blob: cdceefd0e57dd37119c67f1087d67d642c6485e2 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-bufio.h"
10
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/slab.h>
14#include <linux/jiffies.h>
15#include <linux/vmalloc.h>
16#include <linux/shrinker.h>
17#include <linux/module.h>
18#include <linux/rbtree.h>
19
20#define DM_MSG_PREFIX "bufio"
21
22/*
23 * Memory management policy:
24 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
25 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
26 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
27 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
28 * dirty buffers.
29 */
30#define DM_BUFIO_MIN_BUFFERS 8
31
32#define DM_BUFIO_MEMORY_PERCENT 2
33#define DM_BUFIO_VMALLOC_PERCENT 25
34#define DM_BUFIO_WRITEBACK_PERCENT 75
35
36/*
37 * Check buffer ages in this interval (seconds)
38 */
39#define DM_BUFIO_WORK_TIMER_SECS 30
40
41/*
42 * Free buffers when they are older than this (seconds)
43 */
44#define DM_BUFIO_DEFAULT_AGE_SECS 300
45
46/*
47 * The nr of bytes of cached data to keep around.
48 */
49#define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
50
51/*
52 * The number of bvec entries that are embedded directly in the buffer.
53 * If the chunk size is larger, dm-io is used to do the io.
54 */
55#define DM_BUFIO_INLINE_VECS 16
56
57/*
58 * Don't try to use kmem_cache_alloc for blocks larger than this.
59 * For explanation, see alloc_buffer_data below.
60 */
61#define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
62#define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
63
64/*
65 * dm_buffer->list_mode
66 */
67#define LIST_CLEAN 0
68#define LIST_DIRTY 1
69#define LIST_SIZE 2
70
71/*
72 * Linking of buffers:
73 * All buffers are linked to cache_hash with their hash_list field.
74 *
75 * Clean buffers that are not being written (B_WRITING not set)
76 * are linked to lru[LIST_CLEAN] with their lru_list field.
77 *
78 * Dirty and clean buffers that are being written are linked to
79 * lru[LIST_DIRTY] with their lru_list field. When the write
80 * finishes, the buffer cannot be relinked immediately (because we
81 * are in an interrupt context and relinking requires process
82 * context), so some clean-not-writing buffers can be held on
83 * dirty_lru too. They are later added to lru in the process
84 * context.
85 */
86struct dm_bufio_client {
87 struct mutex lock;
88
89 struct list_head lru[LIST_SIZE];
90 unsigned long n_buffers[LIST_SIZE];
91
92 struct block_device *bdev;
93 unsigned block_size;
94 unsigned char sectors_per_block_bits;
95 unsigned char pages_per_block_bits;
96 unsigned char blocks_per_page_bits;
97 unsigned aux_size;
98 void (*alloc_callback)(struct dm_buffer *);
99 void (*write_callback)(struct dm_buffer *);
100
101 struct dm_io_client *dm_io;
102
103 struct list_head reserved_buffers;
104 unsigned need_reserved_buffers;
105
106 unsigned minimum_buffers;
107
108 struct rb_root buffer_tree;
109 wait_queue_head_t free_buffer_wait;
110
111 int async_write_error;
112
113 struct list_head client_list;
114 struct shrinker shrinker;
115};
116
117/*
118 * Buffer state bits.
119 */
120#define B_READING 0
121#define B_WRITING 1
122#define B_DIRTY 2
123
124/*
125 * Describes how the block was allocated:
126 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
127 * See the comment at alloc_buffer_data.
128 */
129enum data_mode {
130 DATA_MODE_SLAB = 0,
131 DATA_MODE_GET_FREE_PAGES = 1,
132 DATA_MODE_VMALLOC = 2,
133 DATA_MODE_LIMIT = 3
134};
135
136struct dm_buffer {
137 struct rb_node node;
138 struct list_head lru_list;
139 sector_t block;
140 void *data;
141 enum data_mode data_mode;
142 unsigned char list_mode; /* LIST_* */
143 unsigned hold_count;
144 int read_error;
145 int write_error;
146 unsigned long state;
147 unsigned long last_accessed;
148 struct dm_bufio_client *c;
149 struct list_head write_list;
150 struct bio bio;
151 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
152};
153
154/*----------------------------------------------------------------*/
155
156static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
157static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
158
159static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
160{
161 unsigned ret = c->blocks_per_page_bits - 1;
162
163 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
164
165 return ret;
166}
167
168#define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
169#define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
170
171#define dm_bufio_in_request() (!!current->bio_list)
172
173static void dm_bufio_lock(struct dm_bufio_client *c)
174{
175 mutex_lock_nested(&c->lock, dm_bufio_in_request());
176}
177
178static int dm_bufio_trylock(struct dm_bufio_client *c)
179{
180 return mutex_trylock(&c->lock);
181}
182
183static void dm_bufio_unlock(struct dm_bufio_client *c)
184{
185 mutex_unlock(&c->lock);
186}
187
188/*
189 * FIXME Move to sched.h?
190 */
191#ifdef CONFIG_PREEMPT_VOLUNTARY
192# define dm_bufio_cond_resched() \
193do { \
194 if (unlikely(need_resched())) \
195 _cond_resched(); \
196} while (0)
197#else
198# define dm_bufio_cond_resched() do { } while (0)
199#endif
200
201/*----------------------------------------------------------------*/
202
203/*
204 * Default cache size: available memory divided by the ratio.
205 */
206static unsigned long dm_bufio_default_cache_size;
207
208/*
209 * Total cache size set by the user.
210 */
211static unsigned long dm_bufio_cache_size;
212
213/*
214 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
215 * at any time. If it disagrees, the user has changed cache size.
216 */
217static unsigned long dm_bufio_cache_size_latch;
218
219static DEFINE_SPINLOCK(param_spinlock);
220
221/*
222 * Buffers are freed after this timeout
223 */
224static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
225static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
226
227static unsigned long dm_bufio_peak_allocated;
228static unsigned long dm_bufio_allocated_kmem_cache;
229static unsigned long dm_bufio_allocated_get_free_pages;
230static unsigned long dm_bufio_allocated_vmalloc;
231static unsigned long dm_bufio_current_allocated;
232
233/*----------------------------------------------------------------*/
234
235/*
236 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
237 */
238static unsigned long dm_bufio_cache_size_per_client;
239
240/*
241 * The current number of clients.
242 */
243static int dm_bufio_client_count;
244
245/*
246 * The list of all clients.
247 */
248static LIST_HEAD(dm_bufio_all_clients);
249
250/*
251 * This mutex protects dm_bufio_cache_size_latch,
252 * dm_bufio_cache_size_per_client and dm_bufio_client_count
253 */
254static DEFINE_MUTEX(dm_bufio_clients_lock);
255
256/*----------------------------------------------------------------
257 * A red/black tree acts as an index for all the buffers.
258 *--------------------------------------------------------------*/
259static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
260{
261 struct rb_node *n = c->buffer_tree.rb_node;
262 struct dm_buffer *b;
263
264 while (n) {
265 b = container_of(n, struct dm_buffer, node);
266
267 if (b->block == block)
268 return b;
269
270 n = (b->block < block) ? n->rb_left : n->rb_right;
271 }
272
273 return NULL;
274}
275
276static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
277{
278 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
279 struct dm_buffer *found;
280
281 while (*new) {
282 found = container_of(*new, struct dm_buffer, node);
283
284 if (found->block == b->block) {
285 BUG_ON(found != b);
286 return;
287 }
288
289 parent = *new;
290 new = (found->block < b->block) ?
291 &((*new)->rb_left) : &((*new)->rb_right);
292 }
293
294 rb_link_node(&b->node, parent, new);
295 rb_insert_color(&b->node, &c->buffer_tree);
296}
297
298static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
299{
300 rb_erase(&b->node, &c->buffer_tree);
301}
302
303/*----------------------------------------------------------------*/
304
305static void adjust_total_allocated(enum data_mode data_mode, long diff)
306{
307 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
308 &dm_bufio_allocated_kmem_cache,
309 &dm_bufio_allocated_get_free_pages,
310 &dm_bufio_allocated_vmalloc,
311 };
312
313 spin_lock(&param_spinlock);
314
315 *class_ptr[data_mode] += diff;
316
317 dm_bufio_current_allocated += diff;
318
319 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
320 dm_bufio_peak_allocated = dm_bufio_current_allocated;
321
322 spin_unlock(&param_spinlock);
323}
324
325/*
326 * Change the number of clients and recalculate per-client limit.
327 */
328static void __cache_size_refresh(void)
329{
330 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
331 BUG_ON(dm_bufio_client_count < 0);
332
333 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
334
335 /*
336 * Use default if set to 0 and report the actual cache size used.
337 */
338 if (!dm_bufio_cache_size_latch) {
339 (void)cmpxchg(&dm_bufio_cache_size, 0,
340 dm_bufio_default_cache_size);
341 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
342 }
343
344 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
345 (dm_bufio_client_count ? : 1);
346}
347
348/*
349 * Allocating buffer data.
350 *
351 * Small buffers are allocated with kmem_cache, to use space optimally.
352 *
353 * For large buffers, we choose between get_free_pages and vmalloc.
354 * Each has advantages and disadvantages.
355 *
356 * __get_free_pages can randomly fail if the memory is fragmented.
357 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
358 * as low as 128M) so using it for caching is not appropriate.
359 *
360 * If the allocation may fail we use __get_free_pages. Memory fragmentation
361 * won't have a fatal effect here, but it just causes flushes of some other
362 * buffers and more I/O will be performed. Don't use __get_free_pages if it
363 * always fails (i.e. order >= MAX_ORDER).
364 *
365 * If the allocation shouldn't fail we use __vmalloc. This is only for the
366 * initial reserve allocation, so there's no risk of wasting all vmalloc
367 * space.
368 */
369static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
370 enum data_mode *data_mode)
371{
372 unsigned noio_flag;
373 void *ptr;
374
375 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
376 *data_mode = DATA_MODE_SLAB;
377 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
378 }
379
380 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
381 gfp_mask & __GFP_NORETRY) {
382 *data_mode = DATA_MODE_GET_FREE_PAGES;
383 return (void *)__get_free_pages(gfp_mask,
384 c->pages_per_block_bits);
385 }
386
387 *data_mode = DATA_MODE_VMALLOC;
388
389 /*
390 * __vmalloc allocates the data pages and auxiliary structures with
391 * gfp_flags that were specified, but pagetables are always allocated
392 * with GFP_KERNEL, no matter what was specified as gfp_mask.
393 *
394 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
395 * all allocations done by this process (including pagetables) are done
396 * as if GFP_NOIO was specified.
397 */
398
399 if (gfp_mask & __GFP_NORETRY)
400 noio_flag = memalloc_noio_save();
401
402 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
403
404 if (gfp_mask & __GFP_NORETRY)
405 memalloc_noio_restore(noio_flag);
406
407 return ptr;
408}
409
410/*
411 * Free buffer's data.
412 */
413static void free_buffer_data(struct dm_bufio_client *c,
414 void *data, enum data_mode data_mode)
415{
416 switch (data_mode) {
417 case DATA_MODE_SLAB:
418 kmem_cache_free(DM_BUFIO_CACHE(c), data);
419 break;
420
421 case DATA_MODE_GET_FREE_PAGES:
422 free_pages((unsigned long)data, c->pages_per_block_bits);
423 break;
424
425 case DATA_MODE_VMALLOC:
426 vfree(data);
427 break;
428
429 default:
430 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
431 data_mode);
432 BUG();
433 }
434}
435
436/*
437 * Allocate buffer and its data.
438 */
439static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
440{
441 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
442 gfp_mask);
443
444 if (!b)
445 return NULL;
446
447 b->c = c;
448
449 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
450 if (!b->data) {
451 kfree(b);
452 return NULL;
453 }
454
455 adjust_total_allocated(b->data_mode, (long)c->block_size);
456
457 return b;
458}
459
460/*
461 * Free buffer and its data.
462 */
463static void free_buffer(struct dm_buffer *b)
464{
465 struct dm_bufio_client *c = b->c;
466
467 adjust_total_allocated(b->data_mode, -(long)c->block_size);
468
469 free_buffer_data(c, b->data, b->data_mode);
470 kfree(b);
471}
472
473/*
474 * Link buffer to the hash list and clean or dirty queue.
475 */
476static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
477{
478 struct dm_bufio_client *c = b->c;
479
480 c->n_buffers[dirty]++;
481 b->block = block;
482 b->list_mode = dirty;
483 list_add(&b->lru_list, &c->lru[dirty]);
484 __insert(b->c, b);
485 b->last_accessed = jiffies;
486}
487
488/*
489 * Unlink buffer from the hash list and dirty or clean queue.
490 */
491static void __unlink_buffer(struct dm_buffer *b)
492{
493 struct dm_bufio_client *c = b->c;
494
495 BUG_ON(!c->n_buffers[b->list_mode]);
496
497 c->n_buffers[b->list_mode]--;
498 __remove(b->c, b);
499 list_del(&b->lru_list);
500}
501
502/*
503 * Place the buffer to the head of dirty or clean LRU queue.
504 */
505static void __relink_lru(struct dm_buffer *b, int dirty)
506{
507 struct dm_bufio_client *c = b->c;
508
509 BUG_ON(!c->n_buffers[b->list_mode]);
510
511 c->n_buffers[b->list_mode]--;
512 c->n_buffers[dirty]++;
513 b->list_mode = dirty;
514 list_move(&b->lru_list, &c->lru[dirty]);
515 b->last_accessed = jiffies;
516}
517
518/*----------------------------------------------------------------
519 * Submit I/O on the buffer.
520 *
521 * Bio interface is faster but it has some problems:
522 * the vector list is limited (increasing this limit increases
523 * memory-consumption per buffer, so it is not viable);
524 *
525 * the memory must be direct-mapped, not vmalloced;
526 *
527 * the I/O driver can reject requests spuriously if it thinks that
528 * the requests are too big for the device or if they cross a
529 * controller-defined memory boundary.
530 *
531 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
532 * it is not vmalloced, try using the bio interface.
533 *
534 * If the buffer is big, if it is vmalloced or if the underlying device
535 * rejects the bio because it is too large, use dm-io layer to do the I/O.
536 * The dm-io layer splits the I/O into multiple requests, avoiding the above
537 * shortcomings.
538 *--------------------------------------------------------------*/
539
540/*
541 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
542 * that the request was handled directly with bio interface.
543 */
544static void dmio_complete(unsigned long error, void *context)
545{
546 struct dm_buffer *b = context;
547
548 b->bio.bi_error = error ? -EIO : 0;
549 b->bio.bi_end_io(&b->bio);
550}
551
552static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
553 bio_end_io_t *end_io)
554{
555 int r;
556 struct dm_io_request io_req = {
557 .bi_rw = rw,
558 .notify.fn = dmio_complete,
559 .notify.context = b,
560 .client = b->c->dm_io,
561 };
562 struct dm_io_region region = {
563 .bdev = b->c->bdev,
564 .sector = block << b->c->sectors_per_block_bits,
565 .count = b->c->block_size >> SECTOR_SHIFT,
566 };
567
568 if (b->data_mode != DATA_MODE_VMALLOC) {
569 io_req.mem.type = DM_IO_KMEM;
570 io_req.mem.ptr.addr = b->data;
571 } else {
572 io_req.mem.type = DM_IO_VMA;
573 io_req.mem.ptr.vma = b->data;
574 }
575
576 b->bio.bi_end_io = end_io;
577
578 r = dm_io(&io_req, 1, &region, NULL);
579 if (r) {
580 b->bio.bi_error = r;
581 end_io(&b->bio);
582 }
583}
584
585static void inline_endio(struct bio *bio)
586{
587 bio_end_io_t *end_fn = bio->bi_private;
588 int error = bio->bi_error;
589
590 /*
591 * Reset the bio to free any attached resources
592 * (e.g. bio integrity profiles).
593 */
594 bio_reset(bio);
595
596 bio->bi_error = error;
597 end_fn(bio);
598}
599
600static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
601 bio_end_io_t *end_io)
602{
603 char *ptr;
604 int len;
605
606 bio_init(&b->bio);
607 b->bio.bi_io_vec = b->bio_vec;
608 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
609 b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
610 b->bio.bi_bdev = b->c->bdev;
611 b->bio.bi_end_io = inline_endio;
612 /*
613 * Use of .bi_private isn't a problem here because
614 * the dm_buffer's inline bio is local to bufio.
615 */
616 b->bio.bi_private = end_io;
617
618 /*
619 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
620 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
621 */
622 ptr = b->data;
623 len = b->c->block_size;
624
625 if (len >= PAGE_SIZE)
626 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
627 else
628 BUG_ON((unsigned long)ptr & (len - 1));
629
630 do {
631 if (!bio_add_page(&b->bio, virt_to_page(ptr),
632 len < PAGE_SIZE ? len : PAGE_SIZE,
633 virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
634 BUG_ON(b->c->block_size <= PAGE_SIZE);
635 use_dmio(b, rw, block, end_io);
636 return;
637 }
638
639 len -= PAGE_SIZE;
640 ptr += PAGE_SIZE;
641 } while (len > 0);
642
643 submit_bio(rw, &b->bio);
644}
645
646static void submit_io(struct dm_buffer *b, int rw, sector_t block,
647 bio_end_io_t *end_io)
648{
649 if (rw == WRITE && b->c->write_callback)
650 b->c->write_callback(b);
651
652 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
653 b->data_mode != DATA_MODE_VMALLOC)
654 use_inline_bio(b, rw, block, end_io);
655 else
656 use_dmio(b, rw, block, end_io);
657}
658
659/*----------------------------------------------------------------
660 * Writing dirty buffers
661 *--------------------------------------------------------------*/
662
663/*
664 * The endio routine for write.
665 *
666 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
667 * it.
668 */
669static void write_endio(struct bio *bio)
670{
671 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
672
673 b->write_error = bio->bi_error;
674 if (unlikely(bio->bi_error)) {
675 struct dm_bufio_client *c = b->c;
676 int error = bio->bi_error;
677 (void)cmpxchg(&c->async_write_error, 0, error);
678 }
679
680 BUG_ON(!test_bit(B_WRITING, &b->state));
681
682 smp_mb__before_atomic();
683 clear_bit(B_WRITING, &b->state);
684 smp_mb__after_atomic();
685
686 wake_up_bit(&b->state, B_WRITING);
687}
688
689/*
690 * Initiate a write on a dirty buffer, but don't wait for it.
691 *
692 * - If the buffer is not dirty, exit.
693 * - If there some previous write going on, wait for it to finish (we can't
694 * have two writes on the same buffer simultaneously).
695 * - Submit our write and don't wait on it. We set B_WRITING indicating
696 * that there is a write in progress.
697 */
698static void __write_dirty_buffer(struct dm_buffer *b,
699 struct list_head *write_list)
700{
701 if (!test_bit(B_DIRTY, &b->state))
702 return;
703
704 clear_bit(B_DIRTY, &b->state);
705 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
706
707 if (!write_list)
708 submit_io(b, WRITE, b->block, write_endio);
709 else
710 list_add_tail(&b->write_list, write_list);
711}
712
713static void __flush_write_list(struct list_head *write_list)
714{
715 struct blk_plug plug;
716 blk_start_plug(&plug);
717 while (!list_empty(write_list)) {
718 struct dm_buffer *b =
719 list_entry(write_list->next, struct dm_buffer, write_list);
720 list_del(&b->write_list);
721 submit_io(b, WRITE, b->block, write_endio);
722 dm_bufio_cond_resched();
723 }
724 blk_finish_plug(&plug);
725}
726
727/*
728 * Wait until any activity on the buffer finishes. Possibly write the
729 * buffer if it is dirty. When this function finishes, there is no I/O
730 * running on the buffer and the buffer is not dirty.
731 */
732static void __make_buffer_clean(struct dm_buffer *b)
733{
734 BUG_ON(b->hold_count);
735
736 if (!b->state) /* fast case */
737 return;
738
739 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
740 __write_dirty_buffer(b, NULL);
741 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
742}
743
744/*
745 * Find some buffer that is not held by anybody, clean it, unlink it and
746 * return it.
747 */
748static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
749{
750 struct dm_buffer *b;
751
752 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
753 BUG_ON(test_bit(B_WRITING, &b->state));
754 BUG_ON(test_bit(B_DIRTY, &b->state));
755
756 if (!b->hold_count) {
757 __make_buffer_clean(b);
758 __unlink_buffer(b);
759 return b;
760 }
761 dm_bufio_cond_resched();
762 }
763
764 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
765 BUG_ON(test_bit(B_READING, &b->state));
766
767 if (!b->hold_count) {
768 __make_buffer_clean(b);
769 __unlink_buffer(b);
770 return b;
771 }
772 dm_bufio_cond_resched();
773 }
774
775 return NULL;
776}
777
778/*
779 * Wait until some other threads free some buffer or release hold count on
780 * some buffer.
781 *
782 * This function is entered with c->lock held, drops it and regains it
783 * before exiting.
784 */
785static void __wait_for_free_buffer(struct dm_bufio_client *c)
786{
787 DECLARE_WAITQUEUE(wait, current);
788
789 add_wait_queue(&c->free_buffer_wait, &wait);
790 set_task_state(current, TASK_UNINTERRUPTIBLE);
791 dm_bufio_unlock(c);
792
793 io_schedule();
794
795 remove_wait_queue(&c->free_buffer_wait, &wait);
796
797 dm_bufio_lock(c);
798}
799
800enum new_flag {
801 NF_FRESH = 0,
802 NF_READ = 1,
803 NF_GET = 2,
804 NF_PREFETCH = 3
805};
806
807/*
808 * Allocate a new buffer. If the allocation is not possible, wait until
809 * some other thread frees a buffer.
810 *
811 * May drop the lock and regain it.
812 */
813static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
814{
815 struct dm_buffer *b;
816
817 /*
818 * dm-bufio is resistant to allocation failures (it just keeps
819 * one buffer reserved in cases all the allocations fail).
820 * So set flags to not try too hard:
821 * GFP_NOIO: don't recurse into the I/O layer
822 * __GFP_NORETRY: don't retry and rather return failure
823 * __GFP_NOMEMALLOC: don't use emergency reserves
824 * __GFP_NOWARN: don't print a warning in case of failure
825 *
826 * For debugging, if we set the cache size to 1, no new buffers will
827 * be allocated.
828 */
829 while (1) {
830 if (dm_bufio_cache_size_latch != 1) {
831 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
832 if (b)
833 return b;
834 }
835
836 if (nf == NF_PREFETCH)
837 return NULL;
838
839 if (!list_empty(&c->reserved_buffers)) {
840 b = list_entry(c->reserved_buffers.next,
841 struct dm_buffer, lru_list);
842 list_del(&b->lru_list);
843 c->need_reserved_buffers++;
844
845 return b;
846 }
847
848 b = __get_unclaimed_buffer(c);
849 if (b)
850 return b;
851
852 __wait_for_free_buffer(c);
853 }
854}
855
856static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
857{
858 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
859
860 if (!b)
861 return NULL;
862
863 if (c->alloc_callback)
864 c->alloc_callback(b);
865
866 return b;
867}
868
869/*
870 * Free a buffer and wake other threads waiting for free buffers.
871 */
872static void __free_buffer_wake(struct dm_buffer *b)
873{
874 struct dm_bufio_client *c = b->c;
875
876 if (!c->need_reserved_buffers)
877 free_buffer(b);
878 else {
879 list_add(&b->lru_list, &c->reserved_buffers);
880 c->need_reserved_buffers--;
881 }
882
883 wake_up(&c->free_buffer_wait);
884}
885
886static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
887 struct list_head *write_list)
888{
889 struct dm_buffer *b, *tmp;
890
891 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
892 BUG_ON(test_bit(B_READING, &b->state));
893
894 if (!test_bit(B_DIRTY, &b->state) &&
895 !test_bit(B_WRITING, &b->state)) {
896 __relink_lru(b, LIST_CLEAN);
897 continue;
898 }
899
900 if (no_wait && test_bit(B_WRITING, &b->state))
901 return;
902
903 __write_dirty_buffer(b, write_list);
904 dm_bufio_cond_resched();
905 }
906}
907
908/*
909 * Get writeback threshold and buffer limit for a given client.
910 */
911static void __get_memory_limit(struct dm_bufio_client *c,
912 unsigned long *threshold_buffers,
913 unsigned long *limit_buffers)
914{
915 unsigned long buffers;
916
917 if (unlikely(ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
918 if (mutex_trylock(&dm_bufio_clients_lock)) {
919 __cache_size_refresh();
920 mutex_unlock(&dm_bufio_clients_lock);
921 }
922 }
923
924 buffers = dm_bufio_cache_size_per_client >>
925 (c->sectors_per_block_bits + SECTOR_SHIFT);
926
927 if (buffers < c->minimum_buffers)
928 buffers = c->minimum_buffers;
929
930 *limit_buffers = buffers;
931 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
932}
933
934/*
935 * Check if we're over watermark.
936 * If we are over threshold_buffers, start freeing buffers.
937 * If we're over "limit_buffers", block until we get under the limit.
938 */
939static void __check_watermark(struct dm_bufio_client *c,
940 struct list_head *write_list)
941{
942 unsigned long threshold_buffers, limit_buffers;
943
944 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
945
946 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
947 limit_buffers) {
948
949 struct dm_buffer *b = __get_unclaimed_buffer(c);
950
951 if (!b)
952 return;
953
954 __free_buffer_wake(b);
955 dm_bufio_cond_resched();
956 }
957
958 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
959 __write_dirty_buffers_async(c, 1, write_list);
960}
961
962/*----------------------------------------------------------------
963 * Getting a buffer
964 *--------------------------------------------------------------*/
965
966static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
967 enum new_flag nf, int *need_submit,
968 struct list_head *write_list)
969{
970 struct dm_buffer *b, *new_b = NULL;
971
972 *need_submit = 0;
973
974 b = __find(c, block);
975 if (b)
976 goto found_buffer;
977
978 if (nf == NF_GET)
979 return NULL;
980
981 new_b = __alloc_buffer_wait(c, nf);
982 if (!new_b)
983 return NULL;
984
985 /*
986 * We've had a period where the mutex was unlocked, so need to
987 * recheck the hash table.
988 */
989 b = __find(c, block);
990 if (b) {
991 __free_buffer_wake(new_b);
992 goto found_buffer;
993 }
994
995 __check_watermark(c, write_list);
996
997 b = new_b;
998 b->hold_count = 1;
999 b->read_error = 0;
1000 b->write_error = 0;
1001 __link_buffer(b, block, LIST_CLEAN);
1002
1003 if (nf == NF_FRESH) {
1004 b->state = 0;
1005 return b;
1006 }
1007
1008 b->state = 1 << B_READING;
1009 *need_submit = 1;
1010
1011 return b;
1012
1013found_buffer:
1014 if (nf == NF_PREFETCH)
1015 return NULL;
1016 /*
1017 * Note: it is essential that we don't wait for the buffer to be
1018 * read if dm_bufio_get function is used. Both dm_bufio_get and
1019 * dm_bufio_prefetch can be used in the driver request routine.
1020 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1021 * the same buffer, it would deadlock if we waited.
1022 */
1023 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1024 return NULL;
1025
1026 b->hold_count++;
1027 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1028 test_bit(B_WRITING, &b->state));
1029 return b;
1030}
1031
1032/*
1033 * The endio routine for reading: set the error, clear the bit and wake up
1034 * anyone waiting on the buffer.
1035 */
1036static void read_endio(struct bio *bio)
1037{
1038 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1039
1040 b->read_error = bio->bi_error;
1041
1042 BUG_ON(!test_bit(B_READING, &b->state));
1043
1044 smp_mb__before_atomic();
1045 clear_bit(B_READING, &b->state);
1046 smp_mb__after_atomic();
1047
1048 wake_up_bit(&b->state, B_READING);
1049}
1050
1051/*
1052 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1053 * functions is similar except that dm_bufio_new doesn't read the
1054 * buffer from the disk (assuming that the caller overwrites all the data
1055 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1056 */
1057static void *new_read(struct dm_bufio_client *c, sector_t block,
1058 enum new_flag nf, struct dm_buffer **bp)
1059{
1060 int need_submit;
1061 struct dm_buffer *b;
1062
1063 LIST_HEAD(write_list);
1064
1065 dm_bufio_lock(c);
1066 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1067 dm_bufio_unlock(c);
1068
1069 __flush_write_list(&write_list);
1070
1071 if (!b)
1072 return b;
1073
1074 if (need_submit)
1075 submit_io(b, READ, b->block, read_endio);
1076
1077 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1078
1079 if (b->read_error) {
1080 int error = b->read_error;
1081
1082 dm_bufio_release(b);
1083
1084 return ERR_PTR(error);
1085 }
1086
1087 *bp = b;
1088
1089 return b->data;
1090}
1091
1092void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1093 struct dm_buffer **bp)
1094{
1095 return new_read(c, block, NF_GET, bp);
1096}
1097EXPORT_SYMBOL_GPL(dm_bufio_get);
1098
1099void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1100 struct dm_buffer **bp)
1101{
1102 BUG_ON(dm_bufio_in_request());
1103
1104 return new_read(c, block, NF_READ, bp);
1105}
1106EXPORT_SYMBOL_GPL(dm_bufio_read);
1107
1108void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1109 struct dm_buffer **bp)
1110{
1111 BUG_ON(dm_bufio_in_request());
1112
1113 return new_read(c, block, NF_FRESH, bp);
1114}
1115EXPORT_SYMBOL_GPL(dm_bufio_new);
1116
1117void dm_bufio_prefetch(struct dm_bufio_client *c,
1118 sector_t block, unsigned n_blocks)
1119{
1120 struct blk_plug plug;
1121
1122 LIST_HEAD(write_list);
1123
1124 BUG_ON(dm_bufio_in_request());
1125
1126 blk_start_plug(&plug);
1127 dm_bufio_lock(c);
1128
1129 for (; n_blocks--; block++) {
1130 int need_submit;
1131 struct dm_buffer *b;
1132 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1133 &write_list);
1134 if (unlikely(!list_empty(&write_list))) {
1135 dm_bufio_unlock(c);
1136 blk_finish_plug(&plug);
1137 __flush_write_list(&write_list);
1138 blk_start_plug(&plug);
1139 dm_bufio_lock(c);
1140 }
1141 if (unlikely(b != NULL)) {
1142 dm_bufio_unlock(c);
1143
1144 if (need_submit)
1145 submit_io(b, READ, b->block, read_endio);
1146 dm_bufio_release(b);
1147
1148 dm_bufio_cond_resched();
1149
1150 if (!n_blocks)
1151 goto flush_plug;
1152 dm_bufio_lock(c);
1153 }
1154 }
1155
1156 dm_bufio_unlock(c);
1157
1158flush_plug:
1159 blk_finish_plug(&plug);
1160}
1161EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1162
1163void dm_bufio_release(struct dm_buffer *b)
1164{
1165 struct dm_bufio_client *c = b->c;
1166
1167 dm_bufio_lock(c);
1168
1169 BUG_ON(!b->hold_count);
1170
1171 b->hold_count--;
1172 if (!b->hold_count) {
1173 wake_up(&c->free_buffer_wait);
1174
1175 /*
1176 * If there were errors on the buffer, and the buffer is not
1177 * to be written, free the buffer. There is no point in caching
1178 * invalid buffer.
1179 */
1180 if ((b->read_error || b->write_error) &&
1181 !test_bit(B_READING, &b->state) &&
1182 !test_bit(B_WRITING, &b->state) &&
1183 !test_bit(B_DIRTY, &b->state)) {
1184 __unlink_buffer(b);
1185 __free_buffer_wake(b);
1186 }
1187 }
1188
1189 dm_bufio_unlock(c);
1190}
1191EXPORT_SYMBOL_GPL(dm_bufio_release);
1192
1193void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1194{
1195 struct dm_bufio_client *c = b->c;
1196
1197 dm_bufio_lock(c);
1198
1199 BUG_ON(test_bit(B_READING, &b->state));
1200
1201 if (!test_and_set_bit(B_DIRTY, &b->state))
1202 __relink_lru(b, LIST_DIRTY);
1203
1204 dm_bufio_unlock(c);
1205}
1206EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1207
1208void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1209{
1210 LIST_HEAD(write_list);
1211
1212 BUG_ON(dm_bufio_in_request());
1213
1214 dm_bufio_lock(c);
1215 __write_dirty_buffers_async(c, 0, &write_list);
1216 dm_bufio_unlock(c);
1217 __flush_write_list(&write_list);
1218}
1219EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1220
1221/*
1222 * For performance, it is essential that the buffers are written asynchronously
1223 * and simultaneously (so that the block layer can merge the writes) and then
1224 * waited upon.
1225 *
1226 * Finally, we flush hardware disk cache.
1227 */
1228int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1229{
1230 int a, f;
1231 unsigned long buffers_processed = 0;
1232 struct dm_buffer *b, *tmp;
1233
1234 LIST_HEAD(write_list);
1235
1236 dm_bufio_lock(c);
1237 __write_dirty_buffers_async(c, 0, &write_list);
1238 dm_bufio_unlock(c);
1239 __flush_write_list(&write_list);
1240 dm_bufio_lock(c);
1241
1242again:
1243 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1244 int dropped_lock = 0;
1245
1246 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1247 buffers_processed++;
1248
1249 BUG_ON(test_bit(B_READING, &b->state));
1250
1251 if (test_bit(B_WRITING, &b->state)) {
1252 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1253 dropped_lock = 1;
1254 b->hold_count++;
1255 dm_bufio_unlock(c);
1256 wait_on_bit_io(&b->state, B_WRITING,
1257 TASK_UNINTERRUPTIBLE);
1258 dm_bufio_lock(c);
1259 b->hold_count--;
1260 } else
1261 wait_on_bit_io(&b->state, B_WRITING,
1262 TASK_UNINTERRUPTIBLE);
1263 }
1264
1265 if (!test_bit(B_DIRTY, &b->state) &&
1266 !test_bit(B_WRITING, &b->state))
1267 __relink_lru(b, LIST_CLEAN);
1268
1269 dm_bufio_cond_resched();
1270
1271 /*
1272 * If we dropped the lock, the list is no longer consistent,
1273 * so we must restart the search.
1274 *
1275 * In the most common case, the buffer just processed is
1276 * relinked to the clean list, so we won't loop scanning the
1277 * same buffer again and again.
1278 *
1279 * This may livelock if there is another thread simultaneously
1280 * dirtying buffers, so we count the number of buffers walked
1281 * and if it exceeds the total number of buffers, it means that
1282 * someone is doing some writes simultaneously with us. In
1283 * this case, stop, dropping the lock.
1284 */
1285 if (dropped_lock)
1286 goto again;
1287 }
1288 wake_up(&c->free_buffer_wait);
1289 dm_bufio_unlock(c);
1290
1291 a = xchg(&c->async_write_error, 0);
1292 f = dm_bufio_issue_flush(c);
1293 if (a)
1294 return a;
1295
1296 return f;
1297}
1298EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1299
1300/*
1301 * Use dm-io to send and empty barrier flush the device.
1302 */
1303int dm_bufio_issue_flush(struct dm_bufio_client *c)
1304{
1305 struct dm_io_request io_req = {
1306 .bi_rw = WRITE_FLUSH,
1307 .mem.type = DM_IO_KMEM,
1308 .mem.ptr.addr = NULL,
1309 .client = c->dm_io,
1310 };
1311 struct dm_io_region io_reg = {
1312 .bdev = c->bdev,
1313 .sector = 0,
1314 .count = 0,
1315 };
1316
1317 BUG_ON(dm_bufio_in_request());
1318
1319 return dm_io(&io_req, 1, &io_reg, NULL);
1320}
1321EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1322
1323/*
1324 * We first delete any other buffer that may be at that new location.
1325 *
1326 * Then, we write the buffer to the original location if it was dirty.
1327 *
1328 * Then, if we are the only one who is holding the buffer, relink the buffer
1329 * in the hash queue for the new location.
1330 *
1331 * If there was someone else holding the buffer, we write it to the new
1332 * location but not relink it, because that other user needs to have the buffer
1333 * at the same place.
1334 */
1335void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1336{
1337 struct dm_bufio_client *c = b->c;
1338 struct dm_buffer *new;
1339
1340 BUG_ON(dm_bufio_in_request());
1341
1342 dm_bufio_lock(c);
1343
1344retry:
1345 new = __find(c, new_block);
1346 if (new) {
1347 if (new->hold_count) {
1348 __wait_for_free_buffer(c);
1349 goto retry;
1350 }
1351
1352 /*
1353 * FIXME: Is there any point waiting for a write that's going
1354 * to be overwritten in a bit?
1355 */
1356 __make_buffer_clean(new);
1357 __unlink_buffer(new);
1358 __free_buffer_wake(new);
1359 }
1360
1361 BUG_ON(!b->hold_count);
1362 BUG_ON(test_bit(B_READING, &b->state));
1363
1364 __write_dirty_buffer(b, NULL);
1365 if (b->hold_count == 1) {
1366 wait_on_bit_io(&b->state, B_WRITING,
1367 TASK_UNINTERRUPTIBLE);
1368 set_bit(B_DIRTY, &b->state);
1369 __unlink_buffer(b);
1370 __link_buffer(b, new_block, LIST_DIRTY);
1371 } else {
1372 sector_t old_block;
1373 wait_on_bit_lock_io(&b->state, B_WRITING,
1374 TASK_UNINTERRUPTIBLE);
1375 /*
1376 * Relink buffer to "new_block" so that write_callback
1377 * sees "new_block" as a block number.
1378 * After the write, link the buffer back to old_block.
1379 * All this must be done in bufio lock, so that block number
1380 * change isn't visible to other threads.
1381 */
1382 old_block = b->block;
1383 __unlink_buffer(b);
1384 __link_buffer(b, new_block, b->list_mode);
1385 submit_io(b, WRITE, new_block, write_endio);
1386 wait_on_bit_io(&b->state, B_WRITING,
1387 TASK_UNINTERRUPTIBLE);
1388 __unlink_buffer(b);
1389 __link_buffer(b, old_block, b->list_mode);
1390 }
1391
1392 dm_bufio_unlock(c);
1393 dm_bufio_release(b);
1394}
1395EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1396
1397/*
1398 * Free the given buffer.
1399 *
1400 * This is just a hint, if the buffer is in use or dirty, this function
1401 * does nothing.
1402 */
1403void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1404{
1405 struct dm_buffer *b;
1406
1407 dm_bufio_lock(c);
1408
1409 b = __find(c, block);
1410 if (b && likely(!b->hold_count) && likely(!b->state)) {
1411 __unlink_buffer(b);
1412 __free_buffer_wake(b);
1413 }
1414
1415 dm_bufio_unlock(c);
1416}
1417EXPORT_SYMBOL(dm_bufio_forget);
1418
1419void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1420{
1421 c->minimum_buffers = n;
1422}
1423EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1424
1425unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1426{
1427 return c->block_size;
1428}
1429EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1430
1431sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1432{
1433 return i_size_read(c->bdev->bd_inode) >>
1434 (SECTOR_SHIFT + c->sectors_per_block_bits);
1435}
1436EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1437
1438sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1439{
1440 return b->block;
1441}
1442EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1443
1444void *dm_bufio_get_block_data(struct dm_buffer *b)
1445{
1446 return b->data;
1447}
1448EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1449
1450void *dm_bufio_get_aux_data(struct dm_buffer *b)
1451{
1452 return b + 1;
1453}
1454EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1455
1456struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1457{
1458 return b->c;
1459}
1460EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1461
1462static void drop_buffers(struct dm_bufio_client *c)
1463{
1464 struct dm_buffer *b;
1465 int i;
1466
1467 BUG_ON(dm_bufio_in_request());
1468
1469 /*
1470 * An optimization so that the buffers are not written one-by-one.
1471 */
1472 dm_bufio_write_dirty_buffers_async(c);
1473
1474 dm_bufio_lock(c);
1475
1476 while ((b = __get_unclaimed_buffer(c)))
1477 __free_buffer_wake(b);
1478
1479 for (i = 0; i < LIST_SIZE; i++)
1480 list_for_each_entry(b, &c->lru[i], lru_list)
1481 DMERR("leaked buffer %llx, hold count %u, list %d",
1482 (unsigned long long)b->block, b->hold_count, i);
1483
1484 for (i = 0; i < LIST_SIZE; i++)
1485 BUG_ON(!list_empty(&c->lru[i]));
1486
1487 dm_bufio_unlock(c);
1488}
1489
1490/*
1491 * We may not be able to evict this buffer if IO pending or the client
1492 * is still using it. Caller is expected to know buffer is too old.
1493 *
1494 * And if GFP_NOFS is used, we must not do any I/O because we hold
1495 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1496 * rerouted to different bufio client.
1497 */
1498static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1499{
1500 if (!(gfp & __GFP_FS)) {
1501 if (test_bit(B_READING, &b->state) ||
1502 test_bit(B_WRITING, &b->state) ||
1503 test_bit(B_DIRTY, &b->state))
1504 return false;
1505 }
1506
1507 if (b->hold_count)
1508 return false;
1509
1510 __make_buffer_clean(b);
1511 __unlink_buffer(b);
1512 __free_buffer_wake(b);
1513
1514 return true;
1515}
1516
1517static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1518{
1519 unsigned long retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1520 return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT);
1521}
1522
1523static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1524 gfp_t gfp_mask)
1525{
1526 int l;
1527 struct dm_buffer *b, *tmp;
1528 unsigned long freed = 0;
1529 unsigned long count = nr_to_scan;
1530 unsigned long retain_target = get_retain_buffers(c);
1531
1532 for (l = 0; l < LIST_SIZE; l++) {
1533 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1534 if (__try_evict_buffer(b, gfp_mask))
1535 freed++;
1536 if (!--nr_to_scan || ((count - freed) <= retain_target))
1537 return freed;
1538 dm_bufio_cond_resched();
1539 }
1540 }
1541 return freed;
1542}
1543
1544static unsigned long
1545dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1546{
1547 struct dm_bufio_client *c;
1548 unsigned long freed;
1549
1550 c = container_of(shrink, struct dm_bufio_client, shrinker);
1551 if (sc->gfp_mask & __GFP_FS)
1552 dm_bufio_lock(c);
1553 else if (!dm_bufio_trylock(c))
1554 return SHRINK_STOP;
1555
1556 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1557 dm_bufio_unlock(c);
1558 return freed;
1559}
1560
1561static unsigned long
1562dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1563{
1564 struct dm_bufio_client *c;
1565 unsigned long count;
1566
1567 c = container_of(shrink, struct dm_bufio_client, shrinker);
1568 if (sc->gfp_mask & __GFP_FS)
1569 dm_bufio_lock(c);
1570 else if (!dm_bufio_trylock(c))
1571 return 0;
1572
1573 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1574 dm_bufio_unlock(c);
1575 return count;
1576}
1577
1578/*
1579 * Create the buffering interface
1580 */
1581struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1582 unsigned reserved_buffers, unsigned aux_size,
1583 void (*alloc_callback)(struct dm_buffer *),
1584 void (*write_callback)(struct dm_buffer *))
1585{
1586 int r;
1587 struct dm_bufio_client *c;
1588 unsigned i;
1589
1590 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1591 (block_size & (block_size - 1)));
1592
1593 c = kzalloc(sizeof(*c), GFP_KERNEL);
1594 if (!c) {
1595 r = -ENOMEM;
1596 goto bad_client;
1597 }
1598 c->buffer_tree = RB_ROOT;
1599
1600 c->bdev = bdev;
1601 c->block_size = block_size;
1602 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1603 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1604 __ffs(block_size) - PAGE_SHIFT : 0;
1605 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1606 PAGE_SHIFT - __ffs(block_size) : 0);
1607
1608 c->aux_size = aux_size;
1609 c->alloc_callback = alloc_callback;
1610 c->write_callback = write_callback;
1611
1612 for (i = 0; i < LIST_SIZE; i++) {
1613 INIT_LIST_HEAD(&c->lru[i]);
1614 c->n_buffers[i] = 0;
1615 }
1616
1617 mutex_init(&c->lock);
1618 INIT_LIST_HEAD(&c->reserved_buffers);
1619 c->need_reserved_buffers = reserved_buffers;
1620
1621 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1622
1623 init_waitqueue_head(&c->free_buffer_wait);
1624 c->async_write_error = 0;
1625
1626 c->dm_io = dm_io_client_create();
1627 if (IS_ERR(c->dm_io)) {
1628 r = PTR_ERR(c->dm_io);
1629 goto bad_dm_io;
1630 }
1631
1632 mutex_lock(&dm_bufio_clients_lock);
1633 if (c->blocks_per_page_bits) {
1634 if (!DM_BUFIO_CACHE_NAME(c)) {
1635 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1636 if (!DM_BUFIO_CACHE_NAME(c)) {
1637 r = -ENOMEM;
1638 mutex_unlock(&dm_bufio_clients_lock);
1639 goto bad_cache;
1640 }
1641 }
1642
1643 if (!DM_BUFIO_CACHE(c)) {
1644 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1645 c->block_size,
1646 c->block_size, 0, NULL);
1647 if (!DM_BUFIO_CACHE(c)) {
1648 r = -ENOMEM;
1649 mutex_unlock(&dm_bufio_clients_lock);
1650 goto bad_cache;
1651 }
1652 }
1653 }
1654 mutex_unlock(&dm_bufio_clients_lock);
1655
1656 while (c->need_reserved_buffers) {
1657 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1658
1659 if (!b) {
1660 r = -ENOMEM;
1661 goto bad_buffer;
1662 }
1663 __free_buffer_wake(b);
1664 }
1665
1666 mutex_lock(&dm_bufio_clients_lock);
1667 dm_bufio_client_count++;
1668 list_add(&c->client_list, &dm_bufio_all_clients);
1669 __cache_size_refresh();
1670 mutex_unlock(&dm_bufio_clients_lock);
1671
1672 c->shrinker.count_objects = dm_bufio_shrink_count;
1673 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1674 c->shrinker.seeks = 1;
1675 c->shrinker.batch = 0;
1676 register_shrinker(&c->shrinker);
1677
1678 return c;
1679
1680bad_buffer:
1681bad_cache:
1682 while (!list_empty(&c->reserved_buffers)) {
1683 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1684 struct dm_buffer, lru_list);
1685 list_del(&b->lru_list);
1686 free_buffer(b);
1687 }
1688 dm_io_client_destroy(c->dm_io);
1689bad_dm_io:
1690 kfree(c);
1691bad_client:
1692 return ERR_PTR(r);
1693}
1694EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1695
1696/*
1697 * Free the buffering interface.
1698 * It is required that there are no references on any buffers.
1699 */
1700void dm_bufio_client_destroy(struct dm_bufio_client *c)
1701{
1702 unsigned i;
1703
1704 drop_buffers(c);
1705
1706 unregister_shrinker(&c->shrinker);
1707
1708 mutex_lock(&dm_bufio_clients_lock);
1709
1710 list_del(&c->client_list);
1711 dm_bufio_client_count--;
1712 __cache_size_refresh();
1713
1714 mutex_unlock(&dm_bufio_clients_lock);
1715
1716 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1717 BUG_ON(c->need_reserved_buffers);
1718
1719 while (!list_empty(&c->reserved_buffers)) {
1720 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1721 struct dm_buffer, lru_list);
1722 list_del(&b->lru_list);
1723 free_buffer(b);
1724 }
1725
1726 for (i = 0; i < LIST_SIZE; i++)
1727 if (c->n_buffers[i])
1728 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1729
1730 for (i = 0; i < LIST_SIZE; i++)
1731 BUG_ON(c->n_buffers[i]);
1732
1733 dm_io_client_destroy(c->dm_io);
1734 kfree(c);
1735}
1736EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1737
1738static unsigned get_max_age_hz(void)
1739{
1740 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1741
1742 if (max_age > UINT_MAX / HZ)
1743 max_age = UINT_MAX / HZ;
1744
1745 return max_age * HZ;
1746}
1747
1748static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1749{
1750 return time_after_eq(jiffies, b->last_accessed + age_hz);
1751}
1752
1753static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1754{
1755 struct dm_buffer *b, *tmp;
1756 unsigned long retain_target = get_retain_buffers(c);
1757 unsigned long count;
1758 LIST_HEAD(write_list);
1759
1760 dm_bufio_lock(c);
1761
1762 __check_watermark(c, &write_list);
1763 if (unlikely(!list_empty(&write_list))) {
1764 dm_bufio_unlock(c);
1765 __flush_write_list(&write_list);
1766 dm_bufio_lock(c);
1767 }
1768
1769 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1770 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1771 if (count <= retain_target)
1772 break;
1773
1774 if (!older_than(b, age_hz))
1775 break;
1776
1777 if (__try_evict_buffer(b, 0))
1778 count--;
1779
1780 dm_bufio_cond_resched();
1781 }
1782
1783 dm_bufio_unlock(c);
1784}
1785
1786static void cleanup_old_buffers(void)
1787{
1788 unsigned long max_age_hz = get_max_age_hz();
1789 struct dm_bufio_client *c;
1790
1791 mutex_lock(&dm_bufio_clients_lock);
1792
1793 __cache_size_refresh();
1794
1795 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1796 __evict_old_buffers(c, max_age_hz);
1797
1798 mutex_unlock(&dm_bufio_clients_lock);
1799}
1800
1801static struct workqueue_struct *dm_bufio_wq;
1802static struct delayed_work dm_bufio_work;
1803
1804static void work_fn(struct work_struct *w)
1805{
1806 cleanup_old_buffers();
1807
1808 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1809 DM_BUFIO_WORK_TIMER_SECS * HZ);
1810}
1811
1812/*----------------------------------------------------------------
1813 * Module setup
1814 *--------------------------------------------------------------*/
1815
1816/*
1817 * This is called only once for the whole dm_bufio module.
1818 * It initializes memory limit.
1819 */
1820static int __init dm_bufio_init(void)
1821{
1822 __u64 mem;
1823
1824 dm_bufio_allocated_kmem_cache = 0;
1825 dm_bufio_allocated_get_free_pages = 0;
1826 dm_bufio_allocated_vmalloc = 0;
1827 dm_bufio_current_allocated = 0;
1828
1829 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1830 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1831
1832 mem = (__u64)((totalram_pages - totalhigh_pages) *
1833 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1834
1835 if (mem > ULONG_MAX)
1836 mem = ULONG_MAX;
1837
1838#ifdef CONFIG_MMU
1839 /*
1840 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1841 * in fs/proc/internal.h
1842 */
1843 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1844 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1845#endif
1846
1847 dm_bufio_default_cache_size = mem;
1848
1849 mutex_lock(&dm_bufio_clients_lock);
1850 __cache_size_refresh();
1851 mutex_unlock(&dm_bufio_clients_lock);
1852
1853 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1854 if (!dm_bufio_wq)
1855 return -ENOMEM;
1856
1857 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1858 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1859 DM_BUFIO_WORK_TIMER_SECS * HZ);
1860
1861 return 0;
1862}
1863
1864/*
1865 * This is called once when unloading the dm_bufio module.
1866 */
1867static void __exit dm_bufio_exit(void)
1868{
1869 int bug = 0;
1870 int i;
1871
1872 cancel_delayed_work_sync(&dm_bufio_work);
1873 destroy_workqueue(dm_bufio_wq);
1874
1875 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1876 kmem_cache_destroy(dm_bufio_caches[i]);
1877
1878 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1879 kfree(dm_bufio_cache_names[i]);
1880
1881 if (dm_bufio_client_count) {
1882 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1883 __func__, dm_bufio_client_count);
1884 bug = 1;
1885 }
1886
1887 if (dm_bufio_current_allocated) {
1888 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1889 __func__, dm_bufio_current_allocated);
1890 bug = 1;
1891 }
1892
1893 if (dm_bufio_allocated_get_free_pages) {
1894 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1895 __func__, dm_bufio_allocated_get_free_pages);
1896 bug = 1;
1897 }
1898
1899 if (dm_bufio_allocated_vmalloc) {
1900 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1901 __func__, dm_bufio_allocated_vmalloc);
1902 bug = 1;
1903 }
1904
1905 if (bug)
1906 BUG();
1907}
1908
1909module_init(dm_bufio_init)
1910module_exit(dm_bufio_exit)
1911
1912module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1913MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1914
1915module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1916MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1917
1918module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1919MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1920
1921module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1922MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1923
1924module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1925MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1926
1927module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1928MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1929
1930module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1931MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1932
1933module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1934MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1935
1936MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1937MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1938MODULE_LICENSE("GPL");