blob: 596347f345db83c34be61aa8fea96e21142071ac [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Copyright (C) 2015 IT University of Copenhagen
3 * Initial release: Matias Bjorling <m@bjorling.me>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License version
7 * 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15 */
16
17#include "rrpc.h"
18
19static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20static DECLARE_RWSEM(rrpc_lock);
21
22static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23 struct nvm_rq *rqd, unsigned long flags);
24
25#define rrpc_for_each_lun(rrpc, rlun, i) \
26 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27 (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30{
31 struct rrpc_block *rblk = a->rblk;
32 unsigned int pg_offset;
33
34 lockdep_assert_held(&rrpc->rev_lock);
35
36 if (a->addr == ADDR_EMPTY || !rblk)
37 return;
38
39 spin_lock(&rblk->lock);
40
41 div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset);
42 WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43 rblk->nr_invalid_pages++;
44
45 spin_unlock(&rblk->lock);
46
47 rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48}
49
50static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51 unsigned len)
52{
53 sector_t i;
54
55 spin_lock(&rrpc->rev_lock);
56 for (i = slba; i < slba + len; i++) {
57 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59 rrpc_page_invalidate(rrpc, gp);
60 gp->rblk = NULL;
61 }
62 spin_unlock(&rrpc->rev_lock);
63}
64
65static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66 sector_t laddr, unsigned int pages)
67{
68 struct nvm_rq *rqd;
69 struct rrpc_inflight_rq *inf;
70
71 rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72 if (!rqd)
73 return ERR_PTR(-ENOMEM);
74
75 inf = rrpc_get_inflight_rq(rqd);
76 if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77 mempool_free(rqd, rrpc->rq_pool);
78 return NULL;
79 }
80
81 return rqd;
82}
83
84static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85{
86 struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88 rrpc_unlock_laddr(rrpc, inf);
89
90 mempool_free(rqd, rrpc->rq_pool);
91}
92
93static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94{
95 sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96 sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97 struct nvm_rq *rqd;
98
99 do {
100 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101 schedule();
102 } while (!rqd);
103
104 if (IS_ERR(rqd)) {
105 pr_err("rrpc: unable to acquire inflight IO\n");
106 bio_io_error(bio);
107 return;
108 }
109
110 rrpc_invalidate_range(rrpc, slba, len);
111 rrpc_inflight_laddr_release(rrpc, rqd);
112}
113
114static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115{
116 return (rblk->next_page == rrpc->dev->pgs_per_blk);
117}
118
119static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
120{
121 struct nvm_block *blk = rblk->parent;
122
123 return blk->id * rrpc->dev->pgs_per_blk;
124}
125
126static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
127 struct ppa_addr r)
128{
129 struct ppa_addr l;
130 int secs, pgs, blks, luns;
131 sector_t ppa = r.ppa;
132
133 l.ppa = 0;
134
135 div_u64_rem(ppa, dev->sec_per_pg, &secs);
136 l.g.sec = secs;
137
138 sector_div(ppa, dev->sec_per_pg);
139 div_u64_rem(ppa, dev->sec_per_blk, &pgs);
140 l.g.pg = pgs;
141
142 sector_div(ppa, dev->pgs_per_blk);
143 div_u64_rem(ppa, dev->blks_per_lun, &blks);
144 l.g.blk = blks;
145
146 sector_div(ppa, dev->blks_per_lun);
147 div_u64_rem(ppa, dev->luns_per_chnl, &luns);
148 l.g.lun = luns;
149
150 sector_div(ppa, dev->luns_per_chnl);
151 l.g.ch = ppa;
152
153 return l;
154}
155
156static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
157{
158 struct ppa_addr paddr;
159
160 paddr.ppa = addr;
161 return linear_to_generic_addr(dev, paddr);
162}
163
164/* requires lun->lock taken */
165static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
166{
167 struct rrpc *rrpc = rlun->rrpc;
168
169 BUG_ON(!rblk);
170
171 if (rlun->cur) {
172 spin_lock(&rlun->cur->lock);
173 WARN_ON(!block_is_full(rrpc, rlun->cur));
174 spin_unlock(&rlun->cur->lock);
175 }
176 rlun->cur = rblk;
177}
178
179static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
180 unsigned long flags)
181{
182 struct nvm_block *blk;
183 struct rrpc_block *rblk;
184
185 blk = nvm_get_blk(rrpc->dev, rlun->parent, flags);
186 if (!blk)
187 return NULL;
188
189 rblk = &rlun->blocks[blk->id];
190 blk->priv = rblk;
191
192 bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk);
193 rblk->next_page = 0;
194 rblk->nr_invalid_pages = 0;
195 atomic_set(&rblk->data_cmnt_size, 0);
196
197 return rblk;
198}
199
200static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
201{
202 nvm_put_blk(rrpc->dev, rblk->parent);
203}
204
205static void rrpc_put_blks(struct rrpc *rrpc)
206{
207 struct rrpc_lun *rlun;
208 int i;
209
210 for (i = 0; i < rrpc->nr_luns; i++) {
211 rlun = &rrpc->luns[i];
212 if (rlun->cur)
213 rrpc_put_blk(rrpc, rlun->cur);
214 if (rlun->gc_cur)
215 rrpc_put_blk(rrpc, rlun->gc_cur);
216 }
217}
218
219static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
220{
221 int next = atomic_inc_return(&rrpc->next_lun);
222
223 return &rrpc->luns[next % rrpc->nr_luns];
224}
225
226static void rrpc_gc_kick(struct rrpc *rrpc)
227{
228 struct rrpc_lun *rlun;
229 unsigned int i;
230
231 for (i = 0; i < rrpc->nr_luns; i++) {
232 rlun = &rrpc->luns[i];
233 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
234 }
235}
236
237/*
238 * timed GC every interval.
239 */
240static void rrpc_gc_timer(unsigned long data)
241{
242 struct rrpc *rrpc = (struct rrpc *)data;
243
244 rrpc_gc_kick(rrpc);
245 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
246}
247
248static void rrpc_end_sync_bio(struct bio *bio)
249{
250 struct completion *waiting = bio->bi_private;
251
252 if (bio->bi_error)
253 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
254
255 complete(waiting);
256}
257
258/*
259 * rrpc_move_valid_pages -- migrate live data off the block
260 * @rrpc: the 'rrpc' structure
261 * @block: the block from which to migrate live pages
262 *
263 * Description:
264 * GC algorithms may call this function to migrate remaining live
265 * pages off the block prior to erasing it. This function blocks
266 * further execution until the operation is complete.
267 */
268static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
269{
270 struct request_queue *q = rrpc->dev->q;
271 struct rrpc_rev_addr *rev;
272 struct nvm_rq *rqd;
273 struct bio *bio;
274 struct page *page;
275 int slot;
276 int nr_pgs_per_blk = rrpc->dev->pgs_per_blk;
277 u64 phys_addr;
278 DECLARE_COMPLETION_ONSTACK(wait);
279
280 if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk))
281 return 0;
282
283 bio = bio_alloc(GFP_NOIO, 1);
284 if (!bio) {
285 pr_err("nvm: could not alloc bio to gc\n");
286 return -ENOMEM;
287 }
288
289 page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
290 if (!page) {
291 bio_put(bio);
292 return -ENOMEM;
293 }
294
295 while ((slot = find_first_zero_bit(rblk->invalid_pages,
296 nr_pgs_per_blk)) < nr_pgs_per_blk) {
297
298 /* Lock laddr */
299 phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot;
300
301try:
302 spin_lock(&rrpc->rev_lock);
303 /* Get logical address from physical to logical table */
304 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
305 /* already updated by previous regular write */
306 if (rev->addr == ADDR_EMPTY) {
307 spin_unlock(&rrpc->rev_lock);
308 continue;
309 }
310
311 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
312 if (IS_ERR_OR_NULL(rqd)) {
313 spin_unlock(&rrpc->rev_lock);
314 schedule();
315 goto try;
316 }
317
318 spin_unlock(&rrpc->rev_lock);
319
320 /* Perform read to do GC */
321 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
322 bio->bi_rw = READ;
323 bio->bi_private = &wait;
324 bio->bi_end_io = rrpc_end_sync_bio;
325
326 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
327 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
328
329 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
330 pr_err("rrpc: gc read failed.\n");
331 rrpc_inflight_laddr_release(rrpc, rqd);
332 goto finished;
333 }
334 wait_for_completion_io(&wait);
335
336 bio_reset(bio);
337 reinit_completion(&wait);
338
339 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
340 bio->bi_rw = WRITE;
341 bio->bi_private = &wait;
342 bio->bi_end_io = rrpc_end_sync_bio;
343
344 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
345
346 /* turn the command around and write the data back to a new
347 * address
348 */
349 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
350 pr_err("rrpc: gc write failed.\n");
351 rrpc_inflight_laddr_release(rrpc, rqd);
352 goto finished;
353 }
354 wait_for_completion_io(&wait);
355
356 rrpc_inflight_laddr_release(rrpc, rqd);
357
358 bio_reset(bio);
359 }
360
361finished:
362 mempool_free(page, rrpc->page_pool);
363 bio_put(bio);
364
365 if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) {
366 pr_err("nvm: failed to garbage collect block\n");
367 return -EIO;
368 }
369
370 return 0;
371}
372
373static void rrpc_block_gc(struct work_struct *work)
374{
375 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
376 ws_gc);
377 struct rrpc *rrpc = gcb->rrpc;
378 struct rrpc_block *rblk = gcb->rblk;
379 struct nvm_dev *dev = rrpc->dev;
380
381 pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
382
383 if (rrpc_move_valid_pages(rrpc, rblk))
384 goto done;
385
386 nvm_erase_blk(dev, rblk->parent);
387 rrpc_put_blk(rrpc, rblk);
388done:
389 mempool_free(gcb, rrpc->gcb_pool);
390}
391
392/* the block with highest number of invalid pages, will be in the beginning
393 * of the list
394 */
395static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
396 struct rrpc_block *rb)
397{
398 if (ra->nr_invalid_pages == rb->nr_invalid_pages)
399 return ra;
400
401 return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
402}
403
404/* linearly find the block with highest number of invalid pages
405 * requires lun->lock
406 */
407static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
408{
409 struct list_head *prio_list = &rlun->prio_list;
410 struct rrpc_block *rblock, *max;
411
412 BUG_ON(list_empty(prio_list));
413
414 max = list_first_entry(prio_list, struct rrpc_block, prio);
415 list_for_each_entry(rblock, prio_list, prio)
416 max = rblock_max_invalid(max, rblock);
417
418 return max;
419}
420
421static void rrpc_lun_gc(struct work_struct *work)
422{
423 struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
424 struct rrpc *rrpc = rlun->rrpc;
425 struct nvm_lun *lun = rlun->parent;
426 struct rrpc_block_gc *gcb;
427 unsigned int nr_blocks_need;
428
429 nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
430
431 if (nr_blocks_need < rrpc->nr_luns)
432 nr_blocks_need = rrpc->nr_luns;
433
434 spin_lock(&rlun->lock);
435 while (nr_blocks_need > lun->nr_free_blocks &&
436 !list_empty(&rlun->prio_list)) {
437 struct rrpc_block *rblock = block_prio_find_max(rlun);
438 struct nvm_block *block = rblock->parent;
439
440 if (!rblock->nr_invalid_pages)
441 break;
442
443 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
444 if (!gcb)
445 break;
446
447 list_del_init(&rblock->prio);
448
449 BUG_ON(!block_is_full(rrpc, rblock));
450
451 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
452
453 gcb->rrpc = rrpc;
454 gcb->rblk = rblock;
455 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
456
457 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
458
459 nr_blocks_need--;
460 }
461 spin_unlock(&rlun->lock);
462
463 /* TODO: Hint that request queue can be started again */
464}
465
466static void rrpc_gc_queue(struct work_struct *work)
467{
468 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
469 ws_gc);
470 struct rrpc *rrpc = gcb->rrpc;
471 struct rrpc_block *rblk = gcb->rblk;
472 struct nvm_lun *lun = rblk->parent->lun;
473 struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
474
475 spin_lock(&rlun->lock);
476 list_add_tail(&rblk->prio, &rlun->prio_list);
477 spin_unlock(&rlun->lock);
478
479 mempool_free(gcb, rrpc->gcb_pool);
480 pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
481 rblk->parent->id);
482}
483
484static const struct block_device_operations rrpc_fops = {
485 .owner = THIS_MODULE,
486};
487
488static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
489{
490 unsigned int i;
491 struct rrpc_lun *rlun, *max_free;
492
493 if (!is_gc)
494 return get_next_lun(rrpc);
495
496 /* during GC, we don't care about RR, instead we want to make
497 * sure that we maintain evenness between the block luns.
498 */
499 max_free = &rrpc->luns[0];
500 /* prevent GC-ing lun from devouring pages of a lun with
501 * little free blocks. We don't take the lock as we only need an
502 * estimate.
503 */
504 rrpc_for_each_lun(rrpc, rlun, i) {
505 if (rlun->parent->nr_free_blocks >
506 max_free->parent->nr_free_blocks)
507 max_free = rlun;
508 }
509
510 return max_free;
511}
512
513static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
514 struct rrpc_block *rblk, u64 paddr)
515{
516 struct rrpc_addr *gp;
517 struct rrpc_rev_addr *rev;
518
519 BUG_ON(laddr >= rrpc->nr_pages);
520
521 gp = &rrpc->trans_map[laddr];
522 spin_lock(&rrpc->rev_lock);
523 if (gp->rblk)
524 rrpc_page_invalidate(rrpc, gp);
525
526 gp->addr = paddr;
527 gp->rblk = rblk;
528
529 rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
530 rev->addr = laddr;
531 spin_unlock(&rrpc->rev_lock);
532
533 return gp;
534}
535
536static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
537{
538 u64 addr = ADDR_EMPTY;
539
540 spin_lock(&rblk->lock);
541 if (block_is_full(rrpc, rblk))
542 goto out;
543
544 addr = block_to_addr(rrpc, rblk) + rblk->next_page;
545
546 rblk->next_page++;
547out:
548 spin_unlock(&rblk->lock);
549 return addr;
550}
551
552/* Simple round-robin Logical to physical address translation.
553 *
554 * Retrieve the mapping using the active append point. Then update the ap for
555 * the next write to the disk.
556 *
557 * Returns rrpc_addr with the physical address and block. Remember to return to
558 * rrpc->addr_cache when request is finished.
559 */
560static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
561 int is_gc)
562{
563 struct rrpc_lun *rlun;
564 struct rrpc_block *rblk;
565 struct nvm_lun *lun;
566 u64 paddr;
567
568 rlun = rrpc_get_lun_rr(rrpc, is_gc);
569 lun = rlun->parent;
570
571 if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
572 return NULL;
573
574 spin_lock(&rlun->lock);
575
576 rblk = rlun->cur;
577retry:
578 paddr = rrpc_alloc_addr(rrpc, rblk);
579
580 if (paddr == ADDR_EMPTY) {
581 rblk = rrpc_get_blk(rrpc, rlun, 0);
582 if (rblk) {
583 rrpc_set_lun_cur(rlun, rblk);
584 goto retry;
585 }
586
587 if (is_gc) {
588 /* retry from emergency gc block */
589 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
590 if (paddr == ADDR_EMPTY) {
591 rblk = rrpc_get_blk(rrpc, rlun, 1);
592 if (!rblk) {
593 pr_err("rrpc: no more blocks");
594 goto err;
595 }
596
597 rlun->gc_cur = rblk;
598 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
599 }
600 rblk = rlun->gc_cur;
601 }
602 }
603
604 spin_unlock(&rlun->lock);
605 return rrpc_update_map(rrpc, laddr, rblk, paddr);
606err:
607 spin_unlock(&rlun->lock);
608 return NULL;
609}
610
611static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
612{
613 struct rrpc_block_gc *gcb;
614
615 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
616 if (!gcb) {
617 pr_err("rrpc: unable to queue block for gc.");
618 return;
619 }
620
621 gcb->rrpc = rrpc;
622 gcb->rblk = rblk;
623
624 INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
625 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
626}
627
628static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
629 sector_t laddr, uint8_t npages)
630{
631 struct rrpc_addr *p;
632 struct rrpc_block *rblk;
633 struct nvm_lun *lun;
634 int cmnt_size, i;
635
636 for (i = 0; i < npages; i++) {
637 p = &rrpc->trans_map[laddr + i];
638 rblk = p->rblk;
639 lun = rblk->parent->lun;
640
641 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
642 if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk))
643 rrpc_run_gc(rrpc, rblk);
644 }
645}
646
647static int rrpc_end_io(struct nvm_rq *rqd, int error)
648{
649 struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
650 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
651 uint8_t npages = rqd->nr_pages;
652 sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
653
654 if (bio_data_dir(rqd->bio) == WRITE)
655 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
656
657 bio_put(rqd->bio);
658
659 if (rrqd->flags & NVM_IOTYPE_GC)
660 return 0;
661
662 rrpc_unlock_rq(rrpc, rqd);
663
664 if (npages > 1)
665 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
666 if (rqd->metadata)
667 nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
668
669 mempool_free(rqd, rrpc->rq_pool);
670
671 return 0;
672}
673
674static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
675 struct nvm_rq *rqd, unsigned long flags, int npages)
676{
677 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
678 struct rrpc_addr *gp;
679 sector_t laddr = rrpc_get_laddr(bio);
680 int is_gc = flags & NVM_IOTYPE_GC;
681 int i;
682
683 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
684 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
685 return NVM_IO_REQUEUE;
686 }
687
688 for (i = 0; i < npages; i++) {
689 /* We assume that mapping occurs at 4KB granularity */
690 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages));
691 gp = &rrpc->trans_map[laddr + i];
692
693 if (gp->rblk) {
694 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
695 gp->addr);
696 } else {
697 BUG_ON(is_gc);
698 rrpc_unlock_laddr(rrpc, r);
699 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
700 rqd->dma_ppa_list);
701 return NVM_IO_DONE;
702 }
703 }
704
705 rqd->opcode = NVM_OP_HBREAD;
706
707 return NVM_IO_OK;
708}
709
710static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
711 unsigned long flags)
712{
713 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
714 int is_gc = flags & NVM_IOTYPE_GC;
715 sector_t laddr = rrpc_get_laddr(bio);
716 struct rrpc_addr *gp;
717
718 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
719 return NVM_IO_REQUEUE;
720
721 BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages));
722 gp = &rrpc->trans_map[laddr];
723
724 if (gp->rblk) {
725 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
726 } else {
727 BUG_ON(is_gc);
728 rrpc_unlock_rq(rrpc, rqd);
729 return NVM_IO_DONE;
730 }
731
732 rqd->opcode = NVM_OP_HBREAD;
733 rrqd->addr = gp;
734
735 return NVM_IO_OK;
736}
737
738static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
739 struct nvm_rq *rqd, unsigned long flags, int npages)
740{
741 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
742 struct rrpc_addr *p;
743 sector_t laddr = rrpc_get_laddr(bio);
744 int is_gc = flags & NVM_IOTYPE_GC;
745 int i;
746
747 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
748 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
749 return NVM_IO_REQUEUE;
750 }
751
752 for (i = 0; i < npages; i++) {
753 /* We assume that mapping occurs at 4KB granularity */
754 p = rrpc_map_page(rrpc, laddr + i, is_gc);
755 if (!p) {
756 BUG_ON(is_gc);
757 rrpc_unlock_laddr(rrpc, r);
758 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
759 rqd->dma_ppa_list);
760 rrpc_gc_kick(rrpc);
761 return NVM_IO_REQUEUE;
762 }
763
764 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
765 p->addr);
766 }
767
768 rqd->opcode = NVM_OP_HBWRITE;
769
770 return NVM_IO_OK;
771}
772
773static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
774 struct nvm_rq *rqd, unsigned long flags)
775{
776 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
777 struct rrpc_addr *p;
778 int is_gc = flags & NVM_IOTYPE_GC;
779 sector_t laddr = rrpc_get_laddr(bio);
780
781 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
782 return NVM_IO_REQUEUE;
783
784 p = rrpc_map_page(rrpc, laddr, is_gc);
785 if (!p) {
786 BUG_ON(is_gc);
787 rrpc_unlock_rq(rrpc, rqd);
788 rrpc_gc_kick(rrpc);
789 return NVM_IO_REQUEUE;
790 }
791
792 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
793 rqd->opcode = NVM_OP_HBWRITE;
794 rrqd->addr = p;
795
796 return NVM_IO_OK;
797}
798
799static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
800 struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
801{
802 if (npages > 1) {
803 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
804 &rqd->dma_ppa_list);
805 if (!rqd->ppa_list) {
806 pr_err("rrpc: not able to allocate ppa list\n");
807 return NVM_IO_ERR;
808 }
809
810 if (bio_rw(bio) == WRITE)
811 return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
812 npages);
813
814 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
815 }
816
817 if (bio_rw(bio) == WRITE)
818 return rrpc_write_rq(rrpc, bio, rqd, flags);
819
820 return rrpc_read_rq(rrpc, bio, rqd, flags);
821}
822
823static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
824 struct nvm_rq *rqd, unsigned long flags)
825{
826 int err;
827 struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
828 uint8_t nr_pages = rrpc_get_pages(bio);
829 int bio_size = bio_sectors(bio) << 9;
830
831 if (bio_size < rrpc->dev->sec_size)
832 return NVM_IO_ERR;
833 else if (bio_size > rrpc->dev->max_rq_size)
834 return NVM_IO_ERR;
835
836 err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
837 if (err)
838 return err;
839
840 bio_get(bio);
841 rqd->bio = bio;
842 rqd->ins = &rrpc->instance;
843 rqd->nr_pages = nr_pages;
844 rrq->flags = flags;
845
846 err = nvm_submit_io(rrpc->dev, rqd);
847 if (err) {
848 pr_err("rrpc: I/O submission failed: %d\n", err);
849 bio_put(bio);
850 if (!(flags & NVM_IOTYPE_GC)) {
851 rrpc_unlock_rq(rrpc, rqd);
852 if (rqd->nr_pages > 1)
853 nvm_dev_dma_free(rrpc->dev,
854 rqd->ppa_list, rqd->dma_ppa_list);
855 }
856 return NVM_IO_ERR;
857 }
858
859 return NVM_IO_OK;
860}
861
862static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
863{
864 struct rrpc *rrpc = q->queuedata;
865 struct nvm_rq *rqd;
866 int err;
867
868 if (bio->bi_rw & REQ_DISCARD) {
869 rrpc_discard(rrpc, bio);
870 return BLK_QC_T_NONE;
871 }
872
873 rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
874 if (!rqd) {
875 pr_err_ratelimited("rrpc: not able to queue bio.");
876 bio_io_error(bio);
877 return BLK_QC_T_NONE;
878 }
879 memset(rqd, 0, sizeof(struct nvm_rq));
880
881 err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
882 switch (err) {
883 case NVM_IO_OK:
884 return BLK_QC_T_NONE;
885 case NVM_IO_ERR:
886 bio_io_error(bio);
887 break;
888 case NVM_IO_DONE:
889 bio_endio(bio);
890 break;
891 case NVM_IO_REQUEUE:
892 spin_lock(&rrpc->bio_lock);
893 bio_list_add(&rrpc->requeue_bios, bio);
894 spin_unlock(&rrpc->bio_lock);
895 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
896 break;
897 }
898
899 mempool_free(rqd, rrpc->rq_pool);
900 return BLK_QC_T_NONE;
901}
902
903static void rrpc_requeue(struct work_struct *work)
904{
905 struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
906 struct bio_list bios;
907 struct bio *bio;
908
909 bio_list_init(&bios);
910
911 spin_lock(&rrpc->bio_lock);
912 bio_list_merge(&bios, &rrpc->requeue_bios);
913 bio_list_init(&rrpc->requeue_bios);
914 spin_unlock(&rrpc->bio_lock);
915
916 while ((bio = bio_list_pop(&bios)))
917 rrpc_make_rq(rrpc->disk->queue, bio);
918}
919
920static void rrpc_gc_free(struct rrpc *rrpc)
921{
922 struct rrpc_lun *rlun;
923 int i;
924
925 if (rrpc->krqd_wq)
926 destroy_workqueue(rrpc->krqd_wq);
927
928 if (rrpc->kgc_wq)
929 destroy_workqueue(rrpc->kgc_wq);
930
931 if (!rrpc->luns)
932 return;
933
934 for (i = 0; i < rrpc->nr_luns; i++) {
935 rlun = &rrpc->luns[i];
936
937 if (!rlun->blocks)
938 break;
939 vfree(rlun->blocks);
940 }
941}
942
943static int rrpc_gc_init(struct rrpc *rrpc)
944{
945 rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
946 rrpc->nr_luns);
947 if (!rrpc->krqd_wq)
948 return -ENOMEM;
949
950 rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
951 if (!rrpc->kgc_wq)
952 return -ENOMEM;
953
954 setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
955
956 return 0;
957}
958
959static void rrpc_map_free(struct rrpc *rrpc)
960{
961 vfree(rrpc->rev_trans_map);
962 vfree(rrpc->trans_map);
963}
964
965static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
966{
967 struct rrpc *rrpc = (struct rrpc *)private;
968 struct nvm_dev *dev = rrpc->dev;
969 struct rrpc_addr *addr = rrpc->trans_map + slba;
970 struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
971 sector_t max_pages = dev->total_pages * (dev->sec_size >> 9);
972 u64 elba = slba + nlb;
973 u64 i;
974
975 if (unlikely(elba > dev->total_pages)) {
976 pr_err("nvm: L2P data from device is out of bounds!\n");
977 return -EINVAL;
978 }
979
980 for (i = 0; i < nlb; i++) {
981 u64 pba = le64_to_cpu(entries[i]);
982 /* LNVM treats address-spaces as silos, LBA and PBA are
983 * equally large and zero-indexed.
984 */
985 if (unlikely(pba >= max_pages && pba != U64_MAX)) {
986 pr_err("nvm: L2P data entry is out of bounds!\n");
987 return -EINVAL;
988 }
989
990 /* Address zero is a special one. The first page on a disk is
991 * protected. As it often holds internal device boot
992 * information.
993 */
994 if (!pba)
995 continue;
996
997 addr[i].addr = pba;
998 raddr[pba].addr = slba + i;
999 }
1000
1001 return 0;
1002}
1003
1004static int rrpc_map_init(struct rrpc *rrpc)
1005{
1006 struct nvm_dev *dev = rrpc->dev;
1007 sector_t i;
1008 int ret;
1009
1010 rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages);
1011 if (!rrpc->trans_map)
1012 return -ENOMEM;
1013
1014 rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1015 * rrpc->nr_pages);
1016 if (!rrpc->rev_trans_map)
1017 return -ENOMEM;
1018
1019 for (i = 0; i < rrpc->nr_pages; i++) {
1020 struct rrpc_addr *p = &rrpc->trans_map[i];
1021 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1022
1023 p->addr = ADDR_EMPTY;
1024 r->addr = ADDR_EMPTY;
1025 }
1026
1027 if (!dev->ops->get_l2p_tbl)
1028 return 0;
1029
1030 /* Bring up the mapping table from device */
1031 ret = dev->ops->get_l2p_tbl(dev, 0, dev->total_pages,
1032 rrpc_l2p_update, rrpc);
1033 if (ret) {
1034 pr_err("nvm: rrpc: could not read L2P table.\n");
1035 return -EINVAL;
1036 }
1037
1038 return 0;
1039}
1040
1041
1042/* Minimum pages needed within a lun */
1043#define PAGE_POOL_SIZE 16
1044#define ADDR_POOL_SIZE 64
1045
1046static int rrpc_core_init(struct rrpc *rrpc)
1047{
1048 down_write(&rrpc_lock);
1049 if (!rrpc_gcb_cache) {
1050 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1051 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1052 if (!rrpc_gcb_cache) {
1053 up_write(&rrpc_lock);
1054 return -ENOMEM;
1055 }
1056
1057 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1058 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1059 0, 0, NULL);
1060 if (!rrpc_rq_cache) {
1061 kmem_cache_destroy(rrpc_gcb_cache);
1062 up_write(&rrpc_lock);
1063 return -ENOMEM;
1064 }
1065 }
1066 up_write(&rrpc_lock);
1067
1068 rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1069 if (!rrpc->page_pool)
1070 return -ENOMEM;
1071
1072 rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1073 rrpc_gcb_cache);
1074 if (!rrpc->gcb_pool)
1075 return -ENOMEM;
1076
1077 rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1078 if (!rrpc->rq_pool)
1079 return -ENOMEM;
1080
1081 spin_lock_init(&rrpc->inflights.lock);
1082 INIT_LIST_HEAD(&rrpc->inflights.reqs);
1083
1084 return 0;
1085}
1086
1087static void rrpc_core_free(struct rrpc *rrpc)
1088{
1089 mempool_destroy(rrpc->page_pool);
1090 mempool_destroy(rrpc->gcb_pool);
1091 mempool_destroy(rrpc->rq_pool);
1092}
1093
1094static void rrpc_luns_free(struct rrpc *rrpc)
1095{
1096 kfree(rrpc->luns);
1097}
1098
1099static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1100{
1101 struct nvm_dev *dev = rrpc->dev;
1102 struct rrpc_lun *rlun;
1103 int i, j;
1104
1105 spin_lock_init(&rrpc->rev_lock);
1106
1107 rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1108 GFP_KERNEL);
1109 if (!rrpc->luns)
1110 return -ENOMEM;
1111
1112 /* 1:1 mapping */
1113 for (i = 0; i < rrpc->nr_luns; i++) {
1114 struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
1115
1116 if (dev->pgs_per_blk >
1117 MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1118 pr_err("rrpc: number of pages per block too high.");
1119 goto err;
1120 }
1121
1122 rlun = &rrpc->luns[i];
1123 rlun->rrpc = rrpc;
1124 rlun->parent = lun;
1125 INIT_LIST_HEAD(&rlun->prio_list);
1126 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1127 spin_lock_init(&rlun->lock);
1128
1129 rrpc->total_blocks += dev->blks_per_lun;
1130 rrpc->nr_pages += dev->sec_per_lun;
1131
1132 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1133 rrpc->dev->blks_per_lun);
1134 if (!rlun->blocks)
1135 goto err;
1136
1137 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1138 struct rrpc_block *rblk = &rlun->blocks[j];
1139 struct nvm_block *blk = &lun->blocks[j];
1140
1141 rblk->parent = blk;
1142 INIT_LIST_HEAD(&rblk->prio);
1143 spin_lock_init(&rblk->lock);
1144 }
1145 }
1146
1147 return 0;
1148err:
1149 return -ENOMEM;
1150}
1151
1152static void rrpc_free(struct rrpc *rrpc)
1153{
1154 rrpc_gc_free(rrpc);
1155 rrpc_map_free(rrpc);
1156 rrpc_core_free(rrpc);
1157 rrpc_luns_free(rrpc);
1158
1159 kfree(rrpc);
1160}
1161
1162static void rrpc_exit(void *private)
1163{
1164 struct rrpc *rrpc = private;
1165
1166 del_timer(&rrpc->gc_timer);
1167
1168 flush_workqueue(rrpc->krqd_wq);
1169 flush_workqueue(rrpc->kgc_wq);
1170
1171 rrpc_free(rrpc);
1172}
1173
1174static sector_t rrpc_capacity(void *private)
1175{
1176 struct rrpc *rrpc = private;
1177 struct nvm_dev *dev = rrpc->dev;
1178 sector_t reserved, provisioned;
1179
1180 /* cur, gc, and two emergency blocks for each lun */
1181 reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1182 provisioned = rrpc->nr_pages - reserved;
1183
1184 if (reserved > rrpc->nr_pages) {
1185 pr_err("rrpc: not enough space available to expose storage.\n");
1186 return 0;
1187 }
1188
1189 sector_div(provisioned, 10);
1190 return provisioned * 9 * NR_PHY_IN_LOG;
1191}
1192
1193/*
1194 * Looks up the logical address from reverse trans map and check if its valid by
1195 * comparing the logical to physical address with the physical address.
1196 * Returns 0 on free, otherwise 1 if in use
1197 */
1198static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1199{
1200 struct nvm_dev *dev = rrpc->dev;
1201 int offset;
1202 struct rrpc_addr *laddr;
1203 u64 paddr, pladdr;
1204
1205 for (offset = 0; offset < dev->pgs_per_blk; offset++) {
1206 paddr = block_to_addr(rrpc, rblk) + offset;
1207
1208 pladdr = rrpc->rev_trans_map[paddr].addr;
1209 if (pladdr == ADDR_EMPTY)
1210 continue;
1211
1212 laddr = &rrpc->trans_map[pladdr];
1213
1214 if (paddr == laddr->addr) {
1215 laddr->rblk = rblk;
1216 } else {
1217 set_bit(offset, rblk->invalid_pages);
1218 rblk->nr_invalid_pages++;
1219 }
1220 }
1221}
1222
1223static int rrpc_blocks_init(struct rrpc *rrpc)
1224{
1225 struct rrpc_lun *rlun;
1226 struct rrpc_block *rblk;
1227 int lun_iter, blk_iter;
1228
1229 for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1230 rlun = &rrpc->luns[lun_iter];
1231
1232 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1233 blk_iter++) {
1234 rblk = &rlun->blocks[blk_iter];
1235 rrpc_block_map_update(rrpc, rblk);
1236 }
1237 }
1238
1239 return 0;
1240}
1241
1242static int rrpc_luns_configure(struct rrpc *rrpc)
1243{
1244 struct rrpc_lun *rlun;
1245 struct rrpc_block *rblk;
1246 int i;
1247
1248 for (i = 0; i < rrpc->nr_luns; i++) {
1249 rlun = &rrpc->luns[i];
1250
1251 rblk = rrpc_get_blk(rrpc, rlun, 0);
1252 if (!rblk)
1253 goto err;
1254
1255 rrpc_set_lun_cur(rlun, rblk);
1256
1257 /* Emergency gc block */
1258 rblk = rrpc_get_blk(rrpc, rlun, 1);
1259 if (!rblk)
1260 goto err;
1261 rlun->gc_cur = rblk;
1262 }
1263
1264 return 0;
1265err:
1266 rrpc_put_blks(rrpc);
1267 return -EINVAL;
1268}
1269
1270static struct nvm_tgt_type tt_rrpc;
1271
1272static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1273 int lun_begin, int lun_end)
1274{
1275 struct request_queue *bqueue = dev->q;
1276 struct request_queue *tqueue = tdisk->queue;
1277 struct rrpc *rrpc;
1278 int ret;
1279
1280 if (!(dev->identity.dom & NVM_RSP_L2P)) {
1281 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1282 dev->identity.dom);
1283 return ERR_PTR(-EINVAL);
1284 }
1285
1286 rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1287 if (!rrpc)
1288 return ERR_PTR(-ENOMEM);
1289
1290 rrpc->instance.tt = &tt_rrpc;
1291 rrpc->dev = dev;
1292 rrpc->disk = tdisk;
1293
1294 bio_list_init(&rrpc->requeue_bios);
1295 spin_lock_init(&rrpc->bio_lock);
1296 INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1297
1298 rrpc->nr_luns = lun_end - lun_begin + 1;
1299
1300 /* simple round-robin strategy */
1301 atomic_set(&rrpc->next_lun, -1);
1302
1303 ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1304 if (ret) {
1305 pr_err("nvm: rrpc: could not initialize luns\n");
1306 goto err;
1307 }
1308
1309 rrpc->poffset = dev->sec_per_lun * lun_begin;
1310 rrpc->lun_offset = lun_begin;
1311
1312 ret = rrpc_core_init(rrpc);
1313 if (ret) {
1314 pr_err("nvm: rrpc: could not initialize core\n");
1315 goto err;
1316 }
1317
1318 ret = rrpc_map_init(rrpc);
1319 if (ret) {
1320 pr_err("nvm: rrpc: could not initialize maps\n");
1321 goto err;
1322 }
1323
1324 ret = rrpc_blocks_init(rrpc);
1325 if (ret) {
1326 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1327 goto err;
1328 }
1329
1330 ret = rrpc_luns_configure(rrpc);
1331 if (ret) {
1332 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1333 goto err;
1334 }
1335
1336 ret = rrpc_gc_init(rrpc);
1337 if (ret) {
1338 pr_err("nvm: rrpc: could not initialize gc\n");
1339 goto err;
1340 }
1341
1342 /* inherit the size from the underlying device */
1343 blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1344 blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1345
1346 pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1347 rrpc->nr_luns, (unsigned long long)rrpc->nr_pages);
1348
1349 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1350
1351 return rrpc;
1352err:
1353 rrpc_free(rrpc);
1354 return ERR_PTR(ret);
1355}
1356
1357/* round robin, page-based FTL, and cost-based GC */
1358static struct nvm_tgt_type tt_rrpc = {
1359 .name = "rrpc",
1360 .version = {1, 0, 0},
1361
1362 .make_rq = rrpc_make_rq,
1363 .capacity = rrpc_capacity,
1364 .end_io = rrpc_end_io,
1365
1366 .init = rrpc_init,
1367 .exit = rrpc_exit,
1368};
1369
1370static int __init rrpc_module_init(void)
1371{
1372 return nvm_register_target(&tt_rrpc);
1373}
1374
1375static void rrpc_module_exit(void)
1376{
1377 nvm_unregister_target(&tt_rrpc);
1378}
1379
1380module_init(rrpc_module_init);
1381module_exit(rrpc_module_exit);
1382MODULE_LICENSE("GPL v2");
1383MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");