of CPUs under consideration for load-balancing */ |
| 5591 | struct cpumask *cpus; |
| 5592 | |
| 5593 | unsigned int flags; |
| 5594 | |
| 5595 | unsigned int loop; |
| 5596 | unsigned int loop_break; |
| 5597 | unsigned int loop_max; |
| 5598 | |
| 5599 | enum fbq_type fbq_type; |
| 5600 | struct list_head tasks; |
| 5601 | }; |
| 5602 | |
| 5603 | /* |
| 5604 | * Is this task likely cache-hot: |
| 5605 | */ |
| 5606 | static int task_hot(struct task_struct *p, struct lb_env *env) |
| 5607 | { |
| 5608 | s64 delta; |
| 5609 | |
| 5610 | lockdep_assert_held(&env->src_rq->lock); |
| 5611 | |
| 5612 | if (p->sched_class != &fair_sched_class) |
| 5613 | return 0; |
| 5614 | |
| 5615 | if (unlikely(p->policy == SCHED_IDLE)) |
| 5616 | return 0; |
| 5617 | |
| 5618 | /* |
| 5619 | * Buddy candidates are cache hot: |
| 5620 | */ |
| 5621 | if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && |
| 5622 | (&p->se == cfs_rq_of(&p->se)->next || |
| 5623 | &p->se == cfs_rq_of(&p->se)->last)) |
| 5624 | return 1; |
| 5625 | |
| 5626 | if (sysctl_sched_migration_cost == -1) |
| 5627 | return 1; |
| 5628 | if (sysctl_sched_migration_cost == 0) |
| 5629 | return 0; |
| 5630 | |
| 5631 | delta = rq_clock_task(env->src_rq) - p->se.exec_start; |
| 5632 | |
| 5633 | return delta < (s64)sysctl_sched_migration_cost; |
| 5634 | } |
| 5635 | |
| 5636 | #ifdef CONFIG_NUMA_BALANCING |
| 5637 | /* |
| 5638 | * Returns 1, if task migration degrades locality |
| 5639 | * Returns 0, if task migration improves locality i.e migration preferred. |
| 5640 | * Returns -1, if task migration is not affected by locality. |
| 5641 | */ |
| 5642 | static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) |
| 5643 | { |
| 5644 | struct numa_group *numa_group = rcu_dereference(p->numa_group); |
| 5645 | unsigned long src_faults, dst_faults; |
| 5646 | int src_nid, dst_nid; |
| 5647 | |
| 5648 | if (!static_branch_likely(&sched_numa_balancing)) |
| 5649 | return -1; |
| 5650 | |
| 5651 | if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) |
| 5652 | return -1; |
| 5653 | |
| 5654 | src_nid = cpu_to_node(env->src_cpu); |
| 5655 | dst_nid = cpu_to_node(env->dst_cpu); |
| 5656 | |
| 5657 | if (src_nid == dst_nid) |
| 5658 | return -1; |
| 5659 | |
| 5660 | /* Migrating away from the preferred node is always bad. */ |
| 5661 | if (src_nid == p->numa_preferred_nid) { |
| 5662 | if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) |
| 5663 | return 1; |
| 5664 | else |
| 5665 | return -1; |
| 5666 | } |
| 5667 | |
| 5668 | /* Encourage migration to the preferred node. */ |
| 5669 | if (dst_nid == p->numa_preferred_nid) |
| 5670 | return 0; |
| 5671 | |
| 5672 | if (numa_group) { |
| 5673 | src_faults = group_faults(p, src_nid); |
| 5674 | dst_faults = group_faults(p, dst_nid); |
| 5675 | } else { |
| 5676 | src_faults = task_faults(p, src_nid); |
| 5677 | dst_faults = task_faults(p, dst_nid); |
| 5678 | } |
| 5679 | |
| 5680 | return dst_faults < src_faults; |
| 5681 | } |
| 5682 | |
| 5683 | #else |
| 5684 | static inline int migrate_degrades_locality(struct task_struct *p, |
| 5685 | struct lb_env *env) |
| 5686 | { |
| 5687 | return -1; |
| 5688 | } |
| 5689 | #endif |
| 5690 | |
| 5691 | /* |
| 5692 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? |
| 5693 | */ |
| 5694 | static |
| 5695 | int can_migrate_task(struct task_struct *p, struct lb_env *env) |
| 5696 | { |
| 5697 | int tsk_cache_hot; |
| 5698 | |
| 5699 | lockdep_assert_held(&env->src_rq->lock); |
| 5700 | |
| 5701 | /* |
| 5702 | * We do not migrate tasks that are: |
| 5703 | * 1) throttled_lb_pair, or |
| 5704 | * 2) cannot be migrated to this CPU due to cpus_allowed, or |
| 5705 | * 3) running (obviously), or |
| 5706 | * 4) are cache-hot on their current CPU. |
| 5707 | */ |
| 5708 | if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) |
| 5709 | return 0; |
| 5710 | |
| 5711 | if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { |
| 5712 | int cpu; |
| 5713 | |
| 5714 | schedstat_inc(p, se.statistics.nr_failed_migrations_affine); |
| 5715 | |
| 5716 | env->flags |= LBF_SOME_PINNED; |
| 5717 | |
| 5718 | /* |
| 5719 | * Remember if this task can be migrated to any other cpu in |
| 5720 | * our sched_group. We may want to revisit it if we couldn't |
| 5721 | * meet load balance goals by pulling other tasks on src_cpu. |
| 5722 | * |
| 5723 | * Also avoid computing new_dst_cpu if we have already computed |
| 5724 | * one in current iteration. |
| 5725 | */ |
| 5726 | if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) |
| 5727 | return 0; |
| 5728 | |
| 5729 | /* Prevent to re-select dst_cpu via env's cpus */ |
| 5730 | for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { |
| 5731 | if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { |
| 5732 | env->flags |= LBF_DST_PINNED; |
| 5733 | env->new_dst_cpu = cpu; |
| 5734 | break; |
| 5735 | } |
| 5736 | } |
| 5737 | |
| 5738 | return 0; |
| 5739 | } |
| 5740 | |
| 5741 | /* Record that we found atleast one task that could run on dst_cpu */ |
| 5742 | env->flags &= ~LBF_ALL_PINNED; |
| 5743 | |
| 5744 | if (task_running(env->src_rq, p)) { |
| 5745 | schedstat_inc(p, se.statistics.nr_failed_migrations_running); |
| 5746 | return 0; |
| 5747 | } |
| 5748 | |
| 5749 | /* |
| 5750 | * Aggressive migration if: |
| 5751 | * 1) destination numa is preferred |
| 5752 | * 2) task is cache cold, or |
| 5753 | * 3) too many balance attempts have failed. |
| 5754 | */ |
| 5755 | tsk_cache_hot = migrate_degrades_locality(p, env); |
| 5756 | if (tsk_cache_hot == -1) |
| 5757 | tsk_cache_hot = task_hot(p, env); |
| 5758 | |
| 5759 | if (tsk_cache_hot <= 0 || |
| 5760 | env->sd->nr_balance_failed > env->sd->cache_nice_tries) { |
| 5761 | if (tsk_cache_hot == 1) { |
| 5762 | schedstat_inc(env->sd, lb_hot_gained[env->idle]); |
| 5763 | schedstat_inc(p, se.statistics.nr_forced_migrations); |
| 5764 | } |
| 5765 | return 1; |
| 5766 | } |
| 5767 | |
| 5768 | schedstat_inc(p, se.statistics.nr_failed_migrations_hot); |
| 5769 | return 0; |
| 5770 | } |
| 5771 | |
| 5772 | /* |
| 5773 | * detach_task() -- detach the task for the migration specified in env |
| 5774 | */ |
| 5775 | static void detach_task(struct task_struct *p, struct lb_env *env) |
| 5776 | { |
| 5777 | lockdep_assert_held(&env->src_rq->lock); |
| 5778 | |
| 5779 | deactivate_task(env->src_rq, p, 0); |
| 5780 | p->on_rq = TASK_ON_RQ_MIGRATING; |
| 5781 | set_task_cpu(p, env->dst_cpu); |
| 5782 | } |
| 5783 | |
| 5784 | /* |
| 5785 | * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as |
| 5786 | * part of active balancing operations within "domain". |
| 5787 | * |
| 5788 | * Returns a task if successful and NULL otherwise. |
| 5789 | */ |
| 5790 | static struct task_struct *detach_one_task(struct lb_env *env) |
| 5791 | { |
| 5792 | struct task_struct *p, *n; |
| 5793 | |
| 5794 | lockdep_assert_held(&env->src_rq->lock); |
| 5795 | |
| 5796 | list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { |
| 5797 | if (!can_migrate_task(p, env)) |
| 5798 | continue; |
| 5799 | |
| 5800 | detach_task(p, env); |
| 5801 | |
| 5802 | /* |
| 5803 | * Right now, this is only the second place where |
| 5804 | * lb_gained[env->idle] is updated (other is detach_tasks) |
| 5805 | * so we can safely collect stats here rather than |
| 5806 | * inside detach_tasks(). |
| 5807 | */ |
| 5808 | schedstat_inc(env->sd, lb_gained[env->idle]); |
| 5809 | return p; |
| 5810 | } |
| 5811 | return NULL; |
| 5812 | } |
| 5813 | |
| 5814 | static const unsigned int sched_nr_migrate_break = 32; |
| 5815 | |
| 5816 | /* |
| 5817 | * detach_tasks() -- tries to detach up to imbalance weighted load from |
| 5818 | * busiest_rq, as part of a balancing operation within domain "sd". |
| 5819 | * |
| 5820 | * Returns number of detached tasks if successful and 0 otherwise. |
| 5821 | */ |
| 5822 | static int detach_tasks(struct lb_env *env) |
| 5823 | { |
| 5824 | struct list_head *tasks = &env->src_rq->cfs_tasks; |
| 5825 | struct task_struct *p; |
| 5826 | unsigned long load; |
| 5827 | int detached = 0; |
| 5828 | |
| 5829 | lockdep_assert_held(&env->src_rq->lock); |
| 5830 | |
| 5831 | if (env->imbalance <= 0) |
| 5832 | return 0; |
| 5833 | |
| 5834 | while (!list_empty(tasks)) { |
| 5835 | /* |
| 5836 | * We don't want to steal all, otherwise we may be treated likewise, |
| 5837 | * which could at worst lead to a livelock crash. |
| 5838 | */ |
| 5839 | if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) |
| 5840 | break; |
| 5841 | |
| 5842 | p = list_first_entry(tasks, struct task_struct, se.group_node); |
| 5843 | |
| 5844 | env->loop++; |
| 5845 | /* We've more or less seen every task there is, call it quits */ |
| 5846 | if (env->loop > env->loop_max) |
| 5847 | break; |
| 5848 | |
| 5849 | /* take a breather every nr_migrate tasks */ |
| 5850 | if (env->loop > env->loop_break) { |
| 5851 | env->loop_break += sched_nr_migrate_break; |
| 5852 | env->flags |= LBF_NEED_BREAK; |
| 5853 | break; |
| 5854 | } |
| 5855 | |
| 5856 | if (!can_migrate_task(p, env)) |
| 5857 | goto next; |
| 5858 | |
| 5859 | load = task_h_load(p); |
| 5860 | |
| 5861 | if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) |
| 5862 | goto next; |
| 5863 | |
| 5864 | if ((load / 2) > env->imbalance) |
| 5865 | goto next; |
| 5866 | |
| 5867 | detach_task(p, env); |
| 5868 | list_add(&p->se.group_node, &env->tasks); |
| 5869 | |
| 5870 | detached++; |
| 5871 | env->imbalance -= load; |
| 5872 | |
| 5873 | #ifdef CONFIG_PREEMPT |
| 5874 | /* |
| 5875 | * NEWIDLE balancing is a source of latency, so preemptible |
| 5876 | * kernels will stop after the first task is detached to minimize |
| 5877 | * the critical section. |
| 5878 | */ |
| 5879 | if (env->idle == CPU_NEWLY_IDLE) |
| 5880 | break; |
| 5881 | #endif |
| 5882 | |
| 5883 | /* |
| 5884 | * We only want to steal up to the prescribed amount of |
| 5885 | * weighted load. |
| 5886 | */ |
| 5887 | if (env->imbalance <= 0) |
| 5888 | break; |
| 5889 | |
| 5890 | continue; |
| 5891 | next: |
| 5892 | list_move_tail(&p->se.group_node, tasks); |
| 5893 | } |
| 5894 | |
| 5895 | /* |
| 5896 | * Right now, this is one of only two places we collect this stat |
| 5897 | * so we can safely collect detach_one_task() stats here rather |
| 5898 | * than inside detach_one_task(). |
| 5899 | */ |
| 5900 | schedstat_add(env->sd, lb_gained[env->idle], detached); |
| 5901 | |
| 5902 | return detached; |
| 5903 | } |
| 5904 | |
| 5905 | /* |
| 5906 | * attach_task() -- attach the task detached by detach_task() to its new rq. |
| 5907 | */ |
| 5908 | static void attach_task(struct rq *rq, struct task_struct *p) |
| 5909 | { |
| 5910 | lockdep_assert_held(&rq->lock); |
| 5911 | |
| 5912 | BUG_ON(task_rq(p) != rq); |
| 5913 | p->on_rq = TASK_ON_RQ_QUEUED; |
| 5914 | activate_task(rq, p, 0); |
| 5915 | check_preempt_curr(rq, p, 0); |
| 5916 | } |
| 5917 | |
| 5918 | /* |
| 5919 | * attach_one_task() -- attaches the task returned from detach_one_task() to |
| 5920 | * its new rq. |
| 5921 | */ |
| 5922 | static void attach_one_task(struct rq *rq, struct task_struct *p) |
| 5923 | { |
| 5924 | raw_spin_lock(&rq->lock); |
| 5925 | attach_task(rq, p); |
| 5926 | raw_spin_unlock(&rq->lock); |
| 5927 | } |
| 5928 | |
| 5929 | /* |
| 5930 | * attach_tasks() -- attaches all tasks detached by detach_tasks() to their |
| 5931 | * new rq. |
| 5932 | */ |
| 5933 | static void attach_tasks(struct lb_env *env) |
| 5934 | { |
| 5935 | struct list_head *tasks = &env->tasks; |
| 5936 | struct task_struct *p; |
| 5937 | |
| 5938 | raw_spin_lock(&env->dst_rq->lock); |
| 5939 | |
| 5940 | while (!list_empty(tasks)) { |
| 5941 | p = list_first_entry(tasks, struct task_struct, se.group_node); |
| 5942 | list_del_init(&p->se.group_node); |
| 5943 | |
| 5944 | attach_task(env->dst_rq, p); |
| 5945 | } |
| 5946 | |
| 5947 | raw_spin_unlock(&env->dst_rq->lock); |
| 5948 | } |
| 5949 | |
| 5950 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 5951 | static void update_blocked_averages(int cpu) |
| 5952 | { |
| 5953 | struct rq *rq = cpu_rq(cpu); |
| 5954 | struct cfs_rq *cfs_rq; |
| 5955 | unsigned long flags; |
| 5956 | |
| 5957 | raw_spin_lock_irqsave(&rq->lock, flags); |
| 5958 | update_rq_clock(rq); |
| 5959 | |
| 5960 | /* |
| 5961 | * Iterates the task_group tree in a bottom up fashion, see |
| 5962 | * list_add_leaf_cfs_rq() for details. |
| 5963 | */ |
| 5964 | for_each_leaf_cfs_rq(rq, cfs_rq) { |
| 5965 | /* throttled entities do not contribute to load */ |
| 5966 | if (throttled_hierarchy(cfs_rq)) |
| 5967 | continue; |
| 5968 | |
| 5969 | if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) |
| 5970 | update_tg_load_avg(cfs_rq, 0); |
| 5971 | } |
| 5972 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
| 5973 | } |
| 5974 | |
| 5975 | /* |
| 5976 | * Compute the hierarchical load factor for cfs_rq and all its ascendants. |
| 5977 | * This needs to be done in a top-down fashion because the load of a child |
| 5978 | * group is a fraction of its parents load. |
| 5979 | */ |
| 5980 | static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) |
| 5981 | { |
| 5982 | struct rq *rq = rq_of(cfs_rq); |
| 5983 | struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; |
| 5984 | unsigned long now = jiffies; |
| 5985 | unsigned long load; |
| 5986 | |
| 5987 | if (cfs_rq->last_h_load_update == now) |
| 5988 | return; |
| 5989 | |
| 5990 | cfs_rq->h_load_next = NULL; |
| 5991 | for_each_sched_entity(se) { |
| 5992 | cfs_rq = cfs_rq_of(se); |
| 5993 | cfs_rq->h_load_next = se; |
| 5994 | if (cfs_rq->last_h_load_update == now) |
| 5995 | break; |
| 5996 | } |
| 5997 | |
| 5998 | if (!se) { |
| 5999 | cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); |
| 6000 | cfs_rq->last_h_load_update = now; |
| 6001 | } |
| 6002 | |
| 6003 | while ((se = cfs_rq->h_load_next) != NULL) { |
| 6004 | load = cfs_rq->h_load; |
| 6005 | load = div64_ul(load * se->avg.load_avg, |
| 6006 | cfs_rq_load_avg(cfs_rq) + 1); |
| 6007 | cfs_rq = group_cfs_rq(se); |
| 6008 | cfs_rq->h_load = load; |
| 6009 | cfs_rq->last_h_load_update = now; |
| 6010 | } |
| 6011 | } |
| 6012 | |
| 6013 | static unsigned long task_h_load(struct task_struct *p) |
| 6014 | { |
| 6015 | struct cfs_rq *cfs_rq = task_cfs_rq(p); |
| 6016 | |
| 6017 | update_cfs_rq_h_load(cfs_rq); |
| 6018 | return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, |
| 6019 | cfs_rq_load_avg(cfs_rq) + 1); |
| 6020 | } |
| 6021 | #else |
| 6022 | static inline void update_blocked_averages(int cpu) |
| 6023 | { |
| 6024 | struct rq *rq = cpu_rq(cpu); |
| 6025 | struct cfs_rq *cfs_rq = &rq->cfs; |
| 6026 | unsigned long flags; |
| 6027 | |
| 6028 | raw_spin_lock_irqsave(&rq->lock, flags); |
| 6029 | update_rq_clock(rq); |
| 6030 | update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); |
| 6031 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
| 6032 | } |
| 6033 | |
| 6034 | static unsigned long task_h_load(struct task_struct *p) |
| 6035 | { |
| 6036 | return p->se.avg.load_avg; |
| 6037 | } |
| 6038 | #endif |
| 6039 | |
| 6040 | /********** Helpers for find_busiest_group ************************/ |
| 6041 | |
| 6042 | enum group_type { |
| 6043 | group_other = 0, |
| 6044 | group_imbalanced, |
| 6045 | group_overloaded, |
| 6046 | }; |
| 6047 | |
| 6048 | /* |
| 6049 | * sg_lb_stats - stats of a sched_group required for load_balancing |
| 6050 | */ |
| 6051 | struct sg_lb_stats { |
| 6052 | unsigned long avg_load; /*Avg load across the CPUs of the group */ |
| 6053 | unsigned long group_load; /* Total load over the CPUs of the group */ |
| 6054 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ |
| 6055 | unsigned long load_per_task; |
| 6056 | unsigned long group_capacity; |
| 6057 | unsigned long group_util; /* Total utilization of the group */ |
| 6058 | unsigned int sum_nr_running; /* Nr tasks running in the group */ |
| 6059 | unsigned int idle_cpus; |
| 6060 | unsigned int group_weight; |
| 6061 | enum group_type group_type; |
| 6062 | int group_no_capacity; |
| 6063 | #ifdef CONFIG_NUMA_BALANCING |
| 6064 | unsigned int nr_numa_running; |
| 6065 | unsigned int nr_preferred_running; |
| 6066 | #endif |
| 6067 | }; |
| 6068 | |
| 6069 | /* |
| 6070 | * sd_lb_stats - Structure to store the statistics of a sched_domain |
| 6071 | * during load balancing. |
| 6072 | */ |
| 6073 | struct sd_lb_stats { |
| 6074 | struct sched_group *busiest; /* Busiest group in this sd */ |
| 6075 | struct sched_group *local; /* Local group in this sd */ |
| 6076 | unsigned long total_load; /* Total load of all groups in sd */ |
| 6077 | unsigned long total_capacity; /* Total capacity of all groups in sd */ |
| 6078 | unsigned long avg_load; /* Average load across all groups in sd */ |
| 6079 | |
| 6080 | struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ |
| 6081 | struct sg_lb_stats local_stat; /* Statistics of the local group */ |
| 6082 | }; |
| 6083 | |
| 6084 | static inline void init_sd_lb_stats(struct sd_lb_stats *sds) |
| 6085 | { |
| 6086 | /* |
| 6087 | * Skimp on the clearing to avoid duplicate work. We can avoid clearing |
| 6088 | * local_stat because update_sg_lb_stats() does a full clear/assignment. |
| 6089 | * We must however clear busiest_stat::avg_load because |
| 6090 | * update_sd_pick_busiest() reads this before assignment. |
| 6091 | */ |
| 6092 | *sds = (struct sd_lb_stats){ |
| 6093 | .busiest = NULL, |
| 6094 | .local = NULL, |
| 6095 | .total_load = 0UL, |
| 6096 | .total_capacity = 0UL, |
| 6097 | .busiest_stat = { |
| 6098 | .avg_load = 0UL, |
| 6099 | .sum_nr_running = 0, |
| 6100 | .group_type = group_other, |
| 6101 | }, |
| 6102 | }; |
| 6103 | } |
| 6104 | |
| 6105 | /** |
| 6106 | * get_sd_load_idx - Obtain the load index for a given sched domain. |
| 6107 | * @sd: The sched_domain whose load_idx is to be obtained. |
| 6108 | * @idle: The idle status of the CPU for whose sd load_idx is obtained. |
| 6109 | * |
| 6110 | * Return: The load index. |
| 6111 | */ |
| 6112 | static inline int get_sd_load_idx(struct sched_domain *sd, |
| 6113 | enum cpu_idle_type idle) |
| 6114 | { |
| 6115 | int load_idx; |
| 6116 | |
| 6117 | switch (idle) { |
| 6118 | case CPU_NOT_IDLE: |
| 6119 | load_idx = sd->busy_idx; |
| 6120 | break; |
| 6121 | |
| 6122 | case CPU_NEWLY_IDLE: |
| 6123 | load_idx = sd->newidle_idx; |
| 6124 | break; |
| 6125 | default: |
| 6126 | load_idx = sd->idle_idx; |
| 6127 | break; |
| 6128 | } |
| 6129 | |
| 6130 | return load_idx; |
| 6131 | } |
| 6132 | |
| 6133 | static unsigned long scale_rt_capacity(int cpu) |
| 6134 | { |
| 6135 | struct rq *rq = cpu_rq(cpu); |
| 6136 | u64 total, used, age_stamp, avg; |
| 6137 | s64 delta; |
| 6138 | |
| 6139 | /* |
| 6140 | * Since we're reading these variables without serialization make sure |
| 6141 | * we read them once before doing sanity checks on them. |
| 6142 | */ |
| 6143 | age_stamp = READ_ONCE(rq->age_stamp); |
| 6144 | avg = READ_ONCE(rq->rt_avg); |
| 6145 | delta = __rq_clock_broken(rq) - age_stamp; |
| 6146 | |
| 6147 | if (unlikely(delta < 0)) |
| 6148 | delta = 0; |
| 6149 | |
| 6150 | total = sched_avg_period() + delta; |
| 6151 | |
| 6152 | used = div_u64(avg, total); |
| 6153 | |
| 6154 | if (likely(used < SCHED_CAPACITY_SCALE)) |
| 6155 | return SCHED_CAPACITY_SCALE - used; |
| 6156 | |
| 6157 | return 1; |
| 6158 | } |
| 6159 | |
| 6160 | static void update_cpu_capacity(struct sched_domain *sd, int cpu) |
| 6161 | { |
| 6162 | unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); |
| 6163 | struct sched_group *sdg = sd->groups; |
| 6164 | |
| 6165 | cpu_rq(cpu)->cpu_capacity_orig = capacity; |
| 6166 | |
| 6167 | capacity *= scale_rt_capacity(cpu); |
| 6168 | capacity >>= SCHED_CAPACITY_SHIFT; |
| 6169 | |
| 6170 | if (!capacity) |
| 6171 | capacity = 1; |
| 6172 | |
| 6173 | cpu_rq(cpu)->cpu_capacity = capacity; |
| 6174 | sdg->sgc->capacity = capacity; |
| 6175 | } |
| 6176 | |
| 6177 | void update_group_capacity(struct sched_domain *sd, int cpu) |
| 6178 | { |
| 6179 | struct sched_domain *child = sd->child; |
| 6180 | struct sched_group *group, *sdg = sd->groups; |
| 6181 | unsigned long capacity; |
| 6182 | unsigned long interval; |
| 6183 | |
| 6184 | interval = msecs_to_jiffies(sd->balance_interval); |
| 6185 | interval = clamp(interval, 1UL, max_load_balance_interval); |
| 6186 | sdg->sgc->next_update = jiffies + interval; |
| 6187 | |
| 6188 | if (!child) { |
| 6189 | update_cpu_capacity(sd, cpu); |
| 6190 | return; |
| 6191 | } |
| 6192 | |
| 6193 | capacity = 0; |
| 6194 | |
| 6195 | if (child->flags & SD_OVERLAP) { |
| 6196 | /* |
| 6197 | * SD_OVERLAP domains cannot assume that child groups |
| 6198 | * span the current group. |
| 6199 | */ |
| 6200 | |
| 6201 | for_each_cpu(cpu, sched_group_cpus(sdg)) { |
| 6202 | struct sched_group_capacity *sgc; |
| 6203 | struct rq *rq = cpu_rq(cpu); |
| 6204 | |
| 6205 | /* |
| 6206 | * build_sched_domains() -> init_sched_groups_capacity() |
| 6207 | * gets here before we've attached the domains to the |
| 6208 | * runqueues. |
| 6209 | * |
| 6210 | * Use capacity_of(), which is set irrespective of domains |
| 6211 | * in update_cpu_capacity(). |
| 6212 | * |
| 6213 | * This avoids capacity from being 0 and |
| 6214 | * causing divide-by-zero issues on boot. |
| 6215 | */ |
| 6216 | if (unlikely(!rq->sd)) { |
| 6217 | capacity += capacity_of(cpu); |
| 6218 | continue; |
| 6219 | } |
| 6220 | |
| 6221 | sgc = rq->sd->groups->sgc; |
| 6222 | capacity += sgc->capacity; |
| 6223 | } |
| 6224 | } else { |
| 6225 | /* |
| 6226 | * !SD_OVERLAP domains can assume that child groups |
| 6227 | * span the current group. |
| 6228 | */ |
| 6229 | |
| 6230 | group = child->groups; |
| 6231 | do { |
| 6232 | capacity += group->sgc->capacity; |
| 6233 | group = group->next; |
| 6234 | } while (group != child->groups); |
| 6235 | } |
| 6236 | |
| 6237 | sdg->sgc->capacity = capacity; |
| 6238 | } |
| 6239 | |
| 6240 | /* |
| 6241 | * Check whether the capacity of the rq has been noticeably reduced by side |
| 6242 | * activity. The imbalance_pct is used for the threshold. |
| 6243 | * Return true is the capacity is reduced |
| 6244 | */ |
| 6245 | static inline int |
| 6246 | check_cpu_capacity(struct rq *rq, struct sched_domain *sd) |
| 6247 | { |
| 6248 | return ((rq->cpu_capacity * sd->imbalance_pct) < |
| 6249 | (rq->cpu_capacity_orig * 100)); |
| 6250 | } |
| 6251 | |
| 6252 | /* |
| 6253 | * Group imbalance indicates (and tries to solve) the problem where balancing |
| 6254 | * groups is inadequate due to tsk_cpus_allowed() constraints. |
| 6255 | * |
| 6256 | * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a |
| 6257 | * cpumask covering 1 cpu of the first group and 3 cpus of the second group. |
| 6258 | * Something like: |
| 6259 | * |
| 6260 | * { 0 1 2 3 } { 4 5 6 7 } |
| 6261 | * * * * * |
| 6262 | * |
| 6263 | * If we were to balance group-wise we'd place two tasks in the first group and |
| 6264 | * two tasks in the second group. Clearly this is undesired as it will overload |
| 6265 | * cpu 3 and leave one of the cpus in the second group unused. |
| 6266 | * |
| 6267 | * The current solution to this issue is detecting the skew in the first group |
| 6268 | * by noticing the lower domain failed to reach balance and had difficulty |
| 6269 | * moving tasks due to affinity constraints. |
| 6270 | * |
| 6271 | * When this is so detected; this group becomes a candidate for busiest; see |
| 6272 | * update_sd_pick_busiest(). And calculate_imbalance() and |
| 6273 | * find_busiest_group() avoid some of the usual balance conditions to allow it |
| 6274 | * to create an effective group imbalance. |
| 6275 | * |
| 6276 | * This is a somewhat tricky proposition since the next run might not find the |
| 6277 | * group imbalance and decide the groups need to be balanced again. A most |
| 6278 | * subtle and fragile situation. |
| 6279 | */ |
| 6280 | |
| 6281 | static inline int sg_imbalanced(struct sched_group *group) |
| 6282 | { |
| 6283 | return group->sgc->imbalance; |
| 6284 | } |
| 6285 | |
| 6286 | /* |
| 6287 | * group_has_capacity returns true if the group has spare capacity that could |
| 6288 | * be used by some tasks. |
| 6289 | * We consider that a group has spare capacity if the * number of task is |
| 6290 | * smaller than the number of CPUs or if the utilization is lower than the |
| 6291 | * available capacity for CFS tasks. |
| 6292 | * For the latter, we use a threshold to stabilize the state, to take into |
| 6293 | * account the variance of the tasks' load and to return true if the available |
| 6294 | * capacity in meaningful for the load balancer. |
| 6295 | * As an example, an available capacity of 1% can appear but it doesn't make |
| 6296 | * any benefit for the load balance. |
| 6297 | */ |
| 6298 | static inline bool |
| 6299 | group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) |
| 6300 | { |
| 6301 | if (sgs->sum_nr_running < sgs->group_weight) |
| 6302 | return true; |
| 6303 | |
| 6304 | if ((sgs->group_capacity * 100) > |
| 6305 | (sgs->group_util * env->sd->imbalance_pct)) |
| 6306 | return true; |
| 6307 | |
| 6308 | return false; |
| 6309 | } |
| 6310 | |
| 6311 | /* |
| 6312 | * group_is_overloaded returns true if the group has more tasks than it can |
| 6313 | * handle. |
| 6314 | * group_is_overloaded is not equals to !group_has_capacity because a group |
| 6315 | * with the exact right number of tasks, has no more spare capacity but is not |
| 6316 | * overloaded so both group_has_capacity and group_is_overloaded return |
| 6317 | * false. |
| 6318 | */ |
| 6319 | static inline bool |
| 6320 | group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) |
| 6321 | { |
| 6322 | if (sgs->sum_nr_running <= sgs->group_weight) |
| 6323 | return false; |
| 6324 | |
| 6325 | if ((sgs->group_capacity * 100) < |
| 6326 | (sgs->group_util * env->sd->imbalance_pct)) |
| 6327 | return true; |
| 6328 | |
| 6329 | return false; |
| 6330 | } |
| 6331 | |
| 6332 | static inline enum |
| 6333 | group_type group_classify(struct sched_group *group, |
| 6334 | struct sg_lb_stats *sgs) |
| 6335 | { |
| 6336 | if (sgs->group_no_capacity) |
| 6337 | return group_overloaded; |
| 6338 | |
| 6339 | if (sg_imbalanced(group)) |
| 6340 | return group_imbalanced; |
| 6341 | |
| 6342 | return group_other; |
| 6343 | } |
| 6344 | |
| 6345 | /** |
| 6346 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. |
| 6347 | * @env: The load balancing environment. |
| 6348 | * @group: sched_group whose statistics are to be updated. |
| 6349 | * @load_idx: Load index of sched_domain of this_cpu for load calc. |
| 6350 | * @local_group: Does group contain this_cpu. |
| 6351 | * @sgs: variable to hold the statistics for this group. |
| 6352 | * @overload: Indicate more than one runnable task for any CPU. |
| 6353 | */ |
| 6354 | static inline void update_sg_lb_stats(struct lb_env *env, |
| 6355 | struct sched_group *group, int load_idx, |
| 6356 | int local_group, struct sg_lb_stats *sgs, |
| 6357 | bool *overload) |
| 6358 | { |
| 6359 | unsigned long load; |
| 6360 | int i; |
| 6361 | |
| 6362 | memset(sgs, 0, sizeof(*sgs)); |
| 6363 | |
| 6364 | for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { |
| 6365 | struct rq *rq = cpu_rq(i); |
| 6366 | |
| 6367 | /* Bias balancing toward cpus of our domain */ |
| 6368 | if (local_group) |
| 6369 | load = target_load(i, load_idx); |
| 6370 | else |
| 6371 | load = source_load(i, load_idx); |
| 6372 | |
| 6373 | sgs->group_load += load; |
| 6374 | sgs->group_util += cpu_util(i); |
| 6375 | sgs->sum_nr_running += rq->cfs.h_nr_running; |
| 6376 | |
| 6377 | if (rq->nr_running > 1) |
| 6378 | *overload = true; |
| 6379 | |
| 6380 | #ifdef CONFIG_NUMA_BALANCING |
| 6381 | sgs->nr_numa_running += rq->nr_numa_running; |
| 6382 | sgs->nr_preferred_running += rq->nr_preferred_running; |
| 6383 | #endif |
| 6384 | sgs->sum_weighted_load += weighted_cpuload(i); |
| 6385 | if (idle_cpu(i)) |
| 6386 | sgs->idle_cpus++; |
| 6387 | } |
| 6388 | |
| 6389 | /* Adjust by relative CPU capacity of the group */ |
| 6390 | sgs->group_capacity = group->sgc->capacity; |
| 6391 | sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; |
| 6392 | |
| 6393 | if (sgs->sum_nr_running) |
| 6394 | sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; |
| 6395 | |
| 6396 | sgs->group_weight = group->group_weight; |
| 6397 | |
| 6398 | sgs->group_no_capacity = group_is_overloaded(env, sgs); |
| 6399 | sgs->group_type = group_classify(group, sgs); |
| 6400 | } |
| 6401 | |
| 6402 | /** |
| 6403 | * update_sd_pick_busiest - return 1 on busiest group |
| 6404 | * @env: The load balancing environment. |
| 6405 | * @sds: sched_domain statistics |
| 6406 | * @sg: sched_group candidate to be checked for being the busiest |
| 6407 | * @sgs: sched_group statistics |
| 6408 | * |
| 6409 | * Determine if @sg is a busier group than the previously selected |
| 6410 | * busiest group. |
| 6411 | * |
| 6412 | * Return: %true if @sg is a busier group than the previously selected |
| 6413 | * busiest group. %false otherwise. |
| 6414 | */ |
| 6415 | static bool update_sd_pick_busiest(struct lb_env *env, |
| 6416 | struct sd_lb_stats *sds, |
| 6417 | struct sched_group *sg, |
| 6418 | struct sg_lb_stats *sgs) |
| 6419 | { |
| 6420 | struct sg_lb_stats *busiest = &sds->busiest_stat; |
| 6421 | |
| 6422 | if (sgs->group_type > busiest->group_type) |
| 6423 | return true; |
| 6424 | |
| 6425 | if (sgs->group_type < busiest->group_type) |
| 6426 | return false; |
| 6427 | |
| 6428 | if (sgs->avg_load <= busiest->avg_load) |
| 6429 | return false; |
| 6430 | |
| 6431 | /* This is the busiest node in its class. */ |
| 6432 | if (!(env->sd->flags & SD_ASYM_PACKING)) |
| 6433 | return true; |
| 6434 | |
| 6435 | /* |
| 6436 | * ASYM_PACKING needs to move all the work to the lowest |
| 6437 | * numbered CPUs in the group, therefore mark all groups |
| 6438 | * higher than ourself as busy. |
| 6439 | */ |
| 6440 | if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { |
| 6441 | if (!sds->busiest) |
| 6442 | return true; |
| 6443 | |
| 6444 | if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) |
| 6445 | return true; |
| 6446 | } |
| 6447 | |
| 6448 | return false; |
| 6449 | } |
| 6450 | |
| 6451 | #ifdef CONFIG_NUMA_BALANCING |
| 6452 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) |
| 6453 | { |
| 6454 | if (sgs->sum_nr_running > sgs->nr_numa_running) |
| 6455 | return regular; |
| 6456 | if (sgs->sum_nr_running > sgs->nr_preferred_running) |
| 6457 | return remote; |
| 6458 | return all; |
| 6459 | } |
| 6460 | |
| 6461 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) |
| 6462 | { |
| 6463 | if (rq->nr_running > rq->nr_numa_running) |
| 6464 | return regular; |
| 6465 | if (rq->nr_running > rq->nr_preferred_running) |
| 6466 | return remote; |
| 6467 | return all; |
| 6468 | } |
| 6469 | #else |
| 6470 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) |
| 6471 | { |
| 6472 | return all; |
| 6473 | } |
| 6474 | |
| 6475 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) |
| 6476 | { |
| 6477 | return regular; |
| 6478 | } |
| 6479 | #endif /* CONFIG_NUMA_BALANCING */ |
| 6480 | |
| 6481 | /** |
| 6482 | * update_sd_lb_stats - Update sched_domain's statistics for load balancing. |
| 6483 | * @env: The load balancing environment. |
| 6484 | * @sds: variable to hold the statistics for this sched_domain. |
| 6485 | */ |
| 6486 | static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) |
| 6487 | { |
| 6488 | struct sched_domain *child = env->sd->child; |
| 6489 | struct sched_group *sg = env->sd->groups; |
| 6490 | struct sg_lb_stats tmp_sgs; |
| 6491 | int load_idx, prefer_sibling = 0; |
| 6492 | bool overload = false; |
| 6493 | |
| 6494 | if (child && child->flags & SD_PREFER_SIBLING) |
| 6495 | prefer_sibling = 1; |
| 6496 | |
| 6497 | load_idx = get_sd_load_idx(env->sd, env->idle); |
| 6498 | |
| 6499 | do { |
| 6500 | struct sg_lb_stats *sgs = &tmp_sgs; |
| 6501 | int local_group; |
| 6502 | |
| 6503 | local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); |
| 6504 | if (local_group) { |
| 6505 | sds->local = sg; |
| 6506 | sgs = &sds->local_stat; |
| 6507 | |
| 6508 | if (env->idle != CPU_NEWLY_IDLE || |
| 6509 | time_after_eq(jiffies, sg->sgc->next_update)) |
| 6510 | update_group_capacity(env->sd, env->dst_cpu); |
| 6511 | } |
| 6512 | |
| 6513 | update_sg_lb_stats(env, sg, load_idx, local_group, sgs, |
| 6514 | &overload); |
| 6515 | |
| 6516 | if (local_group) |
| 6517 | goto next_group; |
| 6518 | |
| 6519 | /* |
| 6520 | * In case the child domain prefers tasks go to siblings |
| 6521 | * first, lower the sg capacity so that we'll try |
| 6522 | * and move all the excess tasks away. We lower the capacity |
| 6523 | * of a group only if the local group has the capacity to fit |
| 6524 | * these excess tasks. The extra check prevents the case where |
| 6525 | * you always pull from the heaviest group when it is already |
| 6526 | * under-utilized (possible with a large weight task outweighs |
| 6527 | * the tasks on the system). |
| 6528 | */ |
| 6529 | if (prefer_sibling && sds->local && |
| 6530 | group_has_capacity(env, &sds->local_stat) && |
| 6531 | (sgs->sum_nr_running > 1)) { |
| 6532 | sgs->group_no_capacity = 1; |
| 6533 | sgs->group_type = group_classify(sg, sgs); |
| 6534 | } |
| 6535 | |
| 6536 | if (update_sd_pick_busiest(env, sds, sg, sgs)) { |
| 6537 | sds->busiest = sg; |
| 6538 | sds->busiest_stat = *sgs; |
| 6539 | } |
| 6540 | |
| 6541 | next_group: |
| 6542 | /* Now, start updating sd_lb_stats */ |
| 6543 | sds->total_load += sgs->group_load; |
| 6544 | sds->total_capacity += sgs->group_capacity; |
| 6545 | |
| 6546 | sg = sg->next; |
| 6547 | } while (sg != env->sd->groups); |
| 6548 | |
| 6549 | if (env->sd->flags & SD_NUMA) |
| 6550 | env->fbq_type = fbq_classify_group(&sds->busiest_stat); |
| 6551 | |
| 6552 | if (!env->sd->parent) { |
| 6553 | /* update overload indicator if we are at root domain */ |
| 6554 | if (env->dst_rq->rd->overload != overload) |
| 6555 | env->dst_rq->rd->overload = overload; |
| 6556 | } |
| 6557 | |
| 6558 | } |
| 6559 | |
| 6560 | /** |
| 6561 | * check_asym_packing - Check to see if the group is packed into the |
| 6562 | * sched doman. |
| 6563 | * |
| 6564 | * This is primarily intended to used at the sibling level. Some |
| 6565 | * cores like POWER7 prefer to use lower numbered SMT threads. In the |
| 6566 | * case of POWER7, it can move to lower SMT modes only when higher |
| 6567 | * threads are idle. When in lower SMT modes, the threads will |
| 6568 | * perform better since they share less core resources. Hence when we |
| 6569 | * have idle threads, we want them to be the higher ones. |
| 6570 | * |
| 6571 | * This packing function is run on idle threads. It checks to see if |
| 6572 | * the busiest CPU in this domain (core in the P7 case) has a higher |
| 6573 | * CPU number than the packing function is being run on. Here we are |
| 6574 | * assuming lower CPU number will be equivalent to lower a SMT thread |
| 6575 | * number. |
| 6576 | * |
| 6577 | * Return: 1 when packing is required and a task should be moved to |
| 6578 | * this CPU. The amount of the imbalance is returned in *imbalance. |
| 6579 | * |
| 6580 | * @env: The load balancing environment. |
| 6581 | * @sds: Statistics of the sched_domain which is to be packed |
| 6582 | */ |
| 6583 | static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) |
| 6584 | { |
| 6585 | int busiest_cpu; |
| 6586 | |
| 6587 | if (!(env->sd->flags & SD_ASYM_PACKING)) |
| 6588 | return 0; |
| 6589 | |
| 6590 | if (!sds->busiest) |
| 6591 | return 0; |
| 6592 | |
| 6593 | busiest_cpu = group_first_cpu(sds->busiest); |
| 6594 | if (env->dst_cpu > busiest_cpu) |
| 6595 | return 0; |
| 6596 | |
| 6597 | env->imbalance = DIV_ROUND_CLOSEST( |
| 6598 | sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, |
| 6599 | SCHED_CAPACITY_SCALE); |
| 6600 | |
| 6601 | return 1; |
| 6602 | } |
| 6603 | |
| 6604 | /** |
| 6605 | * fix_small_imbalance - Calculate the minor imbalance that exists |
| 6606 | * amongst the groups of a sched_domain, during |
| 6607 | * load balancing. |
| 6608 | * @env: The load balancing environment. |
| 6609 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. |
| 6610 | */ |
| 6611 | static inline |
| 6612 | void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) |
| 6613 | { |
| 6614 | unsigned long tmp, capa_now = 0, capa_move = 0; |
| 6615 | unsigned int imbn = 2; |
| 6616 | unsigned long scaled_busy_load_per_task; |
| 6617 | struct sg_lb_stats *local, *busiest; |
| 6618 | |
| 6619 | local = &sds->local_stat; |
| 6620 | busiest = &sds->busiest_stat; |
| 6621 | |
| 6622 | if (!local->sum_nr_running) |
| 6623 | local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); |
| 6624 | else if (busiest->load_per_task > local->load_per_task) |
| 6625 | imbn = 1; |
| 6626 | |
| 6627 | scaled_busy_load_per_task = |
| 6628 | (busiest->load_per_task * SCHED_CAPACITY_SCALE) / |
| 6629 | busiest->group_capacity; |
| 6630 | |
| 6631 | if (busiest->avg_load + scaled_busy_load_per_task >= |
| 6632 | local->avg_load + (scaled_busy_load_per_task * imbn)) { |
| 6633 | env->imbalance = busiest->load_per_task; |
| 6634 | return; |
| 6635 | } |
| 6636 | |
| 6637 | /* |
| 6638 | * OK, we don't have enough imbalance to justify moving tasks, |
| 6639 | * however we may be able to increase total CPU capacity used by |
| 6640 | * moving them. |
| 6641 | */ |
| 6642 | |
| 6643 | capa_now += busiest->group_capacity * |
| 6644 | min(busiest->load_per_task, busiest->avg_load); |
| 6645 | capa_now += local->group_capacity * |
| 6646 | min(local->load_per_task, local->avg_load); |
| 6647 | capa_now /= SCHED_CAPACITY_SCALE; |
| 6648 | |
| 6649 | /* Amount of load we'd subtract */ |
| 6650 | if (busiest->avg_load > scaled_busy_load_per_task) { |
| 6651 | capa_move += busiest->group_capacity * |
| 6652 | min(busiest->load_per_task, |
| 6653 | busiest->avg_load - scaled_busy_load_per_task); |
| 6654 | } |
| 6655 | |
| 6656 | /* Amount of load we'd add */ |
| 6657 | if (busiest->avg_load * busiest->group_capacity < |
| 6658 | busiest->load_per_task * SCHED_CAPACITY_SCALE) { |
| 6659 | tmp = (busiest->avg_load * busiest->group_capacity) / |
| 6660 | local->group_capacity; |
| 6661 | } else { |
| 6662 | tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / |
| 6663 | local->group_capacity; |
| 6664 | } |
| 6665 | capa_move += local->group_capacity * |
| 6666 | min(local->load_per_task, local->avg_load + tmp); |
| 6667 | capa_move /= SCHED_CAPACITY_SCALE; |
| 6668 | |
| 6669 | /* Move if we gain throughput */ |
| 6670 | if (capa_move > capa_now) |
| 6671 | env->imbalance = busiest->load_per_task; |
| 6672 | } |
| 6673 | |
| 6674 | /** |
| 6675 | * calculate_imbalance - Calculate the amount of imbalance present within the |
| 6676 | * groups of a given sched_domain during load balance. |
| 6677 | * @env: load balance environment |
| 6678 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. |
| 6679 | */ |
| 6680 | static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) |
| 6681 | { |
| 6682 | unsigned long max_pull, load_above_capacity = ~0UL; |
| 6683 | struct sg_lb_stats *local, *busiest; |
| 6684 | |
| 6685 | local = &sds->local_stat; |
| 6686 | busiest = &sds->busiest_stat; |
| 6687 | |
| 6688 | if (busiest->group_type == group_imbalanced) { |
| 6689 | /* |
| 6690 | * In the group_imb case we cannot rely on group-wide averages |
| 6691 | * to ensure cpu-load equilibrium, look at wider averages. XXX |
| 6692 | */ |
| 6693 | busiest->load_per_task = |
| 6694 | min(busiest->load_per_task, sds->avg_load); |
| 6695 | } |
| 6696 | |
| 6697 | /* |
| 6698 | * In the presence of smp nice balancing, certain scenarios can have |
| 6699 | * max load less than avg load(as we skip the groups at or below |
| 6700 | * its cpu_capacity, while calculating max_load..) |
| 6701 | */ |
| 6702 | if (busiest->avg_load <= sds->avg_load || |
| 6703 | local->avg_load >= sds->avg_load) { |
| 6704 | env->imbalance = 0; |
| 6705 | return fix_small_imbalance(env, sds); |
| 6706 | } |
| 6707 | |
| 6708 | /* |
| 6709 | * If there aren't any idle cpus, avoid creating some. |
| 6710 | */ |
| 6711 | if (busiest->group_type == group_overloaded && |
| 6712 | local->group_type == group_overloaded) { |
| 6713 | load_above_capacity = busiest->sum_nr_running * |
| 6714 | SCHED_LOAD_SCALE; |
| 6715 | if (load_above_capacity > busiest->group_capacity) |
| 6716 | load_above_capacity -= busiest->group_capacity; |
| 6717 | else |
| 6718 | load_above_capacity = ~0UL; |
| 6719 | } |
| 6720 | |
| 6721 | /* |
| 6722 | * We're trying to get all the cpus to the average_load, so we don't |
| 6723 | * want to push ourselves above the average load, nor do we wish to |
| 6724 | * reduce the max loaded cpu below the average load. At the same time, |
| 6725 | * we also don't want to reduce the group load below the group capacity |
| 6726 | * (so that we can implement power-savings policies etc). Thus we look |
| 6727 | * for the minimum possible imbalance. |
| 6728 | */ |
| 6729 | max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); |
| 6730 | |
| 6731 | /* How much load to actually move to equalise the imbalance */ |
| 6732 | env->imbalance = min( |
| 6733 | max_pull * busiest->group_capacity, |
| 6734 | (sds->avg_load - local->avg_load) * local->group_capacity |
| 6735 | ) / SCHED_CAPACITY_SCALE; |
| 6736 | |
| 6737 | /* |
| 6738 | * if *imbalance is less than the average load per runnable task |
| 6739 | * there is no guarantee that any tasks will be moved so we'll have |
| 6740 | * a think about bumping its value to force at least one task to be |
| 6741 | * moved |
| 6742 | */ |
| 6743 | if (env->imbalance < busiest->load_per_task) |
| 6744 | return fix_small_imbalance(env, sds); |
| 6745 | } |
| 6746 | |
| 6747 | /******* find_busiest_group() helpers end here *********************/ |
| 6748 | |
| 6749 | /** |
| 6750 | * find_busiest_group - Returns the busiest group within the sched_domain |
| 6751 | * if there is an imbalance. If there isn't an imbalance, and |
| 6752 | * the user has opted for power-savings, it returns a group whose |
| 6753 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if |
| 6754 | * such a group exists. |
| 6755 | * |
| 6756 | * Also calculates the amount of weighted load which should be moved |
| 6757 | * to restore balance. |
| 6758 | * |
| 6759 | * @env: The load balancing environment. |
| 6760 | * |
| 6761 | * Return: - The busiest group if imbalance exists. |
| 6762 | * - If no imbalance and user has opted for power-savings balance, |
| 6763 | * return the least loaded group whose CPUs can be |
| 6764 | * put to idle by rebalancing its tasks onto our group. |
| 6765 | */ |
| 6766 | static struct sched_group *find_busiest_group(struct lb_env *env) |
| 6767 | { |
| 6768 | struct sg_lb_stats *local, *busiest; |
| 6769 | struct sd_lb_stats sds; |
| 6770 | |
| 6771 | init_sd_lb_stats(&sds); |
| 6772 | |
| 6773 | /* |
| 6774 | * Compute the various statistics relavent for load balancing at |
| 6775 | * this level. |
| 6776 | */ |
| 6777 | update_sd_lb_stats(env, &sds); |
| 6778 | local = &sds.local_stat; |
| 6779 | busiest = &sds.busiest_stat; |
| 6780 | |
| 6781 | /* ASYM feature bypasses nice load balance check */ |
| 6782 | if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && |
| 6783 | check_asym_packing(env, &sds)) |
| 6784 | return sds.busiest; |
| 6785 | |
| 6786 | /* There is no busy sibling group to pull tasks from */ |
| 6787 | if (!sds.busiest || busiest->sum_nr_running == 0) |
| 6788 | goto out_balanced; |
| 6789 | |
| 6790 | sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) |
| 6791 | / sds.total_capacity; |
| 6792 | |
| 6793 | /* |
| 6794 | * If the busiest group is imbalanced the below checks don't |
| 6795 | * work because they assume all things are equal, which typically |
| 6796 | * isn't true due to cpus_allowed constraints and the like. |
| 6797 | */ |
| 6798 | if (busiest->group_type == group_imbalanced) |
| 6799 | goto force_balance; |
| 6800 | |
| 6801 | /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ |
| 6802 | if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && |
| 6803 | busiest->group_no_capacity) |
| 6804 | goto force_balance; |
| 6805 | |
| 6806 | /* |
| 6807 | * If the local group is busier than the selected busiest group |
| 6808 | * don't try and pull any tasks. |
| 6809 | */ |
| 6810 | if (local->avg_load >= busiest->avg_load) |
| 6811 | goto out_balanced; |
| 6812 | |
| 6813 | /* |
| 6814 | * Don't pull any tasks if this group is already above the domain |
| 6815 | * average load. |
| 6816 | */ |
| 6817 | if (local->avg_load >= sds.avg_load) |
| 6818 | goto out_balanced; |
| 6819 | |
| 6820 | if (env->idle == CPU_IDLE) { |
| 6821 | /* |
| 6822 | * This cpu is idle. If the busiest group is not overloaded |
| 6823 | * and there is no imbalance between this and busiest group |
| 6824 | * wrt idle cpus, it is balanced. The imbalance becomes |
| 6825 | * significant if the diff is greater than 1 otherwise we |
| 6826 | * might end up to just move the imbalance on another group |
| 6827 | */ |
| 6828 | if ((busiest->group_type != group_overloaded) && |
| 6829 | (local->idle_cpus <= (busiest->idle_cpus + 1))) |
| 6830 | goto out_balanced; |
| 6831 | } else { |
| 6832 | /* |
| 6833 | * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use |
| 6834 | * imbalance_pct to be conservative. |
| 6835 | */ |
| 6836 | if (100 * busiest->avg_load <= |
| 6837 | env->sd->imbalance_pct * local->avg_load) |
| 6838 | goto out_balanced; |
| 6839 | } |
| 6840 | |
| 6841 | force_balance: |
| 6842 | /* Looks like there is an imbalance. Compute it */ |
| 6843 | calculate_imbalance(env, &sds); |
| 6844 | return sds.busiest; |
| 6845 | |
| 6846 | out_balanced: |
| 6847 | env->imbalance = 0; |
| 6848 | return NULL; |
| 6849 | } |
| 6850 | |
| 6851 | /* |
| 6852 | * find_busiest_queue - find the busiest runqueue among the cpus in group. |
| 6853 | */ |
| 6854 | static struct rq *find_busiest_queue(struct lb_env *env, |
| 6855 | struct sched_group *group) |
| 6856 | { |
| 6857 | struct rq *busiest = NULL, *rq; |
| 6858 | unsigned long busiest_load = 0, busiest_capacity = 1; |
| 6859 | int i; |
| 6860 | |
| 6861 | for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { |
| 6862 | unsigned long capacity, wl; |
| 6863 | enum fbq_type rt; |
| 6864 | |
| 6865 | rq = cpu_rq(i); |
| 6866 | rt = fbq_classify_rq(rq); |
| 6867 | |
| 6868 | /* |
| 6869 | * We classify groups/runqueues into three groups: |
| 6870 | * - regular: there are !numa tasks |
| 6871 | * - remote: there are numa tasks that run on the 'wrong' node |
| 6872 | * - all: there is no distinction |
| 6873 | * |
| 6874 | * In order to avoid migrating ideally placed numa tasks, |
| 6875 | * ignore those when there's better options. |
| 6876 | * |
| 6877 | * If we ignore the actual busiest queue to migrate another |
| 6878 | * task, the next balance pass can still reduce the busiest |
| 6879 | * queue by moving tasks around inside the node. |
| 6880 | * |
| 6881 | * If we cannot move enough load due to this classification |
| 6882 | * the next pass will adjust the group classification and |
| 6883 | * allow migration of more tasks. |
| 6884 | * |
| 6885 | * Both cases only affect the total convergence complexity. |
| 6886 | */ |
| 6887 | if (rt > env->fbq_type) |
| 6888 | continue; |
| 6889 | |
| 6890 | capacity = capacity_of(i); |
| 6891 | |
| 6892 | wl = weighted_cpuload(i); |
| 6893 | |
| 6894 | /* |
| 6895 | * When comparing with imbalance, use weighted_cpuload() |
| 6896 | * which is not scaled with the cpu capacity. |
| 6897 | */ |
| 6898 | |
| 6899 | if (rq->nr_running == 1 && wl > env->imbalance && |
| 6900 | !check_cpu_capacity(rq, env->sd)) |
| 6901 | continue; |
| 6902 | |
| 6903 | /* |
| 6904 | * For the load comparisons with the other cpu's, consider |
| 6905 | * the weighted_cpuload() scaled with the cpu capacity, so |
| 6906 | * that the load can be moved away from the cpu that is |
| 6907 | * potentially running at a lower capacity. |
| 6908 | * |
| 6909 | * Thus we're looking for max(wl_i / capacity_i), crosswise |
| 6910 | * multiplication to rid ourselves of the division works out |
| 6911 | * to: wl_i * capacity_j > wl_j * capacity_i; where j is |
| 6912 | * our previous maximum. |
| 6913 | */ |
| 6914 | if (wl * busiest_capacity > busiest_load * capacity) { |
| 6915 | busiest_load = wl; |
| 6916 | busiest_capacity = capacity; |
| 6917 | busiest = rq; |
| 6918 | } |
| 6919 | } |
| 6920 | |
| 6921 | return busiest; |
| 6922 | } |
| 6923 | |
| 6924 | /* |
| 6925 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but |
| 6926 | * so long as it is large enough. |
| 6927 | */ |
| 6928 | #define MAX_PINNED_INTERVAL 512 |
| 6929 | |
| 6930 | /* Working cpumask for load_balance and load_balance_newidle. */ |
| 6931 | DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); |
| 6932 | |
| 6933 | static int need_active_balance(struct lb_env *env) |
| 6934 | { |
| 6935 | struct sched_domain *sd = env->sd; |
| 6936 | |
| 6937 | if (env->idle == CPU_NEWLY_IDLE) { |
| 6938 | |
| 6939 | /* |
| 6940 | * ASYM_PACKING needs to force migrate tasks from busy but |
| 6941 | * higher numbered CPUs in order to pack all tasks in the |
| 6942 | * lowest numbered CPUs. |
| 6943 | */ |
| 6944 | if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) |
| 6945 | return 1; |
| 6946 | } |
| 6947 | |
| 6948 | /* |
| 6949 | * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. |
| 6950 | * It's worth migrating the task if the src_cpu's capacity is reduced |
| 6951 | * because of other sched_class or IRQs if more capacity stays |
| 6952 | * available on dst_cpu. |
| 6953 | */ |
| 6954 | if ((env->idle != CPU_NOT_IDLE) && |
| 6955 | (env->src_rq->cfs.h_nr_running == 1)) { |
| 6956 | if ((check_cpu_capacity(env->src_rq, sd)) && |
| 6957 | (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) |
| 6958 | return 1; |
| 6959 | } |
| 6960 | |
| 6961 | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); |
| 6962 | } |
| 6963 | |
| 6964 | static int active_load_balance_cpu_stop(void *data); |
| 6965 | |
| 6966 | static int should_we_balance(struct lb_env *env) |
| 6967 | { |
| 6968 | struct sched_group *sg = env->sd->groups; |
| 6969 | struct cpumask *sg_cpus, *sg_mask; |
| 6970 | int cpu, balance_cpu = -1; |
| 6971 | |
| 6972 | /* |
| 6973 | * In the newly idle case, we will allow all the cpu's |
| 6974 | * to do the newly idle load balance. |
| 6975 | */ |
| 6976 | if (env->idle == CPU_NEWLY_IDLE) |
| 6977 | return 1; |
| 6978 | |
| 6979 | sg_cpus = sched_group_cpus(sg); |
| 6980 | sg_mask = sched_group_mask(sg); |
| 6981 | /* Try to find first idle cpu */ |
| 6982 | for_each_cpu_and(cpu, sg_cpus, env->cpus) { |
| 6983 | if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) |
| 6984 | continue; |
| 6985 | |
| 6986 | balance_cpu = cpu; |
| 6987 | break; |
| 6988 | } |
| 6989 | |
| 6990 | if (balance_cpu == -1) |
| 6991 | balance_cpu = group_balance_cpu(sg); |
| 6992 | |
| 6993 | /* |
| 6994 | * First idle cpu or the first cpu(busiest) in this sched group |
| 6995 | * is eligible for doing load balancing at this and above domains. |
| 6996 | */ |
| 6997 | return balance_cpu == env->dst_cpu; |
| 6998 | } |
| 6999 | |
| 7000 | /* |
| 7001 | * Check this_cpu to ensure it is balanced within domain. Attempt to move |
| 7002 | * tasks if there is an imbalance. |
| 7003 | */ |
| 7004 | static int load_balance(int this_cpu, struct rq *this_rq, |
| 7005 | struct sched_domain *sd, enum cpu_idle_type idle, |
| 7006 | int *continue_balancing) |
| 7007 | { |
| 7008 | int ld_moved, cur_ld_moved, active_balance = 0; |
| 7009 | struct sched_domain *sd_parent = sd->parent; |
| 7010 | struct sched_group *group; |
| 7011 | struct rq *busiest; |
| 7012 | unsigned long flags; |
| 7013 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); |
| 7014 | |
| 7015 | struct lb_env env = { |
| 7016 | .sd = sd, |
| 7017 | .dst_cpu = this_cpu, |
| 7018 | .dst_rq = this_rq, |
| 7019 | .dst_grpmask = sched_group_cpus(sd->groups), |
| 7020 | .idle = idle, |
| 7021 | .loop_break = sched_nr_migrate_break, |
| 7022 | .cpus = cpus, |
| 7023 | .fbq_type = all, |
| 7024 | .tasks = LIST_HEAD_INIT(env.tasks), |
| 7025 | }; |
| 7026 | |
| 7027 | /* |
| 7028 | * For NEWLY_IDLE load_balancing, we don't need to consider |
| 7029 | * other cpus in our group |
| 7030 | */ |
| 7031 | if (idle == CPU_NEWLY_IDLE) |
| 7032 | env.dst_grpmask = NULL; |
| 7033 | |
| 7034 | cpumask_copy(cpus, cpu_active_mask); |
| 7035 | |
| 7036 | schedstat_inc(sd, lb_count[idle]); |
| 7037 | |
| 7038 | redo: |
| 7039 | if (!should_we_balance(&env)) { |
| 7040 | *continue_balancing = 0; |
| 7041 | goto out_balanced; |
| 7042 | } |
| 7043 | |
| 7044 | group = find_busiest_group(&env); |
| 7045 | if (!group) { |
| 7046 | schedstat_inc(sd, lb_nobusyg[idle]); |
| 7047 | goto out_balanced; |
| 7048 | } |
| 7049 | |
| 7050 | busiest = find_busiest_queue(&env, group); |
| 7051 | if (!busiest) { |
| 7052 | schedstat_inc(sd, lb_nobusyq[idle]); |
| 7053 | goto out_balanced; |
| 7054 | } |
| 7055 | |
| 7056 | BUG_ON(busiest == env.dst_rq); |
| 7057 | |
| 7058 | schedstat_add(sd, lb_imbalance[idle], env.imbalance); |
| 7059 | |
| 7060 | env.src_cpu = busiest->cpu; |
| 7061 | env.src_rq = busiest; |
| 7062 | |
| 7063 | ld_moved = 0; |
| 7064 | if (busiest->nr_running > 1) { |
| 7065 | /* |
| 7066 | * Attempt to move tasks. If find_busiest_group has found |
| 7067 | * an imbalance but busiest->nr_running <= 1, the group is |
| 7068 | * still unbalanced. ld_moved simply stays zero, so it is |
| 7069 | * correctly treated as an imbalance. |
| 7070 | */ |
| 7071 | env.flags |= LBF_ALL_PINNED; |
| 7072 | env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); |
| 7073 | |
| 7074 | more_balance: |
| 7075 | raw_spin_lock_irqsave(&busiest->lock, flags); |
| 7076 | |
| 7077 | /* |
| 7078 | * cur_ld_moved - load moved in current iteration |
| 7079 | * ld_moved - cumulative load moved across iterations |
| 7080 | */ |
| 7081 | cur_ld_moved = detach_tasks(&env); |
| 7082 | |
| 7083 | /* |
| 7084 | * We've detached some tasks from busiest_rq. Every |
| 7085 | * task is masked "TASK_ON_RQ_MIGRATING", so we can safely |
| 7086 | * unlock busiest->lock, and we are able to be sure |
| 7087 | * that nobody can manipulate the tasks in parallel. |
| 7088 | * See task_rq_lock() family for the details. |
| 7089 | */ |
| 7090 | |
| 7091 | raw_spin_unlock(&busiest->lock); |
| 7092 | |
| 7093 | if (cur_ld_moved) { |
| 7094 | attach_tasks(&env); |
| 7095 | ld_moved += cur_ld_moved; |
| 7096 | } |
| 7097 | |
| 7098 | local_irq_restore(flags); |
| 7099 | |
| 7100 | if (env.flags & LBF_NEED_BREAK) { |
| 7101 | env.flags &= ~LBF_NEED_BREAK; |
| 7102 | goto more_balance; |
| 7103 | } |
| 7104 | |
| 7105 | /* |
| 7106 | * Revisit (affine) tasks on src_cpu that couldn't be moved to |
| 7107 | * us and move them to an alternate dst_cpu in our sched_group |
| 7108 | * where they can run. The upper limit on how many times we |
| 7109 | * iterate on same src_cpu is dependent on number of cpus in our |
| 7110 | * sched_group. |
| 7111 | * |
| 7112 | * This changes load balance semantics a bit on who can move |
| 7113 | * load to a given_cpu. In addition to the given_cpu itself |
| 7114 | * (or a ilb_cpu acting on its behalf where given_cpu is |
| 7115 | * nohz-idle), we now have balance_cpu in a position to move |
| 7116 | * load to given_cpu. In rare situations, this may cause |
| 7117 | * conflicts (balance_cpu and given_cpu/ilb_cpu deciding |
| 7118 | * _independently_ and at _same_ time to move some load to |
| 7119 | * given_cpu) causing exceess load to be moved to given_cpu. |
| 7120 | * This however should not happen so much in practice and |
| 7121 | * moreover subsequent load balance cycles should correct the |
| 7122 | * excess load moved. |
| 7123 | */ |
| 7124 | if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { |
| 7125 | |
| 7126 | /* Prevent to re-select dst_cpu via env's cpus */ |
| 7127 | cpumask_clear_cpu(env.dst_cpu, env.cpus); |
| 7128 | |
| 7129 | env.dst_rq = cpu_rq(env.new_dst_cpu); |
| 7130 | env.dst_cpu = env.new_dst_cpu; |
| 7131 | env.flags &= ~LBF_DST_PINNED; |
| 7132 | env.loop = 0; |
| 7133 | env.loop_break = sched_nr_migrate_break; |
| 7134 | |
| 7135 | /* |
| 7136 | * Go back to "more_balance" rather than "redo" since we |
| 7137 | * need to continue with same src_cpu. |
| 7138 | */ |
| 7139 | goto more_balance; |
| 7140 | } |
| 7141 | |
| 7142 | /* |
| 7143 | * We failed to reach balance because of affinity. |
| 7144 | */ |
| 7145 | if (sd_parent) { |
| 7146 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
| 7147 | |
| 7148 | if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) |
| 7149 | *group_imbalance = 1; |
| 7150 | } |
| 7151 | |
| 7152 | /* All tasks on this runqueue were pinned by CPU affinity */ |
| 7153 | if (unlikely(env.flags & LBF_ALL_PINNED)) { |
| 7154 | cpumask_clear_cpu(cpu_of(busiest), cpus); |
| 7155 | if (!cpumask_empty(cpus)) { |
| 7156 | env.loop = 0; |
| 7157 | env.loop_break = sched_nr_migrate_break; |
| 7158 | goto redo; |
| 7159 | } |
| 7160 | goto out_all_pinned; |
| 7161 | } |
| 7162 | } |
| 7163 | |
| 7164 | if (!ld_moved) { |
| 7165 | schedstat_inc(sd, lb_failed[idle]); |
| 7166 | /* |
| 7167 | * Increment the failure counter only on periodic balance. |
| 7168 | * We do not want newidle balance, which can be very |
| 7169 | * frequent, pollute the failure counter causing |
| 7170 | * excessive cache_hot migrations and active balances. |
| 7171 | */ |
| 7172 | if (idle != CPU_NEWLY_IDLE) |
| 7173 | sd->nr_balance_failed++; |
| 7174 | |
| 7175 | if (need_active_balance(&env)) { |
| 7176 | raw_spin_lock_irqsave(&busiest->lock, flags); |
| 7177 | |
| 7178 | /* don't kick the active_load_balance_cpu_stop, |
| 7179 | * if the curr task on busiest cpu can't be |
| 7180 | * moved to this_cpu |
| 7181 | */ |
| 7182 | if (!cpumask_test_cpu(this_cpu, |
| 7183 | tsk_cpus_allowed(busiest->curr))) { |
| 7184 | raw_spin_unlock_irqrestore(&busiest->lock, |
| 7185 | flags); |
| 7186 | env.flags |= LBF_ALL_PINNED; |
| 7187 | goto out_one_pinned; |
| 7188 | } |
| 7189 | |
| 7190 | /* |
| 7191 | * ->active_balance synchronizes accesses to |
| 7192 | * ->active_balance_work. Once set, it's cleared |
| 7193 | * only after active load balance is finished. |
| 7194 | */ |
| 7195 | if (!busiest->active_balance) { |
| 7196 | busiest->active_balance = 1; |
| 7197 | busiest->push_cpu = this_cpu; |
| 7198 | active_balance = 1; |
| 7199 | } |
| 7200 | raw_spin_unlock_irqrestore(&busiest->lock, flags); |
| 7201 | |
| 7202 | if (active_balance) { |
| 7203 | stop_one_cpu_nowait(cpu_of(busiest), |
| 7204 | active_load_balance_cpu_stop, busiest, |
| 7205 | &busiest->active_balance_work); |
| 7206 | } |
| 7207 | |
| 7208 | /* |
| 7209 | * We've kicked active balancing, reset the failure |
| 7210 | * counter. |
| 7211 | */ |
| 7212 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
| 7213 | } |
| 7214 | } else |
| 7215 | sd->nr_balance_failed = 0; |
| 7216 | |
| 7217 | if (likely(!active_balance)) { |
| 7218 | /* We were unbalanced, so reset the balancing interval */ |
| 7219 | sd->balance_interval = sd->min_interval; |
| 7220 | } else { |
| 7221 | /* |
| 7222 | * If we've begun active balancing, start to back off. This |
| 7223 | * case may not be covered by the all_pinned logic if there |
| 7224 | * is only 1 task on the busy runqueue (because we don't call |
| 7225 | * detach_tasks). |
| 7226 | */ |
| 7227 | if (sd->balance_interval < sd->max_interval) |
| 7228 | sd->balance_interval *= 2; |
| 7229 | } |
| 7230 | |
| 7231 | goto out; |
| 7232 | |
| 7233 | out_balanced: |
| 7234 | /* |
| 7235 | * We reach balance although we may have faced some affinity |
| 7236 | * constraints. Clear the imbalance flag if it was set. |
| 7237 | */ |
| 7238 | if (sd_parent) { |
| 7239 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
| 7240 | |
| 7241 | if (*group_imbalance) |
| 7242 | *group_imbalance = 0; |
| 7243 | } |
| 7244 | |
| 7245 | out_all_pinned: |
| 7246 | /* |
| 7247 | * We reach balance because all tasks are pinned at this level so |
| 7248 | * we can't migrate them. Let the imbalance flag set so parent level |
| 7249 | * can try to migrate them. |
| 7250 | */ |
| 7251 | schedstat_inc(sd, lb_balanced[idle]); |
| 7252 | |
| 7253 | sd->nr_balance_failed = 0; |
| 7254 | |
| 7255 | out_one_pinned: |
| 7256 | /* tune up the balancing interval */ |
| 7257 | if (((env.flags & LBF_ALL_PINNED) && |
| 7258 | sd->balance_interval < MAX_PINNED_INTERVAL) || |
| 7259 | (sd->balance_interval < sd->max_interval)) |
| 7260 | sd->balance_interval *= 2; |
| 7261 | |
| 7262 | ld_moved = 0; |
| 7263 | out: |
| 7264 | return ld_moved; |
| 7265 | } |
| 7266 | |
| 7267 | static inline unsigned long |
| 7268 | get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) |
| 7269 | { |
| 7270 | unsigned long interval = sd->balance_interval; |
| 7271 | |
| 7272 | if (cpu_busy) |
| 7273 | interval *= sd->busy_factor; |
| 7274 | |
| 7275 | /* scale ms to jiffies */ |
| 7276 | interval = msecs_to_jiffies(interval); |
| 7277 | interval = clamp(interval, 1UL, max_load_balance_interval); |
| 7278 | |
| 7279 | return interval; |
| 7280 | } |
| 7281 | |
| 7282 | static inline void |
| 7283 | update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) |
| 7284 | { |
| 7285 | unsigned long interval, next; |
| 7286 | |
| 7287 | interval = get_sd_balance_interval(sd, cpu_busy); |
| 7288 | next = sd->last_balance + interval; |
| 7289 | |
| 7290 | if (time_after(*next_balance, next)) |
| 7291 | *next_balance = next; |
| 7292 | } |
| 7293 | |
| 7294 | /* |
| 7295 | * idle_balance is called by schedule() if this_cpu is about to become |
| 7296 | * idle. Attempts to pull tasks from other CPUs. |
| 7297 | */ |
| 7298 | static int idle_balance(struct rq *this_rq) |
| 7299 | { |
| 7300 | unsigned long next_balance = jiffies + HZ; |
| 7301 | int this_cpu = this_rq->cpu; |
| 7302 | struct sched_domain *sd; |
| 7303 | int pulled_task = 0; |
| 7304 | u64 curr_cost = 0; |
| 7305 | |
| 7306 | idle_enter_fair(this_rq); |
| 7307 | |
| 7308 | /* |
| 7309 | * We must set idle_stamp _before_ calling idle_balance(), such that we |
| 7310 | * measure the duration of idle_balance() as idle time. |
| 7311 | */ |
| 7312 | this_rq->idle_stamp = rq_clock(this_rq); |
| 7313 | |
| 7314 | if (this_rq->avg_idle < sysctl_sched_migration_cost || |
| 7315 | !this_rq->rd->overload) { |
| 7316 | rcu_read_lock(); |
| 7317 | sd = rcu_dereference_check_sched_domain(this_rq->sd); |
| 7318 | if (sd) |
| 7319 | update_next_balance(sd, 0, &next_balance); |
| 7320 | rcu_read_unlock(); |
| 7321 | |
| 7322 | goto out; |
| 7323 | } |
| 7324 | |
| 7325 | raw_spin_unlock(&this_rq->lock); |
| 7326 | |
| 7327 | update_blocked_averages(this_cpu); |
| 7328 | rcu_read_lock(); |
| 7329 | for_each_domain(this_cpu, sd) { |
| 7330 | int continue_balancing = 1; |
| 7331 | u64 t0, domain_cost; |
| 7332 | |
| 7333 | if (!(sd->flags & SD_LOAD_BALANCE)) |
| 7334 | continue; |
| 7335 | |
| 7336 | if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { |
| 7337 | update_next_balance(sd, 0, &next_balance); |
| 7338 | break; |
| 7339 | } |
| 7340 | |
| 7341 | if (sd->flags & SD_BALANCE_NEWIDLE) { |
| 7342 | t0 = sched_clock_cpu(this_cpu); |
| 7343 | |
| 7344 | pulled_task = load_balance(this_cpu, this_rq, |
| 7345 | sd, CPU_NEWLY_IDLE, |
| 7346 | &continue_balancing); |
| 7347 | |
| 7348 | domain_cost = sched_clock_cpu(this_cpu) - t0; |
| 7349 | if (domain_cost > sd->max_newidle_lb_cost) |
| 7350 | sd->max_newidle_lb_cost = domain_cost; |
| 7351 | |
| 7352 | curr_cost += domain_cost; |
| 7353 | } |
| 7354 | |
| 7355 | update_next_balance(sd, 0, &next_balance); |
| 7356 | |
| 7357 | /* |
| 7358 | * Stop searching for tasks to pull if there are |
| 7359 | * now runnable tasks on this rq. |
| 7360 | */ |
| 7361 | if (pulled_task || this_rq->nr_running > 0) |
| 7362 | break; |
| 7363 | } |
| 7364 | rcu_read_unlock(); |
| 7365 | |
| 7366 | raw_spin_lock(&this_rq->lock); |
| 7367 | |
| 7368 | if (curr_cost > this_rq->max_idle_balance_cost) |
| 7369 | this_rq->max_idle_balance_cost = curr_cost; |
| 7370 | |
| 7371 | /* |
| 7372 | * While browsing the domains, we released the rq lock, a task could |
| 7373 | * have been enqueued in the meantime. Since we're not going idle, |
| 7374 | * pretend we pulled a task. |
| 7375 | */ |
| 7376 | if (this_rq->cfs.h_nr_running && !pulled_task) |
| 7377 | pulled_task = 1; |
| 7378 | |
| 7379 | out: |
| 7380 | /* Move the next balance forward */ |
| 7381 | if (time_after(this_rq->next_balance, next_balance)) |
| 7382 | this_rq->next_balance = next_balance; |
| 7383 | |
| 7384 | /* Is there a task of a high priority class? */ |
| 7385 | if (this_rq->nr_running != this_rq->cfs.h_nr_running) |
| 7386 | pulled_task = -1; |
| 7387 | |
| 7388 | if (pulled_task) { |
| 7389 | idle_exit_fair(this_rq); |
| 7390 | this_rq->idle_stamp = 0; |
| 7391 | } |
| 7392 | |
| 7393 | return pulled_task; |
| 7394 | } |
| 7395 | |
| 7396 | /* |
| 7397 | * active_load_balance_cpu_stop is run by cpu stopper. It pushes |
| 7398 | * running tasks off the busiest CPU onto idle CPUs. It requires at |
| 7399 | * least 1 task to be running on each physical CPU where possible, and |
| 7400 | * avoids physical / logical imbalances. |
| 7401 | */ |
| 7402 | static int active_load_balance_cpu_stop(void *data) |
| 7403 | { |
| 7404 | struct rq *busiest_rq = data; |
| 7405 | int busiest_cpu = cpu_of(busiest_rq); |
| 7406 | int target_cpu = busiest_rq->push_cpu; |
| 7407 | struct rq *target_rq = cpu_rq(target_cpu); |
| 7408 | struct sched_domain *sd; |
| 7409 | struct task_struct *p = NULL; |
| 7410 | |
| 7411 | raw_spin_lock_irq(&busiest_rq->lock); |
| 7412 | |
| 7413 | /* make sure the requested cpu hasn't gone down in the meantime */ |
| 7414 | if (unlikely(busiest_cpu != smp_processor_id() || |
| 7415 | !busiest_rq->active_balance)) |
| 7416 | goto out_unlock; |
| 7417 | |
| 7418 | /* Is there any task to move? */ |
| 7419 | if (busiest_rq->nr_running <= 1) |
| 7420 | goto out_unlock; |
| 7421 | |
| 7422 | /* |
| 7423 | * This condition is "impossible", if it occurs |
| 7424 | * we need to fix it. Originally reported by |
| 7425 | * Bjorn Helgaas on a 128-cpu setup. |
| 7426 | */ |
| 7427 | BUG_ON(busiest_rq == target_rq); |
| 7428 | |
| 7429 | /* Search for an sd spanning us and the target CPU. */ |
| 7430 | rcu_read_lock(); |
| 7431 | for_each_domain(target_cpu, sd) { |
| 7432 | if ((sd->flags & SD_LOAD_BALANCE) && |
| 7433 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) |
| 7434 | break; |
| 7435 | } |
| 7436 | |
| 7437 | if (likely(sd)) { |
| 7438 | struct lb_env env = { |
| 7439 | .sd = sd, |
| 7440 | .dst_cpu = target_cpu, |
| 7441 | .dst_rq = target_rq, |
| 7442 | .src_cpu = busiest_rq->cpu, |
| 7443 | .src_rq = busiest_rq, |
| 7444 | .idle = CPU_IDLE, |
| 7445 | }; |
| 7446 | |
| 7447 | schedstat_inc(sd, alb_count); |
| 7448 | |
| 7449 | p = detach_one_task(&env); |
| 7450 | if (p) |
| 7451 | schedstat_inc(sd, alb_pushed); |
| 7452 | else |
| 7453 | schedstat_inc(sd, alb_failed); |
| 7454 | } |
| 7455 | rcu_read_unlock(); |
| 7456 | out_unlock: |
| 7457 | busiest_rq->active_balance = 0; |
| 7458 | raw_spin_unlock(&busiest_rq->lock); |
| 7459 | |
| 7460 | if (p) |
| 7461 | attach_one_task(target_rq, p); |
| 7462 | |
| 7463 | local_irq_enable(); |
| 7464 | |
| 7465 | return 0; |
| 7466 | } |
| 7467 | |
| 7468 | static inline int on_null_domain(struct rq *rq) |
| 7469 | { |
| 7470 | return unlikely(!rcu_dereference_sched(rq->sd)); |
| 7471 | } |
| 7472 | |
| 7473 | #ifdef CONFIG_NO_HZ_COMMON |
| 7474 | /* |
| 7475 | * idle load balancing details |
| 7476 | * - When one of the busy CPUs notice that there may be an idle rebalancing |
| 7477 | * needed, they will kick the idle load balancer, which then does idle |
| 7478 | * load balancing for all the idle CPUs. |
| 7479 | */ |
| 7480 | static struct { |
| 7481 | cpumask_var_t idle_cpus_mask; |
| 7482 | atomic_t nr_cpus; |
| 7483 | unsigned long next_balance; /* in jiffy units */ |
| 7484 | } nohz ____cacheline_aligned; |
| 7485 | |
| 7486 | static inline int find_new_ilb(void) |
| 7487 | { |
| 7488 | int ilb = cpumask_first(nohz.idle_cpus_mask); |
| 7489 | |
| 7490 | if (ilb < nr_cpu_ids && idle_cpu(ilb)) |
| 7491 | return ilb; |
| 7492 | |
| 7493 | return nr_cpu_ids; |
| 7494 | } |
| 7495 | |
| 7496 | /* |
| 7497 | * Kick a CPU to do the nohz balancing, if it is time for it. We pick the |
| 7498 | * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle |
| 7499 | * CPU (if there is one). |
| 7500 | */ |
| 7501 | static void nohz_balancer_kick(void) |
| 7502 | { |
| 7503 | int ilb_cpu; |
| 7504 | |
| 7505 | nohz.next_balance++; |
| 7506 | |
| 7507 | ilb_cpu = find_new_ilb(); |
| 7508 | |
| 7509 | if (ilb_cpu >= nr_cpu_ids) |
| 7510 | return; |
| 7511 | |
| 7512 | if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) |
| 7513 | return; |
| 7514 | /* |
| 7515 | * Use smp_send_reschedule() instead of resched_cpu(). |
| 7516 | * This way we generate a sched IPI on the target cpu which |
| 7517 | * is idle. And the softirq performing nohz idle load balance |
| 7518 | * will be run before returning from the IPI. |
| 7519 | */ |
| 7520 | smp_send_reschedule(ilb_cpu); |
| 7521 | return; |
| 7522 | } |
| 7523 | |
| 7524 | static inline void nohz_balance_exit_idle(int cpu) |
| 7525 | { |
| 7526 | if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { |
| 7527 | /* |
| 7528 | * Completely isolated CPUs don't ever set, so we must test. |
| 7529 | */ |
| 7530 | if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { |
| 7531 | cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); |
| 7532 | atomic_dec(&nohz.nr_cpus); |
| 7533 | } |
| 7534 | clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); |
| 7535 | } |
| 7536 | } |
| 7537 | |
| 7538 | static inline void set_cpu_sd_state_busy(void) |
| 7539 | { |
| 7540 | struct sched_domain *sd; |
| 7541 | int cpu = smp_processor_id(); |
| 7542 | |
| 7543 | rcu_read_lock(); |
| 7544 | sd = rcu_dereference(per_cpu(sd_busy, cpu)); |
| 7545 | |
| 7546 | if (!sd || !sd->nohz_idle) |
| 7547 | goto unlock; |
| 7548 | sd->nohz_idle = 0; |
| 7549 | |
| 7550 | atomic_inc(&sd->groups->sgc->nr_busy_cpus); |
| 7551 | unlock: |
| 7552 | rcu_read_unlock(); |
| 7553 | } |
| 7554 | |
| 7555 | void set_cpu_sd_state_idle(void) |
| 7556 | { |
| 7557 | struct sched_domain *sd; |
| 7558 | int cpu = smp_processor_id(); |
| 7559 | |
| 7560 | rcu_read_lock(); |
| 7561 | sd = rcu_dereference(per_cpu(sd_busy, cpu)); |
| 7562 | |
| 7563 | if (!sd || sd->nohz_idle) |
| 7564 | goto unlock; |
| 7565 | sd->nohz_idle = 1; |
| 7566 | |
| 7567 | atomic_dec(&sd->groups->sgc->nr_busy_cpus); |
| 7568 | unlock: |
| 7569 | rcu_read_unlock(); |
| 7570 | } |
| 7571 | |
| 7572 | /* |
| 7573 | * This routine will record that the cpu is going idle with tick stopped. |
| 7574 | * This info will be used in performing idle load balancing in the future. |
| 7575 | */ |
| 7576 | void nohz_balance_enter_idle(int cpu) |
| 7577 | { |
| 7578 | /* |
| 7579 | * If this cpu is going down, then nothing needs to be done. |
| 7580 | */ |
| 7581 | if (!cpu_active(cpu)) |
| 7582 | return; |
| 7583 | |
| 7584 | if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) |
| 7585 | return; |
| 7586 | |
| 7587 | /* |
| 7588 | * If we're a completely isolated CPU, we don't play. |
| 7589 | */ |
| 7590 | if (on_null_domain(cpu_rq(cpu))) |
| 7591 | return; |
| 7592 | |
| 7593 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); |
| 7594 | atomic_inc(&nohz.nr_cpus); |
| 7595 | set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); |
| 7596 | } |
| 7597 | |
| 7598 | static int sched_ilb_notifier(struct notifier_block *nfb, |
| 7599 | unsigned long action, void *hcpu) |
| 7600 | { |
| 7601 | switch (action & ~CPU_TASKS_FROZEN) { |
| 7602 | case CPU_DYING: |
| 7603 | nohz_balance_exit_idle(smp_processor_id()); |
| 7604 | return NOTIFY_OK; |
| 7605 | default: |
| 7606 | return NOTIFY_DONE; |
| 7607 | } |
| 7608 | } |
| 7609 | #endif |
| 7610 | |
| 7611 | static DEFINE_SPINLOCK(balancing); |
| 7612 | |
| 7613 | /* |
| 7614 | * Scale the max load_balance interval with the number of CPUs in the system. |
| 7615 | * This trades load-balance latency on larger machines for less cross talk. |
| 7616 | */ |
| 7617 | void update_max_interval(void) |
| 7618 | { |
| 7619 | max_load_balance_interval = HZ*num_online_cpus()/10; |
| 7620 | } |
| 7621 | |
| 7622 | /* |
| 7623 | * It checks each scheduling domain to see if it is due to be balanced, |
| 7624 | * and initiates a balancing operation if so. |
| 7625 | * |
| 7626 | * Balancing parameters are set up in init_sched_domains. |
| 7627 | */ |
| 7628 | static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) |
| 7629 | { |
| 7630 | int continue_balancing = 1; |
| 7631 | int cpu = rq->cpu; |
| 7632 | unsigned long interval; |
| 7633 | struct sched_domain *sd; |
| 7634 | /* Earliest time when we have to do rebalance again */ |
| 7635 | unsigned long next_balance = jiffies + 60*HZ; |
| 7636 | int update_next_balance = 0; |
| 7637 | int need_serialize, need_decay = 0; |
| 7638 | u64 max_cost = 0; |
| 7639 | |
| 7640 | update_blocked_averages(cpu); |
| 7641 | |
| 7642 | rcu_read_lock(); |
| 7643 | for_each_domain(cpu, sd) { |
| 7644 | /* |
| 7645 | * Decay the newidle max times here because this is a regular |
| 7646 | * visit to all the domains. Decay ~1% per second. |
| 7647 | */ |
| 7648 | if (time_after(jiffies, sd->next_decay_max_lb_cost)) { |
| 7649 | sd->max_newidle_lb_cost = |
| 7650 | (sd->max_newidle_lb_cost * 253) / 256; |
| 7651 | sd->next_decay_max_lb_cost = jiffies + HZ; |
| 7652 | need_decay = 1; |
| 7653 | } |
| 7654 | max_cost += sd->max_newidle_lb_cost; |
| 7655 | |
| 7656 | if (!(sd->flags & SD_LOAD_BALANCE)) |
| 7657 | continue; |
| 7658 | |
| 7659 | /* |
| 7660 | * Stop the load balance at this level. There is another |
| 7661 | * CPU in our sched group which is doing load balancing more |
| 7662 | * actively. |
| 7663 | */ |
| 7664 | if (!continue_balancing) { |
| 7665 | if (need_decay) |
| 7666 | continue; |
| 7667 | break; |
| 7668 | } |
| 7669 | |
| 7670 | interval = get_sd_balance_interval(sd, idle != CPU_IDLE); |
| 7671 | |
| 7672 | need_serialize = sd->flags & SD_SERIALIZE; |
| 7673 | if (need_serialize) { |
| 7674 | if (!spin_trylock(&balancing)) |
| 7675 | goto out; |
| 7676 | } |
| 7677 | |
| 7678 | if (time_after_eq(jiffies, sd->last_balance + interval)) { |
| 7679 | if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { |
| 7680 | /* |
| 7681 | * The LBF_DST_PINNED logic could have changed |
| 7682 | * env->dst_cpu, so we can't know our idle |
| 7683 | * state even if we migrated tasks. Update it. |
| 7684 | */ |
| 7685 | idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; |
| 7686 | } |
| 7687 | sd->last_balance = jiffies; |
| 7688 | interval = get_sd_balance_interval(sd, idle != CPU_IDLE); |
| 7689 | } |
| 7690 | if (need_serialize) |
| 7691 | spin_unlock(&balancing); |
| 7692 | out: |
| 7693 | if (time_after(next_balance, sd->last_balance + interval)) { |
| 7694 | next_balance = sd->last_balance + interval; |
| 7695 | update_next_balance = 1; |
| 7696 | } |
| 7697 | } |
| 7698 | if (need_decay) { |
| 7699 | /* |
| 7700 | * Ensure the rq-wide value also decays but keep it at a |
| 7701 | * reasonable floor to avoid funnies with rq->avg_idle. |
| 7702 | */ |
| 7703 | rq->max_idle_balance_cost = |
| 7704 | max((u64)sysctl_sched_migration_cost, max_cost); |
| 7705 | } |
| 7706 | rcu_read_unlock(); |
| 7707 | |
| 7708 | /* |
| 7709 | * next_balance will be updated only when there is a need. |
| 7710 | * When the cpu is attached to null domain for ex, it will not be |
| 7711 | * updated. |
| 7712 | */ |
| 7713 | if (likely(update_next_balance)) { |
| 7714 | rq->next_balance = next_balance; |
| 7715 | |
| 7716 | #ifdef CONFIG_NO_HZ_COMMON |
| 7717 | /* |
| 7718 | * If this CPU has been elected to perform the nohz idle |
| 7719 | * balance. Other idle CPUs have already rebalanced with |
| 7720 | * nohz_idle_balance() and nohz.next_balance has been |
| 7721 | * updated accordingly. This CPU is now running the idle load |
| 7722 | * balance for itself and we need to update the |
| 7723 | * nohz.next_balance accordingly. |
| 7724 | */ |
| 7725 | if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) |
| 7726 | nohz.next_balance = rq->next_balance; |
| 7727 | #endif |
| 7728 | } |
| 7729 | } |
| 7730 | |
| 7731 | #ifdef CONFIG_NO_HZ_COMMON |
| 7732 | /* |
| 7733 | * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the |
| 7734 | * rebalancing for all the cpus for whom scheduler ticks are stopped. |
| 7735 | */ |
| 7736 | static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) |
| 7737 | { |
| 7738 | int this_cpu = this_rq->cpu; |
| 7739 | struct rq *rq; |
| 7740 | int balance_cpu; |
| 7741 | /* Earliest time when we have to do rebalance again */ |
| 7742 | unsigned long next_balance = jiffies + 60*HZ; |
| 7743 | int update_next_balance = 0; |
| 7744 | |
| 7745 | if (idle != CPU_IDLE || |
| 7746 | !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) |
| 7747 | goto end; |
| 7748 | |
| 7749 | for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { |
| 7750 | if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) |
| 7751 | continue; |
| 7752 | |
| 7753 | /* |
| 7754 | * If this cpu gets work to do, stop the load balancing |
| 7755 | * work being done for other cpus. Next load |
| 7756 | * balancing owner will pick it up. |
| 7757 | */ |
| 7758 | if (need_resched()) |
| 7759 | break; |
| 7760 | |
| 7761 | rq = cpu_rq(balance_cpu); |
| 7762 | |
| 7763 | /* |
| 7764 | * If time for next balance is due, |
| 7765 | * do the balance. |
| 7766 | */ |
| 7767 | if (time_after_eq(jiffies, rq->next_balance)) { |
| 7768 | raw_spin_lock_irq(&rq->lock); |
| 7769 | update_rq_clock(rq); |
| 7770 | update_idle_cpu_load(rq); |
| 7771 | raw_spin_unlock_irq(&rq->lock); |
| 7772 | rebalance_domains(rq, CPU_IDLE); |
| 7773 | } |
| 7774 | |
| 7775 | if (time_after(next_balance, rq->next_balance)) { |
| 7776 | next_balance = rq->next_balance; |
| 7777 | update_next_balance = 1; |
| 7778 | } |
| 7779 | } |
| 7780 | |
| 7781 | /* |
| 7782 | * next_balance will be updated only when there is a need. |
| 7783 | * When the CPU is attached to null domain for ex, it will not be |
| 7784 | * updated. |
| 7785 | */ |
| 7786 | if (likely(update_next_balance)) |
| 7787 | nohz.next_balance = next_balance; |
| 7788 | end: |
| 7789 | clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); |
| 7790 | } |
| 7791 | |
| 7792 | /* |
| 7793 | * Current heuristic for kicking the idle load balancer in the presence |
| 7794 | * of an idle cpu in the system. |
| 7795 | * - This rq has more than one task. |
| 7796 | * - This rq has at least one CFS task and the capacity of the CPU is |
| 7797 | * significantly reduced because of RT tasks or IRQs. |
| 7798 | * - At parent of LLC scheduler domain level, this cpu's scheduler group has |
| 7799 | * multiple busy cpu. |
| 7800 | * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler |
| 7801 | * domain span are idle. |
| 7802 | */ |
| 7803 | static inline bool nohz_kick_needed(struct rq *rq) |
| 7804 | { |
| 7805 | unsigned long now = jiffies; |
| 7806 | struct sched_domain *sd; |
| 7807 | struct sched_group_capacity *sgc; |
| 7808 | int nr_busy, cpu = rq->cpu; |
| 7809 | bool kick = false; |
| 7810 | |
| 7811 | if (unlikely(rq->idle_balance)) |
| 7812 | return false; |
| 7813 | |
| 7814 | /* |
| 7815 | * We may be recently in ticked or tickless idle mode. At the first |
| 7816 | * busy tick after returning from idle, we will update the busy stats. |
| 7817 | */ |
| 7818 | set_cpu_sd_state_busy(); |
| 7819 | nohz_balance_exit_idle(cpu); |
| 7820 | |
| 7821 | /* |
| 7822 | * None are in tickless mode and hence no need for NOHZ idle load |
| 7823 | * balancing. |
| 7824 | */ |
| 7825 | if (likely(!atomic_read(&nohz.nr_cpus))) |
| 7826 | return false; |
| 7827 | |
| 7828 | if (time_before(now, nohz.next_balance)) |
| 7829 | return false; |
| 7830 | |
| 7831 | if (rq->nr_running >= 2) |
| 7832 | return true; |
| 7833 | |
| 7834 | rcu_read_lock(); |
| 7835 | sd = rcu_dereference(per_cpu(sd_busy, cpu)); |
| 7836 | if (sd) { |
| 7837 | sgc = sd->groups->sgc; |
| 7838 | nr_busy = atomic_read(&sgc->nr_busy_cpus); |
| 7839 | |
| 7840 | if (nr_busy > 1) { |
| 7841 | kick = true; |
| 7842 | goto unlock; |
| 7843 | } |
| 7844 | |
| 7845 | } |
| 7846 | |
| 7847 | sd = rcu_dereference(rq->sd); |
| 7848 | if (sd) { |
| 7849 | if ((rq->cfs.h_nr_running >= 1) && |
| 7850 | check_cpu_capacity(rq, sd)) { |
| 7851 | kick = true; |
| 7852 | goto unlock; |
| 7853 | } |
| 7854 | } |
| 7855 | |
| 7856 | sd = rcu_dereference(per_cpu(sd_asym, cpu)); |
| 7857 | if (sd && (cpumask_first_and(nohz.idle_cpus_mask, |
| 7858 | sched_domain_span(sd)) < cpu)) { |
| 7859 | kick = true; |
| 7860 | goto unlock; |
| 7861 | } |
| 7862 | |
| 7863 | unlock: |
| 7864 | rcu_read_unlock(); |
| 7865 | return kick; |
| 7866 | } |
| 7867 | #else |
| 7868 | static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } |
| 7869 | #endif |
| 7870 | |
| 7871 | /* |
| 7872 | * run_rebalance_domains is triggered when needed from the scheduler tick. |
| 7873 | * Also triggered for nohz idle balancing (with nohz_balancing_kick set). |
| 7874 | */ |
| 7875 | static void run_rebalance_domains(struct softirq_action *h) |
| 7876 | { |
| 7877 | struct rq *this_rq = this_rq(); |
| 7878 | enum cpu_idle_type idle = this_rq->idle_balance ? |
| 7879 | CPU_IDLE : CPU_NOT_IDLE; |
| 7880 | |
| 7881 | /* |
| 7882 | * If this cpu has a pending nohz_balance_kick, then do the |
| 7883 | * balancing on behalf of the other idle cpus whose ticks are |
| 7884 | * stopped. Do nohz_idle_balance *before* rebalance_domains to |
| 7885 | * give the idle cpus a chance to load balance. Else we may |
| 7886 | * load balance only within the local sched_domain hierarchy |
| 7887 | * and abort nohz_idle_balance altogether if we pull some load. |
| 7888 | */ |
| 7889 | nohz_idle_balance(this_rq, idle); |
| 7890 | rebalance_domains(this_rq, idle); |
| 7891 | } |
| 7892 | |
| 7893 | /* |
| 7894 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. |
| 7895 | */ |
| 7896 | void trigger_load_balance(struct rq *rq) |
| 7897 | { |
| 7898 | /* Don't need to rebalance while attached to NULL domain */ |
| 7899 | if (unlikely(on_null_domain(rq))) |
| 7900 | return; |
| 7901 | |
| 7902 | if (time_after_eq(jiffies, rq->next_balance)) |
| 7903 | raise_softirq(SCHED_SOFTIRQ); |
| 7904 | #ifdef CONFIG_NO_HZ_COMMON |
| 7905 | if (nohz_kick_needed(rq)) |
| 7906 | nohz_balancer_kick(); |
| 7907 | #endif |
| 7908 | } |
| 7909 | |
| 7910 | static void rq_online_fair(struct rq *rq) |
| 7911 | { |
| 7912 | update_sysctl(); |
| 7913 | |
| 7914 | update_runtime_enabled(rq); |
| 7915 | } |
| 7916 | |
| 7917 | static void rq_offline_fair(struct rq *rq) |
| 7918 | { |
| 7919 | update_sysctl(); |
| 7920 | |
| 7921 | /* Ensure any throttled groups are reachable by pick_next_task */ |
| 7922 | unthrottle_offline_cfs_rqs(rq); |
| 7923 | } |
| 7924 | |
| 7925 | #endif /* CONFIG_SMP */ |
| 7926 | |
| 7927 | /* |
| 7928 | * scheduler tick hitting a task of our scheduling class: |
| 7929 | */ |
| 7930 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) |
| 7931 | { |
| 7932 | struct cfs_rq *cfs_rq; |
| 7933 | struct sched_entity *se = &curr->se; |
| 7934 | |
| 7935 | for_each_sched_entity(se) { |
| 7936 | cfs_rq = cfs_rq_of(se); |
| 7937 | entity_tick(cfs_rq, se, queued); |
| 7938 | } |
| 7939 | |
| 7940 | if (static_branch_unlikely(&sched_numa_balancing)) |
| 7941 | task_tick_numa(rq, curr); |
| 7942 | } |
| 7943 | |
| 7944 | /* |
| 7945 | * called on fork with the child task as argument from the parent's context |
| 7946 | * - child not yet on the tasklist |
| 7947 | * - preemption disabled |
| 7948 | */ |
| 7949 | static void task_fork_fair(struct task_struct *p) |
| 7950 | { |
| 7951 | struct cfs_rq *cfs_rq; |
| 7952 | struct sched_entity *se = &p->se, *curr; |
| 7953 | int this_cpu = smp_processor_id(); |
| 7954 | struct rq *rq = this_rq(); |
| 7955 | unsigned long flags; |
| 7956 | |
| 7957 | raw_spin_lock_irqsave(&rq->lock, flags); |
| 7958 | |
| 7959 | update_rq_clock(rq); |
| 7960 | |
| 7961 | cfs_rq = task_cfs_rq(current); |
| 7962 | curr = cfs_rq->curr; |
| 7963 | |
| 7964 | /* |
| 7965 | * Not only the cpu but also the task_group of the parent might have |
| 7966 | * been changed after parent->se.parent,cfs_rq were copied to |
| 7967 | * child->se.parent,cfs_rq. So call __set_task_cpu() to make those |
| 7968 | * of child point to valid ones. |
| 7969 | */ |
| 7970 | rcu_read_lock(); |
| 7971 | __set_task_cpu(p, this_cpu); |
| 7972 | rcu_read_unlock(); |
| 7973 | |
| 7974 | update_curr(cfs_rq); |
| 7975 | |
| 7976 | if (curr) |
| 7977 | se->vruntime = curr->vruntime; |
| 7978 | place_entity(cfs_rq, se, 1); |
| 7979 | |
| 7980 | if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { |
| 7981 | /* |
| 7982 | * Upon rescheduling, sched_class::put_prev_task() will place |
| 7983 | * 'current' within the tree based on its new key value. |
| 7984 | */ |
| 7985 | swap(curr->vruntime, se->vruntime); |
| 7986 | resched_curr(rq); |
| 7987 | } |
| 7988 | |
| 7989 | se->vruntime -= cfs_rq->min_vruntime; |
| 7990 | |
| 7991 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
| 7992 | } |
| 7993 | |
| 7994 | /* |
| 7995 | * Priority of the task has changed. Check to see if we preempt |
| 7996 | * the current task. |
| 7997 | */ |
| 7998 | static void |
| 7999 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) |
| 8000 | { |
| 8001 | if (!task_on_rq_queued(p)) |
| 8002 | return; |
| 8003 | |
| 8004 | /* |
| 8005 | * Reschedule if we are currently running on this runqueue and |
| 8006 | * our priority decreased, or if we are not currently running on |
| 8007 | * this runqueue and our priority is higher than the current's |
| 8008 | */ |
| 8009 | if (rq->curr == p) { |
| 8010 | if (p->prio > oldprio) |
| 8011 | resched_curr(rq); |
| 8012 | } else |
| 8013 | check_preempt_curr(rq, p, 0); |
| 8014 | } |
| 8015 | |
| 8016 | static inline bool vruntime_normalized(struct task_struct *p) |
| 8017 | { |
| 8018 | struct sched_entity *se = &p->se; |
| 8019 | |
| 8020 | /* |
| 8021 | * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, |
| 8022 | * the dequeue_entity(.flags=0) will already have normalized the |
| 8023 | * vruntime. |
| 8024 | */ |
| 8025 | if (p->on_rq) |
| 8026 | return true; |
| 8027 | |
| 8028 | /* |
| 8029 | * When !on_rq, vruntime of the task has usually NOT been normalized. |
| 8030 | * But there are some cases where it has already been normalized: |
| 8031 | * |
| 8032 | * - A forked child which is waiting for being woken up by |
| 8033 | * wake_up_new_task(). |
| 8034 | * - A task which has been woken up by try_to_wake_up() and |
| 8035 | * waiting for actually being woken up by sched_ttwu_pending(). |
| 8036 | */ |
| 8037 | if (!se->sum_exec_runtime || p->state == TASK_WAKING) |
| 8038 | return true; |
| 8039 | |
| 8040 | return false; |
| 8041 | } |
| 8042 | |
| 8043 | static void detach_task_cfs_rq(struct task_struct *p) |
| 8044 | { |
| 8045 | struct sched_entity *se = &p->se; |
| 8046 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 8047 | |
| 8048 | if (!vruntime_normalized(p)) { |
| 8049 | /* |
| 8050 | * Fix up our vruntime so that the current sleep doesn't |
| 8051 | * cause 'unlimited' sleep bonus. |
| 8052 | */ |
| 8053 | place_entity(cfs_rq, se, 0); |
| 8054 | se->vruntime -= cfs_rq->min_vruntime; |
| 8055 | } |
| 8056 | |
| 8057 | /* Catch up with the cfs_rq and remove our load when we leave */ |
| 8058 | detach_entity_load_avg(cfs_rq, se); |
| 8059 | } |
| 8060 | |
| 8061 | static void attach_task_cfs_rq(struct task_struct *p) |
| 8062 | { |
| 8063 | struct sched_entity *se = &p->se; |
| 8064 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 8065 | |
| 8066 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 8067 | /* |
| 8068 | * Since the real-depth could have been changed (only FAIR |
| 8069 | * class maintain depth value), reset depth properly. |
| 8070 | */ |
| 8071 | se->depth = se->parent ? se->parent->depth + 1 : 0; |
| 8072 | #endif |
| 8073 | |
| 8074 | /* Synchronize task with its cfs_rq */ |
| 8075 | attach_entity_load_avg(cfs_rq, se); |
| 8076 | |
| 8077 | if (!vruntime_normalized(p)) |
| 8078 | se->vruntime += cfs_rq->min_vruntime; |
| 8079 | } |
| 8080 | |
| 8081 | static void switched_from_fair(struct rq *rq, struct task_struct *p) |
| 8082 | { |
| 8083 | detach_task_cfs_rq(p); |
| 8084 | } |
| 8085 | |
| 8086 | static void switched_to_fair(struct rq *rq, struct task_struct *p) |
| 8087 | { |
| 8088 | attach_task_cfs_rq(p); |
| 8089 | |
| 8090 | if (task_on_rq_queued(p)) { |
| 8091 | /* |
| 8092 | * We were most likely switched from sched_rt, so |
| 8093 | * kick off the schedule if running, otherwise just see |
| 8094 | * if we can still preempt the current task. |
| 8095 | */ |
| 8096 | if (rq->curr == p) |
| 8097 | resched_curr(rq); |
| 8098 | else |
| 8099 | check_preempt_curr(rq, p, 0); |
| 8100 | } |
| 8101 | } |
| 8102 | |
| 8103 | /* Account for a task changing its policy or group. |
| 8104 | * |
| 8105 | * This routine is mostly called to set cfs_rq->curr field when a task |
| 8106 | * migrates between groups/classes. |
| 8107 | */ |
| 8108 | static void set_curr_task_fair(struct rq *rq) |
| 8109 | { |
| 8110 | struct sched_entity *se = &rq->curr->se; |
| 8111 | |
| 8112 | for_each_sched_entity(se) { |
| 8113 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 8114 | |
| 8115 | set_next_entity(cfs_rq, se); |
| 8116 | /* ensure bandwidth has been allocated on our new cfs_rq */ |
| 8117 | account_cfs_rq_runtime(cfs_rq, 0); |
| 8118 | } |
| 8119 | } |
| 8120 | |
| 8121 | void init_cfs_rq(struct cfs_rq *cfs_rq) |
| 8122 | { |
| 8123 | cfs_rq->tasks_timeline = RB_ROOT; |
| 8124 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
| 8125 | #ifndef CONFIG_64BIT |
| 8126 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; |
| 8127 | #endif |
| 8128 | #ifdef CONFIG_SMP |
| 8129 | atomic_long_set(&cfs_rq->removed_load_avg, 0); |
| 8130 | atomic_long_set(&cfs_rq->removed_util_avg, 0); |
| 8131 | #endif |
| 8132 | } |
| 8133 | |
| 8134 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 8135 | static void task_move_group_fair(struct task_struct *p) |
| 8136 | { |
| 8137 | detach_task_cfs_rq(p); |
| 8138 | set_task_rq(p, task_cpu(p)); |
| 8139 | |
| 8140 | #ifdef CONFIG_SMP |
| 8141 | /* Tell se's cfs_rq has been changed -- migrated */ |
| 8142 | p->se.avg.last_update_time = 0; |
| 8143 | #endif |
| 8144 | attach_task_cfs_rq(p); |
| 8145 | } |
| 8146 | |
| 8147 | void free_fair_sched_group(struct task_group *tg) |
| 8148 | { |
| 8149 | int i; |
| 8150 | |
| 8151 | destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); |
| 8152 | |
| 8153 | for_each_possible_cpu(i) { |
| 8154 | if (tg->cfs_rq) |
| 8155 | kfree(tg->cfs_rq[i]); |
| 8156 | if (tg->se) { |
| 8157 | if (tg->se[i]) |
| 8158 | remove_entity_load_avg(tg->se[i]); |
| 8159 | kfree(tg->se[i]); |
| 8160 | } |
| 8161 | } |
| 8162 | |
| 8163 | kfree(tg->cfs_rq); |
| 8164 | kfree(tg->se); |
| 8165 | } |
| 8166 | |
| 8167 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) |
| 8168 | { |
| 8169 | struct cfs_rq *cfs_rq; |
| 8170 | struct sched_entity *se; |
| 8171 | int i; |
| 8172 | |
| 8173 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); |
| 8174 | if (!tg->cfs_rq) |
| 8175 | goto err; |
| 8176 | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); |
| 8177 | if (!tg->se) |
| 8178 | goto err; |
| 8179 | |
| 8180 | tg->shares = NICE_0_LOAD; |
| 8181 | |
| 8182 | init_cfs_bandwidth(tg_cfs_bandwidth(tg)); |
| 8183 | |
| 8184 | for_each_possible_cpu(i) { |
| 8185 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), |
| 8186 | GFP_KERNEL, cpu_to_node(i)); |
| 8187 | if (!cfs_rq) |
| 8188 | goto err; |
| 8189 | |
| 8190 | se = kzalloc_node(sizeof(struct sched_entity), |
| 8191 | GFP_KERNEL, cpu_to_node(i)); |
| 8192 | if (!se) |
| 8193 | goto err_free_rq; |
| 8194 | |
| 8195 | init_cfs_rq(cfs_rq); |
| 8196 | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); |
| 8197 | init_entity_runnable_average(se); |
| 8198 | } |
| 8199 | |
| 8200 | return 1; |
| 8201 | |
| 8202 | err_free_rq: |
| 8203 | kfree(cfs_rq); |
| 8204 | err: |
| 8205 | return 0; |
| 8206 | } |
| 8207 | |
| 8208 | void unregister_fair_sched_group(struct task_group *tg, int cpu) |
| 8209 | { |
| 8210 | struct rq *rq = cpu_rq(cpu); |
| 8211 | unsigned long flags; |
| 8212 | |
| 8213 | /* |
| 8214 | * Only empty task groups can be destroyed; so we can speculatively |
| 8215 | * check on_list without danger of it being re-added. |
| 8216 | */ |
| 8217 | if (!tg->cfs_rq[cpu]->on_list) |
| 8218 | return; |
| 8219 | |
| 8220 | raw_spin_lock_irqsave(&rq->lock, flags); |
| 8221 | list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); |
| 8222 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
| 8223 | } |
| 8224 | |
| 8225 | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
| 8226 | struct sched_entity *se, int cpu, |
| 8227 | struct sched_entity *parent) |
| 8228 | { |
| 8229 | struct rq *rq = cpu_rq(cpu); |
| 8230 | |
| 8231 | cfs_rq->tg = tg; |
| 8232 | cfs_rq->rq = rq; |
| 8233 | init_cfs_rq_runtime(cfs_rq); |
| 8234 | |
| 8235 | tg->cfs_rq[cpu] = cfs_rq; |
| 8236 | tg->se[cpu] = se; |
| 8237 | |
| 8238 | /* se could be NULL for root_task_group */ |
| 8239 | if (!se) |
| 8240 | return; |
| 8241 | |
| 8242 | if (!parent) { |
| 8243 | se->cfs_rq = &rq->cfs; |
| 8244 | se->depth = 0; |
| 8245 | } else { |
| 8246 | se->cfs_rq = parent->my_q; |
| 8247 | se->depth = parent->depth + 1; |
| 8248 | } |
| 8249 | |
| 8250 | se->my_q = cfs_rq; |
| 8251 | /* guarantee group entities always have weight */ |
| 8252 | update_load_set(&se->load, NICE_0_LOAD); |
| 8253 | se->parent = parent; |
| 8254 | } |
| 8255 | |
| 8256 | static DEFINE_MUTEX(shares_mutex); |
| 8257 | |
| 8258 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) |
| 8259 | { |
| 8260 | int i; |
| 8261 | unsigned long flags; |
| 8262 | |
| 8263 | /* |
| 8264 | * We can't change the weight of the root cgroup. |
| 8265 | */ |
| 8266 | if (!tg->se[0]) |
| 8267 | return -EINVAL; |
| 8268 | |
| 8269 | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); |
| 8270 | |
| 8271 | mutex_lock(&shares_mutex); |
| 8272 | if (tg->shares == shares) |
| 8273 | goto done; |
| 8274 | |
| 8275 | tg->shares = shares; |
| 8276 | for_each_possible_cpu(i) { |
| 8277 | struct rq *rq = cpu_rq(i); |
| 8278 | struct sched_entity *se; |
| 8279 | |
| 8280 | se = tg->se[i]; |
| 8281 | /* Propagate contribution to hierarchy */ |
| 8282 | raw_spin_lock_irqsave(&rq->lock, flags); |
| 8283 | |
| 8284 | /* Possible calls to update_curr() need rq clock */ |
| 8285 | update_rq_clock(rq); |
| 8286 | for_each_sched_entity(se) |
| 8287 | update_cfs_shares(group_cfs_rq(se)); |
| 8288 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
| 8289 | } |
| 8290 | |
| 8291 | done: |
| 8292 | mutex_unlock(&shares_mutex); |
| 8293 | return 0; |
| 8294 | } |
| 8295 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
| 8296 | |
| 8297 | void free_fair_sched_group(struct task_group *tg) { } |
| 8298 | |
| 8299 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) |
| 8300 | { |
| 8301 | return 1; |
| 8302 | } |
| 8303 | |
| 8304 | void unregister_fair_sched_group(struct task_group *tg, int cpu) { } |
| 8305 | |
| 8306 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 8307 | |
| 8308 | |
| 8309 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) |
| 8310 | { |
| 8311 | struct sched_entity *se = &task->se; |
| 8312 | unsigned int rr_interval = 0; |
| 8313 | |
| 8314 | /* |
| 8315 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise |
| 8316 | * idle runqueue: |
| 8317 | */ |
| 8318 | if (rq->cfs.load.weight) |
| 8319 | rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); |
| 8320 | |
| 8321 | return rr_interval; |
| 8322 | } |
| 8323 | |
| 8324 | /* |
| 8325 | * All the scheduling class methods: |
| 8326 | */ |
| 8327 | const struct sched_class fair_sched_class = { |
| 8328 | .next = &idle_sched_class, |
| 8329 | .enqueue_task = enqueue_task_fair, |
| 8330 | .dequeue_task = dequeue_task_fair, |
| 8331 | .yield_task = yield_task_fair, |
| 8332 | .yield_to_task = yield_to_task_fair, |
| 8333 | |
| 8334 | .check_preempt_curr = check_preempt_wakeup, |
| 8335 | |
| 8336 | .pick_next_task = pick_next_task_fair, |
| 8337 | .put_prev_task = put_prev_task_fair, |
| 8338 | |
| 8339 | #ifdef CONFIG_SMP |
| 8340 | .select_task_rq = select_task_rq_fair, |
| 8341 | .migrate_task_rq = migrate_task_rq_fair, |
| 8342 | |
| 8343 | .rq_online = rq_online_fair, |
| 8344 | .rq_offline = rq_offline_fair, |
| 8345 | |
| 8346 | .task_waking = task_waking_fair, |
| 8347 | .task_dead = task_dead_fair, |
| 8348 | .set_cpus_allowed = set_cpus_allowed_common, |
| 8349 | #endif |
| 8350 | |
| 8351 | .set_curr_task = set_curr_task_fair, |
| 8352 | .task_tick = task_tick_fair, |
| 8353 | .task_fork = task_fork_fair, |
| 8354 | |
| 8355 | .prio_changed = prio_changed_fair, |
| 8356 | .switched_from = switched_from_fair, |
| 8357 | .switched_to = switched_to_fair, |
| 8358 | |
| 8359 | .get_rr_interval = get_rr_interval_fair, |
| 8360 | |
| 8361 | .update_curr = update_curr_fair, |
| 8362 | |
| 8363 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 8364 | .task_move_group = task_move_group_fair, |
| 8365 | #endif |
| 8366 | }; |
| 8367 | |
| 8368 | #ifdef CONFIG_SCHED_DEBUG |
| 8369 | void print_cfs_stats(struct seq_file *m, int cpu) |
| 8370 | { |
| 8371 | struct cfs_rq *cfs_rq; |
| 8372 | |
| 8373 | rcu_read_lock(); |
| 8374 | for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) |
| 8375 | print_cfs_rq(m, cpu, cfs_rq); |
| 8376 | rcu_read_unlock(); |
| 8377 | } |
| 8378 | |
| 8379 | #ifdef CONFIG_NUMA_BALANCING |
| 8380 | void show_numa_stats(struct task_struct *p, struct seq_file *m) |
| 8381 | { |
| 8382 | int node; |
| 8383 | unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; |
| 8384 | |
| 8385 | for_each_online_node(node) { |
| 8386 | if (p->numa_faults) { |
| 8387 | tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; |
| 8388 | tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; |
| 8389 | } |
| 8390 | if (p->numa_group) { |
| 8391 | gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], |
| 8392 | gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; |
| 8393 | } |
| 8394 | print_numa_stats(m, node, tsf, tpf, gsf, gpf); |
| 8395 | } |
| 8396 | } |
| 8397 | #endif /* CONFIG_NUMA_BALANCING */ |
| 8398 | #endif /* CONFIG_SCHED_DEBUG */ |
| 8399 | |
| 8400 | __init void init_sched_fair_class(void) |
| 8401 | { |
| 8402 | #ifdef CONFIG_SMP |
| 8403 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); |
| 8404 | |
| 8405 | #ifdef CONFIG_NO_HZ_COMMON |
| 8406 | nohz.next_balance = jiffies; |
| 8407 | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); |
| 8408 | cpu_notifier(sched_ilb_notifier, 0); |
| 8409 | #endif |
| 8410 | #endif /* SMP */ |
| 8411 | |
| 8412 | } |