Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* Copyright 2011-2014 Autronica Fire and Security AS |
| 2 | * |
| 3 | * This program is free software; you can redistribute it and/or modify it |
| 4 | * under the terms of the GNU General Public License as published by the Free |
| 5 | * Software Foundation; either version 2 of the License, or (at your option) |
| 6 | * any later version. |
| 7 | * |
| 8 | * Author(s): |
| 9 | * 2011-2014 Arvid Brodin, arvid.brodin@alten.se |
| 10 | * |
| 11 | * The HSR spec says never to forward the same frame twice on the same |
| 12 | * interface. A frame is identified by its source MAC address and its HSR |
| 13 | * sequence number. This code keeps track of senders and their sequence numbers |
| 14 | * to allow filtering of duplicate frames, and to detect HSR ring errors. |
| 15 | */ |
| 16 | |
| 17 | #include <linux/if_ether.h> |
| 18 | #include <linux/etherdevice.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/rculist.h> |
| 21 | #include "hsr_main.h" |
| 22 | #include "hsr_framereg.h" |
| 23 | #include "hsr_netlink.h" |
| 24 | |
| 25 | |
| 26 | struct hsr_node { |
| 27 | struct list_head mac_list; |
| 28 | unsigned char MacAddressA[ETH_ALEN]; |
| 29 | unsigned char MacAddressB[ETH_ALEN]; |
| 30 | /* Local slave through which AddrB frames are received from this node */ |
| 31 | enum hsr_port_type AddrB_port; |
| 32 | unsigned long time_in[HSR_PT_PORTS]; |
| 33 | bool time_in_stale[HSR_PT_PORTS]; |
| 34 | u16 seq_out[HSR_PT_PORTS]; |
| 35 | struct rcu_head rcu_head; |
| 36 | }; |
| 37 | |
| 38 | |
| 39 | /* TODO: use hash lists for mac addresses (linux/jhash.h)? */ |
| 40 | |
| 41 | |
| 42 | /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b, |
| 43 | * false otherwise. |
| 44 | */ |
| 45 | static bool seq_nr_after(u16 a, u16 b) |
| 46 | { |
| 47 | /* Remove inconsistency where |
| 48 | * seq_nr_after(a, b) == seq_nr_before(a, b) |
| 49 | */ |
| 50 | if ((int) b - a == 32768) |
| 51 | return false; |
| 52 | |
| 53 | return (((s16) (b - a)) < 0); |
| 54 | } |
| 55 | #define seq_nr_before(a, b) seq_nr_after((b), (a)) |
| 56 | #define seq_nr_after_or_eq(a, b) (!seq_nr_before((a), (b))) |
| 57 | #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b))) |
| 58 | |
| 59 | |
| 60 | bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr) |
| 61 | { |
| 62 | struct hsr_node *node; |
| 63 | |
| 64 | node = list_first_or_null_rcu(&hsr->self_node_db, struct hsr_node, |
| 65 | mac_list); |
| 66 | if (!node) { |
| 67 | WARN_ONCE(1, "HSR: No self node\n"); |
| 68 | return false; |
| 69 | } |
| 70 | |
| 71 | if (ether_addr_equal(addr, node->MacAddressA)) |
| 72 | return true; |
| 73 | if (ether_addr_equal(addr, node->MacAddressB)) |
| 74 | return true; |
| 75 | |
| 76 | return false; |
| 77 | } |
| 78 | |
| 79 | /* Search for mac entry. Caller must hold rcu read lock. |
| 80 | */ |
| 81 | static struct hsr_node *find_node_by_AddrA(struct list_head *node_db, |
| 82 | const unsigned char addr[ETH_ALEN]) |
| 83 | { |
| 84 | struct hsr_node *node; |
| 85 | |
| 86 | list_for_each_entry_rcu(node, node_db, mac_list) { |
| 87 | if (ether_addr_equal(node->MacAddressA, addr)) |
| 88 | return node; |
| 89 | } |
| 90 | |
| 91 | return NULL; |
| 92 | } |
| 93 | |
| 94 | |
| 95 | /* Helper for device init; the self_node_db is used in hsr_rcv() to recognize |
| 96 | * frames from self that's been looped over the HSR ring. |
| 97 | */ |
| 98 | int hsr_create_self_node(struct list_head *self_node_db, |
| 99 | unsigned char addr_a[ETH_ALEN], |
| 100 | unsigned char addr_b[ETH_ALEN]) |
| 101 | { |
| 102 | struct hsr_node *node, *oldnode; |
| 103 | |
| 104 | node = kmalloc(sizeof(*node), GFP_KERNEL); |
| 105 | if (!node) |
| 106 | return -ENOMEM; |
| 107 | |
| 108 | ether_addr_copy(node->MacAddressA, addr_a); |
| 109 | ether_addr_copy(node->MacAddressB, addr_b); |
| 110 | |
| 111 | rcu_read_lock(); |
| 112 | oldnode = list_first_or_null_rcu(self_node_db, |
| 113 | struct hsr_node, mac_list); |
| 114 | if (oldnode) { |
| 115 | list_replace_rcu(&oldnode->mac_list, &node->mac_list); |
| 116 | rcu_read_unlock(); |
| 117 | synchronize_rcu(); |
| 118 | kfree(oldnode); |
| 119 | } else { |
| 120 | rcu_read_unlock(); |
| 121 | list_add_tail_rcu(&node->mac_list, self_node_db); |
| 122 | } |
| 123 | |
| 124 | return 0; |
| 125 | } |
| 126 | |
| 127 | |
| 128 | /* Allocate an hsr_node and add it to node_db. 'addr' is the node's AddressA; |
| 129 | * seq_out is used to initialize filtering of outgoing duplicate frames |
| 130 | * originating from the newly added node. |
| 131 | */ |
| 132 | struct hsr_node *hsr_add_node(struct list_head *node_db, unsigned char addr[], |
| 133 | u16 seq_out) |
| 134 | { |
| 135 | struct hsr_node *node; |
| 136 | unsigned long now; |
| 137 | int i; |
| 138 | |
| 139 | node = kzalloc(sizeof(*node), GFP_ATOMIC); |
| 140 | if (!node) |
| 141 | return NULL; |
| 142 | |
| 143 | ether_addr_copy(node->MacAddressA, addr); |
| 144 | |
| 145 | /* We are only interested in time diffs here, so use current jiffies |
| 146 | * as initialization. (0 could trigger an spurious ring error warning). |
| 147 | */ |
| 148 | now = jiffies; |
| 149 | for (i = 0; i < HSR_PT_PORTS; i++) |
| 150 | node->time_in[i] = now; |
| 151 | for (i = 0; i < HSR_PT_PORTS; i++) |
| 152 | node->seq_out[i] = seq_out; |
| 153 | |
| 154 | list_add_tail_rcu(&node->mac_list, node_db); |
| 155 | |
| 156 | return node; |
| 157 | } |
| 158 | |
| 159 | /* Get the hsr_node from which 'skb' was sent. |
| 160 | */ |
| 161 | struct hsr_node *hsr_get_node(struct list_head *node_db, struct sk_buff *skb, |
| 162 | bool is_sup) |
| 163 | { |
| 164 | struct hsr_node *node; |
| 165 | struct ethhdr *ethhdr; |
| 166 | u16 seq_out; |
| 167 | |
| 168 | if (!skb_mac_header_was_set(skb)) |
| 169 | return NULL; |
| 170 | |
| 171 | ethhdr = (struct ethhdr *) skb_mac_header(skb); |
| 172 | |
| 173 | list_for_each_entry_rcu(node, node_db, mac_list) { |
| 174 | if (ether_addr_equal(node->MacAddressA, ethhdr->h_source)) |
| 175 | return node; |
| 176 | if (ether_addr_equal(node->MacAddressB, ethhdr->h_source)) |
| 177 | return node; |
| 178 | } |
| 179 | |
| 180 | if (!is_sup) |
| 181 | return NULL; /* Only supervision frame may create node entry */ |
| 182 | |
| 183 | if (ethhdr->h_proto == htons(ETH_P_PRP)) { |
| 184 | /* Use the existing sequence_nr from the tag as starting point |
| 185 | * for filtering duplicate frames. |
| 186 | */ |
| 187 | seq_out = hsr_get_skb_sequence_nr(skb) - 1; |
| 188 | } else { |
| 189 | WARN_ONCE(1, "%s: Non-HSR frame\n", __func__); |
| 190 | seq_out = 0; |
| 191 | } |
| 192 | |
| 193 | return hsr_add_node(node_db, ethhdr->h_source, seq_out); |
| 194 | } |
| 195 | |
| 196 | /* Use the Supervision frame's info about an eventual MacAddressB for merging |
| 197 | * nodes that has previously had their MacAddressB registered as a separate |
| 198 | * node. |
| 199 | */ |
| 200 | void hsr_handle_sup_frame(struct sk_buff *skb, struct hsr_node *node_curr, |
| 201 | struct hsr_port *port_rcv) |
| 202 | { |
| 203 | struct hsr_node *node_real; |
| 204 | struct hsr_sup_payload *hsr_sp; |
| 205 | struct list_head *node_db; |
| 206 | int i; |
| 207 | |
| 208 | skb_pull(skb, sizeof(struct hsr_ethhdr_sp)); |
| 209 | hsr_sp = (struct hsr_sup_payload *) skb->data; |
| 210 | |
| 211 | if (ether_addr_equal(eth_hdr(skb)->h_source, hsr_sp->MacAddressA)) |
| 212 | /* Not sent from MacAddressB of a PICS_SUBS capable node */ |
| 213 | goto done; |
| 214 | |
| 215 | /* Merge node_curr (registered on MacAddressB) into node_real */ |
| 216 | node_db = &port_rcv->hsr->node_db; |
| 217 | node_real = find_node_by_AddrA(node_db, hsr_sp->MacAddressA); |
| 218 | if (!node_real) |
| 219 | /* No frame received from AddrA of this node yet */ |
| 220 | node_real = hsr_add_node(node_db, hsr_sp->MacAddressA, |
| 221 | HSR_SEQNR_START - 1); |
| 222 | if (!node_real) |
| 223 | goto done; /* No mem */ |
| 224 | if (node_real == node_curr) |
| 225 | /* Node has already been merged */ |
| 226 | goto done; |
| 227 | |
| 228 | ether_addr_copy(node_real->MacAddressB, eth_hdr(skb)->h_source); |
| 229 | for (i = 0; i < HSR_PT_PORTS; i++) { |
| 230 | if (!node_curr->time_in_stale[i] && |
| 231 | time_after(node_curr->time_in[i], node_real->time_in[i])) { |
| 232 | node_real->time_in[i] = node_curr->time_in[i]; |
| 233 | node_real->time_in_stale[i] = node_curr->time_in_stale[i]; |
| 234 | } |
| 235 | if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i])) |
| 236 | node_real->seq_out[i] = node_curr->seq_out[i]; |
| 237 | } |
| 238 | node_real->AddrB_port = port_rcv->type; |
| 239 | |
| 240 | list_del_rcu(&node_curr->mac_list); |
| 241 | kfree_rcu(node_curr, rcu_head); |
| 242 | |
| 243 | done: |
| 244 | skb_push(skb, sizeof(struct hsr_ethhdr_sp)); |
| 245 | } |
| 246 | |
| 247 | |
| 248 | /* 'skb' is a frame meant for this host, that is to be passed to upper layers. |
| 249 | * |
| 250 | * If the frame was sent by a node's B interface, replace the source |
| 251 | * address with that node's "official" address (MacAddressA) so that upper |
| 252 | * layers recognize where it came from. |
| 253 | */ |
| 254 | void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb) |
| 255 | { |
| 256 | if (!skb_mac_header_was_set(skb)) { |
| 257 | WARN_ONCE(1, "%s: Mac header not set\n", __func__); |
| 258 | return; |
| 259 | } |
| 260 | |
| 261 | memcpy(ð_hdr(skb)->h_source, node->MacAddressA, ETH_ALEN); |
| 262 | } |
| 263 | |
| 264 | /* 'skb' is a frame meant for another host. |
| 265 | * 'port' is the outgoing interface |
| 266 | * |
| 267 | * Substitute the target (dest) MAC address if necessary, so the it matches the |
| 268 | * recipient interface MAC address, regardless of whether that is the |
| 269 | * recipient's A or B interface. |
| 270 | * This is needed to keep the packets flowing through switches that learn on |
| 271 | * which "side" the different interfaces are. |
| 272 | */ |
| 273 | void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb, |
| 274 | struct hsr_port *port) |
| 275 | { |
| 276 | struct hsr_node *node_dst; |
| 277 | |
| 278 | if (!skb_mac_header_was_set(skb)) { |
| 279 | WARN_ONCE(1, "%s: Mac header not set\n", __func__); |
| 280 | return; |
| 281 | } |
| 282 | |
| 283 | if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest)) |
| 284 | return; |
| 285 | |
| 286 | node_dst = find_node_by_AddrA(&port->hsr->node_db, eth_hdr(skb)->h_dest); |
| 287 | if (!node_dst) { |
| 288 | WARN_ONCE(1, "%s: Unknown node\n", __func__); |
| 289 | return; |
| 290 | } |
| 291 | if (port->type != node_dst->AddrB_port) |
| 292 | return; |
| 293 | |
| 294 | ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->MacAddressB); |
| 295 | } |
| 296 | |
| 297 | |
| 298 | void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port, |
| 299 | u16 sequence_nr) |
| 300 | { |
| 301 | /* Don't register incoming frames without a valid sequence number. This |
| 302 | * ensures entries of restarted nodes gets pruned so that they can |
| 303 | * re-register and resume communications. |
| 304 | */ |
| 305 | if (seq_nr_before(sequence_nr, node->seq_out[port->type])) |
| 306 | return; |
| 307 | |
| 308 | node->time_in[port->type] = jiffies; |
| 309 | node->time_in_stale[port->type] = false; |
| 310 | } |
| 311 | |
| 312 | /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid |
| 313 | * ethhdr->h_source address and skb->mac_header set. |
| 314 | * |
| 315 | * Return: |
| 316 | * 1 if frame can be shown to have been sent recently on this interface, |
| 317 | * 0 otherwise, or |
| 318 | * negative error code on error |
| 319 | */ |
| 320 | int hsr_register_frame_out(struct hsr_port *port, struct hsr_node *node, |
| 321 | u16 sequence_nr) |
| 322 | { |
| 323 | if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type])) |
| 324 | return 1; |
| 325 | |
| 326 | node->seq_out[port->type] = sequence_nr; |
| 327 | return 0; |
| 328 | } |
| 329 | |
| 330 | |
| 331 | static struct hsr_port *get_late_port(struct hsr_priv *hsr, |
| 332 | struct hsr_node *node) |
| 333 | { |
| 334 | if (node->time_in_stale[HSR_PT_SLAVE_A]) |
| 335 | return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); |
| 336 | if (node->time_in_stale[HSR_PT_SLAVE_B]) |
| 337 | return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); |
| 338 | |
| 339 | if (time_after(node->time_in[HSR_PT_SLAVE_B], |
| 340 | node->time_in[HSR_PT_SLAVE_A] + |
| 341 | msecs_to_jiffies(MAX_SLAVE_DIFF))) |
| 342 | return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); |
| 343 | if (time_after(node->time_in[HSR_PT_SLAVE_A], |
| 344 | node->time_in[HSR_PT_SLAVE_B] + |
| 345 | msecs_to_jiffies(MAX_SLAVE_DIFF))) |
| 346 | return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); |
| 347 | |
| 348 | return NULL; |
| 349 | } |
| 350 | |
| 351 | |
| 352 | /* Remove stale sequence_nr records. Called by timer every |
| 353 | * HSR_LIFE_CHECK_INTERVAL (two seconds or so). |
| 354 | */ |
| 355 | void hsr_prune_nodes(unsigned long data) |
| 356 | { |
| 357 | struct hsr_priv *hsr; |
| 358 | struct hsr_node *node; |
| 359 | struct hsr_port *port; |
| 360 | unsigned long timestamp; |
| 361 | unsigned long time_a, time_b; |
| 362 | |
| 363 | hsr = (struct hsr_priv *) data; |
| 364 | |
| 365 | rcu_read_lock(); |
| 366 | list_for_each_entry_rcu(node, &hsr->node_db, mac_list) { |
| 367 | /* Shorthand */ |
| 368 | time_a = node->time_in[HSR_PT_SLAVE_A]; |
| 369 | time_b = node->time_in[HSR_PT_SLAVE_B]; |
| 370 | |
| 371 | /* Check for timestamps old enough to risk wrap-around */ |
| 372 | if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET/2)) |
| 373 | node->time_in_stale[HSR_PT_SLAVE_A] = true; |
| 374 | if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET/2)) |
| 375 | node->time_in_stale[HSR_PT_SLAVE_B] = true; |
| 376 | |
| 377 | /* Get age of newest frame from node. |
| 378 | * At least one time_in is OK here; nodes get pruned long |
| 379 | * before both time_ins can get stale |
| 380 | */ |
| 381 | timestamp = time_a; |
| 382 | if (node->time_in_stale[HSR_PT_SLAVE_A] || |
| 383 | (!node->time_in_stale[HSR_PT_SLAVE_B] && |
| 384 | time_after(time_b, time_a))) |
| 385 | timestamp = time_b; |
| 386 | |
| 387 | /* Warn of ring error only as long as we get frames at all */ |
| 388 | if (time_is_after_jiffies(timestamp + |
| 389 | msecs_to_jiffies(1.5*MAX_SLAVE_DIFF))) { |
| 390 | rcu_read_lock(); |
| 391 | port = get_late_port(hsr, node); |
| 392 | if (port != NULL) |
| 393 | hsr_nl_ringerror(hsr, node->MacAddressA, port); |
| 394 | rcu_read_unlock(); |
| 395 | } |
| 396 | |
| 397 | /* Prune old entries */ |
| 398 | if (time_is_before_jiffies(timestamp + |
| 399 | msecs_to_jiffies(HSR_NODE_FORGET_TIME))) { |
| 400 | hsr_nl_nodedown(hsr, node->MacAddressA); |
| 401 | list_del_rcu(&node->mac_list); |
| 402 | /* Note that we need to free this entry later: */ |
| 403 | kfree_rcu(node, rcu_head); |
| 404 | } |
| 405 | } |
| 406 | rcu_read_unlock(); |
| 407 | } |
| 408 | |
| 409 | |
| 410 | void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos, |
| 411 | unsigned char addr[ETH_ALEN]) |
| 412 | { |
| 413 | struct hsr_node *node; |
| 414 | |
| 415 | if (!_pos) { |
| 416 | node = list_first_or_null_rcu(&hsr->node_db, |
| 417 | struct hsr_node, mac_list); |
| 418 | if (node) |
| 419 | ether_addr_copy(addr, node->MacAddressA); |
| 420 | return node; |
| 421 | } |
| 422 | |
| 423 | node = _pos; |
| 424 | list_for_each_entry_continue_rcu(node, &hsr->node_db, mac_list) { |
| 425 | ether_addr_copy(addr, node->MacAddressA); |
| 426 | return node; |
| 427 | } |
| 428 | |
| 429 | return NULL; |
| 430 | } |
| 431 | |
| 432 | |
| 433 | int hsr_get_node_data(struct hsr_priv *hsr, |
| 434 | const unsigned char *addr, |
| 435 | unsigned char addr_b[ETH_ALEN], |
| 436 | unsigned int *addr_b_ifindex, |
| 437 | int *if1_age, |
| 438 | u16 *if1_seq, |
| 439 | int *if2_age, |
| 440 | u16 *if2_seq) |
| 441 | { |
| 442 | struct hsr_node *node; |
| 443 | struct hsr_port *port; |
| 444 | unsigned long tdiff; |
| 445 | |
| 446 | |
| 447 | rcu_read_lock(); |
| 448 | node = find_node_by_AddrA(&hsr->node_db, addr); |
| 449 | if (!node) { |
| 450 | rcu_read_unlock(); |
| 451 | return -ENOENT; /* No such entry */ |
| 452 | } |
| 453 | |
| 454 | ether_addr_copy(addr_b, node->MacAddressB); |
| 455 | |
| 456 | tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A]; |
| 457 | if (node->time_in_stale[HSR_PT_SLAVE_A]) |
| 458 | *if1_age = INT_MAX; |
| 459 | #if HZ <= MSEC_PER_SEC |
| 460 | else if (tdiff > msecs_to_jiffies(INT_MAX)) |
| 461 | *if1_age = INT_MAX; |
| 462 | #endif |
| 463 | else |
| 464 | *if1_age = jiffies_to_msecs(tdiff); |
| 465 | |
| 466 | tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B]; |
| 467 | if (node->time_in_stale[HSR_PT_SLAVE_B]) |
| 468 | *if2_age = INT_MAX; |
| 469 | #if HZ <= MSEC_PER_SEC |
| 470 | else if (tdiff > msecs_to_jiffies(INT_MAX)) |
| 471 | *if2_age = INT_MAX; |
| 472 | #endif |
| 473 | else |
| 474 | *if2_age = jiffies_to_msecs(tdiff); |
| 475 | |
| 476 | /* Present sequence numbers as if they were incoming on interface */ |
| 477 | *if1_seq = node->seq_out[HSR_PT_SLAVE_B]; |
| 478 | *if2_seq = node->seq_out[HSR_PT_SLAVE_A]; |
| 479 | |
| 480 | if (node->AddrB_port != HSR_PT_NONE) { |
| 481 | port = hsr_port_get_hsr(hsr, node->AddrB_port); |
| 482 | *addr_b_ifindex = port->dev->ifindex; |
| 483 | } else { |
| 484 | *addr_b_ifindex = -1; |
| 485 | } |
| 486 | |
| 487 | rcu_read_unlock(); |
| 488 | |
| 489 | return 0; |
| 490 | } |