blob: 812069b66f47fb82e282a8429b79af0d3f83f26b [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23#include <linux/latencytop.h>
24#include <linux/sched.h>
25#include <linux/cpumask.h>
26#include <linux/cpuidle.h>
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
30#include <linux/mempolicy.h>
31#include <linux/migrate.h>
32#include <linux/task_work.h>
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
37
38/*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65/*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72/*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75static unsigned int sched_nr_latency = 8;
76
77/*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83/*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static unsigned int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
182#define WMULT_CONST (~0U)
183#define WMULT_SHIFT 32
184
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
201
202/*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215{
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237}
238
239
240const struct sched_class fair_sched_class;
241
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246#ifdef CONFIG_FAIR_GROUP_SCHED
247
248/* cpu runqueue to which this cfs_rq is attached */
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
251 return cfs_rq->rq;
252}
253
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
256
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
321static inline struct cfs_rq *
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
373
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
377}
378
379#define entity_is_task(se) 1
380
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385{
386 return &task_rq(p)->cfs;
387}
388
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
426static __always_inline
427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434{
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440}
441
442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
481}
482
483/*
484 * Enqueue an entity into the rb-tree:
485 */
486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520}
521
522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523{
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532}
533
534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535{
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542}
543
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556{
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563}
564
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572{
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587#undef WRT_SYSCTL
588
589 return 0;
590}
591#endif
592
593/*
594 * delta /= w
595 */
596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597{
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602}
603
604/*
605 * The idea is to set a period in which each task runs once.
606 *
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
612static u64 __sched_period(unsigned long nr_running)
613{
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618}
619
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
624 * s = p*P[w/rw]
625 */
626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627{
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646}
647
648/*
649 * We calculate the vruntime slice of a to-be-inserted task.
650 *
651 * vs = s/w
652 */
653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654{
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656}
657
658#ifdef CONFIG_SMP
659static int select_idle_sibling(struct task_struct *p, int cpu);
660static unsigned long task_h_load(struct task_struct *p);
661
662/*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
673{
674 struct sched_avg *sa = &se->avg;
675
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688}
689
690#else
691void init_entity_runnable_average(struct sched_entity *se)
692{
693}
694#endif
695
696/*
697 * Update the current task's runtime statistics.
698 */
699static void update_curr(struct cfs_rq *cfs_rq)
700{
701 struct sched_entity *curr = cfs_rq->curr;
702 u64 now = rq_clock_task(rq_of(cfs_rq));
703 u64 delta_exec;
704
705 if (unlikely(!curr))
706 return;
707
708 delta_exec = now - curr->exec_start;
709 if (unlikely((s64)delta_exec <= 0))
710 return;
711
712 curr->exec_start = now;
713
714 schedstat_set(curr->statistics.exec_max,
715 max(delta_exec, curr->statistics.exec_max));
716
717 curr->sum_exec_runtime += delta_exec;
718 schedstat_add(cfs_rq, exec_clock, delta_exec);
719
720 curr->vruntime += calc_delta_fair(delta_exec, curr);
721 update_min_vruntime(cfs_rq);
722
723 if (entity_is_task(curr)) {
724 struct task_struct *curtask = task_of(curr);
725
726 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
727 cpuacct_charge(curtask, delta_exec);
728 account_group_exec_runtime(curtask, delta_exec);
729 }
730
731 account_cfs_rq_runtime(cfs_rq, delta_exec);
732}
733
734static void update_curr_fair(struct rq *rq)
735{
736 update_curr(cfs_rq_of(&rq->curr->se));
737}
738
739static inline void
740update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
741{
742 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
743}
744
745/*
746 * Task is being enqueued - update stats:
747 */
748static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
749{
750 /*
751 * Are we enqueueing a waiting task? (for current tasks
752 * a dequeue/enqueue event is a NOP)
753 */
754 if (se != cfs_rq->curr)
755 update_stats_wait_start(cfs_rq, se);
756}
757
758static void
759update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
760{
761 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
762 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
763 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
764 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
766#ifdef CONFIG_SCHEDSTATS
767 if (entity_is_task(se)) {
768 trace_sched_stat_wait(task_of(se),
769 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
770 }
771#endif
772 schedstat_set(se->statistics.wait_start, 0);
773}
774
775static inline void
776update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
777{
778 /*
779 * Mark the end of the wait period if dequeueing a
780 * waiting task:
781 */
782 if (se != cfs_rq->curr)
783 update_stats_wait_end(cfs_rq, se);
784}
785
786/*
787 * We are picking a new current task - update its stats:
788 */
789static inline void
790update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
791{
792 /*
793 * We are starting a new run period:
794 */
795 se->exec_start = rq_clock_task(rq_of(cfs_rq));
796}
797
798/**************************************************
799 * Scheduling class queueing methods:
800 */
801
802#ifdef CONFIG_NUMA_BALANCING
803/*
804 * Approximate time to scan a full NUMA task in ms. The task scan period is
805 * calculated based on the tasks virtual memory size and
806 * numa_balancing_scan_size.
807 */
808unsigned int sysctl_numa_balancing_scan_period_min = 1000;
809unsigned int sysctl_numa_balancing_scan_period_max = 60000;
810
811/* Portion of address space to scan in MB */
812unsigned int sysctl_numa_balancing_scan_size = 256;
813
814/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
815unsigned int sysctl_numa_balancing_scan_delay = 1000;
816
817static unsigned int task_nr_scan_windows(struct task_struct *p)
818{
819 unsigned long rss = 0;
820 unsigned long nr_scan_pages;
821
822 /*
823 * Calculations based on RSS as non-present and empty pages are skipped
824 * by the PTE scanner and NUMA hinting faults should be trapped based
825 * on resident pages
826 */
827 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
828 rss = get_mm_rss(p->mm);
829 if (!rss)
830 rss = nr_scan_pages;
831
832 rss = round_up(rss, nr_scan_pages);
833 return rss / nr_scan_pages;
834}
835
836/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
837#define MAX_SCAN_WINDOW 2560
838
839static unsigned int task_scan_min(struct task_struct *p)
840{
841 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
842 unsigned int scan, floor;
843 unsigned int windows = 1;
844
845 if (scan_size < MAX_SCAN_WINDOW)
846 windows = MAX_SCAN_WINDOW / scan_size;
847 floor = 1000 / windows;
848
849 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
850 return max_t(unsigned int, floor, scan);
851}
852
853static unsigned int task_scan_max(struct task_struct *p)
854{
855 unsigned int smin = task_scan_min(p);
856 unsigned int smax;
857
858 /* Watch for min being lower than max due to floor calculations */
859 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
860 return max(smin, smax);
861}
862
863static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
864{
865 rq->nr_numa_running += (p->numa_preferred_nid != -1);
866 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
867}
868
869static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
870{
871 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
872 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
873}
874
875struct numa_group {
876 atomic_t refcount;
877
878 spinlock_t lock; /* nr_tasks, tasks */
879 int nr_tasks;
880 pid_t gid;
881
882 struct rcu_head rcu;
883 nodemask_t active_nodes;
884 unsigned long total_faults;
885 /*
886 * Faults_cpu is used to decide whether memory should move
887 * towards the CPU. As a consequence, these stats are weighted
888 * more by CPU use than by memory faults.
889 */
890 unsigned long *faults_cpu;
891 unsigned long faults[0];
892};
893
894/* Shared or private faults. */
895#define NR_NUMA_HINT_FAULT_TYPES 2
896
897/* Memory and CPU locality */
898#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
899
900/* Averaged statistics, and temporary buffers. */
901#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
902
903pid_t task_numa_group_id(struct task_struct *p)
904{
905 return p->numa_group ? p->numa_group->gid : 0;
906}
907
908/*
909 * The averaged statistics, shared & private, memory & cpu,
910 * occupy the first half of the array. The second half of the
911 * array is for current counters, which are averaged into the
912 * first set by task_numa_placement.
913 */
914static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
915{
916 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
917}
918
919static inline unsigned long task_faults(struct task_struct *p, int nid)
920{
921 if (!p->numa_faults)
922 return 0;
923
924 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
925 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
926}
927
928static inline unsigned long group_faults(struct task_struct *p, int nid)
929{
930 if (!p->numa_group)
931 return 0;
932
933 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
934 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
935}
936
937static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
938{
939 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
940 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
941}
942
943/* Handle placement on systems where not all nodes are directly connected. */
944static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
945 int maxdist, bool task)
946{
947 unsigned long score = 0;
948 int node;
949
950 /*
951 * All nodes are directly connected, and the same distance
952 * from each other. No need for fancy placement algorithms.
953 */
954 if (sched_numa_topology_type == NUMA_DIRECT)
955 return 0;
956
957 /*
958 * This code is called for each node, introducing N^2 complexity,
959 * which should be ok given the number of nodes rarely exceeds 8.
960 */
961 for_each_online_node(node) {
962 unsigned long faults;
963 int dist = node_distance(nid, node);
964
965 /*
966 * The furthest away nodes in the system are not interesting
967 * for placement; nid was already counted.
968 */
969 if (dist == sched_max_numa_distance || node == nid)
970 continue;
971
972 /*
973 * On systems with a backplane NUMA topology, compare groups
974 * of nodes, and move tasks towards the group with the most
975 * memory accesses. When comparing two nodes at distance
976 * "hoplimit", only nodes closer by than "hoplimit" are part
977 * of each group. Skip other nodes.
978 */
979 if (sched_numa_topology_type == NUMA_BACKPLANE &&
980 dist > maxdist)
981 continue;
982
983 /* Add up the faults from nearby nodes. */
984 if (task)
985 faults = task_faults(p, node);
986 else
987 faults = group_faults(p, node);
988
989 /*
990 * On systems with a glueless mesh NUMA topology, there are
991 * no fixed "groups of nodes". Instead, nodes that are not
992 * directly connected bounce traffic through intermediate
993 * nodes; a numa_group can occupy any set of nodes.
994 * The further away a node is, the less the faults count.
995 * This seems to result in good task placement.
996 */
997 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
998 faults *= (sched_max_numa_distance - dist);
999 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1000 }
1001
1002 score += faults;
1003 }
1004
1005 return score;
1006}
1007
1008/*
1009 * These return the fraction of accesses done by a particular task, or
1010 * task group, on a particular numa node. The group weight is given a
1011 * larger multiplier, in order to group tasks together that are almost
1012 * evenly spread out between numa nodes.
1013 */
1014static inline unsigned long task_weight(struct task_struct *p, int nid,
1015 int dist)
1016{
1017 unsigned long faults, total_faults;
1018
1019 if (!p->numa_faults)
1020 return 0;
1021
1022 total_faults = p->total_numa_faults;
1023
1024 if (!total_faults)
1025 return 0;
1026
1027 faults = task_faults(p, nid);
1028 faults += score_nearby_nodes(p, nid, dist, true);
1029
1030 return 1000 * faults / total_faults;
1031}
1032
1033static inline unsigned long group_weight(struct task_struct *p, int nid,
1034 int dist)
1035{
1036 unsigned long faults, total_faults;
1037
1038 if (!p->numa_group)
1039 return 0;
1040
1041 total_faults = p->numa_group->total_faults;
1042
1043 if (!total_faults)
1044 return 0;
1045
1046 faults = group_faults(p, nid);
1047 faults += score_nearby_nodes(p, nid, dist, false);
1048
1049 return 1000 * faults / total_faults;
1050}
1051
1052bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1053 int src_nid, int dst_cpu)
1054{
1055 struct numa_group *ng = p->numa_group;
1056 int dst_nid = cpu_to_node(dst_cpu);
1057 int last_cpupid, this_cpupid;
1058
1059 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1060
1061 /*
1062 * Multi-stage node selection is used in conjunction with a periodic
1063 * migration fault to build a temporal task<->page relation. By using
1064 * a two-stage filter we remove short/unlikely relations.
1065 *
1066 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1067 * a task's usage of a particular page (n_p) per total usage of this
1068 * page (n_t) (in a given time-span) to a probability.
1069 *
1070 * Our periodic faults will sample this probability and getting the
1071 * same result twice in a row, given these samples are fully
1072 * independent, is then given by P(n)^2, provided our sample period
1073 * is sufficiently short compared to the usage pattern.
1074 *
1075 * This quadric squishes small probabilities, making it less likely we
1076 * act on an unlikely task<->page relation.
1077 */
1078 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1079 if (!cpupid_pid_unset(last_cpupid) &&
1080 cpupid_to_nid(last_cpupid) != dst_nid)
1081 return false;
1082
1083 /* Always allow migrate on private faults */
1084 if (cpupid_match_pid(p, last_cpupid))
1085 return true;
1086
1087 /* A shared fault, but p->numa_group has not been set up yet. */
1088 if (!ng)
1089 return true;
1090
1091 /*
1092 * Do not migrate if the destination is not a node that
1093 * is actively used by this numa group.
1094 */
1095 if (!node_isset(dst_nid, ng->active_nodes))
1096 return false;
1097
1098 /*
1099 * Source is a node that is not actively used by this
1100 * numa group, while the destination is. Migrate.
1101 */
1102 if (!node_isset(src_nid, ng->active_nodes))
1103 return true;
1104
1105 /*
1106 * Both source and destination are nodes in active
1107 * use by this numa group. Maximize memory bandwidth
1108 * by migrating from more heavily used groups, to less
1109 * heavily used ones, spreading the load around.
1110 * Use a 1/4 hysteresis to avoid spurious page movement.
1111 */
1112 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1113}
1114
1115static unsigned long weighted_cpuload(const int cpu);
1116static unsigned long source_load(int cpu, int type);
1117static unsigned long target_load(int cpu, int type);
1118static unsigned long capacity_of(int cpu);
1119static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1120
1121/* Cached statistics for all CPUs within a node */
1122struct numa_stats {
1123 unsigned long nr_running;
1124 unsigned long load;
1125
1126 /* Total compute capacity of CPUs on a node */
1127 unsigned long compute_capacity;
1128
1129 /* Approximate capacity in terms of runnable tasks on a node */
1130 unsigned long task_capacity;
1131 int has_free_capacity;
1132};
1133
1134/*
1135 * XXX borrowed from update_sg_lb_stats
1136 */
1137static void update_numa_stats(struct numa_stats *ns, int nid)
1138{
1139 int smt, cpu, cpus = 0;
1140 unsigned long capacity;
1141
1142 memset(ns, 0, sizeof(*ns));
1143 for_each_cpu(cpu, cpumask_of_node(nid)) {
1144 struct rq *rq = cpu_rq(cpu);
1145
1146 ns->nr_running += rq->nr_running;
1147 ns->load += weighted_cpuload(cpu);
1148 ns->compute_capacity += capacity_of(cpu);
1149
1150 cpus++;
1151 }
1152
1153 /*
1154 * If we raced with hotplug and there are no CPUs left in our mask
1155 * the @ns structure is NULL'ed and task_numa_compare() will
1156 * not find this node attractive.
1157 *
1158 * We'll either bail at !has_free_capacity, or we'll detect a huge
1159 * imbalance and bail there.
1160 */
1161 if (!cpus)
1162 return;
1163
1164 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1165 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1166 capacity = cpus / smt; /* cores */
1167
1168 ns->task_capacity = min_t(unsigned, capacity,
1169 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1170 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1171}
1172
1173struct task_numa_env {
1174 struct task_struct *p;
1175
1176 int src_cpu, src_nid;
1177 int dst_cpu, dst_nid;
1178
1179 struct numa_stats src_stats, dst_stats;
1180
1181 int imbalance_pct;
1182 int dist;
1183
1184 struct task_struct *best_task;
1185 long best_imp;
1186 int best_cpu;
1187};
1188
1189static void task_numa_assign(struct task_numa_env *env,
1190 struct task_struct *p, long imp)
1191{
1192 if (env->best_task)
1193 put_task_struct(env->best_task);
1194
1195 env->best_task = p;
1196 env->best_imp = imp;
1197 env->best_cpu = env->dst_cpu;
1198}
1199
1200static bool load_too_imbalanced(long src_load, long dst_load,
1201 struct task_numa_env *env)
1202{
1203 long imb, old_imb;
1204 long orig_src_load, orig_dst_load;
1205 long src_capacity, dst_capacity;
1206
1207 /*
1208 * The load is corrected for the CPU capacity available on each node.
1209 *
1210 * src_load dst_load
1211 * ------------ vs ---------
1212 * src_capacity dst_capacity
1213 */
1214 src_capacity = env->src_stats.compute_capacity;
1215 dst_capacity = env->dst_stats.compute_capacity;
1216
1217 /* We care about the slope of the imbalance, not the direction. */
1218 if (dst_load < src_load)
1219 swap(dst_load, src_load);
1220
1221 /* Is the difference below the threshold? */
1222 imb = dst_load * src_capacity * 100 -
1223 src_load * dst_capacity * env->imbalance_pct;
1224 if (imb <= 0)
1225 return false;
1226
1227 /*
1228 * The imbalance is above the allowed threshold.
1229 * Compare it with the old imbalance.
1230 */
1231 orig_src_load = env->src_stats.load;
1232 orig_dst_load = env->dst_stats.load;
1233
1234 if (orig_dst_load < orig_src_load)
1235 swap(orig_dst_load, orig_src_load);
1236
1237 old_imb = orig_dst_load * src_capacity * 100 -
1238 orig_src_load * dst_capacity * env->imbalance_pct;
1239
1240 /* Would this change make things worse? */
1241 return (imb > old_imb);
1242}
1243
1244/*
1245 * This checks if the overall compute and NUMA accesses of the system would
1246 * be improved if the source tasks was migrated to the target dst_cpu taking
1247 * into account that it might be best if task running on the dst_cpu should
1248 * be exchanged with the source task
1249 */
1250static void task_numa_compare(struct task_numa_env *env,
1251 long taskimp, long groupimp)
1252{
1253 struct rq *src_rq = cpu_rq(env->src_cpu);
1254 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1255 struct task_struct *cur;
1256 long src_load, dst_load;
1257 long load;
1258 long imp = env->p->numa_group ? groupimp : taskimp;
1259 long moveimp = imp;
1260 int dist = env->dist;
1261 bool assigned = false;
1262
1263 rcu_read_lock();
1264
1265 raw_spin_lock_irq(&dst_rq->lock);
1266 cur = dst_rq->curr;
1267 /*
1268 * No need to move the exiting task or idle task.
1269 */
1270 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1271 cur = NULL;
1272 else {
1273 /*
1274 * The task_struct must be protected here to protect the
1275 * p->numa_faults access in the task_weight since the
1276 * numa_faults could already be freed in the following path:
1277 * finish_task_switch()
1278 * --> put_task_struct()
1279 * --> __put_task_struct()
1280 * --> task_numa_free()
1281 */
1282 get_task_struct(cur);
1283 }
1284
1285 raw_spin_unlock_irq(&dst_rq->lock);
1286
1287 /*
1288 * Because we have preemption enabled we can get migrated around and
1289 * end try selecting ourselves (current == env->p) as a swap candidate.
1290 */
1291 if (cur == env->p)
1292 goto unlock;
1293
1294 /*
1295 * "imp" is the fault differential for the source task between the
1296 * source and destination node. Calculate the total differential for
1297 * the source task and potential destination task. The more negative
1298 * the value is, the more rmeote accesses that would be expected to
1299 * be incurred if the tasks were swapped.
1300 */
1301 if (cur) {
1302 /* Skip this swap candidate if cannot move to the source cpu */
1303 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1304 goto unlock;
1305
1306 /*
1307 * If dst and source tasks are in the same NUMA group, or not
1308 * in any group then look only at task weights.
1309 */
1310 if (cur->numa_group == env->p->numa_group) {
1311 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1312 task_weight(cur, env->dst_nid, dist);
1313 /*
1314 * Add some hysteresis to prevent swapping the
1315 * tasks within a group over tiny differences.
1316 */
1317 if (cur->numa_group)
1318 imp -= imp/16;
1319 } else {
1320 /*
1321 * Compare the group weights. If a task is all by
1322 * itself (not part of a group), use the task weight
1323 * instead.
1324 */
1325 if (cur->numa_group)
1326 imp += group_weight(cur, env->src_nid, dist) -
1327 group_weight(cur, env->dst_nid, dist);
1328 else
1329 imp += task_weight(cur, env->src_nid, dist) -
1330 task_weight(cur, env->dst_nid, dist);
1331 }
1332 }
1333
1334 if (imp <= env->best_imp && moveimp <= env->best_imp)
1335 goto unlock;
1336
1337 if (!cur) {
1338 /* Is there capacity at our destination? */
1339 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1340 !env->dst_stats.has_free_capacity)
1341 goto unlock;
1342
1343 goto balance;
1344 }
1345
1346 /* Balance doesn't matter much if we're running a task per cpu */
1347 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1348 dst_rq->nr_running == 1)
1349 goto assign;
1350
1351 /*
1352 * In the overloaded case, try and keep the load balanced.
1353 */
1354balance:
1355 load = task_h_load(env->p);
1356 dst_load = env->dst_stats.load + load;
1357 src_load = env->src_stats.load - load;
1358
1359 if (moveimp > imp && moveimp > env->best_imp) {
1360 /*
1361 * If the improvement from just moving env->p direction is
1362 * better than swapping tasks around, check if a move is
1363 * possible. Store a slightly smaller score than moveimp,
1364 * so an actually idle CPU will win.
1365 */
1366 if (!load_too_imbalanced(src_load, dst_load, env)) {
1367 imp = moveimp - 1;
1368 put_task_struct(cur);
1369 cur = NULL;
1370 goto assign;
1371 }
1372 }
1373
1374 if (imp <= env->best_imp)
1375 goto unlock;
1376
1377 if (cur) {
1378 load = task_h_load(cur);
1379 dst_load -= load;
1380 src_load += load;
1381 }
1382
1383 if (load_too_imbalanced(src_load, dst_load, env))
1384 goto unlock;
1385
1386 /*
1387 * One idle CPU per node is evaluated for a task numa move.
1388 * Call select_idle_sibling to maybe find a better one.
1389 */
1390 if (!cur)
1391 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1392
1393assign:
1394 assigned = true;
1395 task_numa_assign(env, cur, imp);
1396unlock:
1397 rcu_read_unlock();
1398 /*
1399 * The dst_rq->curr isn't assigned. The protection for task_struct is
1400 * finished.
1401 */
1402 if (cur && !assigned)
1403 put_task_struct(cur);
1404}
1405
1406static void task_numa_find_cpu(struct task_numa_env *env,
1407 long taskimp, long groupimp)
1408{
1409 int cpu;
1410
1411 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1412 /* Skip this CPU if the source task cannot migrate */
1413 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1414 continue;
1415
1416 env->dst_cpu = cpu;
1417 task_numa_compare(env, taskimp, groupimp);
1418 }
1419}
1420
1421/* Only move tasks to a NUMA node less busy than the current node. */
1422static bool numa_has_capacity(struct task_numa_env *env)
1423{
1424 struct numa_stats *src = &env->src_stats;
1425 struct numa_stats *dst = &env->dst_stats;
1426
1427 if (src->has_free_capacity && !dst->has_free_capacity)
1428 return false;
1429
1430 /*
1431 * Only consider a task move if the source has a higher load
1432 * than the destination, corrected for CPU capacity on each node.
1433 *
1434 * src->load dst->load
1435 * --------------------- vs ---------------------
1436 * src->compute_capacity dst->compute_capacity
1437 */
1438 if (src->load * dst->compute_capacity * env->imbalance_pct >
1439
1440 dst->load * src->compute_capacity * 100)
1441 return true;
1442
1443 return false;
1444}
1445
1446static int task_numa_migrate(struct task_struct *p)
1447{
1448 struct task_numa_env env = {
1449 .p = p,
1450
1451 .src_cpu = task_cpu(p),
1452 .src_nid = task_node(p),
1453
1454 .imbalance_pct = 112,
1455
1456 .best_task = NULL,
1457 .best_imp = 0,
1458 .best_cpu = -1
1459 };
1460 struct sched_domain *sd;
1461 unsigned long taskweight, groupweight;
1462 int nid, ret, dist;
1463 long taskimp, groupimp;
1464
1465 /*
1466 * Pick the lowest SD_NUMA domain, as that would have the smallest
1467 * imbalance and would be the first to start moving tasks about.
1468 *
1469 * And we want to avoid any moving of tasks about, as that would create
1470 * random movement of tasks -- counter the numa conditions we're trying
1471 * to satisfy here.
1472 */
1473 rcu_read_lock();
1474 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1475 if (sd)
1476 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1477 rcu_read_unlock();
1478
1479 /*
1480 * Cpusets can break the scheduler domain tree into smaller
1481 * balance domains, some of which do not cross NUMA boundaries.
1482 * Tasks that are "trapped" in such domains cannot be migrated
1483 * elsewhere, so there is no point in (re)trying.
1484 */
1485 if (unlikely(!sd)) {
1486 p->numa_preferred_nid = task_node(p);
1487 return -EINVAL;
1488 }
1489
1490 env.dst_nid = p->numa_preferred_nid;
1491 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1492 taskweight = task_weight(p, env.src_nid, dist);
1493 groupweight = group_weight(p, env.src_nid, dist);
1494 update_numa_stats(&env.src_stats, env.src_nid);
1495 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1496 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1497 update_numa_stats(&env.dst_stats, env.dst_nid);
1498
1499 /* Try to find a spot on the preferred nid. */
1500 if (numa_has_capacity(&env))
1501 task_numa_find_cpu(&env, taskimp, groupimp);
1502
1503 /*
1504 * Look at other nodes in these cases:
1505 * - there is no space available on the preferred_nid
1506 * - the task is part of a numa_group that is interleaved across
1507 * multiple NUMA nodes; in order to better consolidate the group,
1508 * we need to check other locations.
1509 */
1510 if (env.best_cpu == -1 || (p->numa_group &&
1511 nodes_weight(p->numa_group->active_nodes) > 1)) {
1512 for_each_online_node(nid) {
1513 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1514 continue;
1515
1516 dist = node_distance(env.src_nid, env.dst_nid);
1517 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1518 dist != env.dist) {
1519 taskweight = task_weight(p, env.src_nid, dist);
1520 groupweight = group_weight(p, env.src_nid, dist);
1521 }
1522
1523 /* Only consider nodes where both task and groups benefit */
1524 taskimp = task_weight(p, nid, dist) - taskweight;
1525 groupimp = group_weight(p, nid, dist) - groupweight;
1526 if (taskimp < 0 && groupimp < 0)
1527 continue;
1528
1529 env.dist = dist;
1530 env.dst_nid = nid;
1531 update_numa_stats(&env.dst_stats, env.dst_nid);
1532 if (numa_has_capacity(&env))
1533 task_numa_find_cpu(&env, taskimp, groupimp);
1534 }
1535 }
1536
1537 /*
1538 * If the task is part of a workload that spans multiple NUMA nodes,
1539 * and is migrating into one of the workload's active nodes, remember
1540 * this node as the task's preferred numa node, so the workload can
1541 * settle down.
1542 * A task that migrated to a second choice node will be better off
1543 * trying for a better one later. Do not set the preferred node here.
1544 */
1545 if (p->numa_group) {
1546 if (env.best_cpu == -1)
1547 nid = env.src_nid;
1548 else
1549 nid = env.dst_nid;
1550
1551 if (node_isset(nid, p->numa_group->active_nodes))
1552 sched_setnuma(p, env.dst_nid);
1553 }
1554
1555 /* No better CPU than the current one was found. */
1556 if (env.best_cpu == -1)
1557 return -EAGAIN;
1558
1559 /*
1560 * Reset the scan period if the task is being rescheduled on an
1561 * alternative node to recheck if the tasks is now properly placed.
1562 */
1563 p->numa_scan_period = task_scan_min(p);
1564
1565 if (env.best_task == NULL) {
1566 ret = migrate_task_to(p, env.best_cpu);
1567 if (ret != 0)
1568 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1569 return ret;
1570 }
1571
1572 ret = migrate_swap(p, env.best_task);
1573 if (ret != 0)
1574 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1575 put_task_struct(env.best_task);
1576 return ret;
1577}
1578
1579/* Attempt to migrate a task to a CPU on the preferred node. */
1580static void numa_migrate_preferred(struct task_struct *p)
1581{
1582 unsigned long interval = HZ;
1583
1584 /* This task has no NUMA fault statistics yet */
1585 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1586 return;
1587
1588 /* Periodically retry migrating the task to the preferred node */
1589 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1590 p->numa_migrate_retry = jiffies + interval;
1591
1592 /* Success if task is already running on preferred CPU */
1593 if (task_node(p) == p->numa_preferred_nid)
1594 return;
1595
1596 /* Otherwise, try migrate to a CPU on the preferred node */
1597 task_numa_migrate(p);
1598}
1599
1600/*
1601 * Find the nodes on which the workload is actively running. We do this by
1602 * tracking the nodes from which NUMA hinting faults are triggered. This can
1603 * be different from the set of nodes where the workload's memory is currently
1604 * located.
1605 *
1606 * The bitmask is used to make smarter decisions on when to do NUMA page
1607 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1608 * are added when they cause over 6/16 of the maximum number of faults, but
1609 * only removed when they drop below 3/16.
1610 */
1611static void update_numa_active_node_mask(struct numa_group *numa_group)
1612{
1613 unsigned long faults, max_faults = 0;
1614 int nid;
1615
1616 for_each_online_node(nid) {
1617 faults = group_faults_cpu(numa_group, nid);
1618 if (faults > max_faults)
1619 max_faults = faults;
1620 }
1621
1622 for_each_online_node(nid) {
1623 faults = group_faults_cpu(numa_group, nid);
1624 if (!node_isset(nid, numa_group->active_nodes)) {
1625 if (faults > max_faults * 6 / 16)
1626 node_set(nid, numa_group->active_nodes);
1627 } else if (faults < max_faults * 3 / 16)
1628 node_clear(nid, numa_group->active_nodes);
1629 }
1630}
1631
1632/*
1633 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1634 * increments. The more local the fault statistics are, the higher the scan
1635 * period will be for the next scan window. If local/(local+remote) ratio is
1636 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1637 * the scan period will decrease. Aim for 70% local accesses.
1638 */
1639#define NUMA_PERIOD_SLOTS 10
1640#define NUMA_PERIOD_THRESHOLD 7
1641
1642/*
1643 * Increase the scan period (slow down scanning) if the majority of
1644 * our memory is already on our local node, or if the majority of
1645 * the page accesses are shared with other processes.
1646 * Otherwise, decrease the scan period.
1647 */
1648static void update_task_scan_period(struct task_struct *p,
1649 unsigned long shared, unsigned long private)
1650{
1651 unsigned int period_slot;
1652 int ratio;
1653 int diff;
1654
1655 unsigned long remote = p->numa_faults_locality[0];
1656 unsigned long local = p->numa_faults_locality[1];
1657
1658 /*
1659 * If there were no record hinting faults then either the task is
1660 * completely idle or all activity is areas that are not of interest
1661 * to automatic numa balancing. Related to that, if there were failed
1662 * migration then it implies we are migrating too quickly or the local
1663 * node is overloaded. In either case, scan slower
1664 */
1665 if (local + shared == 0 || p->numa_faults_locality[2]) {
1666 p->numa_scan_period = min(p->numa_scan_period_max,
1667 p->numa_scan_period << 1);
1668
1669 p->mm->numa_next_scan = jiffies +
1670 msecs_to_jiffies(p->numa_scan_period);
1671
1672 return;
1673 }
1674
1675 /*
1676 * Prepare to scale scan period relative to the current period.
1677 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1678 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1679 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1680 */
1681 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1682 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1683 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1684 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1685 if (!slot)
1686 slot = 1;
1687 diff = slot * period_slot;
1688 } else {
1689 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1690
1691 /*
1692 * Scale scan rate increases based on sharing. There is an
1693 * inverse relationship between the degree of sharing and
1694 * the adjustment made to the scanning period. Broadly
1695 * speaking the intent is that there is little point
1696 * scanning faster if shared accesses dominate as it may
1697 * simply bounce migrations uselessly
1698 */
1699 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1700 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1701 }
1702
1703 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1704 task_scan_min(p), task_scan_max(p));
1705 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1706}
1707
1708/*
1709 * Get the fraction of time the task has been running since the last
1710 * NUMA placement cycle. The scheduler keeps similar statistics, but
1711 * decays those on a 32ms period, which is orders of magnitude off
1712 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1713 * stats only if the task is so new there are no NUMA statistics yet.
1714 */
1715static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1716{
1717 u64 runtime, delta, now;
1718 /* Use the start of this time slice to avoid calculations. */
1719 now = p->se.exec_start;
1720 runtime = p->se.sum_exec_runtime;
1721
1722 if (p->last_task_numa_placement) {
1723 delta = runtime - p->last_sum_exec_runtime;
1724 *period = now - p->last_task_numa_placement;
1725 } else {
1726 delta = p->se.avg.load_sum / p->se.load.weight;
1727 *period = LOAD_AVG_MAX;
1728 }
1729
1730 p->last_sum_exec_runtime = runtime;
1731 p->last_task_numa_placement = now;
1732
1733 return delta;
1734}
1735
1736/*
1737 * Determine the preferred nid for a task in a numa_group. This needs to
1738 * be done in a way that produces consistent results with group_weight,
1739 * otherwise workloads might not converge.
1740 */
1741static int preferred_group_nid(struct task_struct *p, int nid)
1742{
1743 nodemask_t nodes;
1744 int dist;
1745
1746 /* Direct connections between all NUMA nodes. */
1747 if (sched_numa_topology_type == NUMA_DIRECT)
1748 return nid;
1749
1750 /*
1751 * On a system with glueless mesh NUMA topology, group_weight
1752 * scores nodes according to the number of NUMA hinting faults on
1753 * both the node itself, and on nearby nodes.
1754 */
1755 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1756 unsigned long score, max_score = 0;
1757 int node, max_node = nid;
1758
1759 dist = sched_max_numa_distance;
1760
1761 for_each_online_node(node) {
1762 score = group_weight(p, node, dist);
1763 if (score > max_score) {
1764 max_score = score;
1765 max_node = node;
1766 }
1767 }
1768 return max_node;
1769 }
1770
1771 /*
1772 * Finding the preferred nid in a system with NUMA backplane
1773 * interconnect topology is more involved. The goal is to locate
1774 * tasks from numa_groups near each other in the system, and
1775 * untangle workloads from different sides of the system. This requires
1776 * searching down the hierarchy of node groups, recursively searching
1777 * inside the highest scoring group of nodes. The nodemask tricks
1778 * keep the complexity of the search down.
1779 */
1780 nodes = node_online_map;
1781 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1782 unsigned long max_faults = 0;
1783 nodemask_t max_group = NODE_MASK_NONE;
1784 int a, b;
1785
1786 /* Are there nodes at this distance from each other? */
1787 if (!find_numa_distance(dist))
1788 continue;
1789
1790 for_each_node_mask(a, nodes) {
1791 unsigned long faults = 0;
1792 nodemask_t this_group;
1793 nodes_clear(this_group);
1794
1795 /* Sum group's NUMA faults; includes a==b case. */
1796 for_each_node_mask(b, nodes) {
1797 if (node_distance(a, b) < dist) {
1798 faults += group_faults(p, b);
1799 node_set(b, this_group);
1800 node_clear(b, nodes);
1801 }
1802 }
1803
1804 /* Remember the top group. */
1805 if (faults > max_faults) {
1806 max_faults = faults;
1807 max_group = this_group;
1808 /*
1809 * subtle: at the smallest distance there is
1810 * just one node left in each "group", the
1811 * winner is the preferred nid.
1812 */
1813 nid = a;
1814 }
1815 }
1816 /* Next round, evaluate the nodes within max_group. */
1817 if (!max_faults)
1818 break;
1819 nodes = max_group;
1820 }
1821 return nid;
1822}
1823
1824static void task_numa_placement(struct task_struct *p)
1825{
1826 int seq, nid, max_nid = -1, max_group_nid = -1;
1827 unsigned long max_faults = 0, max_group_faults = 0;
1828 unsigned long fault_types[2] = { 0, 0 };
1829 unsigned long total_faults;
1830 u64 runtime, period;
1831 spinlock_t *group_lock = NULL;
1832
1833 /*
1834 * The p->mm->numa_scan_seq field gets updated without
1835 * exclusive access. Use READ_ONCE() here to ensure
1836 * that the field is read in a single access:
1837 */
1838 seq = READ_ONCE(p->mm->numa_scan_seq);
1839 if (p->numa_scan_seq == seq)
1840 return;
1841 p->numa_scan_seq = seq;
1842 p->numa_scan_period_max = task_scan_max(p);
1843
1844 total_faults = p->numa_faults_locality[0] +
1845 p->numa_faults_locality[1];
1846 runtime = numa_get_avg_runtime(p, &period);
1847
1848 /* If the task is part of a group prevent parallel updates to group stats */
1849 if (p->numa_group) {
1850 group_lock = &p->numa_group->lock;
1851 spin_lock_irq(group_lock);
1852 }
1853
1854 /* Find the node with the highest number of faults */
1855 for_each_online_node(nid) {
1856 /* Keep track of the offsets in numa_faults array */
1857 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1858 unsigned long faults = 0, group_faults = 0;
1859 int priv;
1860
1861 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1862 long diff, f_diff, f_weight;
1863
1864 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1865 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1866 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1867 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1868
1869 /* Decay existing window, copy faults since last scan */
1870 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1871 fault_types[priv] += p->numa_faults[membuf_idx];
1872 p->numa_faults[membuf_idx] = 0;
1873
1874 /*
1875 * Normalize the faults_from, so all tasks in a group
1876 * count according to CPU use, instead of by the raw
1877 * number of faults. Tasks with little runtime have
1878 * little over-all impact on throughput, and thus their
1879 * faults are less important.
1880 */
1881 f_weight = div64_u64(runtime << 16, period + 1);
1882 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1883 (total_faults + 1);
1884 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1885 p->numa_faults[cpubuf_idx] = 0;
1886
1887 p->numa_faults[mem_idx] += diff;
1888 p->numa_faults[cpu_idx] += f_diff;
1889 faults += p->numa_faults[mem_idx];
1890 p->total_numa_faults += diff;
1891 if (p->numa_group) {
1892 /*
1893 * safe because we can only change our own group
1894 *
1895 * mem_idx represents the offset for a given
1896 * nid and priv in a specific region because it
1897 * is at the beginning of the numa_faults array.
1898 */
1899 p->numa_group->faults[mem_idx] += diff;
1900 p->numa_group->faults_cpu[mem_idx] += f_diff;
1901 p->numa_group->total_faults += diff;
1902 group_faults += p->numa_group->faults[mem_idx];
1903 }
1904 }
1905
1906 if (faults > max_faults) {
1907 max_faults = faults;
1908 max_nid = nid;
1909 }
1910
1911 if (group_faults > max_group_faults) {
1912 max_group_faults = group_faults;
1913 max_group_nid = nid;
1914 }
1915 }
1916
1917 update_task_scan_period(p, fault_types[0], fault_types[1]);
1918
1919 if (p->numa_group) {
1920 update_numa_active_node_mask(p->numa_group);
1921 spin_unlock_irq(group_lock);
1922 max_nid = preferred_group_nid(p, max_group_nid);
1923 }
1924
1925 if (max_faults) {
1926 /* Set the new preferred node */
1927 if (max_nid != p->numa_preferred_nid)
1928 sched_setnuma(p, max_nid);
1929
1930 if (task_node(p) != p->numa_preferred_nid)
1931 numa_migrate_preferred(p);
1932 }
1933}
1934
1935static inline int get_numa_group(struct numa_group *grp)
1936{
1937 return atomic_inc_not_zero(&grp->refcount);
1938}
1939
1940static inline void put_numa_group(struct numa_group *grp)
1941{
1942 if (atomic_dec_and_test(&grp->refcount))
1943 kfree_rcu(grp, rcu);
1944}
1945
1946static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1947 int *priv)
1948{
1949 struct numa_group *grp, *my_grp;
1950 struct task_struct *tsk;
1951 bool join = false;
1952 int cpu = cpupid_to_cpu(cpupid);
1953 int i;
1954
1955 if (unlikely(!p->numa_group)) {
1956 unsigned int size = sizeof(struct numa_group) +
1957 4*nr_node_ids*sizeof(unsigned long);
1958
1959 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1960 if (!grp)
1961 return;
1962
1963 atomic_set(&grp->refcount, 1);
1964 spin_lock_init(&grp->lock);
1965 grp->gid = p->pid;
1966 /* Second half of the array tracks nids where faults happen */
1967 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1968 nr_node_ids;
1969
1970 node_set(task_node(current), grp->active_nodes);
1971
1972 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1973 grp->faults[i] = p->numa_faults[i];
1974
1975 grp->total_faults = p->total_numa_faults;
1976
1977 grp->nr_tasks++;
1978 rcu_assign_pointer(p->numa_group, grp);
1979 }
1980
1981 rcu_read_lock();
1982 tsk = READ_ONCE(cpu_rq(cpu)->curr);
1983
1984 if (!cpupid_match_pid(tsk, cpupid))
1985 goto no_join;
1986
1987 grp = rcu_dereference(tsk->numa_group);
1988 if (!grp)
1989 goto no_join;
1990
1991 my_grp = p->numa_group;
1992 if (grp == my_grp)
1993 goto no_join;
1994
1995 /*
1996 * Only join the other group if its bigger; if we're the bigger group,
1997 * the other task will join us.
1998 */
1999 if (my_grp->nr_tasks > grp->nr_tasks)
2000 goto no_join;
2001
2002 /*
2003 * Tie-break on the grp address.
2004 */
2005 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2006 goto no_join;
2007
2008 /* Always join threads in the same process. */
2009 if (tsk->mm == current->mm)
2010 join = true;
2011
2012 /* Simple filter to avoid false positives due to PID collisions */
2013 if (flags & TNF_SHARED)
2014 join = true;
2015
2016 /* Update priv based on whether false sharing was detected */
2017 *priv = !join;
2018
2019 if (join && !get_numa_group(grp))
2020 goto no_join;
2021
2022 rcu_read_unlock();
2023
2024 if (!join)
2025 return;
2026
2027 BUG_ON(irqs_disabled());
2028 double_lock_irq(&my_grp->lock, &grp->lock);
2029
2030 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2031 my_grp->faults[i] -= p->numa_faults[i];
2032 grp->faults[i] += p->numa_faults[i];
2033 }
2034 my_grp->total_faults -= p->total_numa_faults;
2035 grp->total_faults += p->total_numa_faults;
2036
2037 my_grp->nr_tasks--;
2038 grp->nr_tasks++;
2039
2040 spin_unlock(&my_grp->lock);
2041 spin_unlock_irq(&grp->lock);
2042
2043 rcu_assign_pointer(p->numa_group, grp);
2044
2045 put_numa_group(my_grp);
2046 return;
2047
2048no_join:
2049 rcu_read_unlock();
2050 return;
2051}
2052
2053void task_numa_free(struct task_struct *p)
2054{
2055 struct numa_group *grp = p->numa_group;
2056 void *numa_faults = p->numa_faults;
2057 unsigned long flags;
2058 int i;
2059
2060 if (grp) {
2061 spin_lock_irqsave(&grp->lock, flags);
2062 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2063 grp->faults[i] -= p->numa_faults[i];
2064 grp->total_faults -= p->total_numa_faults;
2065
2066 grp->nr_tasks--;
2067 spin_unlock_irqrestore(&grp->lock, flags);
2068 RCU_INIT_POINTER(p->numa_group, NULL);
2069 put_numa_group(grp);
2070 }
2071
2072 p->numa_faults = NULL;
2073 kfree(numa_faults);
2074}
2075
2076/*
2077 * Got a PROT_NONE fault for a page on @node.
2078 */
2079void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2080{
2081 struct task_struct *p = current;
2082 bool migrated = flags & TNF_MIGRATED;
2083 int cpu_node = task_node(current);
2084 int local = !!(flags & TNF_FAULT_LOCAL);
2085 int priv;
2086
2087 if (!static_branch_likely(&sched_numa_balancing))
2088 return;
2089
2090 /* for example, ksmd faulting in a user's mm */
2091 if (!p->mm)
2092 return;
2093
2094 /* Allocate buffer to track faults on a per-node basis */
2095 if (unlikely(!p->numa_faults)) {
2096 int size = sizeof(*p->numa_faults) *
2097 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2098
2099 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2100 if (!p->numa_faults)
2101 return;
2102
2103 p->total_numa_faults = 0;
2104 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2105 }
2106
2107 /*
2108 * First accesses are treated as private, otherwise consider accesses
2109 * to be private if the accessing pid has not changed
2110 */
2111 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2112 priv = 1;
2113 } else {
2114 priv = cpupid_match_pid(p, last_cpupid);
2115 if (!priv && !(flags & TNF_NO_GROUP))
2116 task_numa_group(p, last_cpupid, flags, &priv);
2117 }
2118
2119 /*
2120 * If a workload spans multiple NUMA nodes, a shared fault that
2121 * occurs wholly within the set of nodes that the workload is
2122 * actively using should be counted as local. This allows the
2123 * scan rate to slow down when a workload has settled down.
2124 */
2125 if (!priv && !local && p->numa_group &&
2126 node_isset(cpu_node, p->numa_group->active_nodes) &&
2127 node_isset(mem_node, p->numa_group->active_nodes))
2128 local = 1;
2129
2130 task_numa_placement(p);
2131
2132 /*
2133 * Retry task to preferred node migration periodically, in case it
2134 * case it previously failed, or the scheduler moved us.
2135 */
2136 if (time_after(jiffies, p->numa_migrate_retry))
2137 numa_migrate_preferred(p);
2138
2139 if (migrated)
2140 p->numa_pages_migrated += pages;
2141 if (flags & TNF_MIGRATE_FAIL)
2142 p->numa_faults_locality[2] += pages;
2143
2144 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2145 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2146 p->numa_faults_locality[local] += pages;
2147}
2148
2149static void reset_ptenuma_scan(struct task_struct *p)
2150{
2151 /*
2152 * We only did a read acquisition of the mmap sem, so
2153 * p->mm->numa_scan_seq is written to without exclusive access
2154 * and the update is not guaranteed to be atomic. That's not
2155 * much of an issue though, since this is just used for
2156 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2157 * expensive, to avoid any form of compiler optimizations:
2158 */
2159 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2160 p->mm->numa_scan_offset = 0;
2161}
2162
2163/*
2164 * The expensive part of numa migration is done from task_work context.
2165 * Triggered from task_tick_numa().
2166 */
2167void task_numa_work(struct callback_head *work)
2168{
2169 unsigned long migrate, next_scan, now = jiffies;
2170 struct task_struct *p = current;
2171 struct mm_struct *mm = p->mm;
2172 struct vm_area_struct *vma;
2173 unsigned long start, end;
2174 unsigned long nr_pte_updates = 0;
2175 long pages, virtpages;
2176
2177 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2178
2179 work->next = work; /* protect against double add */
2180 /*
2181 * Who cares about NUMA placement when they're dying.
2182 *
2183 * NOTE: make sure not to dereference p->mm before this check,
2184 * exit_task_work() happens _after_ exit_mm() so we could be called
2185 * without p->mm even though we still had it when we enqueued this
2186 * work.
2187 */
2188 if (p->flags & PF_EXITING)
2189 return;
2190
2191 if (!mm->numa_next_scan) {
2192 mm->numa_next_scan = now +
2193 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2194 }
2195
2196 /*
2197 * Enforce maximal scan/migration frequency..
2198 */
2199 migrate = mm->numa_next_scan;
2200 if (time_before(now, migrate))
2201 return;
2202
2203 if (p->numa_scan_period == 0) {
2204 p->numa_scan_period_max = task_scan_max(p);
2205 p->numa_scan_period = task_scan_min(p);
2206 }
2207
2208 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2209 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2210 return;
2211
2212 /*
2213 * Delay this task enough that another task of this mm will likely win
2214 * the next time around.
2215 */
2216 p->node_stamp += 2 * TICK_NSEC;
2217
2218 start = mm->numa_scan_offset;
2219 pages = sysctl_numa_balancing_scan_size;
2220 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2221 virtpages = pages * 8; /* Scan up to this much virtual space */
2222 if (!pages)
2223 return;
2224
2225
2226 down_read(&mm->mmap_sem);
2227 vma = find_vma(mm, start);
2228 if (!vma) {
2229 reset_ptenuma_scan(p);
2230 start = 0;
2231 vma = mm->mmap;
2232 }
2233 for (; vma; vma = vma->vm_next) {
2234 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2235 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2236 continue;
2237 }
2238
2239 /*
2240 * Shared library pages mapped by multiple processes are not
2241 * migrated as it is expected they are cache replicated. Avoid
2242 * hinting faults in read-only file-backed mappings or the vdso
2243 * as migrating the pages will be of marginal benefit.
2244 */
2245 if (!vma->vm_mm ||
2246 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2247 continue;
2248
2249 /*
2250 * Skip inaccessible VMAs to avoid any confusion between
2251 * PROT_NONE and NUMA hinting ptes
2252 */
2253 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2254 continue;
2255
2256 do {
2257 start = max(start, vma->vm_start);
2258 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2259 end = min(end, vma->vm_end);
2260 nr_pte_updates = change_prot_numa(vma, start, end);
2261
2262 /*
2263 * Try to scan sysctl_numa_balancing_size worth of
2264 * hpages that have at least one present PTE that
2265 * is not already pte-numa. If the VMA contains
2266 * areas that are unused or already full of prot_numa
2267 * PTEs, scan up to virtpages, to skip through those
2268 * areas faster.
2269 */
2270 if (nr_pte_updates)
2271 pages -= (end - start) >> PAGE_SHIFT;
2272 virtpages -= (end - start) >> PAGE_SHIFT;
2273
2274 start = end;
2275 if (pages <= 0 || virtpages <= 0)
2276 goto out;
2277
2278 cond_resched();
2279 } while (end != vma->vm_end);
2280 }
2281
2282out:
2283 /*
2284 * It is possible to reach the end of the VMA list but the last few
2285 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2286 * would find the !migratable VMA on the next scan but not reset the
2287 * scanner to the start so check it now.
2288 */
2289 if (vma)
2290 mm->numa_scan_offset = start;
2291 else
2292 reset_ptenuma_scan(p);
2293 up_read(&mm->mmap_sem);
2294}
2295
2296/*
2297 * Drive the periodic memory faults..
2298 */
2299void task_tick_numa(struct rq *rq, struct task_struct *curr)
2300{
2301 struct callback_head *work = &curr->numa_work;
2302 u64 period, now;
2303
2304 /*
2305 * We don't care about NUMA placement if we don't have memory.
2306 */
2307 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2308 return;
2309
2310 /*
2311 * Using runtime rather than walltime has the dual advantage that
2312 * we (mostly) drive the selection from busy threads and that the
2313 * task needs to have done some actual work before we bother with
2314 * NUMA placement.
2315 */
2316 now = curr->se.sum_exec_runtime;
2317 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2318
2319 if (now > curr->node_stamp + period) {
2320 if (!curr->node_stamp)
2321 curr->numa_scan_period = task_scan_min(curr);
2322 curr->node_stamp += period;
2323
2324 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2325 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2326 task_work_add(curr, work, true);
2327 }
2328 }
2329}
2330#else
2331static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2332{
2333}
2334
2335static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2336{
2337}
2338
2339static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2340{
2341}
2342#endif /* CONFIG_NUMA_BALANCING */
2343
2344static void
2345account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2346{
2347 update_load_add(&cfs_rq->load, se->load.weight);
2348 if (!parent_entity(se))
2349 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2350#ifdef CONFIG_SMP
2351 if (entity_is_task(se)) {
2352 struct rq *rq = rq_of(cfs_rq);
2353
2354 account_numa_enqueue(rq, task_of(se));
2355 list_add(&se->group_node, &rq->cfs_tasks);
2356 }
2357#endif
2358 cfs_rq->nr_running++;
2359}
2360
2361static void
2362account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2363{
2364 update_load_sub(&cfs_rq->load, se->load.weight);
2365 if (!parent_entity(se))
2366 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2367 if (entity_is_task(se)) {
2368 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2369 list_del_init(&se->group_node);
2370 }
2371 cfs_rq->nr_running--;
2372}
2373
2374#ifdef CONFIG_FAIR_GROUP_SCHED
2375# ifdef CONFIG_SMP
2376static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2377{
2378 long tg_weight;
2379
2380 /*
2381 * Use this CPU's real-time load instead of the last load contribution
2382 * as the updating of the contribution is delayed, and we will use the
2383 * the real-time load to calc the share. See update_tg_load_avg().
2384 */
2385 tg_weight = atomic_long_read(&tg->load_avg);
2386 tg_weight -= cfs_rq->tg_load_avg_contrib;
2387 tg_weight += cfs_rq->load.weight;
2388
2389 return tg_weight;
2390}
2391
2392static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2393{
2394 long tg_weight, load, shares;
2395
2396 tg_weight = calc_tg_weight(tg, cfs_rq);
2397 load = cfs_rq->load.weight;
2398
2399 shares = (tg->shares * load);
2400 if (tg_weight)
2401 shares /= tg_weight;
2402
2403 if (shares < MIN_SHARES)
2404 shares = MIN_SHARES;
2405 if (shares > tg->shares)
2406 shares = tg->shares;
2407
2408 return shares;
2409}
2410# else /* CONFIG_SMP */
2411static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2412{
2413 return tg->shares;
2414}
2415# endif /* CONFIG_SMP */
2416static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2417 unsigned long weight)
2418{
2419 if (se->on_rq) {
2420 /* commit outstanding execution time */
2421 if (cfs_rq->curr == se)
2422 update_curr(cfs_rq);
2423 account_entity_dequeue(cfs_rq, se);
2424 }
2425
2426 update_load_set(&se->load, weight);
2427
2428 if (se->on_rq)
2429 account_entity_enqueue(cfs_rq, se);
2430}
2431
2432static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2433
2434static void update_cfs_shares(struct cfs_rq *cfs_rq)
2435{
2436 struct task_group *tg;
2437 struct sched_entity *se;
2438 long shares;
2439
2440 tg = cfs_rq->tg;
2441 se = tg->se[cpu_of(rq_of(cfs_rq))];
2442 if (!se || throttled_hierarchy(cfs_rq))
2443 return;
2444#ifndef CONFIG_SMP
2445 if (likely(se->load.weight == tg->shares))
2446 return;
2447#endif
2448 shares = calc_cfs_shares(cfs_rq, tg);
2449
2450 reweight_entity(cfs_rq_of(se), se, shares);
2451}
2452#else /* CONFIG_FAIR_GROUP_SCHED */
2453static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2454{
2455}
2456#endif /* CONFIG_FAIR_GROUP_SCHED */
2457
2458#ifdef CONFIG_SMP
2459/* Precomputed fixed inverse multiplies for multiplication by y^n */
2460static const u32 runnable_avg_yN_inv[] = {
2461 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2462 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2463 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2464 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2465 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2466 0x85aac367, 0x82cd8698,
2467};
2468
2469/*
2470 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2471 * over-estimates when re-combining.
2472 */
2473static const u32 runnable_avg_yN_sum[] = {
2474 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2475 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2476 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2477};
2478
2479/*
2480 * Approximate:
2481 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2482 */
2483static __always_inline u64 decay_load(u64 val, u64 n)
2484{
2485 unsigned int local_n;
2486
2487 if (!n)
2488 return val;
2489 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2490 return 0;
2491
2492 /* after bounds checking we can collapse to 32-bit */
2493 local_n = n;
2494
2495 /*
2496 * As y^PERIOD = 1/2, we can combine
2497 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2498 * With a look-up table which covers y^n (n<PERIOD)
2499 *
2500 * To achieve constant time decay_load.
2501 */
2502 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2503 val >>= local_n / LOAD_AVG_PERIOD;
2504 local_n %= LOAD_AVG_PERIOD;
2505 }
2506
2507 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2508 return val;
2509}
2510
2511/*
2512 * For updates fully spanning n periods, the contribution to runnable
2513 * average will be: \Sum 1024*y^n
2514 *
2515 * We can compute this reasonably efficiently by combining:
2516 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2517 */
2518static u32 __compute_runnable_contrib(u64 n)
2519{
2520 u32 contrib = 0;
2521
2522 if (likely(n <= LOAD_AVG_PERIOD))
2523 return runnable_avg_yN_sum[n];
2524 else if (unlikely(n >= LOAD_AVG_MAX_N))
2525 return LOAD_AVG_MAX;
2526
2527 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2528 do {
2529 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2530 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2531
2532 n -= LOAD_AVG_PERIOD;
2533 } while (n > LOAD_AVG_PERIOD);
2534
2535 contrib = decay_load(contrib, n);
2536 return contrib + runnable_avg_yN_sum[n];
2537}
2538
2539#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2540#error "load tracking assumes 2^10 as unit"
2541#endif
2542
2543#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2544
2545/*
2546 * We can represent the historical contribution to runnable average as the
2547 * coefficients of a geometric series. To do this we sub-divide our runnable
2548 * history into segments of approximately 1ms (1024us); label the segment that
2549 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2550 *
2551 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2552 * p0 p1 p2
2553 * (now) (~1ms ago) (~2ms ago)
2554 *
2555 * Let u_i denote the fraction of p_i that the entity was runnable.
2556 *
2557 * We then designate the fractions u_i as our co-efficients, yielding the
2558 * following representation of historical load:
2559 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2560 *
2561 * We choose y based on the with of a reasonably scheduling period, fixing:
2562 * y^32 = 0.5
2563 *
2564 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2565 * approximately half as much as the contribution to load within the last ms
2566 * (u_0).
2567 *
2568 * When a period "rolls over" and we have new u_0`, multiplying the previous
2569 * sum again by y is sufficient to update:
2570 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2571 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2572 */
2573static __always_inline int
2574__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2575 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2576{
2577 u64 delta, scaled_delta, periods;
2578 u32 contrib;
2579 unsigned int delta_w, scaled_delta_w, decayed = 0;
2580 unsigned long scale_freq, scale_cpu;
2581
2582 delta = now - sa->last_update_time;
2583 /*
2584 * This should only happen when time goes backwards, which it
2585 * unfortunately does during sched clock init when we swap over to TSC.
2586 */
2587 if ((s64)delta < 0) {
2588 sa->last_update_time = now;
2589 return 0;
2590 }
2591
2592 /*
2593 * Use 1024ns as the unit of measurement since it's a reasonable
2594 * approximation of 1us and fast to compute.
2595 */
2596 delta >>= 10;
2597 if (!delta)
2598 return 0;
2599 sa->last_update_time = now;
2600
2601 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2602 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2603
2604 /* delta_w is the amount already accumulated against our next period */
2605 delta_w = sa->period_contrib;
2606 if (delta + delta_w >= 1024) {
2607 decayed = 1;
2608
2609 /* how much left for next period will start over, we don't know yet */
2610 sa->period_contrib = 0;
2611
2612 /*
2613 * Now that we know we're crossing a period boundary, figure
2614 * out how much from delta we need to complete the current
2615 * period and accrue it.
2616 */
2617 delta_w = 1024 - delta_w;
2618 scaled_delta_w = cap_scale(delta_w, scale_freq);
2619 if (weight) {
2620 sa->load_sum += weight * scaled_delta_w;
2621 if (cfs_rq) {
2622 cfs_rq->runnable_load_sum +=
2623 weight * scaled_delta_w;
2624 }
2625 }
2626 if (running)
2627 sa->util_sum += scaled_delta_w * scale_cpu;
2628
2629 delta -= delta_w;
2630
2631 /* Figure out how many additional periods this update spans */
2632 periods = delta / 1024;
2633 delta %= 1024;
2634
2635 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2636 if (cfs_rq) {
2637 cfs_rq->runnable_load_sum =
2638 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2639 }
2640 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2641
2642 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2643 contrib = __compute_runnable_contrib(periods);
2644 contrib = cap_scale(contrib, scale_freq);
2645 if (weight) {
2646 sa->load_sum += weight * contrib;
2647 if (cfs_rq)
2648 cfs_rq->runnable_load_sum += weight * contrib;
2649 }
2650 if (running)
2651 sa->util_sum += contrib * scale_cpu;
2652 }
2653
2654 /* Remainder of delta accrued against u_0` */
2655 scaled_delta = cap_scale(delta, scale_freq);
2656 if (weight) {
2657 sa->load_sum += weight * scaled_delta;
2658 if (cfs_rq)
2659 cfs_rq->runnable_load_sum += weight * scaled_delta;
2660 }
2661 if (running)
2662 sa->util_sum += scaled_delta * scale_cpu;
2663
2664 sa->period_contrib += delta;
2665
2666 if (decayed) {
2667 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2668 if (cfs_rq) {
2669 cfs_rq->runnable_load_avg =
2670 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2671 }
2672 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2673 }
2674
2675 return decayed;
2676}
2677
2678#ifdef CONFIG_FAIR_GROUP_SCHED
2679/*
2680 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2681 * and effective_load (which is not done because it is too costly).
2682 */
2683static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2684{
2685 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2686
2687 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2688 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2689 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2690 }
2691}
2692
2693#else /* CONFIG_FAIR_GROUP_SCHED */
2694static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2695#endif /* CONFIG_FAIR_GROUP_SCHED */
2696
2697static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2698
2699/*
2700 * Unsigned subtract and clamp on underflow.
2701 *
2702 * Explicitly do a load-store to ensure the intermediate value never hits
2703 * memory. This allows lockless observations without ever seeing the negative
2704 * values.
2705 */
2706#define sub_positive(_ptr, _val) do { \
2707 typeof(_ptr) ptr = (_ptr); \
2708 typeof(*ptr) val = (_val); \
2709 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2710 res = var - val; \
2711 if (res > var) \
2712 res = 0; \
2713 WRITE_ONCE(*ptr, res); \
2714} while (0)
2715
2716/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2717static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2718{
2719 struct sched_avg *sa = &cfs_rq->avg;
2720 int decayed, removed = 0;
2721
2722 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2723 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2724 sub_positive(&sa->load_avg, r);
2725 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
2726 removed = 1;
2727 }
2728
2729 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2730 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2731 sub_positive(&sa->util_avg, r);
2732 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
2733 }
2734
2735 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2736 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2737
2738#ifndef CONFIG_64BIT
2739 smp_wmb();
2740 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2741#endif
2742
2743 return decayed || removed;
2744}
2745
2746/* Update task and its cfs_rq load average */
2747static inline void update_load_avg(struct sched_entity *se, int update_tg)
2748{
2749 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2750 u64 now = cfs_rq_clock_task(cfs_rq);
2751 int cpu = cpu_of(rq_of(cfs_rq));
2752
2753 /*
2754 * Track task load average for carrying it to new CPU after migrated, and
2755 * track group sched_entity load average for task_h_load calc in migration
2756 */
2757 __update_load_avg(now, cpu, &se->avg,
2758 se->on_rq * scale_load_down(se->load.weight),
2759 cfs_rq->curr == se, NULL);
2760
2761 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2762 update_tg_load_avg(cfs_rq, 0);
2763}
2764
2765static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2766{
2767 if (!sched_feat(ATTACH_AGE_LOAD))
2768 goto skip_aging;
2769
2770 /*
2771 * If we got migrated (either between CPUs or between cgroups) we'll
2772 * have aged the average right before clearing @last_update_time.
2773 */
2774 if (se->avg.last_update_time) {
2775 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2776 &se->avg, 0, 0, NULL);
2777
2778 /*
2779 * XXX: we could have just aged the entire load away if we've been
2780 * absent from the fair class for too long.
2781 */
2782 }
2783
2784skip_aging:
2785 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2786 cfs_rq->avg.load_avg += se->avg.load_avg;
2787 cfs_rq->avg.load_sum += se->avg.load_sum;
2788 cfs_rq->avg.util_avg += se->avg.util_avg;
2789 cfs_rq->avg.util_sum += se->avg.util_sum;
2790}
2791
2792static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2793{
2794 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2795 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2796 cfs_rq->curr == se, NULL);
2797
2798 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2799 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
2800 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
2801 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
2802}
2803
2804/* Add the load generated by se into cfs_rq's load average */
2805static inline void
2806enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2807{
2808 struct sched_avg *sa = &se->avg;
2809 u64 now = cfs_rq_clock_task(cfs_rq);
2810 int migrated, decayed;
2811
2812 migrated = !sa->last_update_time;
2813 if (!migrated) {
2814 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2815 se->on_rq * scale_load_down(se->load.weight),
2816 cfs_rq->curr == se, NULL);
2817 }
2818
2819 decayed = update_cfs_rq_load_avg(now, cfs_rq);
2820
2821 cfs_rq->runnable_load_avg += sa->load_avg;
2822 cfs_rq->runnable_load_sum += sa->load_sum;
2823
2824 if (migrated)
2825 attach_entity_load_avg(cfs_rq, se);
2826
2827 if (decayed || migrated)
2828 update_tg_load_avg(cfs_rq, 0);
2829}
2830
2831/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2832static inline void
2833dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2834{
2835 update_load_avg(se, 1);
2836
2837 cfs_rq->runnable_load_avg =
2838 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2839 cfs_rq->runnable_load_sum =
2840 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2841}
2842
2843/*
2844 * Task first catches up with cfs_rq, and then subtract
2845 * itself from the cfs_rq (task must be off the queue now).
2846 */
2847void remove_entity_load_avg(struct sched_entity *se)
2848{
2849 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2850 u64 last_update_time;
2851
2852#ifndef CONFIG_64BIT
2853 u64 last_update_time_copy;
2854
2855 do {
2856 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2857 smp_rmb();
2858 last_update_time = cfs_rq->avg.last_update_time;
2859 } while (last_update_time != last_update_time_copy);
2860#else
2861 last_update_time = cfs_rq->avg.last_update_time;
2862#endif
2863
2864 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2865 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2866 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2867}
2868
2869/*
2870 * Update the rq's load with the elapsed running time before entering
2871 * idle. if the last scheduled task is not a CFS task, idle_enter will
2872 * be the only way to update the runnable statistic.
2873 */
2874void idle_enter_fair(struct rq *this_rq)
2875{
2876}
2877
2878/*
2879 * Update the rq's load with the elapsed idle time before a task is
2880 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2881 * be the only way to update the runnable statistic.
2882 */
2883void idle_exit_fair(struct rq *this_rq)
2884{
2885}
2886
2887static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2888{
2889 return cfs_rq->runnable_load_avg;
2890}
2891
2892static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2893{
2894 return cfs_rq->avg.load_avg;
2895}
2896
2897static int idle_balance(struct rq *this_rq);
2898
2899#else /* CONFIG_SMP */
2900
2901static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2902static inline void
2903enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2904static inline void
2905dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2906static inline void remove_entity_load_avg(struct sched_entity *se) {}
2907
2908static inline void
2909attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2910static inline void
2911detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2912
2913static inline int idle_balance(struct rq *rq)
2914{
2915 return 0;
2916}
2917
2918#endif /* CONFIG_SMP */
2919
2920static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2921{
2922#ifdef CONFIG_SCHEDSTATS
2923 struct task_struct *tsk = NULL;
2924
2925 if (entity_is_task(se))
2926 tsk = task_of(se);
2927
2928 if (se->statistics.sleep_start) {
2929 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2930
2931 if ((s64)delta < 0)
2932 delta = 0;
2933
2934 if (unlikely(delta > se->statistics.sleep_max))
2935 se->statistics.sleep_max = delta;
2936
2937 se->statistics.sleep_start = 0;
2938 se->statistics.sum_sleep_runtime += delta;
2939
2940 if (tsk) {
2941 account_scheduler_latency(tsk, delta >> 10, 1);
2942 trace_sched_stat_sleep(tsk, delta);
2943 }
2944 }
2945 if (se->statistics.block_start) {
2946 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2947
2948 if ((s64)delta < 0)
2949 delta = 0;
2950
2951 if (unlikely(delta > se->statistics.block_max))
2952 se->statistics.block_max = delta;
2953
2954 se->statistics.block_start = 0;
2955 se->statistics.sum_sleep_runtime += delta;
2956
2957 if (tsk) {
2958 if (tsk->in_iowait) {
2959 se->statistics.iowait_sum += delta;
2960 se->statistics.iowait_count++;
2961 trace_sched_stat_iowait(tsk, delta);
2962 }
2963
2964 trace_sched_stat_blocked(tsk, delta);
2965
2966 /*
2967 * Blocking time is in units of nanosecs, so shift by
2968 * 20 to get a milliseconds-range estimation of the
2969 * amount of time that the task spent sleeping:
2970 */
2971 if (unlikely(prof_on == SLEEP_PROFILING)) {
2972 profile_hits(SLEEP_PROFILING,
2973 (void *)get_wchan(tsk),
2974 delta >> 20);
2975 }
2976 account_scheduler_latency(tsk, delta >> 10, 0);
2977 }
2978 }
2979#endif
2980}
2981
2982static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2983{
2984#ifdef CONFIG_SCHED_DEBUG
2985 s64 d = se->vruntime - cfs_rq->min_vruntime;
2986
2987 if (d < 0)
2988 d = -d;
2989
2990 if (d > 3*sysctl_sched_latency)
2991 schedstat_inc(cfs_rq, nr_spread_over);
2992#endif
2993}
2994
2995static void
2996place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2997{
2998 u64 vruntime = cfs_rq->min_vruntime;
2999
3000 /*
3001 * The 'current' period is already promised to the current tasks,
3002 * however the extra weight of the new task will slow them down a
3003 * little, place the new task so that it fits in the slot that
3004 * stays open at the end.
3005 */
3006 if (initial && sched_feat(START_DEBIT))
3007 vruntime += sched_vslice(cfs_rq, se);
3008
3009 /* sleeps up to a single latency don't count. */
3010 if (!initial) {
3011 unsigned long thresh = sysctl_sched_latency;
3012
3013 /*
3014 * Halve their sleep time's effect, to allow
3015 * for a gentler effect of sleepers:
3016 */
3017 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3018 thresh >>= 1;
3019
3020 vruntime -= thresh;
3021 }
3022
3023 /* ensure we never gain time by being placed backwards. */
3024 se->vruntime = max_vruntime(se->vruntime, vruntime);
3025}
3026
3027static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3028
3029static void
3030enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3031{
3032 /*
3033 * Update the normalized vruntime before updating min_vruntime
3034 * through calling update_curr().
3035 */
3036 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3037 se->vruntime += cfs_rq->min_vruntime;
3038
3039 /*
3040 * Update run-time statistics of the 'current'.
3041 */
3042 update_curr(cfs_rq);
3043 enqueue_entity_load_avg(cfs_rq, se);
3044 account_entity_enqueue(cfs_rq, se);
3045 update_cfs_shares(cfs_rq);
3046
3047 if (flags & ENQUEUE_WAKEUP) {
3048 place_entity(cfs_rq, se, 0);
3049 enqueue_sleeper(cfs_rq, se);
3050 }
3051
3052 update_stats_enqueue(cfs_rq, se);
3053 check_spread(cfs_rq, se);
3054 if (se != cfs_rq->curr)
3055 __enqueue_entity(cfs_rq, se);
3056 se->on_rq = 1;
3057
3058 if (cfs_rq->nr_running == 1) {
3059 list_add_leaf_cfs_rq(cfs_rq);
3060 check_enqueue_throttle(cfs_rq);
3061 }
3062}
3063
3064static void __clear_buddies_last(struct sched_entity *se)
3065{
3066 for_each_sched_entity(se) {
3067 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3068 if (cfs_rq->last != se)
3069 break;
3070
3071 cfs_rq->last = NULL;
3072 }
3073}
3074
3075static void __clear_buddies_next(struct sched_entity *se)
3076{
3077 for_each_sched_entity(se) {
3078 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3079 if (cfs_rq->next != se)
3080 break;
3081
3082 cfs_rq->next = NULL;
3083 }
3084}
3085
3086static void __clear_buddies_skip(struct sched_entity *se)
3087{
3088 for_each_sched_entity(se) {
3089 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3090 if (cfs_rq->skip != se)
3091 break;
3092
3093 cfs_rq->skip = NULL;
3094 }
3095}
3096
3097static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3098{
3099 if (cfs_rq->last == se)
3100 __clear_buddies_last(se);
3101
3102 if (cfs_rq->next == se)
3103 __clear_buddies_next(se);
3104
3105 if (cfs_rq->skip == se)
3106 __clear_buddies_skip(se);
3107}
3108
3109static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3110
3111static void
3112dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3113{
3114 /*
3115 * Update run-time statistics of the 'current'.
3116 */
3117 update_curr(cfs_rq);
3118 dequeue_entity_load_avg(cfs_rq, se);
3119
3120 update_stats_dequeue(cfs_rq, se);
3121 if (flags & DEQUEUE_SLEEP) {
3122#ifdef CONFIG_SCHEDSTATS
3123 if (entity_is_task(se)) {
3124 struct task_struct *tsk = task_of(se);
3125
3126 if (tsk->state & TASK_INTERRUPTIBLE)
3127 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3128 if (tsk->state & TASK_UNINTERRUPTIBLE)
3129 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3130 }
3131#endif
3132 }
3133
3134 clear_buddies(cfs_rq, se);
3135
3136 if (se != cfs_rq->curr)
3137 __dequeue_entity(cfs_rq, se);
3138 se->on_rq = 0;
3139 account_entity_dequeue(cfs_rq, se);
3140
3141 /*
3142 * Normalize the entity after updating the min_vruntime because the
3143 * update can refer to the ->curr item and we need to reflect this
3144 * movement in our normalized position.
3145 */
3146 if (!(flags & DEQUEUE_SLEEP))
3147 se->vruntime -= cfs_rq->min_vruntime;
3148
3149 /* return excess runtime on last dequeue */
3150 return_cfs_rq_runtime(cfs_rq);
3151
3152 update_min_vruntime(cfs_rq);
3153 update_cfs_shares(cfs_rq);
3154}
3155
3156/*
3157 * Preempt the current task with a newly woken task if needed:
3158 */
3159static void
3160check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3161{
3162 unsigned long ideal_runtime, delta_exec;
3163 struct sched_entity *se;
3164 s64 delta;
3165
3166 ideal_runtime = sched_slice(cfs_rq, curr);
3167 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3168 if (delta_exec > ideal_runtime) {
3169 resched_curr(rq_of(cfs_rq));
3170 /*
3171 * The current task ran long enough, ensure it doesn't get
3172 * re-elected due to buddy favours.
3173 */
3174 clear_buddies(cfs_rq, curr);
3175 return;
3176 }
3177
3178 /*
3179 * Ensure that a task that missed wakeup preemption by a
3180 * narrow margin doesn't have to wait for a full slice.
3181 * This also mitigates buddy induced latencies under load.
3182 */
3183 if (delta_exec < sysctl_sched_min_granularity)
3184 return;
3185
3186 se = __pick_first_entity(cfs_rq);
3187 delta = curr->vruntime - se->vruntime;
3188
3189 if (delta < 0)
3190 return;
3191
3192 if (delta > ideal_runtime)
3193 resched_curr(rq_of(cfs_rq));
3194}
3195
3196static void
3197set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3198{
3199 /* 'current' is not kept within the tree. */
3200 if (se->on_rq) {
3201 /*
3202 * Any task has to be enqueued before it get to execute on
3203 * a CPU. So account for the time it spent waiting on the
3204 * runqueue.
3205 */
3206 update_stats_wait_end(cfs_rq, se);
3207 __dequeue_entity(cfs_rq, se);
3208 update_load_avg(se, 1);
3209 }
3210
3211 update_stats_curr_start(cfs_rq, se);
3212 cfs_rq->curr = se;
3213#ifdef CONFIG_SCHEDSTATS
3214 /*
3215 * Track our maximum slice length, if the CPU's load is at
3216 * least twice that of our own weight (i.e. dont track it
3217 * when there are only lesser-weight tasks around):
3218 */
3219 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3220 se->statistics.slice_max = max(se->statistics.slice_max,
3221 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3222 }
3223#endif
3224 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3225}
3226
3227static int
3228wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3229
3230/*
3231 * Pick the next process, keeping these things in mind, in this order:
3232 * 1) keep things fair between processes/task groups
3233 * 2) pick the "next" process, since someone really wants that to run
3234 * 3) pick the "last" process, for cache locality
3235 * 4) do not run the "skip" process, if something else is available
3236 */
3237static struct sched_entity *
3238pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3239{
3240 struct sched_entity *left = __pick_first_entity(cfs_rq);
3241 struct sched_entity *se;
3242
3243 /*
3244 * If curr is set we have to see if its left of the leftmost entity
3245 * still in the tree, provided there was anything in the tree at all.
3246 */
3247 if (!left || (curr && entity_before(curr, left)))
3248 left = curr;
3249
3250 se = left; /* ideally we run the leftmost entity */
3251
3252 /*
3253 * Avoid running the skip buddy, if running something else can
3254 * be done without getting too unfair.
3255 */
3256 if (cfs_rq->skip == se) {
3257 struct sched_entity *second;
3258
3259 if (se == curr) {
3260 second = __pick_first_entity(cfs_rq);
3261 } else {
3262 second = __pick_next_entity(se);
3263 if (!second || (curr && entity_before(curr, second)))
3264 second = curr;
3265 }
3266
3267 if (second && wakeup_preempt_entity(second, left) < 1)
3268 se = second;
3269 }
3270
3271 /*
3272 * Prefer last buddy, try to return the CPU to a preempted task.
3273 */
3274 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3275 se = cfs_rq->last;
3276
3277 /*
3278 * Someone really wants this to run. If it's not unfair, run it.
3279 */
3280 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3281 se = cfs_rq->next;
3282
3283 clear_buddies(cfs_rq, se);
3284
3285 return se;
3286}
3287
3288static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3289
3290static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3291{
3292 /*
3293 * If still on the runqueue then deactivate_task()
3294 * was not called and update_curr() has to be done:
3295 */
3296 if (prev->on_rq)
3297 update_curr(cfs_rq);
3298
3299 /* throttle cfs_rqs exceeding runtime */
3300 check_cfs_rq_runtime(cfs_rq);
3301
3302 check_spread(cfs_rq, prev);
3303 if (prev->on_rq) {
3304 update_stats_wait_start(cfs_rq, prev);
3305 /* Put 'current' back into the tree. */
3306 __enqueue_entity(cfs_rq, prev);
3307 /* in !on_rq case, update occurred at dequeue */
3308 update_load_avg(prev, 0);
3309 }
3310 cfs_rq->curr = NULL;
3311}
3312
3313static void
3314entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3315{
3316 /*
3317 * Update run-time statistics of the 'current'.
3318 */
3319 update_curr(cfs_rq);
3320
3321 /*
3322 * Ensure that runnable average is periodically updated.
3323 */
3324 update_load_avg(curr, 1);
3325 update_cfs_shares(cfs_rq);
3326
3327#ifdef CONFIG_SCHED_HRTICK
3328 /*
3329 * queued ticks are scheduled to match the slice, so don't bother
3330 * validating it and just reschedule.
3331 */
3332 if (queued) {
3333 resched_curr(rq_of(cfs_rq));
3334 return;
3335 }
3336 /*
3337 * don't let the period tick interfere with the hrtick preemption
3338 */
3339 if (!sched_feat(DOUBLE_TICK) &&
3340 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3341 return;
3342#endif
3343
3344 if (cfs_rq->nr_running > 1)
3345 check_preempt_tick(cfs_rq, curr);
3346}
3347
3348
3349/**************************************************
3350 * CFS bandwidth control machinery
3351 */
3352
3353#ifdef CONFIG_CFS_BANDWIDTH
3354
3355#ifdef HAVE_JUMP_LABEL
3356static struct static_key __cfs_bandwidth_used;
3357
3358static inline bool cfs_bandwidth_used(void)
3359{
3360 return static_key_false(&__cfs_bandwidth_used);
3361}
3362
3363void cfs_bandwidth_usage_inc(void)
3364{
3365 static_key_slow_inc(&__cfs_bandwidth_used);
3366}
3367
3368void cfs_bandwidth_usage_dec(void)
3369{
3370 static_key_slow_dec(&__cfs_bandwidth_used);
3371}
3372#else /* HAVE_JUMP_LABEL */
3373static bool cfs_bandwidth_used(void)
3374{
3375 return true;
3376}
3377
3378void cfs_bandwidth_usage_inc(void) {}
3379void cfs_bandwidth_usage_dec(void) {}
3380#endif /* HAVE_JUMP_LABEL */
3381
3382/*
3383 * default period for cfs group bandwidth.
3384 * default: 0.1s, units: nanoseconds
3385 */
3386static inline u64 default_cfs_period(void)
3387{
3388 return 100000000ULL;
3389}
3390
3391static inline u64 sched_cfs_bandwidth_slice(void)
3392{
3393 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3394}
3395
3396/*
3397 * Replenish runtime according to assigned quota and update expiration time.
3398 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3399 * additional synchronization around rq->lock.
3400 *
3401 * requires cfs_b->lock
3402 */
3403void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3404{
3405 u64 now;
3406
3407 if (cfs_b->quota == RUNTIME_INF)
3408 return;
3409
3410 now = sched_clock_cpu(smp_processor_id());
3411 cfs_b->runtime = cfs_b->quota;
3412 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3413}
3414
3415static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3416{
3417 return &tg->cfs_bandwidth;
3418}
3419
3420/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3421static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3422{
3423 if (unlikely(cfs_rq->throttle_count))
3424 return cfs_rq->throttled_clock_task;
3425
3426 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3427}
3428
3429/* returns 0 on failure to allocate runtime */
3430static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3431{
3432 struct task_group *tg = cfs_rq->tg;
3433 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3434 u64 amount = 0, min_amount, expires;
3435
3436 /* note: this is a positive sum as runtime_remaining <= 0 */
3437 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3438
3439 raw_spin_lock(&cfs_b->lock);
3440 if (cfs_b->quota == RUNTIME_INF)
3441 amount = min_amount;
3442 else {
3443 start_cfs_bandwidth(cfs_b);
3444
3445 if (cfs_b->runtime > 0) {
3446 amount = min(cfs_b->runtime, min_amount);
3447 cfs_b->runtime -= amount;
3448 cfs_b->idle = 0;
3449 }
3450 }
3451 expires = cfs_b->runtime_expires;
3452 raw_spin_unlock(&cfs_b->lock);
3453
3454 cfs_rq->runtime_remaining += amount;
3455 /*
3456 * we may have advanced our local expiration to account for allowed
3457 * spread between our sched_clock and the one on which runtime was
3458 * issued.
3459 */
3460 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3461 cfs_rq->runtime_expires = expires;
3462
3463 return cfs_rq->runtime_remaining > 0;
3464}
3465
3466/*
3467 * Note: This depends on the synchronization provided by sched_clock and the
3468 * fact that rq->clock snapshots this value.
3469 */
3470static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3471{
3472 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3473
3474 /* if the deadline is ahead of our clock, nothing to do */
3475 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3476 return;
3477
3478 if (cfs_rq->runtime_remaining < 0)
3479 return;
3480
3481 /*
3482 * If the local deadline has passed we have to consider the
3483 * possibility that our sched_clock is 'fast' and the global deadline
3484 * has not truly expired.
3485 *
3486 * Fortunately we can check determine whether this the case by checking
3487 * whether the global deadline has advanced. It is valid to compare
3488 * cfs_b->runtime_expires without any locks since we only care about
3489 * exact equality, so a partial write will still work.
3490 */
3491
3492 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3493 /* extend local deadline, drift is bounded above by 2 ticks */
3494 cfs_rq->runtime_expires += TICK_NSEC;
3495 } else {
3496 /* global deadline is ahead, expiration has passed */
3497 cfs_rq->runtime_remaining = 0;
3498 }
3499}
3500
3501static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3502{
3503 /* dock delta_exec before expiring quota (as it could span periods) */
3504 cfs_rq->runtime_remaining -= delta_exec;
3505 expire_cfs_rq_runtime(cfs_rq);
3506
3507 if (likely(cfs_rq->runtime_remaining > 0))
3508 return;
3509
3510 /*
3511 * if we're unable to extend our runtime we resched so that the active
3512 * hierarchy can be throttled
3513 */
3514 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3515 resched_curr(rq_of(cfs_rq));
3516}
3517
3518static __always_inline
3519void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3520{
3521 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3522 return;
3523
3524 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3525}
3526
3527static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3528{
3529 return cfs_bandwidth_used() && cfs_rq->throttled;
3530}
3531
3532/* check whether cfs_rq, or any parent, is throttled */
3533static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3534{
3535 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3536}
3537
3538/*
3539 * Ensure that neither of the group entities corresponding to src_cpu or
3540 * dest_cpu are members of a throttled hierarchy when performing group
3541 * load-balance operations.
3542 */
3543static inline int throttled_lb_pair(struct task_group *tg,
3544 int src_cpu, int dest_cpu)
3545{
3546 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3547
3548 src_cfs_rq = tg->cfs_rq[src_cpu];
3549 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3550
3551 return throttled_hierarchy(src_cfs_rq) ||
3552 throttled_hierarchy(dest_cfs_rq);
3553}
3554
3555/* updated child weight may affect parent so we have to do this bottom up */
3556static int tg_unthrottle_up(struct task_group *tg, void *data)
3557{
3558 struct rq *rq = data;
3559 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3560
3561 cfs_rq->throttle_count--;
3562#ifdef CONFIG_SMP
3563 if (!cfs_rq->throttle_count) {
3564 /* adjust cfs_rq_clock_task() */
3565 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3566 cfs_rq->throttled_clock_task;
3567 }
3568#endif
3569
3570 return 0;
3571}
3572
3573static int tg_throttle_down(struct task_group *tg, void *data)
3574{
3575 struct rq *rq = data;
3576 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3577
3578 /* group is entering throttled state, stop time */
3579 if (!cfs_rq->throttle_count)
3580 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3581 cfs_rq->throttle_count++;
3582
3583 return 0;
3584}
3585
3586static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3587{
3588 struct rq *rq = rq_of(cfs_rq);
3589 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3590 struct sched_entity *se;
3591 long task_delta, dequeue = 1;
3592 bool empty;
3593
3594 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3595
3596 /* freeze hierarchy runnable averages while throttled */
3597 rcu_read_lock();
3598 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3599 rcu_read_unlock();
3600
3601 task_delta = cfs_rq->h_nr_running;
3602 for_each_sched_entity(se) {
3603 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3604 /* throttled entity or throttle-on-deactivate */
3605 if (!se->on_rq)
3606 break;
3607
3608 if (dequeue)
3609 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3610 qcfs_rq->h_nr_running -= task_delta;
3611
3612 if (qcfs_rq->load.weight)
3613 dequeue = 0;
3614 }
3615
3616 if (!se)
3617 sub_nr_running(rq, task_delta);
3618
3619 cfs_rq->throttled = 1;
3620 cfs_rq->throttled_clock = rq_clock(rq);
3621 raw_spin_lock(&cfs_b->lock);
3622 empty = list_empty(&cfs_b->throttled_cfs_rq);
3623
3624 /*
3625 * Add to the _head_ of the list, so that an already-started
3626 * distribute_cfs_runtime will not see us
3627 */
3628 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3629
3630 /*
3631 * If we're the first throttled task, make sure the bandwidth
3632 * timer is running.
3633 */
3634 if (empty)
3635 start_cfs_bandwidth(cfs_b);
3636
3637 raw_spin_unlock(&cfs_b->lock);
3638}
3639
3640void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3641{
3642 struct rq *rq = rq_of(cfs_rq);
3643 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3644 struct sched_entity *se;
3645 int enqueue = 1;
3646 long task_delta;
3647
3648 se = cfs_rq->tg->se[cpu_of(rq)];
3649
3650 cfs_rq->throttled = 0;
3651
3652 update_rq_clock(rq);
3653
3654 raw_spin_lock(&cfs_b->lock);
3655 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3656 list_del_rcu(&cfs_rq->throttled_list);
3657 raw_spin_unlock(&cfs_b->lock);
3658
3659 /* update hierarchical throttle state */
3660 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3661
3662 if (!cfs_rq->load.weight)
3663 return;
3664
3665 task_delta = cfs_rq->h_nr_running;
3666 for_each_sched_entity(se) {
3667 if (se->on_rq)
3668 enqueue = 0;
3669
3670 cfs_rq = cfs_rq_of(se);
3671 if (enqueue)
3672 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3673 cfs_rq->h_nr_running += task_delta;
3674
3675 if (cfs_rq_throttled(cfs_rq))
3676 break;
3677 }
3678
3679 if (!se)
3680 add_nr_running(rq, task_delta);
3681
3682 /* determine whether we need to wake up potentially idle cpu */
3683 if (rq->curr == rq->idle && rq->cfs.nr_running)
3684 resched_curr(rq);
3685}
3686
3687static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3688 u64 remaining, u64 expires)
3689{
3690 struct cfs_rq *cfs_rq;
3691 u64 runtime;
3692 u64 starting_runtime = remaining;
3693
3694 rcu_read_lock();
3695 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3696 throttled_list) {
3697 struct rq *rq = rq_of(cfs_rq);
3698
3699 raw_spin_lock(&rq->lock);
3700 if (!cfs_rq_throttled(cfs_rq))
3701 goto next;
3702
3703 runtime = -cfs_rq->runtime_remaining + 1;
3704 if (runtime > remaining)
3705 runtime = remaining;
3706 remaining -= runtime;
3707
3708 cfs_rq->runtime_remaining += runtime;
3709 cfs_rq->runtime_expires = expires;
3710
3711 /* we check whether we're throttled above */
3712 if (cfs_rq->runtime_remaining > 0)
3713 unthrottle_cfs_rq(cfs_rq);
3714
3715next:
3716 raw_spin_unlock(&rq->lock);
3717
3718 if (!remaining)
3719 break;
3720 }
3721 rcu_read_unlock();
3722
3723 return starting_runtime - remaining;
3724}
3725
3726/*
3727 * Responsible for refilling a task_group's bandwidth and unthrottling its
3728 * cfs_rqs as appropriate. If there has been no activity within the last
3729 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3730 * used to track this state.
3731 */
3732static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3733{
3734 u64 runtime, runtime_expires;
3735 int throttled;
3736
3737 /* no need to continue the timer with no bandwidth constraint */
3738 if (cfs_b->quota == RUNTIME_INF)
3739 goto out_deactivate;
3740
3741 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3742 cfs_b->nr_periods += overrun;
3743
3744 /*
3745 * idle depends on !throttled (for the case of a large deficit), and if
3746 * we're going inactive then everything else can be deferred
3747 */
3748 if (cfs_b->idle && !throttled)
3749 goto out_deactivate;
3750
3751 __refill_cfs_bandwidth_runtime(cfs_b);
3752
3753 if (!throttled) {
3754 /* mark as potentially idle for the upcoming period */
3755 cfs_b->idle = 1;
3756 return 0;
3757 }
3758
3759 /* account preceding periods in which throttling occurred */
3760 cfs_b->nr_throttled += overrun;
3761
3762 runtime_expires = cfs_b->runtime_expires;
3763
3764 /*
3765 * This check is repeated as we are holding onto the new bandwidth while
3766 * we unthrottle. This can potentially race with an unthrottled group
3767 * trying to acquire new bandwidth from the global pool. This can result
3768 * in us over-using our runtime if it is all used during this loop, but
3769 * only by limited amounts in that extreme case.
3770 */
3771 while (throttled && cfs_b->runtime > 0) {
3772 runtime = cfs_b->runtime;
3773 raw_spin_unlock(&cfs_b->lock);
3774 /* we can't nest cfs_b->lock while distributing bandwidth */
3775 runtime = distribute_cfs_runtime(cfs_b, runtime,
3776 runtime_expires);
3777 raw_spin_lock(&cfs_b->lock);
3778
3779 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3780
3781 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3782 }
3783
3784 /*
3785 * While we are ensured activity in the period following an
3786 * unthrottle, this also covers the case in which the new bandwidth is
3787 * insufficient to cover the existing bandwidth deficit. (Forcing the
3788 * timer to remain active while there are any throttled entities.)
3789 */
3790 cfs_b->idle = 0;
3791
3792 return 0;
3793
3794out_deactivate:
3795 return 1;
3796}
3797
3798/* a cfs_rq won't donate quota below this amount */
3799static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3800/* minimum remaining period time to redistribute slack quota */
3801static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3802/* how long we wait to gather additional slack before distributing */
3803static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3804
3805/*
3806 * Are we near the end of the current quota period?
3807 *
3808 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3809 * hrtimer base being cleared by hrtimer_start. In the case of
3810 * migrate_hrtimers, base is never cleared, so we are fine.
3811 */
3812static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3813{
3814 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3815 u64 remaining;
3816
3817 /* if the call-back is running a quota refresh is already occurring */
3818 if (hrtimer_callback_running(refresh_timer))
3819 return 1;
3820
3821 /* is a quota refresh about to occur? */
3822 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3823 if (remaining < min_expire)
3824 return 1;
3825
3826 return 0;
3827}
3828
3829static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3830{
3831 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3832
3833 /* if there's a quota refresh soon don't bother with slack */
3834 if (runtime_refresh_within(cfs_b, min_left))
3835 return;
3836
3837 hrtimer_start(&cfs_b->slack_timer,
3838 ns_to_ktime(cfs_bandwidth_slack_period),
3839 HRTIMER_MODE_REL);
3840}
3841
3842/* we know any runtime found here is valid as update_curr() precedes return */
3843static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3844{
3845 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3846 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3847
3848 if (slack_runtime <= 0)
3849 return;
3850
3851 raw_spin_lock(&cfs_b->lock);
3852 if (cfs_b->quota != RUNTIME_INF &&
3853 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3854 cfs_b->runtime += slack_runtime;
3855
3856 /* we are under rq->lock, defer unthrottling using a timer */
3857 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3858 !list_empty(&cfs_b->throttled_cfs_rq))
3859 start_cfs_slack_bandwidth(cfs_b);
3860 }
3861 raw_spin_unlock(&cfs_b->lock);
3862
3863 /* even if it's not valid for return we don't want to try again */
3864 cfs_rq->runtime_remaining -= slack_runtime;
3865}
3866
3867static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3868{
3869 if (!cfs_bandwidth_used())
3870 return;
3871
3872 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3873 return;
3874
3875 __return_cfs_rq_runtime(cfs_rq);
3876}
3877
3878/*
3879 * This is done with a timer (instead of inline with bandwidth return) since
3880 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3881 */
3882static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3883{
3884 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3885 u64 expires;
3886
3887 /* confirm we're still not at a refresh boundary */
3888 raw_spin_lock(&cfs_b->lock);
3889 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3890 raw_spin_unlock(&cfs_b->lock);
3891 return;
3892 }
3893
3894 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3895 runtime = cfs_b->runtime;
3896
3897 expires = cfs_b->runtime_expires;
3898 raw_spin_unlock(&cfs_b->lock);
3899
3900 if (!runtime)
3901 return;
3902
3903 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3904
3905 raw_spin_lock(&cfs_b->lock);
3906 if (expires == cfs_b->runtime_expires)
3907 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3908 raw_spin_unlock(&cfs_b->lock);
3909}
3910
3911/*
3912 * When a group wakes up we want to make sure that its quota is not already
3913 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3914 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3915 */
3916static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3917{
3918 if (!cfs_bandwidth_used())
3919 return;
3920
3921 /* Synchronize hierarchical throttle counter: */
3922 if (unlikely(!cfs_rq->throttle_uptodate)) {
3923 struct rq *rq = rq_of(cfs_rq);
3924 struct cfs_rq *pcfs_rq;
3925 struct task_group *tg;
3926
3927 cfs_rq->throttle_uptodate = 1;
3928
3929 /* Get closest up-to-date node, because leaves go first: */
3930 for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) {
3931 pcfs_rq = tg->cfs_rq[cpu_of(rq)];
3932 if (pcfs_rq->throttle_uptodate)
3933 break;
3934 }
3935 if (tg) {
3936 cfs_rq->throttle_count = pcfs_rq->throttle_count;
3937 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3938 }
3939 }
3940
3941 /* an active group must be handled by the update_curr()->put() path */
3942 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3943 return;
3944
3945 /* ensure the group is not already throttled */
3946 if (cfs_rq_throttled(cfs_rq))
3947 return;
3948
3949 /* update runtime allocation */
3950 account_cfs_rq_runtime(cfs_rq, 0);
3951 if (cfs_rq->runtime_remaining <= 0)
3952 throttle_cfs_rq(cfs_rq);
3953}
3954
3955/* conditionally throttle active cfs_rq's from put_prev_entity() */
3956static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3957{
3958 if (!cfs_bandwidth_used())
3959 return false;
3960
3961 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3962 return false;
3963
3964 /*
3965 * it's possible for a throttled entity to be forced into a running
3966 * state (e.g. set_curr_task), in this case we're finished.
3967 */
3968 if (cfs_rq_throttled(cfs_rq))
3969 return true;
3970
3971 throttle_cfs_rq(cfs_rq);
3972 return true;
3973}
3974
3975static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3976{
3977 struct cfs_bandwidth *cfs_b =
3978 container_of(timer, struct cfs_bandwidth, slack_timer);
3979
3980 do_sched_cfs_slack_timer(cfs_b);
3981
3982 return HRTIMER_NORESTART;
3983}
3984
3985static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3986{
3987 struct cfs_bandwidth *cfs_b =
3988 container_of(timer, struct cfs_bandwidth, period_timer);
3989 int overrun;
3990 int idle = 0;
3991
3992 raw_spin_lock(&cfs_b->lock);
3993 for (;;) {
3994 overrun = hrtimer_forward_now(timer, cfs_b->period);
3995 if (!overrun)
3996 break;
3997
3998 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3999 }
4000 if (idle)
4001 cfs_b->period_active = 0;
4002 raw_spin_unlock(&cfs_b->lock);
4003
4004 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4005}
4006
4007void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4008{
4009 raw_spin_lock_init(&cfs_b->lock);
4010 cfs_b->runtime = 0;
4011 cfs_b->quota = RUNTIME_INF;
4012 cfs_b->period = ns_to_ktime(default_cfs_period());
4013
4014 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4015 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4016 cfs_b->period_timer.function = sched_cfs_period_timer;
4017 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4018 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4019}
4020
4021static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4022{
4023 cfs_rq->runtime_enabled = 0;
4024 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4025}
4026
4027void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4028{
4029 lockdep_assert_held(&cfs_b->lock);
4030
4031 if (!cfs_b->period_active) {
4032 cfs_b->period_active = 1;
4033 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4034 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4035 }
4036}
4037
4038static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4039{
4040 /* init_cfs_bandwidth() was not called */
4041 if (!cfs_b->throttled_cfs_rq.next)
4042 return;
4043
4044 hrtimer_cancel(&cfs_b->period_timer);
4045 hrtimer_cancel(&cfs_b->slack_timer);
4046}
4047
4048static void __maybe_unused update_runtime_enabled(struct rq *rq)
4049{
4050 struct cfs_rq *cfs_rq;
4051
4052 for_each_leaf_cfs_rq(rq, cfs_rq) {
4053 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4054
4055 raw_spin_lock(&cfs_b->lock);
4056 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4057 raw_spin_unlock(&cfs_b->lock);
4058 }
4059}
4060
4061static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4062{
4063 struct cfs_rq *cfs_rq;
4064
4065 for_each_leaf_cfs_rq(rq, cfs_rq) {
4066 if (!cfs_rq->runtime_enabled)
4067 continue;
4068
4069 /*
4070 * clock_task is not advancing so we just need to make sure
4071 * there's some valid quota amount
4072 */
4073 cfs_rq->runtime_remaining = 1;
4074 /*
4075 * Offline rq is schedulable till cpu is completely disabled
4076 * in take_cpu_down(), so we prevent new cfs throttling here.
4077 */
4078 cfs_rq->runtime_enabled = 0;
4079
4080 if (cfs_rq_throttled(cfs_rq))
4081 unthrottle_cfs_rq(cfs_rq);
4082 }
4083}
4084
4085#else /* CONFIG_CFS_BANDWIDTH */
4086static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4087{
4088 return rq_clock_task(rq_of(cfs_rq));
4089}
4090
4091static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4092static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4093static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4094static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4095
4096static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4097{
4098 return 0;
4099}
4100
4101static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4102{
4103 return 0;
4104}
4105
4106static inline int throttled_lb_pair(struct task_group *tg,
4107 int src_cpu, int dest_cpu)
4108{
4109 return 0;
4110}
4111
4112void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4113
4114#ifdef CONFIG_FAIR_GROUP_SCHED
4115static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4116#endif
4117
4118static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4119{
4120 return NULL;
4121}
4122static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4123static inline void update_runtime_enabled(struct rq *rq) {}
4124static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4125
4126#endif /* CONFIG_CFS_BANDWIDTH */
4127
4128/**************************************************
4129 * CFS operations on tasks:
4130 */
4131
4132#ifdef CONFIG_SCHED_HRTICK
4133static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4134{
4135 struct sched_entity *se = &p->se;
4136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4137
4138 WARN_ON(task_rq(p) != rq);
4139
4140 if (cfs_rq->nr_running > 1) {
4141 u64 slice = sched_slice(cfs_rq, se);
4142 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4143 s64 delta = slice - ran;
4144
4145 if (delta < 0) {
4146 if (rq->curr == p)
4147 resched_curr(rq);
4148 return;
4149 }
4150 hrtick_start(rq, delta);
4151 }
4152}
4153
4154/*
4155 * called from enqueue/dequeue and updates the hrtick when the
4156 * current task is from our class and nr_running is low enough
4157 * to matter.
4158 */
4159static void hrtick_update(struct rq *rq)
4160{
4161 struct task_struct *curr = rq->curr;
4162
4163 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4164 return;
4165
4166 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4167 hrtick_start_fair(rq, curr);
4168}
4169#else /* !CONFIG_SCHED_HRTICK */
4170static inline void
4171hrtick_start_fair(struct rq *rq, struct task_struct *p)
4172{
4173}
4174
4175static inline void hrtick_update(struct rq *rq)
4176{
4177}
4178#endif
4179
4180/*
4181 * The enqueue_task method is called before nr_running is
4182 * increased. Here we update the fair scheduling stats and
4183 * then put the task into the rbtree:
4184 */
4185static void
4186enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4187{
4188 struct cfs_rq *cfs_rq;
4189 struct sched_entity *se = &p->se;
4190
4191 for_each_sched_entity(se) {
4192 if (se->on_rq)
4193 break;
4194 cfs_rq = cfs_rq_of(se);
4195 enqueue_entity(cfs_rq, se, flags);
4196
4197 /*
4198 * end evaluation on encountering a throttled cfs_rq
4199 *
4200 * note: in the case of encountering a throttled cfs_rq we will
4201 * post the final h_nr_running increment below.
4202 */
4203 if (cfs_rq_throttled(cfs_rq))
4204 break;
4205 cfs_rq->h_nr_running++;
4206
4207 flags = ENQUEUE_WAKEUP;
4208 }
4209
4210 for_each_sched_entity(se) {
4211 cfs_rq = cfs_rq_of(se);
4212 cfs_rq->h_nr_running++;
4213
4214 if (cfs_rq_throttled(cfs_rq))
4215 break;
4216
4217 update_load_avg(se, 1);
4218 update_cfs_shares(cfs_rq);
4219 }
4220
4221 if (!se)
4222 add_nr_running(rq, 1);
4223
4224 hrtick_update(rq);
4225}
4226
4227static void set_next_buddy(struct sched_entity *se);
4228
4229/*
4230 * The dequeue_task method is called before nr_running is
4231 * decreased. We remove the task from the rbtree and
4232 * update the fair scheduling stats:
4233 */
4234static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4235{
4236 struct cfs_rq *cfs_rq;
4237 struct sched_entity *se = &p->se;
4238 int task_sleep = flags & DEQUEUE_SLEEP;
4239
4240 for_each_sched_entity(se) {
4241 cfs_rq = cfs_rq_of(se);
4242 dequeue_entity(cfs_rq, se, flags);
4243
4244 /*
4245 * end evaluation on encountering a throttled cfs_rq
4246 *
4247 * note: in the case of encountering a throttled cfs_rq we will
4248 * post the final h_nr_running decrement below.
4249 */
4250 if (cfs_rq_throttled(cfs_rq))
4251 break;
4252 cfs_rq->h_nr_running--;
4253
4254 /* Don't dequeue parent if it has other entities besides us */
4255 if (cfs_rq->load.weight) {
4256 /* Avoid re-evaluating load for this entity: */
4257 se = parent_entity(se);
4258 /*
4259 * Bias pick_next to pick a task from this cfs_rq, as
4260 * p is sleeping when it is within its sched_slice.
4261 */
4262 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4263 set_next_buddy(se);
4264 break;
4265 }
4266 flags |= DEQUEUE_SLEEP;
4267 }
4268
4269 for_each_sched_entity(se) {
4270 cfs_rq = cfs_rq_of(se);
4271 cfs_rq->h_nr_running--;
4272
4273 if (cfs_rq_throttled(cfs_rq))
4274 break;
4275
4276 update_load_avg(se, 1);
4277 update_cfs_shares(cfs_rq);
4278 }
4279
4280 if (!se)
4281 sub_nr_running(rq, 1);
4282
4283 hrtick_update(rq);
4284}
4285
4286#ifdef CONFIG_SMP
4287
4288/*
4289 * per rq 'load' arrray crap; XXX kill this.
4290 */
4291
4292/*
4293 * The exact cpuload at various idx values, calculated at every tick would be
4294 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4295 *
4296 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4297 * on nth tick when cpu may be busy, then we have:
4298 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4299 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4300 *
4301 * decay_load_missed() below does efficient calculation of
4302 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4303 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4304 *
4305 * The calculation is approximated on a 128 point scale.
4306 * degrade_zero_ticks is the number of ticks after which load at any
4307 * particular idx is approximated to be zero.
4308 * degrade_factor is a precomputed table, a row for each load idx.
4309 * Each column corresponds to degradation factor for a power of two ticks,
4310 * based on 128 point scale.
4311 * Example:
4312 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4313 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4314 *
4315 * With this power of 2 load factors, we can degrade the load n times
4316 * by looking at 1 bits in n and doing as many mult/shift instead of
4317 * n mult/shifts needed by the exact degradation.
4318 */
4319#define DEGRADE_SHIFT 7
4320static const unsigned char
4321 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4322static const unsigned char
4323 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4324 {0, 0, 0, 0, 0, 0, 0, 0},
4325 {64, 32, 8, 0, 0, 0, 0, 0},
4326 {96, 72, 40, 12, 1, 0, 0},
4327 {112, 98, 75, 43, 15, 1, 0},
4328 {120, 112, 98, 76, 45, 16, 2} };
4329
4330/*
4331 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4332 * would be when CPU is idle and so we just decay the old load without
4333 * adding any new load.
4334 */
4335static unsigned long
4336decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4337{
4338 int j = 0;
4339
4340 if (!missed_updates)
4341 return load;
4342
4343 if (missed_updates >= degrade_zero_ticks[idx])
4344 return 0;
4345
4346 if (idx == 1)
4347 return load >> missed_updates;
4348
4349 while (missed_updates) {
4350 if (missed_updates % 2)
4351 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4352
4353 missed_updates >>= 1;
4354 j++;
4355 }
4356 return load;
4357}
4358
4359/*
4360 * Update rq->cpu_load[] statistics. This function is usually called every
4361 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4362 * every tick. We fix it up based on jiffies.
4363 */
4364static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4365 unsigned long pending_updates)
4366{
4367 int i, scale;
4368
4369 this_rq->nr_load_updates++;
4370
4371 /* Update our load: */
4372 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4373 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4374 unsigned long old_load, new_load;
4375
4376 /* scale is effectively 1 << i now, and >> i divides by scale */
4377
4378 old_load = this_rq->cpu_load[i];
4379 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4380 new_load = this_load;
4381 /*
4382 * Round up the averaging division if load is increasing. This
4383 * prevents us from getting stuck on 9 if the load is 10, for
4384 * example.
4385 */
4386 if (new_load > old_load)
4387 new_load += scale - 1;
4388
4389 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4390 }
4391
4392 sched_avg_update(this_rq);
4393}
4394
4395/* Used instead of source_load when we know the type == 0 */
4396static unsigned long weighted_cpuload(const int cpu)
4397{
4398 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4399}
4400
4401#ifdef CONFIG_NO_HZ_COMMON
4402/*
4403 * There is no sane way to deal with nohz on smp when using jiffies because the
4404 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4405 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4406 *
4407 * Therefore we cannot use the delta approach from the regular tick since that
4408 * would seriously skew the load calculation. However we'll make do for those
4409 * updates happening while idle (nohz_idle_balance) or coming out of idle
4410 * (tick_nohz_idle_exit).
4411 *
4412 * This means we might still be one tick off for nohz periods.
4413 */
4414
4415/*
4416 * Called from nohz_idle_balance() to update the load ratings before doing the
4417 * idle balance.
4418 */
4419static void update_idle_cpu_load(struct rq *this_rq)
4420{
4421 unsigned long curr_jiffies = READ_ONCE(jiffies);
4422 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4423 unsigned long pending_updates;
4424
4425 /*
4426 * bail if there's load or we're actually up-to-date.
4427 */
4428 if (load || curr_jiffies == this_rq->last_load_update_tick)
4429 return;
4430
4431 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4432 this_rq->last_load_update_tick = curr_jiffies;
4433
4434 __update_cpu_load(this_rq, load, pending_updates);
4435}
4436
4437/*
4438 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4439 */
4440void update_cpu_load_nohz(void)
4441{
4442 struct rq *this_rq = this_rq();
4443 unsigned long curr_jiffies = READ_ONCE(jiffies);
4444 unsigned long pending_updates;
4445
4446 if (curr_jiffies == this_rq->last_load_update_tick)
4447 return;
4448
4449 raw_spin_lock(&this_rq->lock);
4450 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4451 if (pending_updates) {
4452 this_rq->last_load_update_tick = curr_jiffies;
4453 /*
4454 * We were idle, this means load 0, the current load might be
4455 * !0 due to remote wakeups and the sort.
4456 */
4457 __update_cpu_load(this_rq, 0, pending_updates);
4458 }
4459 raw_spin_unlock(&this_rq->lock);
4460}
4461#endif /* CONFIG_NO_HZ */
4462
4463/*
4464 * Called from scheduler_tick()
4465 */
4466void update_cpu_load_active(struct rq *this_rq)
4467{
4468 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4469 /*
4470 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4471 */
4472 this_rq->last_load_update_tick = jiffies;
4473 __update_cpu_load(this_rq, load, 1);
4474}
4475
4476/*
4477 * Return a low guess at the load of a migration-source cpu weighted
4478 * according to the scheduling class and "nice" value.
4479 *
4480 * We want to under-estimate the load of migration sources, to
4481 * balance conservatively.
4482 */
4483static unsigned long source_load(int cpu, int type)
4484{
4485 struct rq *rq = cpu_rq(cpu);
4486 unsigned long total = weighted_cpuload(cpu);
4487
4488 if (type == 0 || !sched_feat(LB_BIAS))
4489 return total;
4490
4491 return min(rq->cpu_load[type-1], total);
4492}
4493
4494/*
4495 * Return a high guess at the load of a migration-target cpu weighted
4496 * according to the scheduling class and "nice" value.
4497 */
4498static unsigned long target_load(int cpu, int type)
4499{
4500 struct rq *rq = cpu_rq(cpu);
4501 unsigned long total = weighted_cpuload(cpu);
4502
4503 if (type == 0 || !sched_feat(LB_BIAS))
4504 return total;
4505
4506 return max(rq->cpu_load[type-1], total);
4507}
4508
4509static unsigned long capacity_of(int cpu)
4510{
4511 return cpu_rq(cpu)->cpu_capacity;
4512}
4513
4514static unsigned long capacity_orig_of(int cpu)
4515{
4516 return cpu_rq(cpu)->cpu_capacity_orig;
4517}
4518
4519static unsigned long cpu_avg_load_per_task(int cpu)
4520{
4521 struct rq *rq = cpu_rq(cpu);
4522 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4523 unsigned long load_avg = weighted_cpuload(cpu);
4524
4525 if (nr_running)
4526 return load_avg / nr_running;
4527
4528 return 0;
4529}
4530
4531static void record_wakee(struct task_struct *p)
4532{
4533 /*
4534 * Rough decay (wiping) for cost saving, don't worry
4535 * about the boundary, really active task won't care
4536 * about the loss.
4537 */
4538 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4539 current->wakee_flips >>= 1;
4540 current->wakee_flip_decay_ts = jiffies;
4541 }
4542
4543 if (current->last_wakee != p) {
4544 current->last_wakee = p;
4545 current->wakee_flips++;
4546 }
4547}
4548
4549static void task_waking_fair(struct task_struct *p)
4550{
4551 struct sched_entity *se = &p->se;
4552 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4553 u64 min_vruntime;
4554
4555#ifndef CONFIG_64BIT
4556 u64 min_vruntime_copy;
4557
4558 do {
4559 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4560 smp_rmb();
4561 min_vruntime = cfs_rq->min_vruntime;
4562 } while (min_vruntime != min_vruntime_copy);
4563#else
4564 min_vruntime = cfs_rq->min_vruntime;
4565#endif
4566
4567 se->vruntime -= min_vruntime;
4568 record_wakee(p);
4569}
4570
4571#ifdef CONFIG_FAIR_GROUP_SCHED
4572/*
4573 * effective_load() calculates the load change as seen from the root_task_group
4574 *
4575 * Adding load to a group doesn't make a group heavier, but can cause movement
4576 * of group shares between cpus. Assuming the shares were perfectly aligned one
4577 * can calculate the shift in shares.
4578 *
4579 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4580 * on this @cpu and results in a total addition (subtraction) of @wg to the
4581 * total group weight.
4582 *
4583 * Given a runqueue weight distribution (rw_i) we can compute a shares
4584 * distribution (s_i) using:
4585 *
4586 * s_i = rw_i / \Sum rw_j (1)
4587 *
4588 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4589 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4590 * shares distribution (s_i):
4591 *
4592 * rw_i = { 2, 4, 1, 0 }
4593 * s_i = { 2/7, 4/7, 1/7, 0 }
4594 *
4595 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4596 * task used to run on and the CPU the waker is running on), we need to
4597 * compute the effect of waking a task on either CPU and, in case of a sync
4598 * wakeup, compute the effect of the current task going to sleep.
4599 *
4600 * So for a change of @wl to the local @cpu with an overall group weight change
4601 * of @wl we can compute the new shares distribution (s'_i) using:
4602 *
4603 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4604 *
4605 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4606 * differences in waking a task to CPU 0. The additional task changes the
4607 * weight and shares distributions like:
4608 *
4609 * rw'_i = { 3, 4, 1, 0 }
4610 * s'_i = { 3/8, 4/8, 1/8, 0 }
4611 *
4612 * We can then compute the difference in effective weight by using:
4613 *
4614 * dw_i = S * (s'_i - s_i) (3)
4615 *
4616 * Where 'S' is the group weight as seen by its parent.
4617 *
4618 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4619 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4620 * 4/7) times the weight of the group.
4621 */
4622static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4623{
4624 struct sched_entity *se = tg->se[cpu];
4625
4626 if (!tg->parent) /* the trivial, non-cgroup case */
4627 return wl;
4628
4629 for_each_sched_entity(se) {
4630 struct cfs_rq *cfs_rq = se->my_q;
4631 long W, w = cfs_rq_load_avg(cfs_rq);
4632
4633 tg = cfs_rq->tg;
4634
4635 /*
4636 * W = @wg + \Sum rw_j
4637 */
4638 W = wg + atomic_long_read(&tg->load_avg);
4639
4640 /* Ensure \Sum rw_j >= rw_i */
4641 W -= cfs_rq->tg_load_avg_contrib;
4642 W += w;
4643
4644 /*
4645 * w = rw_i + @wl
4646 */
4647 w += wl;
4648
4649 /*
4650 * wl = S * s'_i; see (2)
4651 */
4652 if (W > 0 && w < W)
4653 wl = (w * (long)tg->shares) / W;
4654 else
4655 wl = tg->shares;
4656
4657 /*
4658 * Per the above, wl is the new se->load.weight value; since
4659 * those are clipped to [MIN_SHARES, ...) do so now. See
4660 * calc_cfs_shares().
4661 */
4662 if (wl < MIN_SHARES)
4663 wl = MIN_SHARES;
4664
4665 /*
4666 * wl = dw_i = S * (s'_i - s_i); see (3)
4667 */
4668 wl -= se->avg.load_avg;
4669
4670 /*
4671 * Recursively apply this logic to all parent groups to compute
4672 * the final effective load change on the root group. Since
4673 * only the @tg group gets extra weight, all parent groups can
4674 * only redistribute existing shares. @wl is the shift in shares
4675 * resulting from this level per the above.
4676 */
4677 wg = 0;
4678 }
4679
4680 return wl;
4681}
4682#else
4683
4684static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4685{
4686 return wl;
4687}
4688
4689#endif
4690
4691/*
4692 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4693 * A waker of many should wake a different task than the one last awakened
4694 * at a frequency roughly N times higher than one of its wakees. In order
4695 * to determine whether we should let the load spread vs consolodating to
4696 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4697 * partner, and a factor of lls_size higher frequency in the other. With
4698 * both conditions met, we can be relatively sure that the relationship is
4699 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4700 * being client/server, worker/dispatcher, interrupt source or whatever is
4701 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4702 */
4703static int wake_wide(struct task_struct *p)
4704{
4705 unsigned int master = current->wakee_flips;
4706 unsigned int slave = p->wakee_flips;
4707 int factor = this_cpu_read(sd_llc_size);
4708
4709 if (master < slave)
4710 swap(master, slave);
4711 if (slave < factor || master < slave * factor)
4712 return 0;
4713 return 1;
4714}
4715
4716static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4717{
4718 s64 this_load, load;
4719 s64 this_eff_load, prev_eff_load;
4720 int idx, this_cpu, prev_cpu;
4721 struct task_group *tg;
4722 unsigned long weight;
4723 int balanced;
4724
4725 idx = sd->wake_idx;
4726 this_cpu = smp_processor_id();
4727 prev_cpu = task_cpu(p);
4728 load = source_load(prev_cpu, idx);
4729 this_load = target_load(this_cpu, idx);
4730
4731 /*
4732 * If sync wakeup then subtract the (maximum possible)
4733 * effect of the currently running task from the load
4734 * of the current CPU:
4735 */
4736 if (sync) {
4737 tg = task_group(current);
4738 weight = current->se.avg.load_avg;
4739
4740 this_load += effective_load(tg, this_cpu, -weight, -weight);
4741 load += effective_load(tg, prev_cpu, 0, -weight);
4742 }
4743
4744 tg = task_group(p);
4745 weight = p->se.avg.load_avg;
4746
4747 /*
4748 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4749 * due to the sync cause above having dropped this_load to 0, we'll
4750 * always have an imbalance, but there's really nothing you can do
4751 * about that, so that's good too.
4752 *
4753 * Otherwise check if either cpus are near enough in load to allow this
4754 * task to be woken on this_cpu.
4755 */
4756 this_eff_load = 100;
4757 this_eff_load *= capacity_of(prev_cpu);
4758
4759 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4760 prev_eff_load *= capacity_of(this_cpu);
4761
4762 if (this_load > 0) {
4763 this_eff_load *= this_load +
4764 effective_load(tg, this_cpu, weight, weight);
4765
4766 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4767 }
4768
4769 balanced = this_eff_load <= prev_eff_load;
4770
4771 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4772
4773 if (!balanced)
4774 return 0;
4775
4776 schedstat_inc(sd, ttwu_move_affine);
4777 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4778
4779 return 1;
4780}
4781
4782/*
4783 * find_idlest_group finds and returns the least busy CPU group within the
4784 * domain.
4785 */
4786static struct sched_group *
4787find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4788 int this_cpu, int sd_flag)
4789{
4790 struct sched_group *idlest = NULL, *group = sd->groups;
4791 unsigned long min_load = ULONG_MAX, this_load = 0;
4792 int load_idx = sd->forkexec_idx;
4793 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4794
4795 if (sd_flag & SD_BALANCE_WAKE)
4796 load_idx = sd->wake_idx;
4797
4798 do {
4799 unsigned long load, avg_load;
4800 int local_group;
4801 int i;
4802
4803 /* Skip over this group if it has no CPUs allowed */
4804 if (!cpumask_intersects(sched_group_cpus(group),
4805 tsk_cpus_allowed(p)))
4806 continue;
4807
4808 local_group = cpumask_test_cpu(this_cpu,
4809 sched_group_cpus(group));
4810
4811 /* Tally up the load of all CPUs in the group */
4812 avg_load = 0;
4813
4814 for_each_cpu(i, sched_group_cpus(group)) {
4815 /* Bias balancing toward cpus of our domain */
4816 if (local_group)
4817 load = source_load(i, load_idx);
4818 else
4819 load = target_load(i, load_idx);
4820
4821 avg_load += load;
4822 }
4823
4824 /* Adjust by relative CPU capacity of the group */
4825 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4826
4827 if (local_group) {
4828 this_load = avg_load;
4829 } else if (avg_load < min_load) {
4830 min_load = avg_load;
4831 idlest = group;
4832 }
4833 } while (group = group->next, group != sd->groups);
4834
4835 if (!idlest || 100*this_load < imbalance*min_load)
4836 return NULL;
4837 return idlest;
4838}
4839
4840/*
4841 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4842 */
4843static int
4844find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4845{
4846 unsigned long load, min_load = ULONG_MAX;
4847 unsigned int min_exit_latency = UINT_MAX;
4848 u64 latest_idle_timestamp = 0;
4849 int least_loaded_cpu = this_cpu;
4850 int shallowest_idle_cpu = -1;
4851 int i;
4852
4853 /* Traverse only the allowed CPUs */
4854 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4855 if (idle_cpu(i)) {
4856 struct rq *rq = cpu_rq(i);
4857 struct cpuidle_state *idle = idle_get_state(rq);
4858 if (idle && idle->exit_latency < min_exit_latency) {
4859 /*
4860 * We give priority to a CPU whose idle state
4861 * has the smallest exit latency irrespective
4862 * of any idle timestamp.
4863 */
4864 min_exit_latency = idle->exit_latency;
4865 latest_idle_timestamp = rq->idle_stamp;
4866 shallowest_idle_cpu = i;
4867 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4868 rq->idle_stamp > latest_idle_timestamp) {
4869 /*
4870 * If equal or no active idle state, then
4871 * the most recently idled CPU might have
4872 * a warmer cache.
4873 */
4874 latest_idle_timestamp = rq->idle_stamp;
4875 shallowest_idle_cpu = i;
4876 }
4877 } else if (shallowest_idle_cpu == -1) {
4878 load = weighted_cpuload(i);
4879 if (load < min_load || (load == min_load && i == this_cpu)) {
4880 min_load = load;
4881 least_loaded_cpu = i;
4882 }
4883 }
4884 }
4885
4886 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4887}
4888
4889/*
4890 * Try and locate an idle CPU in the sched_domain.
4891 */
4892static int select_idle_sibling(struct task_struct *p, int target)
4893{
4894 struct sched_domain *sd;
4895 struct sched_group *sg;
4896 int i = task_cpu(p);
4897
4898 if (idle_cpu(target))
4899 return target;
4900
4901 /*
4902 * If the prevous cpu is cache affine and idle, don't be stupid.
4903 */
4904 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4905 return i;
4906
4907 /*
4908 * Otherwise, iterate the domains and find an elegible idle cpu.
4909 */
4910 sd = rcu_dereference(per_cpu(sd_llc, target));
4911 for_each_lower_domain(sd) {
4912 sg = sd->groups;
4913 do {
4914 if (!cpumask_intersects(sched_group_cpus(sg),
4915 tsk_cpus_allowed(p)))
4916 goto next;
4917
4918 for_each_cpu(i, sched_group_cpus(sg)) {
4919 if (i == target || !idle_cpu(i))
4920 goto next;
4921 }
4922
4923 target = cpumask_first_and(sched_group_cpus(sg),
4924 tsk_cpus_allowed(p));
4925 goto done;
4926next:
4927 sg = sg->next;
4928 } while (sg != sd->groups);
4929 }
4930done:
4931 return target;
4932}
4933
4934/*
4935 * cpu_util returns the amount of capacity of a CPU that is used by CFS
4936 * tasks. The unit of the return value must be the one of capacity so we can
4937 * compare the utilization with the capacity of the CPU that is available for
4938 * CFS task (ie cpu_capacity).
4939 *
4940 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
4941 * recent utilization of currently non-runnable tasks on a CPU. It represents
4942 * the amount of utilization of a CPU in the range [0..capacity_orig] where
4943 * capacity_orig is the cpu_capacity available at the highest frequency
4944 * (arch_scale_freq_capacity()).
4945 * The utilization of a CPU converges towards a sum equal to or less than the
4946 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
4947 * the running time on this CPU scaled by capacity_curr.
4948 *
4949 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
4950 * higher than capacity_orig because of unfortunate rounding in
4951 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
4952 * the average stabilizes with the new running time. We need to check that the
4953 * utilization stays within the range of [0..capacity_orig] and cap it if
4954 * necessary. Without utilization capping, a group could be seen as overloaded
4955 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
4956 * available capacity. We allow utilization to overshoot capacity_curr (but not
4957 * capacity_orig) as it useful for predicting the capacity required after task
4958 * migrations (scheduler-driven DVFS).
4959 */
4960static int cpu_util(int cpu)
4961{
4962 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
4963 unsigned long capacity = capacity_orig_of(cpu);
4964
4965 return (util >= capacity) ? capacity : util;
4966}
4967
4968/*
4969 * select_task_rq_fair: Select target runqueue for the waking task in domains
4970 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4971 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4972 *
4973 * Balances load by selecting the idlest cpu in the idlest group, or under
4974 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4975 *
4976 * Returns the target cpu number.
4977 *
4978 * preempt must be disabled.
4979 */
4980static int
4981select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4982{
4983 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4984 int cpu = smp_processor_id();
4985 int new_cpu = prev_cpu;
4986 int want_affine = 0;
4987 int sync = wake_flags & WF_SYNC;
4988
4989 if (sd_flag & SD_BALANCE_WAKE)
4990 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4991
4992 rcu_read_lock();
4993 for_each_domain(cpu, tmp) {
4994 if (!(tmp->flags & SD_LOAD_BALANCE))
4995 break;
4996
4997 /*
4998 * If both cpu and prev_cpu are part of this domain,
4999 * cpu is a valid SD_WAKE_AFFINE target.
5000 */
5001 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5002 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5003 affine_sd = tmp;
5004 break;
5005 }
5006
5007 if (tmp->flags & sd_flag)
5008 sd = tmp;
5009 else if (!want_affine)
5010 break;
5011 }
5012
5013 if (affine_sd) {
5014 sd = NULL; /* Prefer wake_affine over balance flags */
5015 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5016 new_cpu = cpu;
5017 }
5018
5019 if (!sd) {
5020 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5021 new_cpu = select_idle_sibling(p, new_cpu);
5022
5023 } else while (sd) {
5024 struct sched_group *group;
5025 int weight;
5026
5027 if (!(sd->flags & sd_flag)) {
5028 sd = sd->child;
5029 continue;
5030 }
5031
5032 group = find_idlest_group(sd, p, cpu, sd_flag);
5033 if (!group) {
5034 sd = sd->child;
5035 continue;
5036 }
5037
5038 new_cpu = find_idlest_cpu(group, p, cpu);
5039 if (new_cpu == -1 || new_cpu == cpu) {
5040 /* Now try balancing at a lower domain level of cpu */
5041 sd = sd->child;
5042 continue;
5043 }
5044
5045 /* Now try balancing at a lower domain level of new_cpu */
5046 cpu = new_cpu;
5047 weight = sd->span_weight;
5048 sd = NULL;
5049 for_each_domain(cpu, tmp) {
5050 if (weight <= tmp->span_weight)
5051 break;
5052 if (tmp->flags & sd_flag)
5053 sd = tmp;
5054 }
5055 /* while loop will break here if sd == NULL */
5056 }
5057 rcu_read_unlock();
5058
5059 return new_cpu;
5060}
5061
5062/*
5063 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5064 * cfs_rq_of(p) references at time of call are still valid and identify the
5065 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5066 * other assumptions, including the state of rq->lock, should be made.
5067 */
5068static void migrate_task_rq_fair(struct task_struct *p)
5069{
5070 /*
5071 * We are supposed to update the task to "current" time, then its up to date
5072 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5073 * what current time is, so simply throw away the out-of-date time. This
5074 * will result in the wakee task is less decayed, but giving the wakee more
5075 * load sounds not bad.
5076 */
5077 remove_entity_load_avg(&p->se);
5078
5079 /* Tell new CPU we are migrated */
5080 p->se.avg.last_update_time = 0;
5081
5082 /* We have migrated, no longer consider this task hot */
5083 p->se.exec_start = 0;
5084}
5085
5086static void task_dead_fair(struct task_struct *p)
5087{
5088 remove_entity_load_avg(&p->se);
5089}
5090#endif /* CONFIG_SMP */
5091
5092static unsigned long
5093wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5094{
5095 unsigned long gran = sysctl_sched_wakeup_granularity;
5096
5097 /*
5098 * Since its curr running now, convert the gran from real-time
5099 * to virtual-time in his units.
5100 *
5101 * By using 'se' instead of 'curr' we penalize light tasks, so
5102 * they get preempted easier. That is, if 'se' < 'curr' then
5103 * the resulting gran will be larger, therefore penalizing the
5104 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5105 * be smaller, again penalizing the lighter task.
5106 *
5107 * This is especially important for buddies when the leftmost
5108 * task is higher priority than the buddy.
5109 */
5110 return calc_delta_fair(gran, se);
5111}
5112
5113/*
5114 * Should 'se' preempt 'curr'.
5115 *
5116 * |s1
5117 * |s2
5118 * |s3
5119 * g
5120 * |<--->|c
5121 *
5122 * w(c, s1) = -1
5123 * w(c, s2) = 0
5124 * w(c, s3) = 1
5125 *
5126 */
5127static int
5128wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5129{
5130 s64 gran, vdiff = curr->vruntime - se->vruntime;
5131
5132 if (vdiff <= 0)
5133 return -1;
5134
5135 gran = wakeup_gran(curr, se);
5136 if (vdiff > gran)
5137 return 1;
5138
5139 return 0;
5140}
5141
5142static void set_last_buddy(struct sched_entity *se)
5143{
5144 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5145 return;
5146
5147 for_each_sched_entity(se)
5148 cfs_rq_of(se)->last = se;
5149}
5150
5151static void set_next_buddy(struct sched_entity *se)
5152{
5153 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5154 return;
5155
5156 for_each_sched_entity(se)
5157 cfs_rq_of(se)->next = se;
5158}
5159
5160static void set_skip_buddy(struct sched_entity *se)
5161{
5162 for_each_sched_entity(se)
5163 cfs_rq_of(se)->skip = se;
5164}
5165
5166/*
5167 * Preempt the current task with a newly woken task if needed:
5168 */
5169static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5170{
5171 struct task_struct *curr = rq->curr;
5172 struct sched_entity *se = &curr->se, *pse = &p->se;
5173 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5174 int scale = cfs_rq->nr_running >= sched_nr_latency;
5175 int next_buddy_marked = 0;
5176
5177 if (unlikely(se == pse))
5178 return;
5179
5180 /*
5181 * This is possible from callers such as attach_tasks(), in which we
5182 * unconditionally check_prempt_curr() after an enqueue (which may have
5183 * lead to a throttle). This both saves work and prevents false
5184 * next-buddy nomination below.
5185 */
5186 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5187 return;
5188
5189 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5190 set_next_buddy(pse);
5191 next_buddy_marked = 1;
5192 }
5193
5194 /*
5195 * We can come here with TIF_NEED_RESCHED already set from new task
5196 * wake up path.
5197 *
5198 * Note: this also catches the edge-case of curr being in a throttled
5199 * group (e.g. via set_curr_task), since update_curr() (in the
5200 * enqueue of curr) will have resulted in resched being set. This
5201 * prevents us from potentially nominating it as a false LAST_BUDDY
5202 * below.
5203 */
5204 if (test_tsk_need_resched(curr))
5205 return;
5206
5207 /* Idle tasks are by definition preempted by non-idle tasks. */
5208 if (unlikely(curr->policy == SCHED_IDLE) &&
5209 likely(p->policy != SCHED_IDLE))
5210 goto preempt;
5211
5212 /*
5213 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5214 * is driven by the tick):
5215 */
5216 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5217 return;
5218
5219 find_matching_se(&se, &pse);
5220 update_curr(cfs_rq_of(se));
5221 BUG_ON(!pse);
5222 if (wakeup_preempt_entity(se, pse) == 1) {
5223 /*
5224 * Bias pick_next to pick the sched entity that is
5225 * triggering this preemption.
5226 */
5227 if (!next_buddy_marked)
5228 set_next_buddy(pse);
5229 goto preempt;
5230 }
5231
5232 return;
5233
5234preempt:
5235 resched_curr(rq);
5236 /*
5237 * Only set the backward buddy when the current task is still
5238 * on the rq. This can happen when a wakeup gets interleaved
5239 * with schedule on the ->pre_schedule() or idle_balance()
5240 * point, either of which can * drop the rq lock.
5241 *
5242 * Also, during early boot the idle thread is in the fair class,
5243 * for obvious reasons its a bad idea to schedule back to it.
5244 */
5245 if (unlikely(!se->on_rq || curr == rq->idle))
5246 return;
5247
5248 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5249 set_last_buddy(se);
5250}
5251
5252static struct task_struct *
5253pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5254{
5255 struct cfs_rq *cfs_rq = &rq->cfs;
5256 struct sched_entity *se;
5257 struct task_struct *p;
5258 int new_tasks;
5259
5260again:
5261#ifdef CONFIG_FAIR_GROUP_SCHED
5262 if (!cfs_rq->nr_running)
5263 goto idle;
5264
5265 if (prev->sched_class != &fair_sched_class)
5266 goto simple;
5267
5268 /*
5269 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5270 * likely that a next task is from the same cgroup as the current.
5271 *
5272 * Therefore attempt to avoid putting and setting the entire cgroup
5273 * hierarchy, only change the part that actually changes.
5274 */
5275
5276 do {
5277 struct sched_entity *curr = cfs_rq->curr;
5278
5279 /*
5280 * Since we got here without doing put_prev_entity() we also
5281 * have to consider cfs_rq->curr. If it is still a runnable
5282 * entity, update_curr() will update its vruntime, otherwise
5283 * forget we've ever seen it.
5284 */
5285 if (curr) {
5286 if (curr->on_rq)
5287 update_curr(cfs_rq);
5288 else
5289 curr = NULL;
5290
5291 /*
5292 * This call to check_cfs_rq_runtime() will do the
5293 * throttle and dequeue its entity in the parent(s).
5294 * Therefore the 'simple' nr_running test will indeed
5295 * be correct.
5296 */
5297 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5298 goto simple;
5299 }
5300
5301 se = pick_next_entity(cfs_rq, curr);
5302 cfs_rq = group_cfs_rq(se);
5303 } while (cfs_rq);
5304
5305 p = task_of(se);
5306
5307 /*
5308 * Since we haven't yet done put_prev_entity and if the selected task
5309 * is a different task than we started out with, try and touch the
5310 * least amount of cfs_rqs.
5311 */
5312 if (prev != p) {
5313 struct sched_entity *pse = &prev->se;
5314
5315 while (!(cfs_rq = is_same_group(se, pse))) {
5316 int se_depth = se->depth;
5317 int pse_depth = pse->depth;
5318
5319 if (se_depth <= pse_depth) {
5320 put_prev_entity(cfs_rq_of(pse), pse);
5321 pse = parent_entity(pse);
5322 }
5323 if (se_depth >= pse_depth) {
5324 set_next_entity(cfs_rq_of(se), se);
5325 se = parent_entity(se);
5326 }
5327 }
5328
5329 put_prev_entity(cfs_rq, pse);
5330 set_next_entity(cfs_rq, se);
5331 }
5332
5333 if (hrtick_enabled(rq))
5334 hrtick_start_fair(rq, p);
5335
5336 return p;
5337simple:
5338 cfs_rq = &rq->cfs;
5339#endif
5340
5341 if (!cfs_rq->nr_running)
5342 goto idle;
5343
5344 put_prev_task(rq, prev);
5345
5346 do {
5347 se = pick_next_entity(cfs_rq, NULL);
5348 set_next_entity(cfs_rq, se);
5349 cfs_rq = group_cfs_rq(se);
5350 } while (cfs_rq);
5351
5352 p = task_of(se);
5353
5354 if (hrtick_enabled(rq))
5355 hrtick_start_fair(rq, p);
5356
5357 return p;
5358
5359idle:
5360 /*
5361 * This is OK, because current is on_cpu, which avoids it being picked
5362 * for load-balance and preemption/IRQs are still disabled avoiding
5363 * further scheduler activity on it and we're being very careful to
5364 * re-start the picking loop.
5365 */
5366 lockdep_unpin_lock(&rq->lock);
5367 new_tasks = idle_balance(rq);
5368 lockdep_pin_lock(&rq->lock);
5369 /*
5370 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5371 * possible for any higher priority task to appear. In that case we
5372 * must re-start the pick_next_entity() loop.
5373 */
5374 if (new_tasks < 0)
5375 return RETRY_TASK;
5376
5377 if (new_tasks > 0)
5378 goto again;
5379
5380 return NULL;
5381}
5382
5383/*
5384 * Account for a descheduled task:
5385 */
5386static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5387{
5388 struct sched_entity *se = &prev->se;
5389 struct cfs_rq *cfs_rq;
5390
5391 for_each_sched_entity(se) {
5392 cfs_rq = cfs_rq_of(se);
5393 put_prev_entity(cfs_rq, se);
5394 }
5395}
5396
5397/*
5398 * sched_yield() is very simple
5399 *
5400 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5401 */
5402static void yield_task_fair(struct rq *rq)
5403{
5404 struct task_struct *curr = rq->curr;
5405 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5406 struct sched_entity *se = &curr->se;
5407
5408 /*
5409 * Are we the only task in the tree?
5410 */
5411 if (unlikely(rq->nr_running == 1))
5412 return;
5413
5414 clear_buddies(cfs_rq, se);
5415
5416 if (curr->policy != SCHED_BATCH) {
5417 update_rq_clock(rq);
5418 /*
5419 * Update run-time statistics of the 'current'.
5420 */
5421 update_curr(cfs_rq);
5422 /*
5423 * Tell update_rq_clock() that we've just updated,
5424 * so we don't do microscopic update in schedule()
5425 * and double the fastpath cost.
5426 */
5427 rq_clock_skip_update(rq, true);
5428 }
5429
5430 set_skip_buddy(se);
5431}
5432
5433static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5434{
5435 struct sched_entity *se = &p->se;
5436
5437 /* throttled hierarchies are not runnable */
5438 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5439 return false;
5440
5441 /* Tell the scheduler that we'd really like pse to run next. */
5442 set_next_buddy(se);
5443
5444 yield_task_fair(rq);
5445
5446 return true;
5447}
5448
5449#ifdef CONFIG_SMP
5450/**************************************************
5451 * Fair scheduling class load-balancing methods.
5452 *
5453 * BASICS
5454 *
5455 * The purpose of load-balancing is to achieve the same basic fairness the
5456 * per-cpu scheduler provides, namely provide a proportional amount of compute
5457 * time to each task. This is expressed in the following equation:
5458 *
5459 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5460 *
5461 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5462 * W_i,0 is defined as:
5463 *
5464 * W_i,0 = \Sum_j w_i,j (2)
5465 *
5466 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5467 * is derived from the nice value as per prio_to_weight[].
5468 *
5469 * The weight average is an exponential decay average of the instantaneous
5470 * weight:
5471 *
5472 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5473 *
5474 * C_i is the compute capacity of cpu i, typically it is the
5475 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5476 * can also include other factors [XXX].
5477 *
5478 * To achieve this balance we define a measure of imbalance which follows
5479 * directly from (1):
5480 *
5481 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5482 *
5483 * We them move tasks around to minimize the imbalance. In the continuous
5484 * function space it is obvious this converges, in the discrete case we get
5485 * a few fun cases generally called infeasible weight scenarios.
5486 *
5487 * [XXX expand on:
5488 * - infeasible weights;
5489 * - local vs global optima in the discrete case. ]
5490 *
5491 *
5492 * SCHED DOMAINS
5493 *
5494 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5495 * for all i,j solution, we create a tree of cpus that follows the hardware
5496 * topology where each level pairs two lower groups (or better). This results
5497 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5498 * tree to only the first of the previous level and we decrease the frequency
5499 * of load-balance at each level inv. proportional to the number of cpus in
5500 * the groups.
5501 *
5502 * This yields:
5503 *
5504 * log_2 n 1 n
5505 * \Sum { --- * --- * 2^i } = O(n) (5)
5506 * i = 0 2^i 2^i
5507 * `- size of each group
5508 * | | `- number of cpus doing load-balance
5509 * | `- freq
5510 * `- sum over all levels
5511 *
5512 * Coupled with a limit on how many tasks we can migrate every balance pass,
5513 * this makes (5) the runtime complexity of the balancer.
5514 *
5515 * An important property here is that each CPU is still (indirectly) connected
5516 * to every other cpu in at most O(log n) steps:
5517 *
5518 * The adjacency matrix of the resulting graph is given by:
5519 *
5520 * log_2 n
5521 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5522 * k = 0
5523 *
5524 * And you'll find that:
5525 *
5526 * A^(log_2 n)_i,j != 0 for all i,j (7)
5527 *
5528 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5529 * The task movement gives a factor of O(m), giving a convergence complexity
5530 * of:
5531 *
5532 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5533 *
5534 *
5535 * WORK CONSERVING
5536 *
5537 * In order to avoid CPUs going idle while there's still work to do, new idle
5538 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5539 * tree itself instead of relying on other CPUs to bring it work.
5540 *
5541 * This adds some complexity to both (5) and (8) but it reduces the total idle
5542 * time.
5543 *
5544 * [XXX more?]
5545 *
5546 *
5547 * CGROUPS
5548 *
5549 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5550 *
5551 * s_k,i
5552 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5553 * S_k
5554 *
5555 * Where
5556 *
5557 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5558 *
5559 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5560 *
5561 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5562 * property.
5563 *
5564 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5565 * rewrite all of this once again.]
5566 */
5567
5568static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5569
5570enum fbq_type { regular, remote, all };
5571
5572#define LBF_ALL_PINNED 0x01
5573#define LBF_NEED_BREAK 0x02
5574#define LBF_DST_PINNED 0x04
5575#define LBF_SOME_PINNED 0x08
5576
5577struct lb_env {
5578 struct sched_domain *sd;
5579
5580 struct rq *src_rq;
5581 int src_cpu;
5582
5583 int dst_cpu;
5584 struct rq *dst_rq;
5585
5586 struct cpumask *dst_grpmask;
5587 int new_dst_cpu;
5588 enum cpu_idle_type idle;
5589 long imbalance;
5590 /* The set of CPUs under consideration for load-balancing */
5591 struct cpumask *cpus;
5592
5593 unsigned int flags;
5594
5595 unsigned int loop;
5596 unsigned int loop_break;
5597 unsigned int loop_max;
5598
5599 enum fbq_type fbq_type;
5600 struct list_head tasks;
5601};
5602
5603/*
5604 * Is this task likely cache-hot:
5605 */
5606static int task_hot(struct task_struct *p, struct lb_env *env)
5607{
5608 s64 delta;
5609
5610 lockdep_assert_held(&env->src_rq->lock);
5611
5612 if (p->sched_class != &fair_sched_class)
5613 return 0;
5614
5615 if (unlikely(p->policy == SCHED_IDLE))
5616 return 0;
5617
5618 /*
5619 * Buddy candidates are cache hot:
5620 */
5621 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5622 (&p->se == cfs_rq_of(&p->se)->next ||
5623 &p->se == cfs_rq_of(&p->se)->last))
5624 return 1;
5625
5626 if (sysctl_sched_migration_cost == -1)
5627 return 1;
5628 if (sysctl_sched_migration_cost == 0)
5629 return 0;
5630
5631 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5632
5633 return delta < (s64)sysctl_sched_migration_cost;
5634}
5635
5636#ifdef CONFIG_NUMA_BALANCING
5637/*
5638 * Returns 1, if task migration degrades locality
5639 * Returns 0, if task migration improves locality i.e migration preferred.
5640 * Returns -1, if task migration is not affected by locality.
5641 */
5642static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5643{
5644 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5645 unsigned long src_faults, dst_faults;
5646 int src_nid, dst_nid;
5647
5648 if (!static_branch_likely(&sched_numa_balancing))
5649 return -1;
5650
5651 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5652 return -1;
5653
5654 src_nid = cpu_to_node(env->src_cpu);
5655 dst_nid = cpu_to_node(env->dst_cpu);
5656
5657 if (src_nid == dst_nid)
5658 return -1;
5659
5660 /* Migrating away from the preferred node is always bad. */
5661 if (src_nid == p->numa_preferred_nid) {
5662 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5663 return 1;
5664 else
5665 return -1;
5666 }
5667
5668 /* Encourage migration to the preferred node. */
5669 if (dst_nid == p->numa_preferred_nid)
5670 return 0;
5671
5672 if (numa_group) {
5673 src_faults = group_faults(p, src_nid);
5674 dst_faults = group_faults(p, dst_nid);
5675 } else {
5676 src_faults = task_faults(p, src_nid);
5677 dst_faults = task_faults(p, dst_nid);
5678 }
5679
5680 return dst_faults < src_faults;
5681}
5682
5683#else
5684static inline int migrate_degrades_locality(struct task_struct *p,
5685 struct lb_env *env)
5686{
5687 return -1;
5688}
5689#endif
5690
5691/*
5692 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5693 */
5694static
5695int can_migrate_task(struct task_struct *p, struct lb_env *env)
5696{
5697 int tsk_cache_hot;
5698
5699 lockdep_assert_held(&env->src_rq->lock);
5700
5701 /*
5702 * We do not migrate tasks that are:
5703 * 1) throttled_lb_pair, or
5704 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5705 * 3) running (obviously), or
5706 * 4) are cache-hot on their current CPU.
5707 */
5708 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5709 return 0;
5710
5711 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5712 int cpu;
5713
5714 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5715
5716 env->flags |= LBF_SOME_PINNED;
5717
5718 /*
5719 * Remember if this task can be migrated to any other cpu in
5720 * our sched_group. We may want to revisit it if we couldn't
5721 * meet load balance goals by pulling other tasks on src_cpu.
5722 *
5723 * Also avoid computing new_dst_cpu if we have already computed
5724 * one in current iteration.
5725 */
5726 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5727 return 0;
5728
5729 /* Prevent to re-select dst_cpu via env's cpus */
5730 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5731 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5732 env->flags |= LBF_DST_PINNED;
5733 env->new_dst_cpu = cpu;
5734 break;
5735 }
5736 }
5737
5738 return 0;
5739 }
5740
5741 /* Record that we found atleast one task that could run on dst_cpu */
5742 env->flags &= ~LBF_ALL_PINNED;
5743
5744 if (task_running(env->src_rq, p)) {
5745 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5746 return 0;
5747 }
5748
5749 /*
5750 * Aggressive migration if:
5751 * 1) destination numa is preferred
5752 * 2) task is cache cold, or
5753 * 3) too many balance attempts have failed.
5754 */
5755 tsk_cache_hot = migrate_degrades_locality(p, env);
5756 if (tsk_cache_hot == -1)
5757 tsk_cache_hot = task_hot(p, env);
5758
5759 if (tsk_cache_hot <= 0 ||
5760 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5761 if (tsk_cache_hot == 1) {
5762 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5763 schedstat_inc(p, se.statistics.nr_forced_migrations);
5764 }
5765 return 1;
5766 }
5767
5768 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5769 return 0;
5770}
5771
5772/*
5773 * detach_task() -- detach the task for the migration specified in env
5774 */
5775static void detach_task(struct task_struct *p, struct lb_env *env)
5776{
5777 lockdep_assert_held(&env->src_rq->lock);
5778
5779 deactivate_task(env->src_rq, p, 0);
5780 p->on_rq = TASK_ON_RQ_MIGRATING;
5781 set_task_cpu(p, env->dst_cpu);
5782}
5783
5784/*
5785 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5786 * part of active balancing operations within "domain".
5787 *
5788 * Returns a task if successful and NULL otherwise.
5789 */
5790static struct task_struct *detach_one_task(struct lb_env *env)
5791{
5792 struct task_struct *p, *n;
5793
5794 lockdep_assert_held(&env->src_rq->lock);
5795
5796 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5797 if (!can_migrate_task(p, env))
5798 continue;
5799
5800 detach_task(p, env);
5801
5802 /*
5803 * Right now, this is only the second place where
5804 * lb_gained[env->idle] is updated (other is detach_tasks)
5805 * so we can safely collect stats here rather than
5806 * inside detach_tasks().
5807 */
5808 schedstat_inc(env->sd, lb_gained[env->idle]);
5809 return p;
5810 }
5811 return NULL;
5812}
5813
5814static const unsigned int sched_nr_migrate_break = 32;
5815
5816/*
5817 * detach_tasks() -- tries to detach up to imbalance weighted load from
5818 * busiest_rq, as part of a balancing operation within domain "sd".
5819 *
5820 * Returns number of detached tasks if successful and 0 otherwise.
5821 */
5822static int detach_tasks(struct lb_env *env)
5823{
5824 struct list_head *tasks = &env->src_rq->cfs_tasks;
5825 struct task_struct *p;
5826 unsigned long load;
5827 int detached = 0;
5828
5829 lockdep_assert_held(&env->src_rq->lock);
5830
5831 if (env->imbalance <= 0)
5832 return 0;
5833
5834 while (!list_empty(tasks)) {
5835 /*
5836 * We don't want to steal all, otherwise we may be treated likewise,
5837 * which could at worst lead to a livelock crash.
5838 */
5839 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5840 break;
5841
5842 p = list_first_entry(tasks, struct task_struct, se.group_node);
5843
5844 env->loop++;
5845 /* We've more or less seen every task there is, call it quits */
5846 if (env->loop > env->loop_max)
5847 break;
5848
5849 /* take a breather every nr_migrate tasks */
5850 if (env->loop > env->loop_break) {
5851 env->loop_break += sched_nr_migrate_break;
5852 env->flags |= LBF_NEED_BREAK;
5853 break;
5854 }
5855
5856 if (!can_migrate_task(p, env))
5857 goto next;
5858
5859 load = task_h_load(p);
5860
5861 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5862 goto next;
5863
5864 if ((load / 2) > env->imbalance)
5865 goto next;
5866
5867 detach_task(p, env);
5868 list_add(&p->se.group_node, &env->tasks);
5869
5870 detached++;
5871 env->imbalance -= load;
5872
5873#ifdef CONFIG_PREEMPT
5874 /*
5875 * NEWIDLE balancing is a source of latency, so preemptible
5876 * kernels will stop after the first task is detached to minimize
5877 * the critical section.
5878 */
5879 if (env->idle == CPU_NEWLY_IDLE)
5880 break;
5881#endif
5882
5883 /*
5884 * We only want to steal up to the prescribed amount of
5885 * weighted load.
5886 */
5887 if (env->imbalance <= 0)
5888 break;
5889
5890 continue;
5891next:
5892 list_move_tail(&p->se.group_node, tasks);
5893 }
5894
5895 /*
5896 * Right now, this is one of only two places we collect this stat
5897 * so we can safely collect detach_one_task() stats here rather
5898 * than inside detach_one_task().
5899 */
5900 schedstat_add(env->sd, lb_gained[env->idle], detached);
5901
5902 return detached;
5903}
5904
5905/*
5906 * attach_task() -- attach the task detached by detach_task() to its new rq.
5907 */
5908static void attach_task(struct rq *rq, struct task_struct *p)
5909{
5910 lockdep_assert_held(&rq->lock);
5911
5912 BUG_ON(task_rq(p) != rq);
5913 p->on_rq = TASK_ON_RQ_QUEUED;
5914 activate_task(rq, p, 0);
5915 check_preempt_curr(rq, p, 0);
5916}
5917
5918/*
5919 * attach_one_task() -- attaches the task returned from detach_one_task() to
5920 * its new rq.
5921 */
5922static void attach_one_task(struct rq *rq, struct task_struct *p)
5923{
5924 raw_spin_lock(&rq->lock);
5925 attach_task(rq, p);
5926 raw_spin_unlock(&rq->lock);
5927}
5928
5929/*
5930 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5931 * new rq.
5932 */
5933static void attach_tasks(struct lb_env *env)
5934{
5935 struct list_head *tasks = &env->tasks;
5936 struct task_struct *p;
5937
5938 raw_spin_lock(&env->dst_rq->lock);
5939
5940 while (!list_empty(tasks)) {
5941 p = list_first_entry(tasks, struct task_struct, se.group_node);
5942 list_del_init(&p->se.group_node);
5943
5944 attach_task(env->dst_rq, p);
5945 }
5946
5947 raw_spin_unlock(&env->dst_rq->lock);
5948}
5949
5950#ifdef CONFIG_FAIR_GROUP_SCHED
5951static void update_blocked_averages(int cpu)
5952{
5953 struct rq *rq = cpu_rq(cpu);
5954 struct cfs_rq *cfs_rq;
5955 unsigned long flags;
5956
5957 raw_spin_lock_irqsave(&rq->lock, flags);
5958 update_rq_clock(rq);
5959
5960 /*
5961 * Iterates the task_group tree in a bottom up fashion, see
5962 * list_add_leaf_cfs_rq() for details.
5963 */
5964 for_each_leaf_cfs_rq(rq, cfs_rq) {
5965 /* throttled entities do not contribute to load */
5966 if (throttled_hierarchy(cfs_rq))
5967 continue;
5968
5969 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5970 update_tg_load_avg(cfs_rq, 0);
5971 }
5972 raw_spin_unlock_irqrestore(&rq->lock, flags);
5973}
5974
5975/*
5976 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5977 * This needs to be done in a top-down fashion because the load of a child
5978 * group is a fraction of its parents load.
5979 */
5980static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5981{
5982 struct rq *rq = rq_of(cfs_rq);
5983 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5984 unsigned long now = jiffies;
5985 unsigned long load;
5986
5987 if (cfs_rq->last_h_load_update == now)
5988 return;
5989
5990 cfs_rq->h_load_next = NULL;
5991 for_each_sched_entity(se) {
5992 cfs_rq = cfs_rq_of(se);
5993 cfs_rq->h_load_next = se;
5994 if (cfs_rq->last_h_load_update == now)
5995 break;
5996 }
5997
5998 if (!se) {
5999 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6000 cfs_rq->last_h_load_update = now;
6001 }
6002
6003 while ((se = cfs_rq->h_load_next) != NULL) {
6004 load = cfs_rq->h_load;
6005 load = div64_ul(load * se->avg.load_avg,
6006 cfs_rq_load_avg(cfs_rq) + 1);
6007 cfs_rq = group_cfs_rq(se);
6008 cfs_rq->h_load = load;
6009 cfs_rq->last_h_load_update = now;
6010 }
6011}
6012
6013static unsigned long task_h_load(struct task_struct *p)
6014{
6015 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6016
6017 update_cfs_rq_h_load(cfs_rq);
6018 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6019 cfs_rq_load_avg(cfs_rq) + 1);
6020}
6021#else
6022static inline void update_blocked_averages(int cpu)
6023{
6024 struct rq *rq = cpu_rq(cpu);
6025 struct cfs_rq *cfs_rq = &rq->cfs;
6026 unsigned long flags;
6027
6028 raw_spin_lock_irqsave(&rq->lock, flags);
6029 update_rq_clock(rq);
6030 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6031 raw_spin_unlock_irqrestore(&rq->lock, flags);
6032}
6033
6034static unsigned long task_h_load(struct task_struct *p)
6035{
6036 return p->se.avg.load_avg;
6037}
6038#endif
6039
6040/********** Helpers for find_busiest_group ************************/
6041
6042enum group_type {
6043 group_other = 0,
6044 group_imbalanced,
6045 group_overloaded,
6046};
6047
6048/*
6049 * sg_lb_stats - stats of a sched_group required for load_balancing
6050 */
6051struct sg_lb_stats {
6052 unsigned long avg_load; /*Avg load across the CPUs of the group */
6053 unsigned long group_load; /* Total load over the CPUs of the group */
6054 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6055 unsigned long load_per_task;
6056 unsigned long group_capacity;
6057 unsigned long group_util; /* Total utilization of the group */
6058 unsigned int sum_nr_running; /* Nr tasks running in the group */
6059 unsigned int idle_cpus;
6060 unsigned int group_weight;
6061 enum group_type group_type;
6062 int group_no_capacity;
6063#ifdef CONFIG_NUMA_BALANCING
6064 unsigned int nr_numa_running;
6065 unsigned int nr_preferred_running;
6066#endif
6067};
6068
6069/*
6070 * sd_lb_stats - Structure to store the statistics of a sched_domain
6071 * during load balancing.
6072 */
6073struct sd_lb_stats {
6074 struct sched_group *busiest; /* Busiest group in this sd */
6075 struct sched_group *local; /* Local group in this sd */
6076 unsigned long total_load; /* Total load of all groups in sd */
6077 unsigned long total_capacity; /* Total capacity of all groups in sd */
6078 unsigned long avg_load; /* Average load across all groups in sd */
6079
6080 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6081 struct sg_lb_stats local_stat; /* Statistics of the local group */
6082};
6083
6084static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6085{
6086 /*
6087 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6088 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6089 * We must however clear busiest_stat::avg_load because
6090 * update_sd_pick_busiest() reads this before assignment.
6091 */
6092 *sds = (struct sd_lb_stats){
6093 .busiest = NULL,
6094 .local = NULL,
6095 .total_load = 0UL,
6096 .total_capacity = 0UL,
6097 .busiest_stat = {
6098 .avg_load = 0UL,
6099 .sum_nr_running = 0,
6100 .group_type = group_other,
6101 },
6102 };
6103}
6104
6105/**
6106 * get_sd_load_idx - Obtain the load index for a given sched domain.
6107 * @sd: The sched_domain whose load_idx is to be obtained.
6108 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6109 *
6110 * Return: The load index.
6111 */
6112static inline int get_sd_load_idx(struct sched_domain *sd,
6113 enum cpu_idle_type idle)
6114{
6115 int load_idx;
6116
6117 switch (idle) {
6118 case CPU_NOT_IDLE:
6119 load_idx = sd->busy_idx;
6120 break;
6121
6122 case CPU_NEWLY_IDLE:
6123 load_idx = sd->newidle_idx;
6124 break;
6125 default:
6126 load_idx = sd->idle_idx;
6127 break;
6128 }
6129
6130 return load_idx;
6131}
6132
6133static unsigned long scale_rt_capacity(int cpu)
6134{
6135 struct rq *rq = cpu_rq(cpu);
6136 u64 total, used, age_stamp, avg;
6137 s64 delta;
6138
6139 /*
6140 * Since we're reading these variables without serialization make sure
6141 * we read them once before doing sanity checks on them.
6142 */
6143 age_stamp = READ_ONCE(rq->age_stamp);
6144 avg = READ_ONCE(rq->rt_avg);
6145 delta = __rq_clock_broken(rq) - age_stamp;
6146
6147 if (unlikely(delta < 0))
6148 delta = 0;
6149
6150 total = sched_avg_period() + delta;
6151
6152 used = div_u64(avg, total);
6153
6154 if (likely(used < SCHED_CAPACITY_SCALE))
6155 return SCHED_CAPACITY_SCALE - used;
6156
6157 return 1;
6158}
6159
6160static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6161{
6162 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6163 struct sched_group *sdg = sd->groups;
6164
6165 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6166
6167 capacity *= scale_rt_capacity(cpu);
6168 capacity >>= SCHED_CAPACITY_SHIFT;
6169
6170 if (!capacity)
6171 capacity = 1;
6172
6173 cpu_rq(cpu)->cpu_capacity = capacity;
6174 sdg->sgc->capacity = capacity;
6175}
6176
6177void update_group_capacity(struct sched_domain *sd, int cpu)
6178{
6179 struct sched_domain *child = sd->child;
6180 struct sched_group *group, *sdg = sd->groups;
6181 unsigned long capacity;
6182 unsigned long interval;
6183
6184 interval = msecs_to_jiffies(sd->balance_interval);
6185 interval = clamp(interval, 1UL, max_load_balance_interval);
6186 sdg->sgc->next_update = jiffies + interval;
6187
6188 if (!child) {
6189 update_cpu_capacity(sd, cpu);
6190 return;
6191 }
6192
6193 capacity = 0;
6194
6195 if (child->flags & SD_OVERLAP) {
6196 /*
6197 * SD_OVERLAP domains cannot assume that child groups
6198 * span the current group.
6199 */
6200
6201 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6202 struct sched_group_capacity *sgc;
6203 struct rq *rq = cpu_rq(cpu);
6204
6205 /*
6206 * build_sched_domains() -> init_sched_groups_capacity()
6207 * gets here before we've attached the domains to the
6208 * runqueues.
6209 *
6210 * Use capacity_of(), which is set irrespective of domains
6211 * in update_cpu_capacity().
6212 *
6213 * This avoids capacity from being 0 and
6214 * causing divide-by-zero issues on boot.
6215 */
6216 if (unlikely(!rq->sd)) {
6217 capacity += capacity_of(cpu);
6218 continue;
6219 }
6220
6221 sgc = rq->sd->groups->sgc;
6222 capacity += sgc->capacity;
6223 }
6224 } else {
6225 /*
6226 * !SD_OVERLAP domains can assume that child groups
6227 * span the current group.
6228 */
6229
6230 group = child->groups;
6231 do {
6232 capacity += group->sgc->capacity;
6233 group = group->next;
6234 } while (group != child->groups);
6235 }
6236
6237 sdg->sgc->capacity = capacity;
6238}
6239
6240/*
6241 * Check whether the capacity of the rq has been noticeably reduced by side
6242 * activity. The imbalance_pct is used for the threshold.
6243 * Return true is the capacity is reduced
6244 */
6245static inline int
6246check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6247{
6248 return ((rq->cpu_capacity * sd->imbalance_pct) <
6249 (rq->cpu_capacity_orig * 100));
6250}
6251
6252/*
6253 * Group imbalance indicates (and tries to solve) the problem where balancing
6254 * groups is inadequate due to tsk_cpus_allowed() constraints.
6255 *
6256 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6257 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6258 * Something like:
6259 *
6260 * { 0 1 2 3 } { 4 5 6 7 }
6261 * * * * *
6262 *
6263 * If we were to balance group-wise we'd place two tasks in the first group and
6264 * two tasks in the second group. Clearly this is undesired as it will overload
6265 * cpu 3 and leave one of the cpus in the second group unused.
6266 *
6267 * The current solution to this issue is detecting the skew in the first group
6268 * by noticing the lower domain failed to reach balance and had difficulty
6269 * moving tasks due to affinity constraints.
6270 *
6271 * When this is so detected; this group becomes a candidate for busiest; see
6272 * update_sd_pick_busiest(). And calculate_imbalance() and
6273 * find_busiest_group() avoid some of the usual balance conditions to allow it
6274 * to create an effective group imbalance.
6275 *
6276 * This is a somewhat tricky proposition since the next run might not find the
6277 * group imbalance and decide the groups need to be balanced again. A most
6278 * subtle and fragile situation.
6279 */
6280
6281static inline int sg_imbalanced(struct sched_group *group)
6282{
6283 return group->sgc->imbalance;
6284}
6285
6286/*
6287 * group_has_capacity returns true if the group has spare capacity that could
6288 * be used by some tasks.
6289 * We consider that a group has spare capacity if the * number of task is
6290 * smaller than the number of CPUs or if the utilization is lower than the
6291 * available capacity for CFS tasks.
6292 * For the latter, we use a threshold to stabilize the state, to take into
6293 * account the variance of the tasks' load and to return true if the available
6294 * capacity in meaningful for the load balancer.
6295 * As an example, an available capacity of 1% can appear but it doesn't make
6296 * any benefit for the load balance.
6297 */
6298static inline bool
6299group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6300{
6301 if (sgs->sum_nr_running < sgs->group_weight)
6302 return true;
6303
6304 if ((sgs->group_capacity * 100) >
6305 (sgs->group_util * env->sd->imbalance_pct))
6306 return true;
6307
6308 return false;
6309}
6310
6311/*
6312 * group_is_overloaded returns true if the group has more tasks than it can
6313 * handle.
6314 * group_is_overloaded is not equals to !group_has_capacity because a group
6315 * with the exact right number of tasks, has no more spare capacity but is not
6316 * overloaded so both group_has_capacity and group_is_overloaded return
6317 * false.
6318 */
6319static inline bool
6320group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6321{
6322 if (sgs->sum_nr_running <= sgs->group_weight)
6323 return false;
6324
6325 if ((sgs->group_capacity * 100) <
6326 (sgs->group_util * env->sd->imbalance_pct))
6327 return true;
6328
6329 return false;
6330}
6331
6332static inline enum
6333group_type group_classify(struct sched_group *group,
6334 struct sg_lb_stats *sgs)
6335{
6336 if (sgs->group_no_capacity)
6337 return group_overloaded;
6338
6339 if (sg_imbalanced(group))
6340 return group_imbalanced;
6341
6342 return group_other;
6343}
6344
6345/**
6346 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6347 * @env: The load balancing environment.
6348 * @group: sched_group whose statistics are to be updated.
6349 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6350 * @local_group: Does group contain this_cpu.
6351 * @sgs: variable to hold the statistics for this group.
6352 * @overload: Indicate more than one runnable task for any CPU.
6353 */
6354static inline void update_sg_lb_stats(struct lb_env *env,
6355 struct sched_group *group, int load_idx,
6356 int local_group, struct sg_lb_stats *sgs,
6357 bool *overload)
6358{
6359 unsigned long load;
6360 int i;
6361
6362 memset(sgs, 0, sizeof(*sgs));
6363
6364 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6365 struct rq *rq = cpu_rq(i);
6366
6367 /* Bias balancing toward cpus of our domain */
6368 if (local_group)
6369 load = target_load(i, load_idx);
6370 else
6371 load = source_load(i, load_idx);
6372
6373 sgs->group_load += load;
6374 sgs->group_util += cpu_util(i);
6375 sgs->sum_nr_running += rq->cfs.h_nr_running;
6376
6377 if (rq->nr_running > 1)
6378 *overload = true;
6379
6380#ifdef CONFIG_NUMA_BALANCING
6381 sgs->nr_numa_running += rq->nr_numa_running;
6382 sgs->nr_preferred_running += rq->nr_preferred_running;
6383#endif
6384 sgs->sum_weighted_load += weighted_cpuload(i);
6385 if (idle_cpu(i))
6386 sgs->idle_cpus++;
6387 }
6388
6389 /* Adjust by relative CPU capacity of the group */
6390 sgs->group_capacity = group->sgc->capacity;
6391 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6392
6393 if (sgs->sum_nr_running)
6394 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6395
6396 sgs->group_weight = group->group_weight;
6397
6398 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6399 sgs->group_type = group_classify(group, sgs);
6400}
6401
6402/**
6403 * update_sd_pick_busiest - return 1 on busiest group
6404 * @env: The load balancing environment.
6405 * @sds: sched_domain statistics
6406 * @sg: sched_group candidate to be checked for being the busiest
6407 * @sgs: sched_group statistics
6408 *
6409 * Determine if @sg is a busier group than the previously selected
6410 * busiest group.
6411 *
6412 * Return: %true if @sg is a busier group than the previously selected
6413 * busiest group. %false otherwise.
6414 */
6415static bool update_sd_pick_busiest(struct lb_env *env,
6416 struct sd_lb_stats *sds,
6417 struct sched_group *sg,
6418 struct sg_lb_stats *sgs)
6419{
6420 struct sg_lb_stats *busiest = &sds->busiest_stat;
6421
6422 if (sgs->group_type > busiest->group_type)
6423 return true;
6424
6425 if (sgs->group_type < busiest->group_type)
6426 return false;
6427
6428 if (sgs->avg_load <= busiest->avg_load)
6429 return false;
6430
6431 /* This is the busiest node in its class. */
6432 if (!(env->sd->flags & SD_ASYM_PACKING))
6433 return true;
6434
6435 /*
6436 * ASYM_PACKING needs to move all the work to the lowest
6437 * numbered CPUs in the group, therefore mark all groups
6438 * higher than ourself as busy.
6439 */
6440 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6441 if (!sds->busiest)
6442 return true;
6443
6444 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6445 return true;
6446 }
6447
6448 return false;
6449}
6450
6451#ifdef CONFIG_NUMA_BALANCING
6452static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6453{
6454 if (sgs->sum_nr_running > sgs->nr_numa_running)
6455 return regular;
6456 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6457 return remote;
6458 return all;
6459}
6460
6461static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6462{
6463 if (rq->nr_running > rq->nr_numa_running)
6464 return regular;
6465 if (rq->nr_running > rq->nr_preferred_running)
6466 return remote;
6467 return all;
6468}
6469#else
6470static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6471{
6472 return all;
6473}
6474
6475static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6476{
6477 return regular;
6478}
6479#endif /* CONFIG_NUMA_BALANCING */
6480
6481/**
6482 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6483 * @env: The load balancing environment.
6484 * @sds: variable to hold the statistics for this sched_domain.
6485 */
6486static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6487{
6488 struct sched_domain *child = env->sd->child;
6489 struct sched_group *sg = env->sd->groups;
6490 struct sg_lb_stats tmp_sgs;
6491 int load_idx, prefer_sibling = 0;
6492 bool overload = false;
6493
6494 if (child && child->flags & SD_PREFER_SIBLING)
6495 prefer_sibling = 1;
6496
6497 load_idx = get_sd_load_idx(env->sd, env->idle);
6498
6499 do {
6500 struct sg_lb_stats *sgs = &tmp_sgs;
6501 int local_group;
6502
6503 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6504 if (local_group) {
6505 sds->local = sg;
6506 sgs = &sds->local_stat;
6507
6508 if (env->idle != CPU_NEWLY_IDLE ||
6509 time_after_eq(jiffies, sg->sgc->next_update))
6510 update_group_capacity(env->sd, env->dst_cpu);
6511 }
6512
6513 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6514 &overload);
6515
6516 if (local_group)
6517 goto next_group;
6518
6519 /*
6520 * In case the child domain prefers tasks go to siblings
6521 * first, lower the sg capacity so that we'll try
6522 * and move all the excess tasks away. We lower the capacity
6523 * of a group only if the local group has the capacity to fit
6524 * these excess tasks. The extra check prevents the case where
6525 * you always pull from the heaviest group when it is already
6526 * under-utilized (possible with a large weight task outweighs
6527 * the tasks on the system).
6528 */
6529 if (prefer_sibling && sds->local &&
6530 group_has_capacity(env, &sds->local_stat) &&
6531 (sgs->sum_nr_running > 1)) {
6532 sgs->group_no_capacity = 1;
6533 sgs->group_type = group_classify(sg, sgs);
6534 }
6535
6536 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6537 sds->busiest = sg;
6538 sds->busiest_stat = *sgs;
6539 }
6540
6541next_group:
6542 /* Now, start updating sd_lb_stats */
6543 sds->total_load += sgs->group_load;
6544 sds->total_capacity += sgs->group_capacity;
6545
6546 sg = sg->next;
6547 } while (sg != env->sd->groups);
6548
6549 if (env->sd->flags & SD_NUMA)
6550 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6551
6552 if (!env->sd->parent) {
6553 /* update overload indicator if we are at root domain */
6554 if (env->dst_rq->rd->overload != overload)
6555 env->dst_rq->rd->overload = overload;
6556 }
6557
6558}
6559
6560/**
6561 * check_asym_packing - Check to see if the group is packed into the
6562 * sched doman.
6563 *
6564 * This is primarily intended to used at the sibling level. Some
6565 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6566 * case of POWER7, it can move to lower SMT modes only when higher
6567 * threads are idle. When in lower SMT modes, the threads will
6568 * perform better since they share less core resources. Hence when we
6569 * have idle threads, we want them to be the higher ones.
6570 *
6571 * This packing function is run on idle threads. It checks to see if
6572 * the busiest CPU in this domain (core in the P7 case) has a higher
6573 * CPU number than the packing function is being run on. Here we are
6574 * assuming lower CPU number will be equivalent to lower a SMT thread
6575 * number.
6576 *
6577 * Return: 1 when packing is required and a task should be moved to
6578 * this CPU. The amount of the imbalance is returned in *imbalance.
6579 *
6580 * @env: The load balancing environment.
6581 * @sds: Statistics of the sched_domain which is to be packed
6582 */
6583static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6584{
6585 int busiest_cpu;
6586
6587 if (!(env->sd->flags & SD_ASYM_PACKING))
6588 return 0;
6589
6590 if (!sds->busiest)
6591 return 0;
6592
6593 busiest_cpu = group_first_cpu(sds->busiest);
6594 if (env->dst_cpu > busiest_cpu)
6595 return 0;
6596
6597 env->imbalance = DIV_ROUND_CLOSEST(
6598 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6599 SCHED_CAPACITY_SCALE);
6600
6601 return 1;
6602}
6603
6604/**
6605 * fix_small_imbalance - Calculate the minor imbalance that exists
6606 * amongst the groups of a sched_domain, during
6607 * load balancing.
6608 * @env: The load balancing environment.
6609 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6610 */
6611static inline
6612void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6613{
6614 unsigned long tmp, capa_now = 0, capa_move = 0;
6615 unsigned int imbn = 2;
6616 unsigned long scaled_busy_load_per_task;
6617 struct sg_lb_stats *local, *busiest;
6618
6619 local = &sds->local_stat;
6620 busiest = &sds->busiest_stat;
6621
6622 if (!local->sum_nr_running)
6623 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6624 else if (busiest->load_per_task > local->load_per_task)
6625 imbn = 1;
6626
6627 scaled_busy_load_per_task =
6628 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6629 busiest->group_capacity;
6630
6631 if (busiest->avg_load + scaled_busy_load_per_task >=
6632 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6633 env->imbalance = busiest->load_per_task;
6634 return;
6635 }
6636
6637 /*
6638 * OK, we don't have enough imbalance to justify moving tasks,
6639 * however we may be able to increase total CPU capacity used by
6640 * moving them.
6641 */
6642
6643 capa_now += busiest->group_capacity *
6644 min(busiest->load_per_task, busiest->avg_load);
6645 capa_now += local->group_capacity *
6646 min(local->load_per_task, local->avg_load);
6647 capa_now /= SCHED_CAPACITY_SCALE;
6648
6649 /* Amount of load we'd subtract */
6650 if (busiest->avg_load > scaled_busy_load_per_task) {
6651 capa_move += busiest->group_capacity *
6652 min(busiest->load_per_task,
6653 busiest->avg_load - scaled_busy_load_per_task);
6654 }
6655
6656 /* Amount of load we'd add */
6657 if (busiest->avg_load * busiest->group_capacity <
6658 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6659 tmp = (busiest->avg_load * busiest->group_capacity) /
6660 local->group_capacity;
6661 } else {
6662 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6663 local->group_capacity;
6664 }
6665 capa_move += local->group_capacity *
6666 min(local->load_per_task, local->avg_load + tmp);
6667 capa_move /= SCHED_CAPACITY_SCALE;
6668
6669 /* Move if we gain throughput */
6670 if (capa_move > capa_now)
6671 env->imbalance = busiest->load_per_task;
6672}
6673
6674/**
6675 * calculate_imbalance - Calculate the amount of imbalance present within the
6676 * groups of a given sched_domain during load balance.
6677 * @env: load balance environment
6678 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6679 */
6680static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6681{
6682 unsigned long max_pull, load_above_capacity = ~0UL;
6683 struct sg_lb_stats *local, *busiest;
6684
6685 local = &sds->local_stat;
6686 busiest = &sds->busiest_stat;
6687
6688 if (busiest->group_type == group_imbalanced) {
6689 /*
6690 * In the group_imb case we cannot rely on group-wide averages
6691 * to ensure cpu-load equilibrium, look at wider averages. XXX
6692 */
6693 busiest->load_per_task =
6694 min(busiest->load_per_task, sds->avg_load);
6695 }
6696
6697 /*
6698 * In the presence of smp nice balancing, certain scenarios can have
6699 * max load less than avg load(as we skip the groups at or below
6700 * its cpu_capacity, while calculating max_load..)
6701 */
6702 if (busiest->avg_load <= sds->avg_load ||
6703 local->avg_load >= sds->avg_load) {
6704 env->imbalance = 0;
6705 return fix_small_imbalance(env, sds);
6706 }
6707
6708 /*
6709 * If there aren't any idle cpus, avoid creating some.
6710 */
6711 if (busiest->group_type == group_overloaded &&
6712 local->group_type == group_overloaded) {
6713 load_above_capacity = busiest->sum_nr_running *
6714 SCHED_LOAD_SCALE;
6715 if (load_above_capacity > busiest->group_capacity)
6716 load_above_capacity -= busiest->group_capacity;
6717 else
6718 load_above_capacity = ~0UL;
6719 }
6720
6721 /*
6722 * We're trying to get all the cpus to the average_load, so we don't
6723 * want to push ourselves above the average load, nor do we wish to
6724 * reduce the max loaded cpu below the average load. At the same time,
6725 * we also don't want to reduce the group load below the group capacity
6726 * (so that we can implement power-savings policies etc). Thus we look
6727 * for the minimum possible imbalance.
6728 */
6729 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6730
6731 /* How much load to actually move to equalise the imbalance */
6732 env->imbalance = min(
6733 max_pull * busiest->group_capacity,
6734 (sds->avg_load - local->avg_load) * local->group_capacity
6735 ) / SCHED_CAPACITY_SCALE;
6736
6737 /*
6738 * if *imbalance is less than the average load per runnable task
6739 * there is no guarantee that any tasks will be moved so we'll have
6740 * a think about bumping its value to force at least one task to be
6741 * moved
6742 */
6743 if (env->imbalance < busiest->load_per_task)
6744 return fix_small_imbalance(env, sds);
6745}
6746
6747/******* find_busiest_group() helpers end here *********************/
6748
6749/**
6750 * find_busiest_group - Returns the busiest group within the sched_domain
6751 * if there is an imbalance. If there isn't an imbalance, and
6752 * the user has opted for power-savings, it returns a group whose
6753 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6754 * such a group exists.
6755 *
6756 * Also calculates the amount of weighted load which should be moved
6757 * to restore balance.
6758 *
6759 * @env: The load balancing environment.
6760 *
6761 * Return: - The busiest group if imbalance exists.
6762 * - If no imbalance and user has opted for power-savings balance,
6763 * return the least loaded group whose CPUs can be
6764 * put to idle by rebalancing its tasks onto our group.
6765 */
6766static struct sched_group *find_busiest_group(struct lb_env *env)
6767{
6768 struct sg_lb_stats *local, *busiest;
6769 struct sd_lb_stats sds;
6770
6771 init_sd_lb_stats(&sds);
6772
6773 /*
6774 * Compute the various statistics relavent for load balancing at
6775 * this level.
6776 */
6777 update_sd_lb_stats(env, &sds);
6778 local = &sds.local_stat;
6779 busiest = &sds.busiest_stat;
6780
6781 /* ASYM feature bypasses nice load balance check */
6782 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6783 check_asym_packing(env, &sds))
6784 return sds.busiest;
6785
6786 /* There is no busy sibling group to pull tasks from */
6787 if (!sds.busiest || busiest->sum_nr_running == 0)
6788 goto out_balanced;
6789
6790 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6791 / sds.total_capacity;
6792
6793 /*
6794 * If the busiest group is imbalanced the below checks don't
6795 * work because they assume all things are equal, which typically
6796 * isn't true due to cpus_allowed constraints and the like.
6797 */
6798 if (busiest->group_type == group_imbalanced)
6799 goto force_balance;
6800
6801 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6802 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6803 busiest->group_no_capacity)
6804 goto force_balance;
6805
6806 /*
6807 * If the local group is busier than the selected busiest group
6808 * don't try and pull any tasks.
6809 */
6810 if (local->avg_load >= busiest->avg_load)
6811 goto out_balanced;
6812
6813 /*
6814 * Don't pull any tasks if this group is already above the domain
6815 * average load.
6816 */
6817 if (local->avg_load >= sds.avg_load)
6818 goto out_balanced;
6819
6820 if (env->idle == CPU_IDLE) {
6821 /*
6822 * This cpu is idle. If the busiest group is not overloaded
6823 * and there is no imbalance between this and busiest group
6824 * wrt idle cpus, it is balanced. The imbalance becomes
6825 * significant if the diff is greater than 1 otherwise we
6826 * might end up to just move the imbalance on another group
6827 */
6828 if ((busiest->group_type != group_overloaded) &&
6829 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6830 goto out_balanced;
6831 } else {
6832 /*
6833 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6834 * imbalance_pct to be conservative.
6835 */
6836 if (100 * busiest->avg_load <=
6837 env->sd->imbalance_pct * local->avg_load)
6838 goto out_balanced;
6839 }
6840
6841force_balance:
6842 /* Looks like there is an imbalance. Compute it */
6843 calculate_imbalance(env, &sds);
6844 return sds.busiest;
6845
6846out_balanced:
6847 env->imbalance = 0;
6848 return NULL;
6849}
6850
6851/*
6852 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6853 */
6854static struct rq *find_busiest_queue(struct lb_env *env,
6855 struct sched_group *group)
6856{
6857 struct rq *busiest = NULL, *rq;
6858 unsigned long busiest_load = 0, busiest_capacity = 1;
6859 int i;
6860
6861 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6862 unsigned long capacity, wl;
6863 enum fbq_type rt;
6864
6865 rq = cpu_rq(i);
6866 rt = fbq_classify_rq(rq);
6867
6868 /*
6869 * We classify groups/runqueues into three groups:
6870 * - regular: there are !numa tasks
6871 * - remote: there are numa tasks that run on the 'wrong' node
6872 * - all: there is no distinction
6873 *
6874 * In order to avoid migrating ideally placed numa tasks,
6875 * ignore those when there's better options.
6876 *
6877 * If we ignore the actual busiest queue to migrate another
6878 * task, the next balance pass can still reduce the busiest
6879 * queue by moving tasks around inside the node.
6880 *
6881 * If we cannot move enough load due to this classification
6882 * the next pass will adjust the group classification and
6883 * allow migration of more tasks.
6884 *
6885 * Both cases only affect the total convergence complexity.
6886 */
6887 if (rt > env->fbq_type)
6888 continue;
6889
6890 capacity = capacity_of(i);
6891
6892 wl = weighted_cpuload(i);
6893
6894 /*
6895 * When comparing with imbalance, use weighted_cpuload()
6896 * which is not scaled with the cpu capacity.
6897 */
6898
6899 if (rq->nr_running == 1 && wl > env->imbalance &&
6900 !check_cpu_capacity(rq, env->sd))
6901 continue;
6902
6903 /*
6904 * For the load comparisons with the other cpu's, consider
6905 * the weighted_cpuload() scaled with the cpu capacity, so
6906 * that the load can be moved away from the cpu that is
6907 * potentially running at a lower capacity.
6908 *
6909 * Thus we're looking for max(wl_i / capacity_i), crosswise
6910 * multiplication to rid ourselves of the division works out
6911 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6912 * our previous maximum.
6913 */
6914 if (wl * busiest_capacity > busiest_load * capacity) {
6915 busiest_load = wl;
6916 busiest_capacity = capacity;
6917 busiest = rq;
6918 }
6919 }
6920
6921 return busiest;
6922}
6923
6924/*
6925 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6926 * so long as it is large enough.
6927 */
6928#define MAX_PINNED_INTERVAL 512
6929
6930/* Working cpumask for load_balance and load_balance_newidle. */
6931DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6932
6933static int need_active_balance(struct lb_env *env)
6934{
6935 struct sched_domain *sd = env->sd;
6936
6937 if (env->idle == CPU_NEWLY_IDLE) {
6938
6939 /*
6940 * ASYM_PACKING needs to force migrate tasks from busy but
6941 * higher numbered CPUs in order to pack all tasks in the
6942 * lowest numbered CPUs.
6943 */
6944 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6945 return 1;
6946 }
6947
6948 /*
6949 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6950 * It's worth migrating the task if the src_cpu's capacity is reduced
6951 * because of other sched_class or IRQs if more capacity stays
6952 * available on dst_cpu.
6953 */
6954 if ((env->idle != CPU_NOT_IDLE) &&
6955 (env->src_rq->cfs.h_nr_running == 1)) {
6956 if ((check_cpu_capacity(env->src_rq, sd)) &&
6957 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6958 return 1;
6959 }
6960
6961 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6962}
6963
6964static int active_load_balance_cpu_stop(void *data);
6965
6966static int should_we_balance(struct lb_env *env)
6967{
6968 struct sched_group *sg = env->sd->groups;
6969 struct cpumask *sg_cpus, *sg_mask;
6970 int cpu, balance_cpu = -1;
6971
6972 /*
6973 * In the newly idle case, we will allow all the cpu's
6974 * to do the newly idle load balance.
6975 */
6976 if (env->idle == CPU_NEWLY_IDLE)
6977 return 1;
6978
6979 sg_cpus = sched_group_cpus(sg);
6980 sg_mask = sched_group_mask(sg);
6981 /* Try to find first idle cpu */
6982 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6983 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6984 continue;
6985
6986 balance_cpu = cpu;
6987 break;
6988 }
6989
6990 if (balance_cpu == -1)
6991 balance_cpu = group_balance_cpu(sg);
6992
6993 /*
6994 * First idle cpu or the first cpu(busiest) in this sched group
6995 * is eligible for doing load balancing at this and above domains.
6996 */
6997 return balance_cpu == env->dst_cpu;
6998}
6999
7000/*
7001 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7002 * tasks if there is an imbalance.
7003 */
7004static int load_balance(int this_cpu, struct rq *this_rq,
7005 struct sched_domain *sd, enum cpu_idle_type idle,
7006 int *continue_balancing)
7007{
7008 int ld_moved, cur_ld_moved, active_balance = 0;
7009 struct sched_domain *sd_parent = sd->parent;
7010 struct sched_group *group;
7011 struct rq *busiest;
7012 unsigned long flags;
7013 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7014
7015 struct lb_env env = {
7016 .sd = sd,
7017 .dst_cpu = this_cpu,
7018 .dst_rq = this_rq,
7019 .dst_grpmask = sched_group_cpus(sd->groups),
7020 .idle = idle,
7021 .loop_break = sched_nr_migrate_break,
7022 .cpus = cpus,
7023 .fbq_type = all,
7024 .tasks = LIST_HEAD_INIT(env.tasks),
7025 };
7026
7027 /*
7028 * For NEWLY_IDLE load_balancing, we don't need to consider
7029 * other cpus in our group
7030 */
7031 if (idle == CPU_NEWLY_IDLE)
7032 env.dst_grpmask = NULL;
7033
7034 cpumask_copy(cpus, cpu_active_mask);
7035
7036 schedstat_inc(sd, lb_count[idle]);
7037
7038redo:
7039 if (!should_we_balance(&env)) {
7040 *continue_balancing = 0;
7041 goto out_balanced;
7042 }
7043
7044 group = find_busiest_group(&env);
7045 if (!group) {
7046 schedstat_inc(sd, lb_nobusyg[idle]);
7047 goto out_balanced;
7048 }
7049
7050 busiest = find_busiest_queue(&env, group);
7051 if (!busiest) {
7052 schedstat_inc(sd, lb_nobusyq[idle]);
7053 goto out_balanced;
7054 }
7055
7056 BUG_ON(busiest == env.dst_rq);
7057
7058 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7059
7060 env.src_cpu = busiest->cpu;
7061 env.src_rq = busiest;
7062
7063 ld_moved = 0;
7064 if (busiest->nr_running > 1) {
7065 /*
7066 * Attempt to move tasks. If find_busiest_group has found
7067 * an imbalance but busiest->nr_running <= 1, the group is
7068 * still unbalanced. ld_moved simply stays zero, so it is
7069 * correctly treated as an imbalance.
7070 */
7071 env.flags |= LBF_ALL_PINNED;
7072 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7073
7074more_balance:
7075 raw_spin_lock_irqsave(&busiest->lock, flags);
7076
7077 /*
7078 * cur_ld_moved - load moved in current iteration
7079 * ld_moved - cumulative load moved across iterations
7080 */
7081 cur_ld_moved = detach_tasks(&env);
7082
7083 /*
7084 * We've detached some tasks from busiest_rq. Every
7085 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7086 * unlock busiest->lock, and we are able to be sure
7087 * that nobody can manipulate the tasks in parallel.
7088 * See task_rq_lock() family for the details.
7089 */
7090
7091 raw_spin_unlock(&busiest->lock);
7092
7093 if (cur_ld_moved) {
7094 attach_tasks(&env);
7095 ld_moved += cur_ld_moved;
7096 }
7097
7098 local_irq_restore(flags);
7099
7100 if (env.flags & LBF_NEED_BREAK) {
7101 env.flags &= ~LBF_NEED_BREAK;
7102 goto more_balance;
7103 }
7104
7105 /*
7106 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7107 * us and move them to an alternate dst_cpu in our sched_group
7108 * where they can run. The upper limit on how many times we
7109 * iterate on same src_cpu is dependent on number of cpus in our
7110 * sched_group.
7111 *
7112 * This changes load balance semantics a bit on who can move
7113 * load to a given_cpu. In addition to the given_cpu itself
7114 * (or a ilb_cpu acting on its behalf where given_cpu is
7115 * nohz-idle), we now have balance_cpu in a position to move
7116 * load to given_cpu. In rare situations, this may cause
7117 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7118 * _independently_ and at _same_ time to move some load to
7119 * given_cpu) causing exceess load to be moved to given_cpu.
7120 * This however should not happen so much in practice and
7121 * moreover subsequent load balance cycles should correct the
7122 * excess load moved.
7123 */
7124 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7125
7126 /* Prevent to re-select dst_cpu via env's cpus */
7127 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7128
7129 env.dst_rq = cpu_rq(env.new_dst_cpu);
7130 env.dst_cpu = env.new_dst_cpu;
7131 env.flags &= ~LBF_DST_PINNED;
7132 env.loop = 0;
7133 env.loop_break = sched_nr_migrate_break;
7134
7135 /*
7136 * Go back to "more_balance" rather than "redo" since we
7137 * need to continue with same src_cpu.
7138 */
7139 goto more_balance;
7140 }
7141
7142 /*
7143 * We failed to reach balance because of affinity.
7144 */
7145 if (sd_parent) {
7146 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7147
7148 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7149 *group_imbalance = 1;
7150 }
7151
7152 /* All tasks on this runqueue were pinned by CPU affinity */
7153 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7154 cpumask_clear_cpu(cpu_of(busiest), cpus);
7155 if (!cpumask_empty(cpus)) {
7156 env.loop = 0;
7157 env.loop_break = sched_nr_migrate_break;
7158 goto redo;
7159 }
7160 goto out_all_pinned;
7161 }
7162 }
7163
7164 if (!ld_moved) {
7165 schedstat_inc(sd, lb_failed[idle]);
7166 /*
7167 * Increment the failure counter only on periodic balance.
7168 * We do not want newidle balance, which can be very
7169 * frequent, pollute the failure counter causing
7170 * excessive cache_hot migrations and active balances.
7171 */
7172 if (idle != CPU_NEWLY_IDLE)
7173 sd->nr_balance_failed++;
7174
7175 if (need_active_balance(&env)) {
7176 raw_spin_lock_irqsave(&busiest->lock, flags);
7177
7178 /* don't kick the active_load_balance_cpu_stop,
7179 * if the curr task on busiest cpu can't be
7180 * moved to this_cpu
7181 */
7182 if (!cpumask_test_cpu(this_cpu,
7183 tsk_cpus_allowed(busiest->curr))) {
7184 raw_spin_unlock_irqrestore(&busiest->lock,
7185 flags);
7186 env.flags |= LBF_ALL_PINNED;
7187 goto out_one_pinned;
7188 }
7189
7190 /*
7191 * ->active_balance synchronizes accesses to
7192 * ->active_balance_work. Once set, it's cleared
7193 * only after active load balance is finished.
7194 */
7195 if (!busiest->active_balance) {
7196 busiest->active_balance = 1;
7197 busiest->push_cpu = this_cpu;
7198 active_balance = 1;
7199 }
7200 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7201
7202 if (active_balance) {
7203 stop_one_cpu_nowait(cpu_of(busiest),
7204 active_load_balance_cpu_stop, busiest,
7205 &busiest->active_balance_work);
7206 }
7207
7208 /*
7209 * We've kicked active balancing, reset the failure
7210 * counter.
7211 */
7212 sd->nr_balance_failed = sd->cache_nice_tries+1;
7213 }
7214 } else
7215 sd->nr_balance_failed = 0;
7216
7217 if (likely(!active_balance)) {
7218 /* We were unbalanced, so reset the balancing interval */
7219 sd->balance_interval = sd->min_interval;
7220 } else {
7221 /*
7222 * If we've begun active balancing, start to back off. This
7223 * case may not be covered by the all_pinned logic if there
7224 * is only 1 task on the busy runqueue (because we don't call
7225 * detach_tasks).
7226 */
7227 if (sd->balance_interval < sd->max_interval)
7228 sd->balance_interval *= 2;
7229 }
7230
7231 goto out;
7232
7233out_balanced:
7234 /*
7235 * We reach balance although we may have faced some affinity
7236 * constraints. Clear the imbalance flag if it was set.
7237 */
7238 if (sd_parent) {
7239 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7240
7241 if (*group_imbalance)
7242 *group_imbalance = 0;
7243 }
7244
7245out_all_pinned:
7246 /*
7247 * We reach balance because all tasks are pinned at this level so
7248 * we can't migrate them. Let the imbalance flag set so parent level
7249 * can try to migrate them.
7250 */
7251 schedstat_inc(sd, lb_balanced[idle]);
7252
7253 sd->nr_balance_failed = 0;
7254
7255out_one_pinned:
7256 /* tune up the balancing interval */
7257 if (((env.flags & LBF_ALL_PINNED) &&
7258 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7259 (sd->balance_interval < sd->max_interval))
7260 sd->balance_interval *= 2;
7261
7262 ld_moved = 0;
7263out:
7264 return ld_moved;
7265}
7266
7267static inline unsigned long
7268get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7269{
7270 unsigned long interval = sd->balance_interval;
7271
7272 if (cpu_busy)
7273 interval *= sd->busy_factor;
7274
7275 /* scale ms to jiffies */
7276 interval = msecs_to_jiffies(interval);
7277 interval = clamp(interval, 1UL, max_load_balance_interval);
7278
7279 return interval;
7280}
7281
7282static inline void
7283update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7284{
7285 unsigned long interval, next;
7286
7287 interval = get_sd_balance_interval(sd, cpu_busy);
7288 next = sd->last_balance + interval;
7289
7290 if (time_after(*next_balance, next))
7291 *next_balance = next;
7292}
7293
7294/*
7295 * idle_balance is called by schedule() if this_cpu is about to become
7296 * idle. Attempts to pull tasks from other CPUs.
7297 */
7298static int idle_balance(struct rq *this_rq)
7299{
7300 unsigned long next_balance = jiffies + HZ;
7301 int this_cpu = this_rq->cpu;
7302 struct sched_domain *sd;
7303 int pulled_task = 0;
7304 u64 curr_cost = 0;
7305
7306 idle_enter_fair(this_rq);
7307
7308 /*
7309 * We must set idle_stamp _before_ calling idle_balance(), such that we
7310 * measure the duration of idle_balance() as idle time.
7311 */
7312 this_rq->idle_stamp = rq_clock(this_rq);
7313
7314 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7315 !this_rq->rd->overload) {
7316 rcu_read_lock();
7317 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7318 if (sd)
7319 update_next_balance(sd, 0, &next_balance);
7320 rcu_read_unlock();
7321
7322 goto out;
7323 }
7324
7325 raw_spin_unlock(&this_rq->lock);
7326
7327 update_blocked_averages(this_cpu);
7328 rcu_read_lock();
7329 for_each_domain(this_cpu, sd) {
7330 int continue_balancing = 1;
7331 u64 t0, domain_cost;
7332
7333 if (!(sd->flags & SD_LOAD_BALANCE))
7334 continue;
7335
7336 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7337 update_next_balance(sd, 0, &next_balance);
7338 break;
7339 }
7340
7341 if (sd->flags & SD_BALANCE_NEWIDLE) {
7342 t0 = sched_clock_cpu(this_cpu);
7343
7344 pulled_task = load_balance(this_cpu, this_rq,
7345 sd, CPU_NEWLY_IDLE,
7346 &continue_balancing);
7347
7348 domain_cost = sched_clock_cpu(this_cpu) - t0;
7349 if (domain_cost > sd->max_newidle_lb_cost)
7350 sd->max_newidle_lb_cost = domain_cost;
7351
7352 curr_cost += domain_cost;
7353 }
7354
7355 update_next_balance(sd, 0, &next_balance);
7356
7357 /*
7358 * Stop searching for tasks to pull if there are
7359 * now runnable tasks on this rq.
7360 */
7361 if (pulled_task || this_rq->nr_running > 0)
7362 break;
7363 }
7364 rcu_read_unlock();
7365
7366 raw_spin_lock(&this_rq->lock);
7367
7368 if (curr_cost > this_rq->max_idle_balance_cost)
7369 this_rq->max_idle_balance_cost = curr_cost;
7370
7371 /*
7372 * While browsing the domains, we released the rq lock, a task could
7373 * have been enqueued in the meantime. Since we're not going idle,
7374 * pretend we pulled a task.
7375 */
7376 if (this_rq->cfs.h_nr_running && !pulled_task)
7377 pulled_task = 1;
7378
7379out:
7380 /* Move the next balance forward */
7381 if (time_after(this_rq->next_balance, next_balance))
7382 this_rq->next_balance = next_balance;
7383
7384 /* Is there a task of a high priority class? */
7385 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7386 pulled_task = -1;
7387
7388 if (pulled_task) {
7389 idle_exit_fair(this_rq);
7390 this_rq->idle_stamp = 0;
7391 }
7392
7393 return pulled_task;
7394}
7395
7396/*
7397 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7398 * running tasks off the busiest CPU onto idle CPUs. It requires at
7399 * least 1 task to be running on each physical CPU where possible, and
7400 * avoids physical / logical imbalances.
7401 */
7402static int active_load_balance_cpu_stop(void *data)
7403{
7404 struct rq *busiest_rq = data;
7405 int busiest_cpu = cpu_of(busiest_rq);
7406 int target_cpu = busiest_rq->push_cpu;
7407 struct rq *target_rq = cpu_rq(target_cpu);
7408 struct sched_domain *sd;
7409 struct task_struct *p = NULL;
7410
7411 raw_spin_lock_irq(&busiest_rq->lock);
7412
7413 /* make sure the requested cpu hasn't gone down in the meantime */
7414 if (unlikely(busiest_cpu != smp_processor_id() ||
7415 !busiest_rq->active_balance))
7416 goto out_unlock;
7417
7418 /* Is there any task to move? */
7419 if (busiest_rq->nr_running <= 1)
7420 goto out_unlock;
7421
7422 /*
7423 * This condition is "impossible", if it occurs
7424 * we need to fix it. Originally reported by
7425 * Bjorn Helgaas on a 128-cpu setup.
7426 */
7427 BUG_ON(busiest_rq == target_rq);
7428
7429 /* Search for an sd spanning us and the target CPU. */
7430 rcu_read_lock();
7431 for_each_domain(target_cpu, sd) {
7432 if ((sd->flags & SD_LOAD_BALANCE) &&
7433 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7434 break;
7435 }
7436
7437 if (likely(sd)) {
7438 struct lb_env env = {
7439 .sd = sd,
7440 .dst_cpu = target_cpu,
7441 .dst_rq = target_rq,
7442 .src_cpu = busiest_rq->cpu,
7443 .src_rq = busiest_rq,
7444 .idle = CPU_IDLE,
7445 };
7446
7447 schedstat_inc(sd, alb_count);
7448
7449 p = detach_one_task(&env);
7450 if (p)
7451 schedstat_inc(sd, alb_pushed);
7452 else
7453 schedstat_inc(sd, alb_failed);
7454 }
7455 rcu_read_unlock();
7456out_unlock:
7457 busiest_rq->active_balance = 0;
7458 raw_spin_unlock(&busiest_rq->lock);
7459
7460 if (p)
7461 attach_one_task(target_rq, p);
7462
7463 local_irq_enable();
7464
7465 return 0;
7466}
7467
7468static inline int on_null_domain(struct rq *rq)
7469{
7470 return unlikely(!rcu_dereference_sched(rq->sd));
7471}
7472
7473#ifdef CONFIG_NO_HZ_COMMON
7474/*
7475 * idle load balancing details
7476 * - When one of the busy CPUs notice that there may be an idle rebalancing
7477 * needed, they will kick the idle load balancer, which then does idle
7478 * load balancing for all the idle CPUs.
7479 */
7480static struct {
7481 cpumask_var_t idle_cpus_mask;
7482 atomic_t nr_cpus;
7483 unsigned long next_balance; /* in jiffy units */
7484} nohz ____cacheline_aligned;
7485
7486static inline int find_new_ilb(void)
7487{
7488 int ilb = cpumask_first(nohz.idle_cpus_mask);
7489
7490 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7491 return ilb;
7492
7493 return nr_cpu_ids;
7494}
7495
7496/*
7497 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7498 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7499 * CPU (if there is one).
7500 */
7501static void nohz_balancer_kick(void)
7502{
7503 int ilb_cpu;
7504
7505 nohz.next_balance++;
7506
7507 ilb_cpu = find_new_ilb();
7508
7509 if (ilb_cpu >= nr_cpu_ids)
7510 return;
7511
7512 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7513 return;
7514 /*
7515 * Use smp_send_reschedule() instead of resched_cpu().
7516 * This way we generate a sched IPI on the target cpu which
7517 * is idle. And the softirq performing nohz idle load balance
7518 * will be run before returning from the IPI.
7519 */
7520 smp_send_reschedule(ilb_cpu);
7521 return;
7522}
7523
7524static inline void nohz_balance_exit_idle(int cpu)
7525{
7526 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7527 /*
7528 * Completely isolated CPUs don't ever set, so we must test.
7529 */
7530 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7531 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7532 atomic_dec(&nohz.nr_cpus);
7533 }
7534 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7535 }
7536}
7537
7538static inline void set_cpu_sd_state_busy(void)
7539{
7540 struct sched_domain *sd;
7541 int cpu = smp_processor_id();
7542
7543 rcu_read_lock();
7544 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7545
7546 if (!sd || !sd->nohz_idle)
7547 goto unlock;
7548 sd->nohz_idle = 0;
7549
7550 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7551unlock:
7552 rcu_read_unlock();
7553}
7554
7555void set_cpu_sd_state_idle(void)
7556{
7557 struct sched_domain *sd;
7558 int cpu = smp_processor_id();
7559
7560 rcu_read_lock();
7561 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7562
7563 if (!sd || sd->nohz_idle)
7564 goto unlock;
7565 sd->nohz_idle = 1;
7566
7567 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7568unlock:
7569 rcu_read_unlock();
7570}
7571
7572/*
7573 * This routine will record that the cpu is going idle with tick stopped.
7574 * This info will be used in performing idle load balancing in the future.
7575 */
7576void nohz_balance_enter_idle(int cpu)
7577{
7578 /*
7579 * If this cpu is going down, then nothing needs to be done.
7580 */
7581 if (!cpu_active(cpu))
7582 return;
7583
7584 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7585 return;
7586
7587 /*
7588 * If we're a completely isolated CPU, we don't play.
7589 */
7590 if (on_null_domain(cpu_rq(cpu)))
7591 return;
7592
7593 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7594 atomic_inc(&nohz.nr_cpus);
7595 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7596}
7597
7598static int sched_ilb_notifier(struct notifier_block *nfb,
7599 unsigned long action, void *hcpu)
7600{
7601 switch (action & ~CPU_TASKS_FROZEN) {
7602 case CPU_DYING:
7603 nohz_balance_exit_idle(smp_processor_id());
7604 return NOTIFY_OK;
7605 default:
7606 return NOTIFY_DONE;
7607 }
7608}
7609#endif
7610
7611static DEFINE_SPINLOCK(balancing);
7612
7613/*
7614 * Scale the max load_balance interval with the number of CPUs in the system.
7615 * This trades load-balance latency on larger machines for less cross talk.
7616 */
7617void update_max_interval(void)
7618{
7619 max_load_balance_interval = HZ*num_online_cpus()/10;
7620}
7621
7622/*
7623 * It checks each scheduling domain to see if it is due to be balanced,
7624 * and initiates a balancing operation if so.
7625 *
7626 * Balancing parameters are set up in init_sched_domains.
7627 */
7628static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7629{
7630 int continue_balancing = 1;
7631 int cpu = rq->cpu;
7632 unsigned long interval;
7633 struct sched_domain *sd;
7634 /* Earliest time when we have to do rebalance again */
7635 unsigned long next_balance = jiffies + 60*HZ;
7636 int update_next_balance = 0;
7637 int need_serialize, need_decay = 0;
7638 u64 max_cost = 0;
7639
7640 update_blocked_averages(cpu);
7641
7642 rcu_read_lock();
7643 for_each_domain(cpu, sd) {
7644 /*
7645 * Decay the newidle max times here because this is a regular
7646 * visit to all the domains. Decay ~1% per second.
7647 */
7648 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7649 sd->max_newidle_lb_cost =
7650 (sd->max_newidle_lb_cost * 253) / 256;
7651 sd->next_decay_max_lb_cost = jiffies + HZ;
7652 need_decay = 1;
7653 }
7654 max_cost += sd->max_newidle_lb_cost;
7655
7656 if (!(sd->flags & SD_LOAD_BALANCE))
7657 continue;
7658
7659 /*
7660 * Stop the load balance at this level. There is another
7661 * CPU in our sched group which is doing load balancing more
7662 * actively.
7663 */
7664 if (!continue_balancing) {
7665 if (need_decay)
7666 continue;
7667 break;
7668 }
7669
7670 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7671
7672 need_serialize = sd->flags & SD_SERIALIZE;
7673 if (need_serialize) {
7674 if (!spin_trylock(&balancing))
7675 goto out;
7676 }
7677
7678 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7679 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7680 /*
7681 * The LBF_DST_PINNED logic could have changed
7682 * env->dst_cpu, so we can't know our idle
7683 * state even if we migrated tasks. Update it.
7684 */
7685 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7686 }
7687 sd->last_balance = jiffies;
7688 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7689 }
7690 if (need_serialize)
7691 spin_unlock(&balancing);
7692out:
7693 if (time_after(next_balance, sd->last_balance + interval)) {
7694 next_balance = sd->last_balance + interval;
7695 update_next_balance = 1;
7696 }
7697 }
7698 if (need_decay) {
7699 /*
7700 * Ensure the rq-wide value also decays but keep it at a
7701 * reasonable floor to avoid funnies with rq->avg_idle.
7702 */
7703 rq->max_idle_balance_cost =
7704 max((u64)sysctl_sched_migration_cost, max_cost);
7705 }
7706 rcu_read_unlock();
7707
7708 /*
7709 * next_balance will be updated only when there is a need.
7710 * When the cpu is attached to null domain for ex, it will not be
7711 * updated.
7712 */
7713 if (likely(update_next_balance)) {
7714 rq->next_balance = next_balance;
7715
7716#ifdef CONFIG_NO_HZ_COMMON
7717 /*
7718 * If this CPU has been elected to perform the nohz idle
7719 * balance. Other idle CPUs have already rebalanced with
7720 * nohz_idle_balance() and nohz.next_balance has been
7721 * updated accordingly. This CPU is now running the idle load
7722 * balance for itself and we need to update the
7723 * nohz.next_balance accordingly.
7724 */
7725 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7726 nohz.next_balance = rq->next_balance;
7727#endif
7728 }
7729}
7730
7731#ifdef CONFIG_NO_HZ_COMMON
7732/*
7733 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7734 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7735 */
7736static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7737{
7738 int this_cpu = this_rq->cpu;
7739 struct rq *rq;
7740 int balance_cpu;
7741 /* Earliest time when we have to do rebalance again */
7742 unsigned long next_balance = jiffies + 60*HZ;
7743 int update_next_balance = 0;
7744
7745 if (idle != CPU_IDLE ||
7746 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7747 goto end;
7748
7749 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7750 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7751 continue;
7752
7753 /*
7754 * If this cpu gets work to do, stop the load balancing
7755 * work being done for other cpus. Next load
7756 * balancing owner will pick it up.
7757 */
7758 if (need_resched())
7759 break;
7760
7761 rq = cpu_rq(balance_cpu);
7762
7763 /*
7764 * If time for next balance is due,
7765 * do the balance.
7766 */
7767 if (time_after_eq(jiffies, rq->next_balance)) {
7768 raw_spin_lock_irq(&rq->lock);
7769 update_rq_clock(rq);
7770 update_idle_cpu_load(rq);
7771 raw_spin_unlock_irq(&rq->lock);
7772 rebalance_domains(rq, CPU_IDLE);
7773 }
7774
7775 if (time_after(next_balance, rq->next_balance)) {
7776 next_balance = rq->next_balance;
7777 update_next_balance = 1;
7778 }
7779 }
7780
7781 /*
7782 * next_balance will be updated only when there is a need.
7783 * When the CPU is attached to null domain for ex, it will not be
7784 * updated.
7785 */
7786 if (likely(update_next_balance))
7787 nohz.next_balance = next_balance;
7788end:
7789 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7790}
7791
7792/*
7793 * Current heuristic for kicking the idle load balancer in the presence
7794 * of an idle cpu in the system.
7795 * - This rq has more than one task.
7796 * - This rq has at least one CFS task and the capacity of the CPU is
7797 * significantly reduced because of RT tasks or IRQs.
7798 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7799 * multiple busy cpu.
7800 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7801 * domain span are idle.
7802 */
7803static inline bool nohz_kick_needed(struct rq *rq)
7804{
7805 unsigned long now = jiffies;
7806 struct sched_domain *sd;
7807 struct sched_group_capacity *sgc;
7808 int nr_busy, cpu = rq->cpu;
7809 bool kick = false;
7810
7811 if (unlikely(rq->idle_balance))
7812 return false;
7813
7814 /*
7815 * We may be recently in ticked or tickless idle mode. At the first
7816 * busy tick after returning from idle, we will update the busy stats.
7817 */
7818 set_cpu_sd_state_busy();
7819 nohz_balance_exit_idle(cpu);
7820
7821 /*
7822 * None are in tickless mode and hence no need for NOHZ idle load
7823 * balancing.
7824 */
7825 if (likely(!atomic_read(&nohz.nr_cpus)))
7826 return false;
7827
7828 if (time_before(now, nohz.next_balance))
7829 return false;
7830
7831 if (rq->nr_running >= 2)
7832 return true;
7833
7834 rcu_read_lock();
7835 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7836 if (sd) {
7837 sgc = sd->groups->sgc;
7838 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7839
7840 if (nr_busy > 1) {
7841 kick = true;
7842 goto unlock;
7843 }
7844
7845 }
7846
7847 sd = rcu_dereference(rq->sd);
7848 if (sd) {
7849 if ((rq->cfs.h_nr_running >= 1) &&
7850 check_cpu_capacity(rq, sd)) {
7851 kick = true;
7852 goto unlock;
7853 }
7854 }
7855
7856 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7857 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7858 sched_domain_span(sd)) < cpu)) {
7859 kick = true;
7860 goto unlock;
7861 }
7862
7863unlock:
7864 rcu_read_unlock();
7865 return kick;
7866}
7867#else
7868static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7869#endif
7870
7871/*
7872 * run_rebalance_domains is triggered when needed from the scheduler tick.
7873 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7874 */
7875static void run_rebalance_domains(struct softirq_action *h)
7876{
7877 struct rq *this_rq = this_rq();
7878 enum cpu_idle_type idle = this_rq->idle_balance ?
7879 CPU_IDLE : CPU_NOT_IDLE;
7880
7881 /*
7882 * If this cpu has a pending nohz_balance_kick, then do the
7883 * balancing on behalf of the other idle cpus whose ticks are
7884 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7885 * give the idle cpus a chance to load balance. Else we may
7886 * load balance only within the local sched_domain hierarchy
7887 * and abort nohz_idle_balance altogether if we pull some load.
7888 */
7889 nohz_idle_balance(this_rq, idle);
7890 rebalance_domains(this_rq, idle);
7891}
7892
7893/*
7894 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7895 */
7896void trigger_load_balance(struct rq *rq)
7897{
7898 /* Don't need to rebalance while attached to NULL domain */
7899 if (unlikely(on_null_domain(rq)))
7900 return;
7901
7902 if (time_after_eq(jiffies, rq->next_balance))
7903 raise_softirq(SCHED_SOFTIRQ);
7904#ifdef CONFIG_NO_HZ_COMMON
7905 if (nohz_kick_needed(rq))
7906 nohz_balancer_kick();
7907#endif
7908}
7909
7910static void rq_online_fair(struct rq *rq)
7911{
7912 update_sysctl();
7913
7914 update_runtime_enabled(rq);
7915}
7916
7917static void rq_offline_fair(struct rq *rq)
7918{
7919 update_sysctl();
7920
7921 /* Ensure any throttled groups are reachable by pick_next_task */
7922 unthrottle_offline_cfs_rqs(rq);
7923}
7924
7925#endif /* CONFIG_SMP */
7926
7927/*
7928 * scheduler tick hitting a task of our scheduling class:
7929 */
7930static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7931{
7932 struct cfs_rq *cfs_rq;
7933 struct sched_entity *se = &curr->se;
7934
7935 for_each_sched_entity(se) {
7936 cfs_rq = cfs_rq_of(se);
7937 entity_tick(cfs_rq, se, queued);
7938 }
7939
7940 if (static_branch_unlikely(&sched_numa_balancing))
7941 task_tick_numa(rq, curr);
7942}
7943
7944/*
7945 * called on fork with the child task as argument from the parent's context
7946 * - child not yet on the tasklist
7947 * - preemption disabled
7948 */
7949static void task_fork_fair(struct task_struct *p)
7950{
7951 struct cfs_rq *cfs_rq;
7952 struct sched_entity *se = &p->se, *curr;
7953 int this_cpu = smp_processor_id();
7954 struct rq *rq = this_rq();
7955 unsigned long flags;
7956
7957 raw_spin_lock_irqsave(&rq->lock, flags);
7958
7959 update_rq_clock(rq);
7960
7961 cfs_rq = task_cfs_rq(current);
7962 curr = cfs_rq->curr;
7963
7964 /*
7965 * Not only the cpu but also the task_group of the parent might have
7966 * been changed after parent->se.parent,cfs_rq were copied to
7967 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7968 * of child point to valid ones.
7969 */
7970 rcu_read_lock();
7971 __set_task_cpu(p, this_cpu);
7972 rcu_read_unlock();
7973
7974 update_curr(cfs_rq);
7975
7976 if (curr)
7977 se->vruntime = curr->vruntime;
7978 place_entity(cfs_rq, se, 1);
7979
7980 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7981 /*
7982 * Upon rescheduling, sched_class::put_prev_task() will place
7983 * 'current' within the tree based on its new key value.
7984 */
7985 swap(curr->vruntime, se->vruntime);
7986 resched_curr(rq);
7987 }
7988
7989 se->vruntime -= cfs_rq->min_vruntime;
7990
7991 raw_spin_unlock_irqrestore(&rq->lock, flags);
7992}
7993
7994/*
7995 * Priority of the task has changed. Check to see if we preempt
7996 * the current task.
7997 */
7998static void
7999prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8000{
8001 if (!task_on_rq_queued(p))
8002 return;
8003
8004 /*
8005 * Reschedule if we are currently running on this runqueue and
8006 * our priority decreased, or if we are not currently running on
8007 * this runqueue and our priority is higher than the current's
8008 */
8009 if (rq->curr == p) {
8010 if (p->prio > oldprio)
8011 resched_curr(rq);
8012 } else
8013 check_preempt_curr(rq, p, 0);
8014}
8015
8016static inline bool vruntime_normalized(struct task_struct *p)
8017{
8018 struct sched_entity *se = &p->se;
8019
8020 /*
8021 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8022 * the dequeue_entity(.flags=0) will already have normalized the
8023 * vruntime.
8024 */
8025 if (p->on_rq)
8026 return true;
8027
8028 /*
8029 * When !on_rq, vruntime of the task has usually NOT been normalized.
8030 * But there are some cases where it has already been normalized:
8031 *
8032 * - A forked child which is waiting for being woken up by
8033 * wake_up_new_task().
8034 * - A task which has been woken up by try_to_wake_up() and
8035 * waiting for actually being woken up by sched_ttwu_pending().
8036 */
8037 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8038 return true;
8039
8040 return false;
8041}
8042
8043static void detach_task_cfs_rq(struct task_struct *p)
8044{
8045 struct sched_entity *se = &p->se;
8046 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8047
8048 if (!vruntime_normalized(p)) {
8049 /*
8050 * Fix up our vruntime so that the current sleep doesn't
8051 * cause 'unlimited' sleep bonus.
8052 */
8053 place_entity(cfs_rq, se, 0);
8054 se->vruntime -= cfs_rq->min_vruntime;
8055 }
8056
8057 /* Catch up with the cfs_rq and remove our load when we leave */
8058 detach_entity_load_avg(cfs_rq, se);
8059}
8060
8061static void attach_task_cfs_rq(struct task_struct *p)
8062{
8063 struct sched_entity *se = &p->se;
8064 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8065
8066#ifdef CONFIG_FAIR_GROUP_SCHED
8067 /*
8068 * Since the real-depth could have been changed (only FAIR
8069 * class maintain depth value), reset depth properly.
8070 */
8071 se->depth = se->parent ? se->parent->depth + 1 : 0;
8072#endif
8073
8074 /* Synchronize task with its cfs_rq */
8075 attach_entity_load_avg(cfs_rq, se);
8076
8077 if (!vruntime_normalized(p))
8078 se->vruntime += cfs_rq->min_vruntime;
8079}
8080
8081static void switched_from_fair(struct rq *rq, struct task_struct *p)
8082{
8083 detach_task_cfs_rq(p);
8084}
8085
8086static void switched_to_fair(struct rq *rq, struct task_struct *p)
8087{
8088 attach_task_cfs_rq(p);
8089
8090 if (task_on_rq_queued(p)) {
8091 /*
8092 * We were most likely switched from sched_rt, so
8093 * kick off the schedule if running, otherwise just see
8094 * if we can still preempt the current task.
8095 */
8096 if (rq->curr == p)
8097 resched_curr(rq);
8098 else
8099 check_preempt_curr(rq, p, 0);
8100 }
8101}
8102
8103/* Account for a task changing its policy or group.
8104 *
8105 * This routine is mostly called to set cfs_rq->curr field when a task
8106 * migrates between groups/classes.
8107 */
8108static void set_curr_task_fair(struct rq *rq)
8109{
8110 struct sched_entity *se = &rq->curr->se;
8111
8112 for_each_sched_entity(se) {
8113 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8114
8115 set_next_entity(cfs_rq, se);
8116 /* ensure bandwidth has been allocated on our new cfs_rq */
8117 account_cfs_rq_runtime(cfs_rq, 0);
8118 }
8119}
8120
8121void init_cfs_rq(struct cfs_rq *cfs_rq)
8122{
8123 cfs_rq->tasks_timeline = RB_ROOT;
8124 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8125#ifndef CONFIG_64BIT
8126 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8127#endif
8128#ifdef CONFIG_SMP
8129 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8130 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8131#endif
8132}
8133
8134#ifdef CONFIG_FAIR_GROUP_SCHED
8135static void task_move_group_fair(struct task_struct *p)
8136{
8137 detach_task_cfs_rq(p);
8138 set_task_rq(p, task_cpu(p));
8139
8140#ifdef CONFIG_SMP
8141 /* Tell se's cfs_rq has been changed -- migrated */
8142 p->se.avg.last_update_time = 0;
8143#endif
8144 attach_task_cfs_rq(p);
8145}
8146
8147void free_fair_sched_group(struct task_group *tg)
8148{
8149 int i;
8150
8151 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8152
8153 for_each_possible_cpu(i) {
8154 if (tg->cfs_rq)
8155 kfree(tg->cfs_rq[i]);
8156 if (tg->se) {
8157 if (tg->se[i])
8158 remove_entity_load_avg(tg->se[i]);
8159 kfree(tg->se[i]);
8160 }
8161 }
8162
8163 kfree(tg->cfs_rq);
8164 kfree(tg->se);
8165}
8166
8167int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8168{
8169 struct cfs_rq *cfs_rq;
8170 struct sched_entity *se;
8171 int i;
8172
8173 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8174 if (!tg->cfs_rq)
8175 goto err;
8176 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8177 if (!tg->se)
8178 goto err;
8179
8180 tg->shares = NICE_0_LOAD;
8181
8182 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8183
8184 for_each_possible_cpu(i) {
8185 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8186 GFP_KERNEL, cpu_to_node(i));
8187 if (!cfs_rq)
8188 goto err;
8189
8190 se = kzalloc_node(sizeof(struct sched_entity),
8191 GFP_KERNEL, cpu_to_node(i));
8192 if (!se)
8193 goto err_free_rq;
8194
8195 init_cfs_rq(cfs_rq);
8196 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8197 init_entity_runnable_average(se);
8198 }
8199
8200 return 1;
8201
8202err_free_rq:
8203 kfree(cfs_rq);
8204err:
8205 return 0;
8206}
8207
8208void unregister_fair_sched_group(struct task_group *tg, int cpu)
8209{
8210 struct rq *rq = cpu_rq(cpu);
8211 unsigned long flags;
8212
8213 /*
8214 * Only empty task groups can be destroyed; so we can speculatively
8215 * check on_list without danger of it being re-added.
8216 */
8217 if (!tg->cfs_rq[cpu]->on_list)
8218 return;
8219
8220 raw_spin_lock_irqsave(&rq->lock, flags);
8221 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8222 raw_spin_unlock_irqrestore(&rq->lock, flags);
8223}
8224
8225void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8226 struct sched_entity *se, int cpu,
8227 struct sched_entity *parent)
8228{
8229 struct rq *rq = cpu_rq(cpu);
8230
8231 cfs_rq->tg = tg;
8232 cfs_rq->rq = rq;
8233 init_cfs_rq_runtime(cfs_rq);
8234
8235 tg->cfs_rq[cpu] = cfs_rq;
8236 tg->se[cpu] = se;
8237
8238 /* se could be NULL for root_task_group */
8239 if (!se)
8240 return;
8241
8242 if (!parent) {
8243 se->cfs_rq = &rq->cfs;
8244 se->depth = 0;
8245 } else {
8246 se->cfs_rq = parent->my_q;
8247 se->depth = parent->depth + 1;
8248 }
8249
8250 se->my_q = cfs_rq;
8251 /* guarantee group entities always have weight */
8252 update_load_set(&se->load, NICE_0_LOAD);
8253 se->parent = parent;
8254}
8255
8256static DEFINE_MUTEX(shares_mutex);
8257
8258int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8259{
8260 int i;
8261 unsigned long flags;
8262
8263 /*
8264 * We can't change the weight of the root cgroup.
8265 */
8266 if (!tg->se[0])
8267 return -EINVAL;
8268
8269 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8270
8271 mutex_lock(&shares_mutex);
8272 if (tg->shares == shares)
8273 goto done;
8274
8275 tg->shares = shares;
8276 for_each_possible_cpu(i) {
8277 struct rq *rq = cpu_rq(i);
8278 struct sched_entity *se;
8279
8280 se = tg->se[i];
8281 /* Propagate contribution to hierarchy */
8282 raw_spin_lock_irqsave(&rq->lock, flags);
8283
8284 /* Possible calls to update_curr() need rq clock */
8285 update_rq_clock(rq);
8286 for_each_sched_entity(se)
8287 update_cfs_shares(group_cfs_rq(se));
8288 raw_spin_unlock_irqrestore(&rq->lock, flags);
8289 }
8290
8291done:
8292 mutex_unlock(&shares_mutex);
8293 return 0;
8294}
8295#else /* CONFIG_FAIR_GROUP_SCHED */
8296
8297void free_fair_sched_group(struct task_group *tg) { }
8298
8299int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8300{
8301 return 1;
8302}
8303
8304void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8305
8306#endif /* CONFIG_FAIR_GROUP_SCHED */
8307
8308
8309static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8310{
8311 struct sched_entity *se = &task->se;
8312 unsigned int rr_interval = 0;
8313
8314 /*
8315 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8316 * idle runqueue:
8317 */
8318 if (rq->cfs.load.weight)
8319 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8320
8321 return rr_interval;
8322}
8323
8324/*
8325 * All the scheduling class methods:
8326 */
8327const struct sched_class fair_sched_class = {
8328 .next = &idle_sched_class,
8329 .enqueue_task = enqueue_task_fair,
8330 .dequeue_task = dequeue_task_fair,
8331 .yield_task = yield_task_fair,
8332 .yield_to_task = yield_to_task_fair,
8333
8334 .check_preempt_curr = check_preempt_wakeup,
8335
8336 .pick_next_task = pick_next_task_fair,
8337 .put_prev_task = put_prev_task_fair,
8338
8339#ifdef CONFIG_SMP
8340 .select_task_rq = select_task_rq_fair,
8341 .migrate_task_rq = migrate_task_rq_fair,
8342
8343 .rq_online = rq_online_fair,
8344 .rq_offline = rq_offline_fair,
8345
8346 .task_waking = task_waking_fair,
8347 .task_dead = task_dead_fair,
8348 .set_cpus_allowed = set_cpus_allowed_common,
8349#endif
8350
8351 .set_curr_task = set_curr_task_fair,
8352 .task_tick = task_tick_fair,
8353 .task_fork = task_fork_fair,
8354
8355 .prio_changed = prio_changed_fair,
8356 .switched_from = switched_from_fair,
8357 .switched_to = switched_to_fair,
8358
8359 .get_rr_interval = get_rr_interval_fair,
8360
8361 .update_curr = update_curr_fair,
8362
8363#ifdef CONFIG_FAIR_GROUP_SCHED
8364 .task_move_group = task_move_group_fair,
8365#endif
8366};
8367
8368#ifdef CONFIG_SCHED_DEBUG
8369void print_cfs_stats(struct seq_file *m, int cpu)
8370{
8371 struct cfs_rq *cfs_rq;
8372
8373 rcu_read_lock();
8374 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8375 print_cfs_rq(m, cpu, cfs_rq);
8376 rcu_read_unlock();
8377}
8378
8379#ifdef CONFIG_NUMA_BALANCING
8380void show_numa_stats(struct task_struct *p, struct seq_file *m)
8381{
8382 int node;
8383 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8384
8385 for_each_online_node(node) {
8386 if (p->numa_faults) {
8387 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8388 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8389 }
8390 if (p->numa_group) {
8391 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8392 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8393 }
8394 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8395 }
8396}
8397#endif /* CONFIG_NUMA_BALANCING */
8398#endif /* CONFIG_SCHED_DEBUG */
8399
8400__init void init_sched_fair_class(void)
8401{
8402#ifdef CONFIG_SMP
8403 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8404
8405#ifdef CONFIG_NO_HZ_COMMON
8406 nohz.next_balance = jiffies;
8407 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8408 cpu_notifier(sched_ilb_notifier, 0);
8409#endif
8410#endif /* SMP */
8411
8412}