Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
| 3 | * operating system. INET is implemented using the BSD Socket |
| 4 | * interface as the means of communication with the user level. |
| 5 | * |
| 6 | * Implementation of the Transmission Control Protocol(TCP). |
| 7 | * |
| 8 | * Authors: Ross Biro |
| 9 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| 10 | * Mark Evans, <evansmp@uhura.aston.ac.uk> |
| 11 | * Corey Minyard <wf-rch!minyard@relay.EU.net> |
| 12 | * Florian La Roche, <flla@stud.uni-sb.de> |
| 13 | * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> |
| 14 | * Linus Torvalds, <torvalds@cs.helsinki.fi> |
| 15 | * Alan Cox, <gw4pts@gw4pts.ampr.org> |
| 16 | * Matthew Dillon, <dillon@apollo.west.oic.com> |
| 17 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
| 18 | * Jorge Cwik, <jorge@laser.satlink.net> |
| 19 | */ |
| 20 | |
| 21 | /* |
| 22 | * Changes: |
| 23 | * Pedro Roque : Fast Retransmit/Recovery. |
| 24 | * Two receive queues. |
| 25 | * Retransmit queue handled by TCP. |
| 26 | * Better retransmit timer handling. |
| 27 | * New congestion avoidance. |
| 28 | * Header prediction. |
| 29 | * Variable renaming. |
| 30 | * |
| 31 | * Eric : Fast Retransmit. |
| 32 | * Randy Scott : MSS option defines. |
| 33 | * Eric Schenk : Fixes to slow start algorithm. |
| 34 | * Eric Schenk : Yet another double ACK bug. |
| 35 | * Eric Schenk : Delayed ACK bug fixes. |
| 36 | * Eric Schenk : Floyd style fast retrans war avoidance. |
| 37 | * David S. Miller : Don't allow zero congestion window. |
| 38 | * Eric Schenk : Fix retransmitter so that it sends |
| 39 | * next packet on ack of previous packet. |
| 40 | * Andi Kleen : Moved open_request checking here |
| 41 | * and process RSTs for open_requests. |
| 42 | * Andi Kleen : Better prune_queue, and other fixes. |
| 43 | * Andrey Savochkin: Fix RTT measurements in the presence of |
| 44 | * timestamps. |
| 45 | * Andrey Savochkin: Check sequence numbers correctly when |
| 46 | * removing SACKs due to in sequence incoming |
| 47 | * data segments. |
| 48 | * Andi Kleen: Make sure we never ack data there is not |
| 49 | * enough room for. Also make this condition |
| 50 | * a fatal error if it might still happen. |
| 51 | * Andi Kleen: Add tcp_measure_rcv_mss to make |
| 52 | * connections with MSS<min(MTU,ann. MSS) |
| 53 | * work without delayed acks. |
| 54 | * Andi Kleen: Process packets with PSH set in the |
| 55 | * fast path. |
| 56 | * J Hadi Salim: ECN support |
| 57 | * Andrei Gurtov, |
| 58 | * Pasi Sarolahti, |
| 59 | * Panu Kuhlberg: Experimental audit of TCP (re)transmission |
| 60 | * engine. Lots of bugs are found. |
| 61 | * Pasi Sarolahti: F-RTO for dealing with spurious RTOs |
| 62 | */ |
| 63 | |
| 64 | #define pr_fmt(fmt) "TCP: " fmt |
| 65 | |
| 66 | #include <linux/mm.h> |
| 67 | #include <linux/slab.h> |
| 68 | #include <linux/module.h> |
| 69 | #include <linux/sysctl.h> |
| 70 | #include <linux/kernel.h> |
| 71 | #include <linux/prefetch.h> |
| 72 | #include <net/dst.h> |
| 73 | #include <net/tcp.h> |
| 74 | #include <net/inet_common.h> |
| 75 | #include <linux/ipsec.h> |
| 76 | #include <asm/unaligned.h> |
| 77 | #include <linux/errqueue.h> |
| 78 | |
| 79 | int sysctl_tcp_timestamps __read_mostly = 1; |
| 80 | int sysctl_tcp_window_scaling __read_mostly = 1; |
| 81 | int sysctl_tcp_sack __read_mostly = 1; |
| 82 | int sysctl_tcp_fack __read_mostly = 1; |
| 83 | int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; |
| 84 | int sysctl_tcp_max_reordering __read_mostly = 300; |
| 85 | EXPORT_SYMBOL(sysctl_tcp_reordering); |
| 86 | int sysctl_tcp_dsack __read_mostly = 1; |
| 87 | int sysctl_tcp_app_win __read_mostly = 31; |
| 88 | int sysctl_tcp_adv_win_scale __read_mostly = 1; |
| 89 | EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); |
| 90 | |
| 91 | /* rfc5961 challenge ack rate limiting */ |
| 92 | int sysctl_tcp_challenge_ack_limit = 1000; |
| 93 | |
| 94 | int sysctl_tcp_stdurg __read_mostly; |
| 95 | int sysctl_tcp_rfc1337 __read_mostly; |
| 96 | int sysctl_tcp_max_orphans __read_mostly = NR_FILE; |
| 97 | int sysctl_tcp_frto __read_mostly = 2; |
| 98 | int sysctl_tcp_min_rtt_wlen __read_mostly = 300; |
| 99 | |
| 100 | int sysctl_tcp_thin_dupack __read_mostly; |
| 101 | |
| 102 | int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; |
| 103 | int sysctl_tcp_early_retrans __read_mostly = 3; |
| 104 | int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; |
| 105 | |
| 106 | #define FLAG_DATA 0x01 /* Incoming frame contained data. */ |
| 107 | #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ |
| 108 | #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ |
| 109 | #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ |
| 110 | #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ |
| 111 | #define FLAG_DATA_SACKED 0x20 /* New SACK. */ |
| 112 | #define FLAG_ECE 0x40 /* ECE in this ACK */ |
| 113 | #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ |
| 114 | #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ |
| 115 | #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ |
| 116 | #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ |
| 117 | #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ |
| 118 | #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ |
| 119 | #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ |
| 120 | |
| 121 | #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) |
| 122 | #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) |
| 123 | #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) |
| 124 | #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) |
| 125 | |
| 126 | #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) |
| 127 | #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) |
| 128 | |
| 129 | /* Adapt the MSS value used to make delayed ack decision to the |
| 130 | * real world. |
| 131 | */ |
| 132 | static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) |
| 133 | { |
| 134 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 135 | const unsigned int lss = icsk->icsk_ack.last_seg_size; |
| 136 | unsigned int len; |
| 137 | |
| 138 | icsk->icsk_ack.last_seg_size = 0; |
| 139 | |
| 140 | /* skb->len may jitter because of SACKs, even if peer |
| 141 | * sends good full-sized frames. |
| 142 | */ |
| 143 | len = skb_shinfo(skb)->gso_size ? : skb->len; |
| 144 | if (len >= icsk->icsk_ack.rcv_mss) { |
| 145 | icsk->icsk_ack.rcv_mss = len; |
| 146 | } else { |
| 147 | /* Otherwise, we make more careful check taking into account, |
| 148 | * that SACKs block is variable. |
| 149 | * |
| 150 | * "len" is invariant segment length, including TCP header. |
| 151 | */ |
| 152 | len += skb->data - skb_transport_header(skb); |
| 153 | if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || |
| 154 | /* If PSH is not set, packet should be |
| 155 | * full sized, provided peer TCP is not badly broken. |
| 156 | * This observation (if it is correct 8)) allows |
| 157 | * to handle super-low mtu links fairly. |
| 158 | */ |
| 159 | (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && |
| 160 | !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { |
| 161 | /* Subtract also invariant (if peer is RFC compliant), |
| 162 | * tcp header plus fixed timestamp option length. |
| 163 | * Resulting "len" is MSS free of SACK jitter. |
| 164 | */ |
| 165 | len -= tcp_sk(sk)->tcp_header_len; |
| 166 | icsk->icsk_ack.last_seg_size = len; |
| 167 | if (len == lss) { |
| 168 | icsk->icsk_ack.rcv_mss = len; |
| 169 | return; |
| 170 | } |
| 171 | } |
| 172 | if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) |
| 173 | icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; |
| 174 | icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | static void tcp_incr_quickack(struct sock *sk) |
| 179 | { |
| 180 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 181 | unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); |
| 182 | |
| 183 | if (quickacks == 0) |
| 184 | quickacks = 2; |
| 185 | if (quickacks > icsk->icsk_ack.quick) |
| 186 | icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); |
| 187 | } |
| 188 | |
| 189 | static void tcp_enter_quickack_mode(struct sock *sk) |
| 190 | { |
| 191 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 192 | tcp_incr_quickack(sk); |
| 193 | icsk->icsk_ack.pingpong = 0; |
| 194 | icsk->icsk_ack.ato = TCP_ATO_MIN; |
| 195 | } |
| 196 | |
| 197 | /* Send ACKs quickly, if "quick" count is not exhausted |
| 198 | * and the session is not interactive. |
| 199 | */ |
| 200 | |
| 201 | static bool tcp_in_quickack_mode(struct sock *sk) |
| 202 | { |
| 203 | const struct inet_connection_sock *icsk = inet_csk(sk); |
| 204 | const struct dst_entry *dst = __sk_dst_get(sk); |
| 205 | |
| 206 | return (dst && dst_metric(dst, RTAX_QUICKACK)) || |
| 207 | (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); |
| 208 | } |
| 209 | |
| 210 | static void tcp_ecn_queue_cwr(struct tcp_sock *tp) |
| 211 | { |
| 212 | if (tp->ecn_flags & TCP_ECN_OK) |
| 213 | tp->ecn_flags |= TCP_ECN_QUEUE_CWR; |
| 214 | } |
| 215 | |
| 216 | static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) |
| 217 | { |
| 218 | if (tcp_hdr(skb)->cwr) |
| 219 | tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; |
| 220 | } |
| 221 | |
| 222 | static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) |
| 223 | { |
| 224 | tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; |
| 225 | } |
| 226 | |
| 227 | static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) |
| 228 | { |
| 229 | switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { |
| 230 | case INET_ECN_NOT_ECT: |
| 231 | /* Funny extension: if ECT is not set on a segment, |
| 232 | * and we already seen ECT on a previous segment, |
| 233 | * it is probably a retransmit. |
| 234 | */ |
| 235 | if (tp->ecn_flags & TCP_ECN_SEEN) |
| 236 | tcp_enter_quickack_mode((struct sock *)tp); |
| 237 | break; |
| 238 | case INET_ECN_CE: |
| 239 | if (tcp_ca_needs_ecn((struct sock *)tp)) |
| 240 | tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); |
| 241 | |
| 242 | if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { |
| 243 | /* Better not delay acks, sender can have a very low cwnd */ |
| 244 | tcp_enter_quickack_mode((struct sock *)tp); |
| 245 | tp->ecn_flags |= TCP_ECN_DEMAND_CWR; |
| 246 | } |
| 247 | tp->ecn_flags |= TCP_ECN_SEEN; |
| 248 | break; |
| 249 | default: |
| 250 | if (tcp_ca_needs_ecn((struct sock *)tp)) |
| 251 | tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); |
| 252 | tp->ecn_flags |= TCP_ECN_SEEN; |
| 253 | break; |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) |
| 258 | { |
| 259 | if (tp->ecn_flags & TCP_ECN_OK) |
| 260 | __tcp_ecn_check_ce(tp, skb); |
| 261 | } |
| 262 | |
| 263 | static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) |
| 264 | { |
| 265 | if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) |
| 266 | tp->ecn_flags &= ~TCP_ECN_OK; |
| 267 | } |
| 268 | |
| 269 | static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) |
| 270 | { |
| 271 | if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) |
| 272 | tp->ecn_flags &= ~TCP_ECN_OK; |
| 273 | } |
| 274 | |
| 275 | static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) |
| 276 | { |
| 277 | if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) |
| 278 | return true; |
| 279 | return false; |
| 280 | } |
| 281 | |
| 282 | /* Buffer size and advertised window tuning. |
| 283 | * |
| 284 | * 1. Tuning sk->sk_sndbuf, when connection enters established state. |
| 285 | */ |
| 286 | |
| 287 | static void tcp_sndbuf_expand(struct sock *sk) |
| 288 | { |
| 289 | const struct tcp_sock *tp = tcp_sk(sk); |
| 290 | int sndmem, per_mss; |
| 291 | u32 nr_segs; |
| 292 | |
| 293 | /* Worst case is non GSO/TSO : each frame consumes one skb |
| 294 | * and skb->head is kmalloced using power of two area of memory |
| 295 | */ |
| 296 | per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + |
| 297 | MAX_TCP_HEADER + |
| 298 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| 299 | |
| 300 | per_mss = roundup_pow_of_two(per_mss) + |
| 301 | SKB_DATA_ALIGN(sizeof(struct sk_buff)); |
| 302 | |
| 303 | nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); |
| 304 | nr_segs = max_t(u32, nr_segs, tp->reordering + 1); |
| 305 | |
| 306 | /* Fast Recovery (RFC 5681 3.2) : |
| 307 | * Cubic needs 1.7 factor, rounded to 2 to include |
| 308 | * extra cushion (application might react slowly to POLLOUT) |
| 309 | */ |
| 310 | sndmem = 2 * nr_segs * per_mss; |
| 311 | |
| 312 | if (sk->sk_sndbuf < sndmem) |
| 313 | sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); |
| 314 | } |
| 315 | |
| 316 | /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) |
| 317 | * |
| 318 | * All tcp_full_space() is split to two parts: "network" buffer, allocated |
| 319 | * forward and advertised in receiver window (tp->rcv_wnd) and |
| 320 | * "application buffer", required to isolate scheduling/application |
| 321 | * latencies from network. |
| 322 | * window_clamp is maximal advertised window. It can be less than |
| 323 | * tcp_full_space(), in this case tcp_full_space() - window_clamp |
| 324 | * is reserved for "application" buffer. The less window_clamp is |
| 325 | * the smoother our behaviour from viewpoint of network, but the lower |
| 326 | * throughput and the higher sensitivity of the connection to losses. 8) |
| 327 | * |
| 328 | * rcv_ssthresh is more strict window_clamp used at "slow start" |
| 329 | * phase to predict further behaviour of this connection. |
| 330 | * It is used for two goals: |
| 331 | * - to enforce header prediction at sender, even when application |
| 332 | * requires some significant "application buffer". It is check #1. |
| 333 | * - to prevent pruning of receive queue because of misprediction |
| 334 | * of receiver window. Check #2. |
| 335 | * |
| 336 | * The scheme does not work when sender sends good segments opening |
| 337 | * window and then starts to feed us spaghetti. But it should work |
| 338 | * in common situations. Otherwise, we have to rely on queue collapsing. |
| 339 | */ |
| 340 | |
| 341 | /* Slow part of check#2. */ |
| 342 | static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) |
| 343 | { |
| 344 | struct tcp_sock *tp = tcp_sk(sk); |
| 345 | /* Optimize this! */ |
| 346 | int truesize = tcp_win_from_space(skb->truesize) >> 1; |
| 347 | int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; |
| 348 | |
| 349 | while (tp->rcv_ssthresh <= window) { |
| 350 | if (truesize <= skb->len) |
| 351 | return 2 * inet_csk(sk)->icsk_ack.rcv_mss; |
| 352 | |
| 353 | truesize >>= 1; |
| 354 | window >>= 1; |
| 355 | } |
| 356 | return 0; |
| 357 | } |
| 358 | |
| 359 | static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) |
| 360 | { |
| 361 | struct tcp_sock *tp = tcp_sk(sk); |
| 362 | |
| 363 | /* Check #1 */ |
| 364 | if (tp->rcv_ssthresh < tp->window_clamp && |
| 365 | (int)tp->rcv_ssthresh < tcp_space(sk) && |
| 366 | !tcp_under_memory_pressure(sk)) { |
| 367 | int incr; |
| 368 | |
| 369 | /* Check #2. Increase window, if skb with such overhead |
| 370 | * will fit to rcvbuf in future. |
| 371 | */ |
| 372 | if (tcp_win_from_space(skb->truesize) <= skb->len) |
| 373 | incr = 2 * tp->advmss; |
| 374 | else |
| 375 | incr = __tcp_grow_window(sk, skb); |
| 376 | |
| 377 | if (incr) { |
| 378 | incr = max_t(int, incr, 2 * skb->len); |
| 379 | tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, |
| 380 | tp->window_clamp); |
| 381 | inet_csk(sk)->icsk_ack.quick |= 1; |
| 382 | } |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | /* 3. Tuning rcvbuf, when connection enters established state. */ |
| 387 | static void tcp_fixup_rcvbuf(struct sock *sk) |
| 388 | { |
| 389 | u32 mss = tcp_sk(sk)->advmss; |
| 390 | int rcvmem; |
| 391 | |
| 392 | rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * |
| 393 | tcp_default_init_rwnd(mss); |
| 394 | |
| 395 | /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency |
| 396 | * Allow enough cushion so that sender is not limited by our window |
| 397 | */ |
| 398 | if (sysctl_tcp_moderate_rcvbuf) |
| 399 | rcvmem <<= 2; |
| 400 | |
| 401 | if (sk->sk_rcvbuf < rcvmem) |
| 402 | sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); |
| 403 | } |
| 404 | |
| 405 | /* 4. Try to fixup all. It is made immediately after connection enters |
| 406 | * established state. |
| 407 | */ |
| 408 | void tcp_init_buffer_space(struct sock *sk) |
| 409 | { |
| 410 | struct tcp_sock *tp = tcp_sk(sk); |
| 411 | int maxwin; |
| 412 | |
| 413 | if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) |
| 414 | tcp_fixup_rcvbuf(sk); |
| 415 | if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) |
| 416 | tcp_sndbuf_expand(sk); |
| 417 | |
| 418 | tp->rcvq_space.space = tp->rcv_wnd; |
| 419 | tp->rcvq_space.time = tcp_time_stamp; |
| 420 | tp->rcvq_space.seq = tp->copied_seq; |
| 421 | |
| 422 | maxwin = tcp_full_space(sk); |
| 423 | |
| 424 | if (tp->window_clamp >= maxwin) { |
| 425 | tp->window_clamp = maxwin; |
| 426 | |
| 427 | if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) |
| 428 | tp->window_clamp = max(maxwin - |
| 429 | (maxwin >> sysctl_tcp_app_win), |
| 430 | 4 * tp->advmss); |
| 431 | } |
| 432 | |
| 433 | /* Force reservation of one segment. */ |
| 434 | if (sysctl_tcp_app_win && |
| 435 | tp->window_clamp > 2 * tp->advmss && |
| 436 | tp->window_clamp + tp->advmss > maxwin) |
| 437 | tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); |
| 438 | |
| 439 | tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); |
| 440 | tp->snd_cwnd_stamp = tcp_time_stamp; |
| 441 | } |
| 442 | |
| 443 | /* 5. Recalculate window clamp after socket hit its memory bounds. */ |
| 444 | static void tcp_clamp_window(struct sock *sk) |
| 445 | { |
| 446 | struct tcp_sock *tp = tcp_sk(sk); |
| 447 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 448 | |
| 449 | icsk->icsk_ack.quick = 0; |
| 450 | |
| 451 | if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && |
| 452 | !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && |
| 453 | !tcp_under_memory_pressure(sk) && |
| 454 | sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { |
| 455 | sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), |
| 456 | sysctl_tcp_rmem[2]); |
| 457 | } |
| 458 | if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) |
| 459 | tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); |
| 460 | } |
| 461 | |
| 462 | /* Initialize RCV_MSS value. |
| 463 | * RCV_MSS is an our guess about MSS used by the peer. |
| 464 | * We haven't any direct information about the MSS. |
| 465 | * It's better to underestimate the RCV_MSS rather than overestimate. |
| 466 | * Overestimations make us ACKing less frequently than needed. |
| 467 | * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). |
| 468 | */ |
| 469 | void tcp_initialize_rcv_mss(struct sock *sk) |
| 470 | { |
| 471 | const struct tcp_sock *tp = tcp_sk(sk); |
| 472 | unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); |
| 473 | |
| 474 | hint = min(hint, tp->rcv_wnd / 2); |
| 475 | hint = min(hint, TCP_MSS_DEFAULT); |
| 476 | hint = max(hint, TCP_MIN_MSS); |
| 477 | |
| 478 | inet_csk(sk)->icsk_ack.rcv_mss = hint; |
| 479 | } |
| 480 | EXPORT_SYMBOL(tcp_initialize_rcv_mss); |
| 481 | |
| 482 | /* Receiver "autotuning" code. |
| 483 | * |
| 484 | * The algorithm for RTT estimation w/o timestamps is based on |
| 485 | * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. |
| 486 | * <http://public.lanl.gov/radiant/pubs.html#DRS> |
| 487 | * |
| 488 | * More detail on this code can be found at |
| 489 | * <http://staff.psc.edu/jheffner/>, |
| 490 | * though this reference is out of date. A new paper |
| 491 | * is pending. |
| 492 | */ |
| 493 | static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) |
| 494 | { |
| 495 | u32 new_sample = tp->rcv_rtt_est.rtt; |
| 496 | long m = sample; |
| 497 | |
| 498 | if (m == 0) |
| 499 | m = 1; |
| 500 | |
| 501 | if (new_sample != 0) { |
| 502 | /* If we sample in larger samples in the non-timestamp |
| 503 | * case, we could grossly overestimate the RTT especially |
| 504 | * with chatty applications or bulk transfer apps which |
| 505 | * are stalled on filesystem I/O. |
| 506 | * |
| 507 | * Also, since we are only going for a minimum in the |
| 508 | * non-timestamp case, we do not smooth things out |
| 509 | * else with timestamps disabled convergence takes too |
| 510 | * long. |
| 511 | */ |
| 512 | if (!win_dep) { |
| 513 | m -= (new_sample >> 3); |
| 514 | new_sample += m; |
| 515 | } else { |
| 516 | m <<= 3; |
| 517 | if (m < new_sample) |
| 518 | new_sample = m; |
| 519 | } |
| 520 | } else { |
| 521 | /* No previous measure. */ |
| 522 | new_sample = m << 3; |
| 523 | } |
| 524 | |
| 525 | if (tp->rcv_rtt_est.rtt != new_sample) |
| 526 | tp->rcv_rtt_est.rtt = new_sample; |
| 527 | } |
| 528 | |
| 529 | static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) |
| 530 | { |
| 531 | if (tp->rcv_rtt_est.time == 0) |
| 532 | goto new_measure; |
| 533 | if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) |
| 534 | return; |
| 535 | tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); |
| 536 | |
| 537 | new_measure: |
| 538 | tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; |
| 539 | tp->rcv_rtt_est.time = tcp_time_stamp; |
| 540 | } |
| 541 | |
| 542 | static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, |
| 543 | const struct sk_buff *skb) |
| 544 | { |
| 545 | struct tcp_sock *tp = tcp_sk(sk); |
| 546 | if (tp->rx_opt.rcv_tsecr && |
| 547 | (TCP_SKB_CB(skb)->end_seq - |
| 548 | TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) |
| 549 | tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); |
| 550 | } |
| 551 | |
| 552 | /* |
| 553 | * This function should be called every time data is copied to user space. |
| 554 | * It calculates the appropriate TCP receive buffer space. |
| 555 | */ |
| 556 | void tcp_rcv_space_adjust(struct sock *sk) |
| 557 | { |
| 558 | struct tcp_sock *tp = tcp_sk(sk); |
| 559 | int time; |
| 560 | int copied; |
| 561 | |
| 562 | time = tcp_time_stamp - tp->rcvq_space.time; |
| 563 | if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) |
| 564 | return; |
| 565 | |
| 566 | /* Number of bytes copied to user in last RTT */ |
| 567 | copied = tp->copied_seq - tp->rcvq_space.seq; |
| 568 | if (copied <= tp->rcvq_space.space) |
| 569 | goto new_measure; |
| 570 | |
| 571 | /* A bit of theory : |
| 572 | * copied = bytes received in previous RTT, our base window |
| 573 | * To cope with packet losses, we need a 2x factor |
| 574 | * To cope with slow start, and sender growing its cwin by 100 % |
| 575 | * every RTT, we need a 4x factor, because the ACK we are sending |
| 576 | * now is for the next RTT, not the current one : |
| 577 | * <prev RTT . ><current RTT .. ><next RTT .... > |
| 578 | */ |
| 579 | |
| 580 | if (sysctl_tcp_moderate_rcvbuf && |
| 581 | !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { |
| 582 | int rcvwin, rcvmem, rcvbuf; |
| 583 | |
| 584 | /* minimal window to cope with packet losses, assuming |
| 585 | * steady state. Add some cushion because of small variations. |
| 586 | */ |
| 587 | rcvwin = (copied << 1) + 16 * tp->advmss; |
| 588 | |
| 589 | /* If rate increased by 25%, |
| 590 | * assume slow start, rcvwin = 3 * copied |
| 591 | * If rate increased by 50%, |
| 592 | * assume sender can use 2x growth, rcvwin = 4 * copied |
| 593 | */ |
| 594 | if (copied >= |
| 595 | tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { |
| 596 | if (copied >= |
| 597 | tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) |
| 598 | rcvwin <<= 1; |
| 599 | else |
| 600 | rcvwin += (rcvwin >> 1); |
| 601 | } |
| 602 | |
| 603 | rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); |
| 604 | while (tcp_win_from_space(rcvmem) < tp->advmss) |
| 605 | rcvmem += 128; |
| 606 | |
| 607 | rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); |
| 608 | if (rcvbuf > sk->sk_rcvbuf) { |
| 609 | sk->sk_rcvbuf = rcvbuf; |
| 610 | |
| 611 | /* Make the window clamp follow along. */ |
| 612 | tp->window_clamp = rcvwin; |
| 613 | } |
| 614 | } |
| 615 | tp->rcvq_space.space = copied; |
| 616 | |
| 617 | new_measure: |
| 618 | tp->rcvq_space.seq = tp->copied_seq; |
| 619 | tp->rcvq_space.time = tcp_time_stamp; |
| 620 | } |
| 621 | |
| 622 | /* There is something which you must keep in mind when you analyze the |
| 623 | * behavior of the tp->ato delayed ack timeout interval. When a |
| 624 | * connection starts up, we want to ack as quickly as possible. The |
| 625 | * problem is that "good" TCP's do slow start at the beginning of data |
| 626 | * transmission. The means that until we send the first few ACK's the |
| 627 | * sender will sit on his end and only queue most of his data, because |
| 628 | * he can only send snd_cwnd unacked packets at any given time. For |
| 629 | * each ACK we send, he increments snd_cwnd and transmits more of his |
| 630 | * queue. -DaveM |
| 631 | */ |
| 632 | static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) |
| 633 | { |
| 634 | struct tcp_sock *tp = tcp_sk(sk); |
| 635 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 636 | u32 now; |
| 637 | |
| 638 | inet_csk_schedule_ack(sk); |
| 639 | |
| 640 | tcp_measure_rcv_mss(sk, skb); |
| 641 | |
| 642 | tcp_rcv_rtt_measure(tp); |
| 643 | |
| 644 | now = tcp_time_stamp; |
| 645 | |
| 646 | if (!icsk->icsk_ack.ato) { |
| 647 | /* The _first_ data packet received, initialize |
| 648 | * delayed ACK engine. |
| 649 | */ |
| 650 | tcp_incr_quickack(sk); |
| 651 | icsk->icsk_ack.ato = TCP_ATO_MIN; |
| 652 | } else { |
| 653 | int m = now - icsk->icsk_ack.lrcvtime; |
| 654 | |
| 655 | if (m <= TCP_ATO_MIN / 2) { |
| 656 | /* The fastest case is the first. */ |
| 657 | icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; |
| 658 | } else if (m < icsk->icsk_ack.ato) { |
| 659 | icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; |
| 660 | if (icsk->icsk_ack.ato > icsk->icsk_rto) |
| 661 | icsk->icsk_ack.ato = icsk->icsk_rto; |
| 662 | } else if (m > icsk->icsk_rto) { |
| 663 | /* Too long gap. Apparently sender failed to |
| 664 | * restart window, so that we send ACKs quickly. |
| 665 | */ |
| 666 | tcp_incr_quickack(sk); |
| 667 | sk_mem_reclaim(sk); |
| 668 | } |
| 669 | } |
| 670 | icsk->icsk_ack.lrcvtime = now; |
| 671 | |
| 672 | tcp_ecn_check_ce(tp, skb); |
| 673 | |
| 674 | if (skb->len >= 128) |
| 675 | tcp_grow_window(sk, skb); |
| 676 | } |
| 677 | |
| 678 | /* Called to compute a smoothed rtt estimate. The data fed to this |
| 679 | * routine either comes from timestamps, or from segments that were |
| 680 | * known _not_ to have been retransmitted [see Karn/Partridge |
| 681 | * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 |
| 682 | * piece by Van Jacobson. |
| 683 | * NOTE: the next three routines used to be one big routine. |
| 684 | * To save cycles in the RFC 1323 implementation it was better to break |
| 685 | * it up into three procedures. -- erics |
| 686 | */ |
| 687 | static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) |
| 688 | { |
| 689 | struct tcp_sock *tp = tcp_sk(sk); |
| 690 | long m = mrtt_us; /* RTT */ |
| 691 | u32 srtt = tp->srtt_us; |
| 692 | |
| 693 | /* The following amusing code comes from Jacobson's |
| 694 | * article in SIGCOMM '88. Note that rtt and mdev |
| 695 | * are scaled versions of rtt and mean deviation. |
| 696 | * This is designed to be as fast as possible |
| 697 | * m stands for "measurement". |
| 698 | * |
| 699 | * On a 1990 paper the rto value is changed to: |
| 700 | * RTO = rtt + 4 * mdev |
| 701 | * |
| 702 | * Funny. This algorithm seems to be very broken. |
| 703 | * These formulae increase RTO, when it should be decreased, increase |
| 704 | * too slowly, when it should be increased quickly, decrease too quickly |
| 705 | * etc. I guess in BSD RTO takes ONE value, so that it is absolutely |
| 706 | * does not matter how to _calculate_ it. Seems, it was trap |
| 707 | * that VJ failed to avoid. 8) |
| 708 | */ |
| 709 | if (srtt != 0) { |
| 710 | m -= (srtt >> 3); /* m is now error in rtt est */ |
| 711 | srtt += m; /* rtt = 7/8 rtt + 1/8 new */ |
| 712 | if (m < 0) { |
| 713 | m = -m; /* m is now abs(error) */ |
| 714 | m -= (tp->mdev_us >> 2); /* similar update on mdev */ |
| 715 | /* This is similar to one of Eifel findings. |
| 716 | * Eifel blocks mdev updates when rtt decreases. |
| 717 | * This solution is a bit different: we use finer gain |
| 718 | * for mdev in this case (alpha*beta). |
| 719 | * Like Eifel it also prevents growth of rto, |
| 720 | * but also it limits too fast rto decreases, |
| 721 | * happening in pure Eifel. |
| 722 | */ |
| 723 | if (m > 0) |
| 724 | m >>= 3; |
| 725 | } else { |
| 726 | m -= (tp->mdev_us >> 2); /* similar update on mdev */ |
| 727 | } |
| 728 | tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ |
| 729 | if (tp->mdev_us > tp->mdev_max_us) { |
| 730 | tp->mdev_max_us = tp->mdev_us; |
| 731 | if (tp->mdev_max_us > tp->rttvar_us) |
| 732 | tp->rttvar_us = tp->mdev_max_us; |
| 733 | } |
| 734 | if (after(tp->snd_una, tp->rtt_seq)) { |
| 735 | if (tp->mdev_max_us < tp->rttvar_us) |
| 736 | tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; |
| 737 | tp->rtt_seq = tp->snd_nxt; |
| 738 | tp->mdev_max_us = tcp_rto_min_us(sk); |
| 739 | } |
| 740 | } else { |
| 741 | /* no previous measure. */ |
| 742 | srtt = m << 3; /* take the measured time to be rtt */ |
| 743 | tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ |
| 744 | tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); |
| 745 | tp->mdev_max_us = tp->rttvar_us; |
| 746 | tp->rtt_seq = tp->snd_nxt; |
| 747 | } |
| 748 | tp->srtt_us = max(1U, srtt); |
| 749 | } |
| 750 | |
| 751 | /* Set the sk_pacing_rate to allow proper sizing of TSO packets. |
| 752 | * Note: TCP stack does not yet implement pacing. |
| 753 | * FQ packet scheduler can be used to implement cheap but effective |
| 754 | * TCP pacing, to smooth the burst on large writes when packets |
| 755 | * in flight is significantly lower than cwnd (or rwin) |
| 756 | */ |
| 757 | int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; |
| 758 | int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; |
| 759 | |
| 760 | static void tcp_update_pacing_rate(struct sock *sk) |
| 761 | { |
| 762 | const struct tcp_sock *tp = tcp_sk(sk); |
| 763 | u64 rate; |
| 764 | |
| 765 | /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ |
| 766 | rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); |
| 767 | |
| 768 | /* current rate is (cwnd * mss) / srtt |
| 769 | * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. |
| 770 | * In Congestion Avoidance phase, set it to 120 % the current rate. |
| 771 | * |
| 772 | * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) |
| 773 | * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching |
| 774 | * end of slow start and should slow down. |
| 775 | */ |
| 776 | if (tp->snd_cwnd < tp->snd_ssthresh / 2) |
| 777 | rate *= sysctl_tcp_pacing_ss_ratio; |
| 778 | else |
| 779 | rate *= sysctl_tcp_pacing_ca_ratio; |
| 780 | |
| 781 | rate *= max(tp->snd_cwnd, tp->packets_out); |
| 782 | |
| 783 | if (likely(tp->srtt_us)) |
| 784 | do_div(rate, tp->srtt_us); |
| 785 | |
| 786 | /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate |
| 787 | * without any lock. We want to make sure compiler wont store |
| 788 | * intermediate values in this location. |
| 789 | */ |
| 790 | ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, |
| 791 | sk->sk_max_pacing_rate); |
| 792 | } |
| 793 | |
| 794 | /* Calculate rto without backoff. This is the second half of Van Jacobson's |
| 795 | * routine referred to above. |
| 796 | */ |
| 797 | static void tcp_set_rto(struct sock *sk) |
| 798 | { |
| 799 | const struct tcp_sock *tp = tcp_sk(sk); |
| 800 | /* Old crap is replaced with new one. 8) |
| 801 | * |
| 802 | * More seriously: |
| 803 | * 1. If rtt variance happened to be less 50msec, it is hallucination. |
| 804 | * It cannot be less due to utterly erratic ACK generation made |
| 805 | * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ |
| 806 | * to do with delayed acks, because at cwnd>2 true delack timeout |
| 807 | * is invisible. Actually, Linux-2.4 also generates erratic |
| 808 | * ACKs in some circumstances. |
| 809 | */ |
| 810 | inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); |
| 811 | |
| 812 | /* 2. Fixups made earlier cannot be right. |
| 813 | * If we do not estimate RTO correctly without them, |
| 814 | * all the algo is pure shit and should be replaced |
| 815 | * with correct one. It is exactly, which we pretend to do. |
| 816 | */ |
| 817 | |
| 818 | /* NOTE: clamping at TCP_RTO_MIN is not required, current algo |
| 819 | * guarantees that rto is higher. |
| 820 | */ |
| 821 | tcp_bound_rto(sk); |
| 822 | } |
| 823 | |
| 824 | __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) |
| 825 | { |
| 826 | __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); |
| 827 | |
| 828 | if (!cwnd) |
| 829 | cwnd = TCP_INIT_CWND; |
| 830 | return min_t(__u32, cwnd, tp->snd_cwnd_clamp); |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * Packet counting of FACK is based on in-order assumptions, therefore TCP |
| 835 | * disables it when reordering is detected |
| 836 | */ |
| 837 | void tcp_disable_fack(struct tcp_sock *tp) |
| 838 | { |
| 839 | /* RFC3517 uses different metric in lost marker => reset on change */ |
| 840 | if (tcp_is_fack(tp)) |
| 841 | tp->lost_skb_hint = NULL; |
| 842 | tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; |
| 843 | } |
| 844 | |
| 845 | /* Take a notice that peer is sending D-SACKs */ |
| 846 | static void tcp_dsack_seen(struct tcp_sock *tp) |
| 847 | { |
| 848 | tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; |
| 849 | } |
| 850 | |
| 851 | static void tcp_update_reordering(struct sock *sk, const int metric, |
| 852 | const int ts) |
| 853 | { |
| 854 | struct tcp_sock *tp = tcp_sk(sk); |
| 855 | if (metric > tp->reordering) { |
| 856 | int mib_idx; |
| 857 | |
| 858 | tp->reordering = min(sysctl_tcp_max_reordering, metric); |
| 859 | |
| 860 | /* This exciting event is worth to be remembered. 8) */ |
| 861 | if (ts) |
| 862 | mib_idx = LINUX_MIB_TCPTSREORDER; |
| 863 | else if (tcp_is_reno(tp)) |
| 864 | mib_idx = LINUX_MIB_TCPRENOREORDER; |
| 865 | else if (tcp_is_fack(tp)) |
| 866 | mib_idx = LINUX_MIB_TCPFACKREORDER; |
| 867 | else |
| 868 | mib_idx = LINUX_MIB_TCPSACKREORDER; |
| 869 | |
| 870 | NET_INC_STATS_BH(sock_net(sk), mib_idx); |
| 871 | #if FASTRETRANS_DEBUG > 1 |
| 872 | pr_debug("Disorder%d %d %u f%u s%u rr%d\n", |
| 873 | tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, |
| 874 | tp->reordering, |
| 875 | tp->fackets_out, |
| 876 | tp->sacked_out, |
| 877 | tp->undo_marker ? tp->undo_retrans : 0); |
| 878 | #endif |
| 879 | tcp_disable_fack(tp); |
| 880 | } |
| 881 | |
| 882 | if (metric > 0) |
| 883 | tcp_disable_early_retrans(tp); |
| 884 | tp->rack.reord = 1; |
| 885 | } |
| 886 | |
| 887 | /* This must be called before lost_out is incremented */ |
| 888 | static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) |
| 889 | { |
| 890 | if (!tp->retransmit_skb_hint || |
| 891 | before(TCP_SKB_CB(skb)->seq, |
| 892 | TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) |
| 893 | tp->retransmit_skb_hint = skb; |
| 894 | |
| 895 | if (!tp->lost_out || |
| 896 | after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) |
| 897 | tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; |
| 898 | } |
| 899 | |
| 900 | static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) |
| 901 | { |
| 902 | if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { |
| 903 | tcp_verify_retransmit_hint(tp, skb); |
| 904 | |
| 905 | tp->lost_out += tcp_skb_pcount(skb); |
| 906 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) |
| 911 | { |
| 912 | tcp_verify_retransmit_hint(tp, skb); |
| 913 | |
| 914 | if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { |
| 915 | tp->lost_out += tcp_skb_pcount(skb); |
| 916 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; |
| 917 | } |
| 918 | } |
| 919 | |
| 920 | /* This procedure tags the retransmission queue when SACKs arrive. |
| 921 | * |
| 922 | * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). |
| 923 | * Packets in queue with these bits set are counted in variables |
| 924 | * sacked_out, retrans_out and lost_out, correspondingly. |
| 925 | * |
| 926 | * Valid combinations are: |
| 927 | * Tag InFlight Description |
| 928 | * 0 1 - orig segment is in flight. |
| 929 | * S 0 - nothing flies, orig reached receiver. |
| 930 | * L 0 - nothing flies, orig lost by net. |
| 931 | * R 2 - both orig and retransmit are in flight. |
| 932 | * L|R 1 - orig is lost, retransmit is in flight. |
| 933 | * S|R 1 - orig reached receiver, retrans is still in flight. |
| 934 | * (L|S|R is logically valid, it could occur when L|R is sacked, |
| 935 | * but it is equivalent to plain S and code short-curcuits it to S. |
| 936 | * L|S is logically invalid, it would mean -1 packet in flight 8)) |
| 937 | * |
| 938 | * These 6 states form finite state machine, controlled by the following events: |
| 939 | * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) |
| 940 | * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) |
| 941 | * 3. Loss detection event of two flavors: |
| 942 | * A. Scoreboard estimator decided the packet is lost. |
| 943 | * A'. Reno "three dupacks" marks head of queue lost. |
| 944 | * A''. Its FACK modification, head until snd.fack is lost. |
| 945 | * B. SACK arrives sacking SND.NXT at the moment, when the |
| 946 | * segment was retransmitted. |
| 947 | * 4. D-SACK added new rule: D-SACK changes any tag to S. |
| 948 | * |
| 949 | * It is pleasant to note, that state diagram turns out to be commutative, |
| 950 | * so that we are allowed not to be bothered by order of our actions, |
| 951 | * when multiple events arrive simultaneously. (see the function below). |
| 952 | * |
| 953 | * Reordering detection. |
| 954 | * -------------------- |
| 955 | * Reordering metric is maximal distance, which a packet can be displaced |
| 956 | * in packet stream. With SACKs we can estimate it: |
| 957 | * |
| 958 | * 1. SACK fills old hole and the corresponding segment was not |
| 959 | * ever retransmitted -> reordering. Alas, we cannot use it |
| 960 | * when segment was retransmitted. |
| 961 | * 2. The last flaw is solved with D-SACK. D-SACK arrives |
| 962 | * for retransmitted and already SACKed segment -> reordering.. |
| 963 | * Both of these heuristics are not used in Loss state, when we cannot |
| 964 | * account for retransmits accurately. |
| 965 | * |
| 966 | * SACK block validation. |
| 967 | * ---------------------- |
| 968 | * |
| 969 | * SACK block range validation checks that the received SACK block fits to |
| 970 | * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. |
| 971 | * Note that SND.UNA is not included to the range though being valid because |
| 972 | * it means that the receiver is rather inconsistent with itself reporting |
| 973 | * SACK reneging when it should advance SND.UNA. Such SACK block this is |
| 974 | * perfectly valid, however, in light of RFC2018 which explicitly states |
| 975 | * that "SACK block MUST reflect the newest segment. Even if the newest |
| 976 | * segment is going to be discarded ...", not that it looks very clever |
| 977 | * in case of head skb. Due to potentional receiver driven attacks, we |
| 978 | * choose to avoid immediate execution of a walk in write queue due to |
| 979 | * reneging and defer head skb's loss recovery to standard loss recovery |
| 980 | * procedure that will eventually trigger (nothing forbids us doing this). |
| 981 | * |
| 982 | * Implements also blockage to start_seq wrap-around. Problem lies in the |
| 983 | * fact that though start_seq (s) is before end_seq (i.e., not reversed), |
| 984 | * there's no guarantee that it will be before snd_nxt (n). The problem |
| 985 | * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt |
| 986 | * wrap (s_w): |
| 987 | * |
| 988 | * <- outs wnd -> <- wrapzone -> |
| 989 | * u e n u_w e_w s n_w |
| 990 | * | | | | | | | |
| 991 | * |<------------+------+----- TCP seqno space --------------+---------->| |
| 992 | * ...-- <2^31 ->| |<--------... |
| 993 | * ...---- >2^31 ------>| |<--------... |
| 994 | * |
| 995 | * Current code wouldn't be vulnerable but it's better still to discard such |
| 996 | * crazy SACK blocks. Doing this check for start_seq alone closes somewhat |
| 997 | * similar case (end_seq after snd_nxt wrap) as earlier reversed check in |
| 998 | * snd_nxt wrap -> snd_una region will then become "well defined", i.e., |
| 999 | * equal to the ideal case (infinite seqno space without wrap caused issues). |
| 1000 | * |
| 1001 | * With D-SACK the lower bound is extended to cover sequence space below |
| 1002 | * SND.UNA down to undo_marker, which is the last point of interest. Yet |
| 1003 | * again, D-SACK block must not to go across snd_una (for the same reason as |
| 1004 | * for the normal SACK blocks, explained above). But there all simplicity |
| 1005 | * ends, TCP might receive valid D-SACKs below that. As long as they reside |
| 1006 | * fully below undo_marker they do not affect behavior in anyway and can |
| 1007 | * therefore be safely ignored. In rare cases (which are more or less |
| 1008 | * theoretical ones), the D-SACK will nicely cross that boundary due to skb |
| 1009 | * fragmentation and packet reordering past skb's retransmission. To consider |
| 1010 | * them correctly, the acceptable range must be extended even more though |
| 1011 | * the exact amount is rather hard to quantify. However, tp->max_window can |
| 1012 | * be used as an exaggerated estimate. |
| 1013 | */ |
| 1014 | static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, |
| 1015 | u32 start_seq, u32 end_seq) |
| 1016 | { |
| 1017 | /* Too far in future, or reversed (interpretation is ambiguous) */ |
| 1018 | if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) |
| 1019 | return false; |
| 1020 | |
| 1021 | /* Nasty start_seq wrap-around check (see comments above) */ |
| 1022 | if (!before(start_seq, tp->snd_nxt)) |
| 1023 | return false; |
| 1024 | |
| 1025 | /* In outstanding window? ...This is valid exit for D-SACKs too. |
| 1026 | * start_seq == snd_una is non-sensical (see comments above) |
| 1027 | */ |
| 1028 | if (after(start_seq, tp->snd_una)) |
| 1029 | return true; |
| 1030 | |
| 1031 | if (!is_dsack || !tp->undo_marker) |
| 1032 | return false; |
| 1033 | |
| 1034 | /* ...Then it's D-SACK, and must reside below snd_una completely */ |
| 1035 | if (after(end_seq, tp->snd_una)) |
| 1036 | return false; |
| 1037 | |
| 1038 | if (!before(start_seq, tp->undo_marker)) |
| 1039 | return true; |
| 1040 | |
| 1041 | /* Too old */ |
| 1042 | if (!after(end_seq, tp->undo_marker)) |
| 1043 | return false; |
| 1044 | |
| 1045 | /* Undo_marker boundary crossing (overestimates a lot). Known already: |
| 1046 | * start_seq < undo_marker and end_seq >= undo_marker. |
| 1047 | */ |
| 1048 | return !before(start_seq, end_seq - tp->max_window); |
| 1049 | } |
| 1050 | |
| 1051 | static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, |
| 1052 | struct tcp_sack_block_wire *sp, int num_sacks, |
| 1053 | u32 prior_snd_una) |
| 1054 | { |
| 1055 | struct tcp_sock *tp = tcp_sk(sk); |
| 1056 | u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); |
| 1057 | u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); |
| 1058 | bool dup_sack = false; |
| 1059 | |
| 1060 | if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { |
| 1061 | dup_sack = true; |
| 1062 | tcp_dsack_seen(tp); |
| 1063 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); |
| 1064 | } else if (num_sacks > 1) { |
| 1065 | u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); |
| 1066 | u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); |
| 1067 | |
| 1068 | if (!after(end_seq_0, end_seq_1) && |
| 1069 | !before(start_seq_0, start_seq_1)) { |
| 1070 | dup_sack = true; |
| 1071 | tcp_dsack_seen(tp); |
| 1072 | NET_INC_STATS_BH(sock_net(sk), |
| 1073 | LINUX_MIB_TCPDSACKOFORECV); |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | /* D-SACK for already forgotten data... Do dumb counting. */ |
| 1078 | if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && |
| 1079 | !after(end_seq_0, prior_snd_una) && |
| 1080 | after(end_seq_0, tp->undo_marker)) |
| 1081 | tp->undo_retrans--; |
| 1082 | |
| 1083 | return dup_sack; |
| 1084 | } |
| 1085 | |
| 1086 | struct tcp_sacktag_state { |
| 1087 | int reord; |
| 1088 | int fack_count; |
| 1089 | /* Timestamps for earliest and latest never-retransmitted segment |
| 1090 | * that was SACKed. RTO needs the earliest RTT to stay conservative, |
| 1091 | * but congestion control should still get an accurate delay signal. |
| 1092 | */ |
| 1093 | struct skb_mstamp first_sackt; |
| 1094 | struct skb_mstamp last_sackt; |
| 1095 | int flag; |
| 1096 | }; |
| 1097 | |
| 1098 | /* Check if skb is fully within the SACK block. In presence of GSO skbs, |
| 1099 | * the incoming SACK may not exactly match but we can find smaller MSS |
| 1100 | * aligned portion of it that matches. Therefore we might need to fragment |
| 1101 | * which may fail and creates some hassle (caller must handle error case |
| 1102 | * returns). |
| 1103 | * |
| 1104 | * FIXME: this could be merged to shift decision code |
| 1105 | */ |
| 1106 | static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, |
| 1107 | u32 start_seq, u32 end_seq) |
| 1108 | { |
| 1109 | int err; |
| 1110 | bool in_sack; |
| 1111 | unsigned int pkt_len; |
| 1112 | unsigned int mss; |
| 1113 | |
| 1114 | in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && |
| 1115 | !before(end_seq, TCP_SKB_CB(skb)->end_seq); |
| 1116 | |
| 1117 | if (tcp_skb_pcount(skb) > 1 && !in_sack && |
| 1118 | after(TCP_SKB_CB(skb)->end_seq, start_seq)) { |
| 1119 | mss = tcp_skb_mss(skb); |
| 1120 | in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); |
| 1121 | |
| 1122 | if (!in_sack) { |
| 1123 | pkt_len = start_seq - TCP_SKB_CB(skb)->seq; |
| 1124 | if (pkt_len < mss) |
| 1125 | pkt_len = mss; |
| 1126 | } else { |
| 1127 | pkt_len = end_seq - TCP_SKB_CB(skb)->seq; |
| 1128 | if (pkt_len < mss) |
| 1129 | return -EINVAL; |
| 1130 | } |
| 1131 | |
| 1132 | /* Round if necessary so that SACKs cover only full MSSes |
| 1133 | * and/or the remaining small portion (if present) |
| 1134 | */ |
| 1135 | if (pkt_len > mss) { |
| 1136 | unsigned int new_len = (pkt_len / mss) * mss; |
| 1137 | if (!in_sack && new_len < pkt_len) |
| 1138 | new_len += mss; |
| 1139 | pkt_len = new_len; |
| 1140 | } |
| 1141 | |
| 1142 | if (pkt_len >= skb->len && !in_sack) |
| 1143 | return 0; |
| 1144 | |
| 1145 | err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); |
| 1146 | if (err < 0) |
| 1147 | return err; |
| 1148 | } |
| 1149 | |
| 1150 | return in_sack; |
| 1151 | } |
| 1152 | |
| 1153 | /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ |
| 1154 | static u8 tcp_sacktag_one(struct sock *sk, |
| 1155 | struct tcp_sacktag_state *state, u8 sacked, |
| 1156 | u32 start_seq, u32 end_seq, |
| 1157 | int dup_sack, int pcount, |
| 1158 | const struct skb_mstamp *xmit_time) |
| 1159 | { |
| 1160 | struct tcp_sock *tp = tcp_sk(sk); |
| 1161 | int fack_count = state->fack_count; |
| 1162 | |
| 1163 | /* Account D-SACK for retransmitted packet. */ |
| 1164 | if (dup_sack && (sacked & TCPCB_RETRANS)) { |
| 1165 | if (tp->undo_marker && tp->undo_retrans > 0 && |
| 1166 | after(end_seq, tp->undo_marker)) |
| 1167 | tp->undo_retrans--; |
| 1168 | if (sacked & TCPCB_SACKED_ACKED) |
| 1169 | state->reord = min(fack_count, state->reord); |
| 1170 | } |
| 1171 | |
| 1172 | /* Nothing to do; acked frame is about to be dropped (was ACKed). */ |
| 1173 | if (!after(end_seq, tp->snd_una)) |
| 1174 | return sacked; |
| 1175 | |
| 1176 | if (!(sacked & TCPCB_SACKED_ACKED)) { |
| 1177 | tcp_rack_advance(tp, xmit_time, sacked); |
| 1178 | |
| 1179 | if (sacked & TCPCB_SACKED_RETRANS) { |
| 1180 | /* If the segment is not tagged as lost, |
| 1181 | * we do not clear RETRANS, believing |
| 1182 | * that retransmission is still in flight. |
| 1183 | */ |
| 1184 | if (sacked & TCPCB_LOST) { |
| 1185 | sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); |
| 1186 | tp->lost_out -= pcount; |
| 1187 | tp->retrans_out -= pcount; |
| 1188 | } |
| 1189 | } else { |
| 1190 | if (!(sacked & TCPCB_RETRANS)) { |
| 1191 | /* New sack for not retransmitted frame, |
| 1192 | * which was in hole. It is reordering. |
| 1193 | */ |
| 1194 | if (before(start_seq, |
| 1195 | tcp_highest_sack_seq(tp))) |
| 1196 | state->reord = min(fack_count, |
| 1197 | state->reord); |
| 1198 | if (!after(end_seq, tp->high_seq)) |
| 1199 | state->flag |= FLAG_ORIG_SACK_ACKED; |
| 1200 | if (state->first_sackt.v64 == 0) |
| 1201 | state->first_sackt = *xmit_time; |
| 1202 | state->last_sackt = *xmit_time; |
| 1203 | } |
| 1204 | |
| 1205 | if (sacked & TCPCB_LOST) { |
| 1206 | sacked &= ~TCPCB_LOST; |
| 1207 | tp->lost_out -= pcount; |
| 1208 | } |
| 1209 | } |
| 1210 | |
| 1211 | sacked |= TCPCB_SACKED_ACKED; |
| 1212 | state->flag |= FLAG_DATA_SACKED; |
| 1213 | tp->sacked_out += pcount; |
| 1214 | |
| 1215 | fack_count += pcount; |
| 1216 | |
| 1217 | /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ |
| 1218 | if (!tcp_is_fack(tp) && tp->lost_skb_hint && |
| 1219 | before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) |
| 1220 | tp->lost_cnt_hint += pcount; |
| 1221 | |
| 1222 | if (fack_count > tp->fackets_out) |
| 1223 | tp->fackets_out = fack_count; |
| 1224 | } |
| 1225 | |
| 1226 | /* D-SACK. We can detect redundant retransmission in S|R and plain R |
| 1227 | * frames and clear it. undo_retrans is decreased above, L|R frames |
| 1228 | * are accounted above as well. |
| 1229 | */ |
| 1230 | if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { |
| 1231 | sacked &= ~TCPCB_SACKED_RETRANS; |
| 1232 | tp->retrans_out -= pcount; |
| 1233 | } |
| 1234 | |
| 1235 | return sacked; |
| 1236 | } |
| 1237 | |
| 1238 | /* Shift newly-SACKed bytes from this skb to the immediately previous |
| 1239 | * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. |
| 1240 | */ |
| 1241 | static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, |
| 1242 | struct tcp_sacktag_state *state, |
| 1243 | unsigned int pcount, int shifted, int mss, |
| 1244 | bool dup_sack) |
| 1245 | { |
| 1246 | struct tcp_sock *tp = tcp_sk(sk); |
| 1247 | struct sk_buff *prev = tcp_write_queue_prev(sk, skb); |
| 1248 | u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ |
| 1249 | u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ |
| 1250 | |
| 1251 | BUG_ON(!pcount); |
| 1252 | |
| 1253 | /* Adjust counters and hints for the newly sacked sequence |
| 1254 | * range but discard the return value since prev is already |
| 1255 | * marked. We must tag the range first because the seq |
| 1256 | * advancement below implicitly advances |
| 1257 | * tcp_highest_sack_seq() when skb is highest_sack. |
| 1258 | */ |
| 1259 | tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, |
| 1260 | start_seq, end_seq, dup_sack, pcount, |
| 1261 | &skb->skb_mstamp); |
| 1262 | |
| 1263 | if (skb == tp->lost_skb_hint) |
| 1264 | tp->lost_cnt_hint += pcount; |
| 1265 | |
| 1266 | TCP_SKB_CB(prev)->end_seq += shifted; |
| 1267 | TCP_SKB_CB(skb)->seq += shifted; |
| 1268 | |
| 1269 | tcp_skb_pcount_add(prev, pcount); |
Kyle Swenson | e01461f | 2021-03-15 11:14:57 -0600 | [diff] [blame] | 1270 | WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); |
Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1271 | tcp_skb_pcount_add(skb, -pcount); |
| 1272 | |
| 1273 | /* When we're adding to gso_segs == 1, gso_size will be zero, |
| 1274 | * in theory this shouldn't be necessary but as long as DSACK |
| 1275 | * code can come after this skb later on it's better to keep |
| 1276 | * setting gso_size to something. |
| 1277 | */ |
| 1278 | if (!TCP_SKB_CB(prev)->tcp_gso_size) |
| 1279 | TCP_SKB_CB(prev)->tcp_gso_size = mss; |
| 1280 | |
| 1281 | /* CHECKME: To clear or not to clear? Mimics normal skb currently */ |
| 1282 | if (tcp_skb_pcount(skb) <= 1) |
| 1283 | TCP_SKB_CB(skb)->tcp_gso_size = 0; |
| 1284 | |
| 1285 | /* Difference in this won't matter, both ACKed by the same cumul. ACK */ |
| 1286 | TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); |
| 1287 | |
| 1288 | if (skb->len > 0) { |
| 1289 | BUG_ON(!tcp_skb_pcount(skb)); |
| 1290 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); |
| 1291 | return false; |
| 1292 | } |
| 1293 | |
| 1294 | /* Whole SKB was eaten :-) */ |
| 1295 | |
| 1296 | if (skb == tp->retransmit_skb_hint) |
| 1297 | tp->retransmit_skb_hint = prev; |
| 1298 | if (skb == tp->lost_skb_hint) { |
| 1299 | tp->lost_skb_hint = prev; |
| 1300 | tp->lost_cnt_hint -= tcp_skb_pcount(prev); |
| 1301 | } |
| 1302 | |
| 1303 | TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; |
| 1304 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) |
| 1305 | TCP_SKB_CB(prev)->end_seq++; |
| 1306 | |
| 1307 | if (skb == tcp_highest_sack(sk)) |
| 1308 | tcp_advance_highest_sack(sk, skb); |
| 1309 | |
| 1310 | tcp_unlink_write_queue(skb, sk); |
| 1311 | sk_wmem_free_skb(sk, skb); |
| 1312 | |
| 1313 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); |
| 1314 | |
| 1315 | return true; |
| 1316 | } |
| 1317 | |
| 1318 | /* I wish gso_size would have a bit more sane initialization than |
| 1319 | * something-or-zero which complicates things |
| 1320 | */ |
| 1321 | static int tcp_skb_seglen(const struct sk_buff *skb) |
| 1322 | { |
| 1323 | return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); |
| 1324 | } |
| 1325 | |
| 1326 | /* Shifting pages past head area doesn't work */ |
| 1327 | static int skb_can_shift(const struct sk_buff *skb) |
| 1328 | { |
| 1329 | return !skb_headlen(skb) && skb_is_nonlinear(skb); |
| 1330 | } |
| 1331 | |
Kyle Swenson | e01461f | 2021-03-15 11:14:57 -0600 | [diff] [blame] | 1332 | int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, |
| 1333 | int pcount, int shiftlen) |
| 1334 | { |
| 1335 | /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) |
| 1336 | * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need |
| 1337 | * to make sure not storing more than 65535 * 8 bytes per skb, |
| 1338 | * even if current MSS is bigger. |
| 1339 | */ |
| 1340 | if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) |
| 1341 | return 0; |
| 1342 | if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) |
| 1343 | return 0; |
| 1344 | return skb_shift(to, from, shiftlen); |
| 1345 | } |
| 1346 | |
Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1347 | /* Try collapsing SACK blocks spanning across multiple skbs to a single |
| 1348 | * skb. |
| 1349 | */ |
| 1350 | static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, |
| 1351 | struct tcp_sacktag_state *state, |
| 1352 | u32 start_seq, u32 end_seq, |
| 1353 | bool dup_sack) |
| 1354 | { |
| 1355 | struct tcp_sock *tp = tcp_sk(sk); |
| 1356 | struct sk_buff *prev; |
| 1357 | int mss; |
Kyle Swenson | e01461f | 2021-03-15 11:14:57 -0600 | [diff] [blame] | 1358 | int next_pcount; |
Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1359 | int pcount = 0; |
| 1360 | int len; |
| 1361 | int in_sack; |
| 1362 | |
| 1363 | if (!sk_can_gso(sk)) |
| 1364 | goto fallback; |
| 1365 | |
| 1366 | /* Normally R but no L won't result in plain S */ |
| 1367 | if (!dup_sack && |
| 1368 | (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) |
| 1369 | goto fallback; |
| 1370 | if (!skb_can_shift(skb)) |
| 1371 | goto fallback; |
| 1372 | /* This frame is about to be dropped (was ACKed). */ |
| 1373 | if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) |
| 1374 | goto fallback; |
| 1375 | |
| 1376 | /* Can only happen with delayed DSACK + discard craziness */ |
| 1377 | if (unlikely(skb == tcp_write_queue_head(sk))) |
| 1378 | goto fallback; |
| 1379 | prev = tcp_write_queue_prev(sk, skb); |
| 1380 | |
| 1381 | if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) |
| 1382 | goto fallback; |
| 1383 | |
| 1384 | in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && |
| 1385 | !before(end_seq, TCP_SKB_CB(skb)->end_seq); |
| 1386 | |
| 1387 | if (in_sack) { |
| 1388 | len = skb->len; |
| 1389 | pcount = tcp_skb_pcount(skb); |
| 1390 | mss = tcp_skb_seglen(skb); |
| 1391 | |
| 1392 | /* TODO: Fix DSACKs to not fragment already SACKed and we can |
| 1393 | * drop this restriction as unnecessary |
| 1394 | */ |
| 1395 | if (mss != tcp_skb_seglen(prev)) |
| 1396 | goto fallback; |
| 1397 | } else { |
| 1398 | if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) |
| 1399 | goto noop; |
| 1400 | /* CHECKME: This is non-MSS split case only?, this will |
| 1401 | * cause skipped skbs due to advancing loop btw, original |
| 1402 | * has that feature too |
| 1403 | */ |
| 1404 | if (tcp_skb_pcount(skb) <= 1) |
| 1405 | goto noop; |
| 1406 | |
| 1407 | in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); |
| 1408 | if (!in_sack) { |
| 1409 | /* TODO: head merge to next could be attempted here |
| 1410 | * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), |
| 1411 | * though it might not be worth of the additional hassle |
| 1412 | * |
| 1413 | * ...we can probably just fallback to what was done |
| 1414 | * previously. We could try merging non-SACKed ones |
| 1415 | * as well but it probably isn't going to buy off |
| 1416 | * because later SACKs might again split them, and |
| 1417 | * it would make skb timestamp tracking considerably |
| 1418 | * harder problem. |
| 1419 | */ |
| 1420 | goto fallback; |
| 1421 | } |
| 1422 | |
| 1423 | len = end_seq - TCP_SKB_CB(skb)->seq; |
| 1424 | BUG_ON(len < 0); |
| 1425 | BUG_ON(len > skb->len); |
| 1426 | |
| 1427 | /* MSS boundaries should be honoured or else pcount will |
| 1428 | * severely break even though it makes things bit trickier. |
| 1429 | * Optimize common case to avoid most of the divides |
| 1430 | */ |
| 1431 | mss = tcp_skb_mss(skb); |
| 1432 | |
| 1433 | /* TODO: Fix DSACKs to not fragment already SACKed and we can |
| 1434 | * drop this restriction as unnecessary |
| 1435 | */ |
| 1436 | if (mss != tcp_skb_seglen(prev)) |
| 1437 | goto fallback; |
| 1438 | |
| 1439 | if (len == mss) { |
| 1440 | pcount = 1; |
| 1441 | } else if (len < mss) { |
| 1442 | goto noop; |
| 1443 | } else { |
| 1444 | pcount = len / mss; |
| 1445 | len = pcount * mss; |
| 1446 | } |
| 1447 | } |
| 1448 | |
| 1449 | /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ |
| 1450 | if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) |
| 1451 | goto fallback; |
| 1452 | |
Kyle Swenson | e01461f | 2021-03-15 11:14:57 -0600 | [diff] [blame] | 1453 | if (!tcp_skb_shift(prev, skb, pcount, len)) |
Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1454 | goto fallback; |
| 1455 | if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) |
| 1456 | goto out; |
| 1457 | |
| 1458 | /* Hole filled allows collapsing with the next as well, this is very |
| 1459 | * useful when hole on every nth skb pattern happens |
| 1460 | */ |
| 1461 | if (prev == tcp_write_queue_tail(sk)) |
| 1462 | goto out; |
| 1463 | skb = tcp_write_queue_next(sk, prev); |
| 1464 | |
| 1465 | if (!skb_can_shift(skb) || |
| 1466 | (skb == tcp_send_head(sk)) || |
| 1467 | ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || |
| 1468 | (mss != tcp_skb_seglen(skb))) |
| 1469 | goto out; |
| 1470 | |
| 1471 | len = skb->len; |
Kyle Swenson | e01461f | 2021-03-15 11:14:57 -0600 | [diff] [blame] | 1472 | next_pcount = tcp_skb_pcount(skb); |
| 1473 | if (tcp_skb_shift(prev, skb, next_pcount, len)) { |
| 1474 | pcount += next_pcount; |
| 1475 | tcp_shifted_skb(sk, skb, state, next_pcount, len, mss, 0); |
Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1476 | } |
Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1477 | out: |
| 1478 | state->fack_count += pcount; |
| 1479 | return prev; |
| 1480 | |
| 1481 | noop: |
| 1482 | return skb; |
| 1483 | |
| 1484 | fallback: |
| 1485 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); |
| 1486 | return NULL; |
| 1487 | } |
| 1488 | |
| 1489 | static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, |
| 1490 | struct tcp_sack_block *next_dup, |
| 1491 | struct tcp_sacktag_state *state, |
| 1492 | u32 start_seq, u32 end_seq, |
| 1493 | bool dup_sack_in) |
| 1494 | { |
| 1495 | struct tcp_sock *tp = tcp_sk(sk); |
| 1496 | struct sk_buff *tmp; |
| 1497 | |
| 1498 | tcp_for_write_queue_from(skb, sk) { |
| 1499 | int in_sack = 0; |
| 1500 | bool dup_sack = dup_sack_in; |
| 1501 | |
| 1502 | if (skb == tcp_send_head(sk)) |
| 1503 | break; |
| 1504 | |
| 1505 | /* queue is in-order => we can short-circuit the walk early */ |
| 1506 | if (!before(TCP_SKB_CB(skb)->seq, end_seq)) |
| 1507 | break; |
| 1508 | |
| 1509 | if (next_dup && |
| 1510 | before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { |
| 1511 | in_sack = tcp_match_skb_to_sack(sk, skb, |
| 1512 | next_dup->start_seq, |
| 1513 | next_dup->end_seq); |
| 1514 | if (in_sack > 0) |
| 1515 | dup_sack = true; |
| 1516 | } |
| 1517 | |
| 1518 | /* skb reference here is a bit tricky to get right, since |
| 1519 | * shifting can eat and free both this skb and the next, |
| 1520 | * so not even _safe variant of the loop is enough. |
| 1521 | */ |
| 1522 | if (in_sack <= 0) { |
| 1523 | tmp = tcp_shift_skb_data(sk, skb, state, |
| 1524 | start_seq, end_seq, dup_sack); |
| 1525 | if (tmp) { |
| 1526 | if (tmp != skb) { |
| 1527 | skb = tmp; |
| 1528 | continue; |
| 1529 | } |
| 1530 | |
| 1531 | in_sack = 0; |
| 1532 | } else { |
| 1533 | in_sack = tcp_match_skb_to_sack(sk, skb, |
| 1534 | start_seq, |
| 1535 | end_seq); |
| 1536 | } |
| 1537 | } |
| 1538 | |
| 1539 | if (unlikely(in_sack < 0)) |
| 1540 | break; |
| 1541 | |
| 1542 | if (in_sack) { |
| 1543 | TCP_SKB_CB(skb)->sacked = |
| 1544 | tcp_sacktag_one(sk, |
| 1545 | state, |
| 1546 | TCP_SKB_CB(skb)->sacked, |
| 1547 | TCP_SKB_CB(skb)->seq, |
| 1548 | TCP_SKB_CB(skb)->end_seq, |
| 1549 | dup_sack, |
| 1550 | tcp_skb_pcount(skb), |
| 1551 | &skb->skb_mstamp); |
| 1552 | |
| 1553 | if (!before(TCP_SKB_CB(skb)->seq, |
| 1554 | tcp_highest_sack_seq(tp))) |
| 1555 | tcp_advance_highest_sack(sk, skb); |
| 1556 | } |
| 1557 | |
| 1558 | state->fack_count += tcp_skb_pcount(skb); |
| 1559 | } |
| 1560 | return skb; |
| 1561 | } |
| 1562 | |
| 1563 | /* Avoid all extra work that is being done by sacktag while walking in |
| 1564 | * a normal way |
| 1565 | */ |
| 1566 | static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, |
| 1567 | struct tcp_sacktag_state *state, |
| 1568 | u32 skip_to_seq) |
| 1569 | { |
| 1570 | tcp_for_write_queue_from(skb, sk) { |
| 1571 | if (skb == tcp_send_head(sk)) |
| 1572 | break; |
| 1573 | |
| 1574 | if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) |
| 1575 | break; |
| 1576 | |
| 1577 | state->fack_count += tcp_skb_pcount(skb); |
| 1578 | } |
| 1579 | return skb; |
| 1580 | } |
| 1581 | |
| 1582 | static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, |
| 1583 | struct sock *sk, |
| 1584 | struct tcp_sack_block *next_dup, |
| 1585 | struct tcp_sacktag_state *state, |
| 1586 | u32 skip_to_seq) |
| 1587 | { |
| 1588 | if (!next_dup) |
| 1589 | return skb; |
| 1590 | |
| 1591 | if (before(next_dup->start_seq, skip_to_seq)) { |
| 1592 | skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); |
| 1593 | skb = tcp_sacktag_walk(skb, sk, NULL, state, |
| 1594 | next_dup->start_seq, next_dup->end_seq, |
| 1595 | 1); |
| 1596 | } |
| 1597 | |
| 1598 | return skb; |
| 1599 | } |
| 1600 | |
| 1601 | static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) |
| 1602 | { |
| 1603 | return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); |
| 1604 | } |
| 1605 | |
| 1606 | static int |
| 1607 | tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, |
| 1608 | u32 prior_snd_una, struct tcp_sacktag_state *state) |
| 1609 | { |
| 1610 | struct tcp_sock *tp = tcp_sk(sk); |
| 1611 | const unsigned char *ptr = (skb_transport_header(ack_skb) + |
| 1612 | TCP_SKB_CB(ack_skb)->sacked); |
| 1613 | struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); |
| 1614 | struct tcp_sack_block sp[TCP_NUM_SACKS]; |
| 1615 | struct tcp_sack_block *cache; |
| 1616 | struct sk_buff *skb; |
| 1617 | int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); |
| 1618 | int used_sacks; |
| 1619 | bool found_dup_sack = false; |
| 1620 | int i, j; |
| 1621 | int first_sack_index; |
| 1622 | |
| 1623 | state->flag = 0; |
| 1624 | state->reord = tp->packets_out; |
| 1625 | |
| 1626 | if (!tp->sacked_out) { |
| 1627 | if (WARN_ON(tp->fackets_out)) |
| 1628 | tp->fackets_out = 0; |
| 1629 | tcp_highest_sack_reset(sk); |
| 1630 | } |
| 1631 | |
| 1632 | found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, |
| 1633 | num_sacks, prior_snd_una); |
| 1634 | if (found_dup_sack) |
| 1635 | state->flag |= FLAG_DSACKING_ACK; |
| 1636 | |
| 1637 | /* Eliminate too old ACKs, but take into |
| 1638 | * account more or less fresh ones, they can |
| 1639 | * contain valid SACK info. |
| 1640 | */ |
| 1641 | if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) |
| 1642 | return 0; |
| 1643 | |
| 1644 | if (!tp->packets_out) |
| 1645 | goto out; |
| 1646 | |
| 1647 | used_sacks = 0; |
| 1648 | first_sack_index = 0; |
| 1649 | for (i = 0; i < num_sacks; i++) { |
| 1650 | bool dup_sack = !i && found_dup_sack; |
| 1651 | |
| 1652 | sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); |
| 1653 | sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); |
| 1654 | |
| 1655 | if (!tcp_is_sackblock_valid(tp, dup_sack, |
| 1656 | sp[used_sacks].start_seq, |
| 1657 | sp[used_sacks].end_seq)) { |
| 1658 | int mib_idx; |
| 1659 | |
| 1660 | if (dup_sack) { |
| 1661 | if (!tp->undo_marker) |
| 1662 | mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; |
| 1663 | else |
| 1664 | mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; |
| 1665 | } else { |
| 1666 | /* Don't count olds caused by ACK reordering */ |
| 1667 | if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && |
| 1668 | !after(sp[used_sacks].end_seq, tp->snd_una)) |
| 1669 | continue; |
| 1670 | mib_idx = LINUX_MIB_TCPSACKDISCARD; |
| 1671 | } |
| 1672 | |
| 1673 | NET_INC_STATS_BH(sock_net(sk), mib_idx); |
| 1674 | if (i == 0) |
| 1675 | first_sack_index = -1; |
| 1676 | continue; |
| 1677 | } |
| 1678 | |
| 1679 | /* Ignore very old stuff early */ |
| 1680 | if (!after(sp[used_sacks].end_seq, prior_snd_una)) |
| 1681 | continue; |
| 1682 | |
| 1683 | used_sacks++; |
| 1684 | } |
| 1685 | |
| 1686 | /* order SACK blocks to allow in order walk of the retrans queue */ |
| 1687 | for (i = used_sacks - 1; i > 0; i--) { |
| 1688 | for (j = 0; j < i; j++) { |
| 1689 | if (after(sp[j].start_seq, sp[j + 1].start_seq)) { |
| 1690 | swap(sp[j], sp[j + 1]); |
| 1691 | |
| 1692 | /* Track where the first SACK block goes to */ |
| 1693 | if (j == first_sack_index) |
| 1694 | first_sack_index = j + 1; |
| 1695 | } |
| 1696 | } |
| 1697 | } |
| 1698 | |
| 1699 | skb = tcp_write_queue_head(sk); |
| 1700 | state->fack_count = 0; |
| 1701 | i = 0; |
| 1702 | |
| 1703 | if (!tp->sacked_out) { |
| 1704 | /* It's already past, so skip checking against it */ |
| 1705 | cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); |
| 1706 | } else { |
| 1707 | cache = tp->recv_sack_cache; |
| 1708 | /* Skip empty blocks in at head of the cache */ |
| 1709 | while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && |
| 1710 | !cache->end_seq) |
| 1711 | cache++; |
| 1712 | } |
| 1713 | |
| 1714 | while (i < used_sacks) { |
| 1715 | u32 start_seq = sp[i].start_seq; |
| 1716 | u32 end_seq = sp[i].end_seq; |
| 1717 | bool dup_sack = (found_dup_sack && (i == first_sack_index)); |
| 1718 | struct tcp_sack_block *next_dup = NULL; |
| 1719 | |
| 1720 | if (found_dup_sack && ((i + 1) == first_sack_index)) |
| 1721 | next_dup = &sp[i + 1]; |
| 1722 | |
| 1723 | /* Skip too early cached blocks */ |
| 1724 | while (tcp_sack_cache_ok(tp, cache) && |
| 1725 | !before(start_seq, cache->end_seq)) |
| 1726 | cache++; |
| 1727 | |
| 1728 | /* Can skip some work by looking recv_sack_cache? */ |
| 1729 | if (tcp_sack_cache_ok(tp, cache) && !dup_sack && |
| 1730 | after(end_seq, cache->start_seq)) { |
| 1731 | |
| 1732 | /* Head todo? */ |
| 1733 | if (before(start_seq, cache->start_seq)) { |
| 1734 | skb = tcp_sacktag_skip(skb, sk, state, |
| 1735 | start_seq); |
| 1736 | skb = tcp_sacktag_walk(skb, sk, next_dup, |
| 1737 | state, |
| 1738 | start_seq, |
| 1739 | cache->start_seq, |
| 1740 | dup_sack); |
| 1741 | } |
| 1742 | |
| 1743 | /* Rest of the block already fully processed? */ |
| 1744 | if (!after(end_seq, cache->end_seq)) |
| 1745 | goto advance_sp; |
| 1746 | |
| 1747 | skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, |
| 1748 | state, |
| 1749 | cache->end_seq); |
| 1750 | |
| 1751 | /* ...tail remains todo... */ |
| 1752 | if (tcp_highest_sack_seq(tp) == cache->end_seq) { |
| 1753 | /* ...but better entrypoint exists! */ |
| 1754 | skb = tcp_highest_sack(sk); |
| 1755 | if (!skb) |
| 1756 | break; |
| 1757 | state->fack_count = tp->fackets_out; |
| 1758 | cache++; |
| 1759 | goto walk; |
| 1760 | } |
| 1761 | |
| 1762 | skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); |
| 1763 | /* Check overlap against next cached too (past this one already) */ |
| 1764 | cache++; |
| 1765 | continue; |
| 1766 | } |
| 1767 | |
| 1768 | if (!before(start_seq, tcp_highest_sack_seq(tp))) { |
| 1769 | skb = tcp_highest_sack(sk); |
| 1770 | if (!skb) |
| 1771 | break; |
| 1772 | state->fack_count = tp->fackets_out; |
| 1773 | } |
| 1774 | skb = tcp_sacktag_skip(skb, sk, state, start_seq); |
| 1775 | |
| 1776 | walk: |
| 1777 | skb = tcp_sacktag_walk(skb, sk, next_dup, state, |
| 1778 | start_seq, end_seq, dup_sack); |
| 1779 | |
| 1780 | advance_sp: |
| 1781 | i++; |
| 1782 | } |
| 1783 | |
| 1784 | /* Clear the head of the cache sack blocks so we can skip it next time */ |
| 1785 | for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { |
| 1786 | tp->recv_sack_cache[i].start_seq = 0; |
| 1787 | tp->recv_sack_cache[i].end_seq = 0; |
| 1788 | } |
| 1789 | for (j = 0; j < used_sacks; j++) |
| 1790 | tp->recv_sack_cache[i++] = sp[j]; |
| 1791 | |
| 1792 | if ((state->reord < tp->fackets_out) && |
| 1793 | ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) |
| 1794 | tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); |
| 1795 | |
| 1796 | tcp_verify_left_out(tp); |
| 1797 | out: |
| 1798 | |
| 1799 | #if FASTRETRANS_DEBUG > 0 |
| 1800 | WARN_ON((int)tp->sacked_out < 0); |
| 1801 | WARN_ON((int)tp->lost_out < 0); |
| 1802 | WARN_ON((int)tp->retrans_out < 0); |
| 1803 | WARN_ON((int)tcp_packets_in_flight(tp) < 0); |
| 1804 | #endif |
| 1805 | return state->flag; |
| 1806 | } |
| 1807 | |
| 1808 | /* Limits sacked_out so that sum with lost_out isn't ever larger than |
| 1809 | * packets_out. Returns false if sacked_out adjustement wasn't necessary. |
| 1810 | */ |
| 1811 | static bool tcp_limit_reno_sacked(struct tcp_sock *tp) |
| 1812 | { |
| 1813 | u32 holes; |
| 1814 | |
| 1815 | holes = max(tp->lost_out, 1U); |
| 1816 | holes = min(holes, tp->packets_out); |
| 1817 | |
| 1818 | if ((tp->sacked_out + holes) > tp->packets_out) { |
| 1819 | tp->sacked_out = tp->packets_out - holes; |
| 1820 | return true; |
| 1821 | } |
| 1822 | return false; |
| 1823 | } |
| 1824 | |
| 1825 | /* If we receive more dupacks than we expected counting segments |
| 1826 | * in assumption of absent reordering, interpret this as reordering. |
| 1827 | * The only another reason could be bug in receiver TCP. |
| 1828 | */ |
| 1829 | static void tcp_check_reno_reordering(struct sock *sk, const int addend) |
| 1830 | { |
| 1831 | struct tcp_sock *tp = tcp_sk(sk); |
| 1832 | if (tcp_limit_reno_sacked(tp)) |
| 1833 | tcp_update_reordering(sk, tp->packets_out + addend, 0); |
| 1834 | } |
| 1835 | |
| 1836 | /* Emulate SACKs for SACKless connection: account for a new dupack. */ |
| 1837 | |
| 1838 | static void tcp_add_reno_sack(struct sock *sk) |
| 1839 | { |
| 1840 | struct tcp_sock *tp = tcp_sk(sk); |
| 1841 | tp->sacked_out++; |
| 1842 | tcp_check_reno_reordering(sk, 0); |
| 1843 | tcp_verify_left_out(tp); |
| 1844 | } |
| 1845 | |
| 1846 | /* Account for ACK, ACKing some data in Reno Recovery phase. */ |
| 1847 | |
| 1848 | static void tcp_remove_reno_sacks(struct sock *sk, int acked) |
| 1849 | { |
| 1850 | struct tcp_sock *tp = tcp_sk(sk); |
| 1851 | |
| 1852 | if (acked > 0) { |
| 1853 | /* One ACK acked hole. The rest eat duplicate ACKs. */ |
| 1854 | if (acked - 1 >= tp->sacked_out) |
| 1855 | tp->sacked_out = 0; |
| 1856 | else |
| 1857 | tp->sacked_out -= acked - 1; |
| 1858 | } |
| 1859 | tcp_check_reno_reordering(sk, acked); |
| 1860 | tcp_verify_left_out(tp); |
| 1861 | } |
| 1862 | |
| 1863 | static inline void tcp_reset_reno_sack(struct tcp_sock *tp) |
| 1864 | { |
| 1865 | tp->sacked_out = 0; |
| 1866 | } |
| 1867 | |
| 1868 | void tcp_clear_retrans(struct tcp_sock *tp) |
| 1869 | { |
| 1870 | tp->retrans_out = 0; |
| 1871 | tp->lost_out = 0; |
| 1872 | tp->undo_marker = 0; |
| 1873 | tp->undo_retrans = -1; |
| 1874 | tp->fackets_out = 0; |
| 1875 | tp->sacked_out = 0; |
| 1876 | } |
| 1877 | |
| 1878 | static inline void tcp_init_undo(struct tcp_sock *tp) |
| 1879 | { |
| 1880 | tp->undo_marker = tp->snd_una; |
| 1881 | /* Retransmission still in flight may cause DSACKs later. */ |
| 1882 | tp->undo_retrans = tp->retrans_out ? : -1; |
| 1883 | } |
| 1884 | |
| 1885 | /* Enter Loss state. If we detect SACK reneging, forget all SACK information |
| 1886 | * and reset tags completely, otherwise preserve SACKs. If receiver |
| 1887 | * dropped its ofo queue, we will know this due to reneging detection. |
| 1888 | */ |
| 1889 | void tcp_enter_loss(struct sock *sk) |
| 1890 | { |
| 1891 | const struct inet_connection_sock *icsk = inet_csk(sk); |
| 1892 | struct tcp_sock *tp = tcp_sk(sk); |
| 1893 | struct sk_buff *skb; |
| 1894 | bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; |
| 1895 | bool is_reneg; /* is receiver reneging on SACKs? */ |
| 1896 | |
| 1897 | /* Reduce ssthresh if it has not yet been made inside this window. */ |
| 1898 | if (icsk->icsk_ca_state <= TCP_CA_Disorder || |
| 1899 | !after(tp->high_seq, tp->snd_una) || |
| 1900 | (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { |
| 1901 | tp->prior_ssthresh = tcp_current_ssthresh(sk); |
| 1902 | tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); |
| 1903 | tcp_ca_event(sk, CA_EVENT_LOSS); |
| 1904 | tcp_init_undo(tp); |
| 1905 | } |
| 1906 | tp->snd_cwnd = 1; |
| 1907 | tp->snd_cwnd_cnt = 0; |
| 1908 | tp->snd_cwnd_stamp = tcp_time_stamp; |
| 1909 | |
| 1910 | tp->retrans_out = 0; |
| 1911 | tp->lost_out = 0; |
| 1912 | |
| 1913 | if (tcp_is_reno(tp)) |
| 1914 | tcp_reset_reno_sack(tp); |
| 1915 | |
| 1916 | skb = tcp_write_queue_head(sk); |
| 1917 | is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); |
| 1918 | if (is_reneg) { |
| 1919 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); |
| 1920 | tp->sacked_out = 0; |
| 1921 | tp->fackets_out = 0; |
| 1922 | } |
| 1923 | tcp_clear_all_retrans_hints(tp); |
| 1924 | |
| 1925 | tcp_for_write_queue(skb, sk) { |
| 1926 | if (skb == tcp_send_head(sk)) |
| 1927 | break; |
| 1928 | |
| 1929 | TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; |
| 1930 | if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { |
| 1931 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; |
| 1932 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; |
| 1933 | tp->lost_out += tcp_skb_pcount(skb); |
| 1934 | tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; |
| 1935 | } |
| 1936 | } |
| 1937 | tcp_verify_left_out(tp); |
| 1938 | |
| 1939 | /* Timeout in disordered state after receiving substantial DUPACKs |
| 1940 | * suggests that the degree of reordering is over-estimated. |
| 1941 | */ |
| 1942 | if (icsk->icsk_ca_state <= TCP_CA_Disorder && |
| 1943 | tp->sacked_out >= sysctl_tcp_reordering) |
| 1944 | tp->reordering = min_t(unsigned int, tp->reordering, |
| 1945 | sysctl_tcp_reordering); |
| 1946 | tcp_set_ca_state(sk, TCP_CA_Loss); |
| 1947 | tp->high_seq = tp->snd_nxt; |
| 1948 | tcp_ecn_queue_cwr(tp); |
| 1949 | |
| 1950 | /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous |
| 1951 | * loss recovery is underway except recurring timeout(s) on |
| 1952 | * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing |
| 1953 | */ |
| 1954 | tp->frto = sysctl_tcp_frto && |
| 1955 | (new_recovery || icsk->icsk_retransmits) && |
| 1956 | !inet_csk(sk)->icsk_mtup.probe_size; |
| 1957 | } |
| 1958 | |
| 1959 | /* If ACK arrived pointing to a remembered SACK, it means that our |
| 1960 | * remembered SACKs do not reflect real state of receiver i.e. |
| 1961 | * receiver _host_ is heavily congested (or buggy). |
| 1962 | * |
| 1963 | * To avoid big spurious retransmission bursts due to transient SACK |
| 1964 | * scoreboard oddities that look like reneging, we give the receiver a |
| 1965 | * little time (max(RTT/2, 10ms)) to send us some more ACKs that will |
| 1966 | * restore sanity to the SACK scoreboard. If the apparent reneging |
| 1967 | * persists until this RTO then we'll clear the SACK scoreboard. |
| 1968 | */ |
| 1969 | static bool tcp_check_sack_reneging(struct sock *sk, int flag) |
| 1970 | { |
| 1971 | if (flag & FLAG_SACK_RENEGING) { |
| 1972 | struct tcp_sock *tp = tcp_sk(sk); |
| 1973 | unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), |
| 1974 | msecs_to_jiffies(10)); |
| 1975 | |
| 1976 | inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, |
| 1977 | delay, TCP_RTO_MAX); |
| 1978 | return true; |
| 1979 | } |
| 1980 | return false; |
| 1981 | } |
| 1982 | |
| 1983 | static inline int tcp_fackets_out(const struct tcp_sock *tp) |
| 1984 | { |
| 1985 | return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; |
| 1986 | } |
| 1987 | |
| 1988 | /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs |
| 1989 | * counter when SACK is enabled (without SACK, sacked_out is used for |
| 1990 | * that purpose). |
| 1991 | * |
| 1992 | * Instead, with FACK TCP uses fackets_out that includes both SACKed |
| 1993 | * segments up to the highest received SACK block so far and holes in |
| 1994 | * between them. |
| 1995 | * |
| 1996 | * With reordering, holes may still be in flight, so RFC3517 recovery |
| 1997 | * uses pure sacked_out (total number of SACKed segments) even though |
| 1998 | * it violates the RFC that uses duplicate ACKs, often these are equal |
| 1999 | * but when e.g. out-of-window ACKs or packet duplication occurs, |
| 2000 | * they differ. Since neither occurs due to loss, TCP should really |
| 2001 | * ignore them. |
| 2002 | */ |
| 2003 | static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) |
| 2004 | { |
| 2005 | return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; |
| 2006 | } |
| 2007 | |
| 2008 | static bool tcp_pause_early_retransmit(struct sock *sk, int flag) |
| 2009 | { |
| 2010 | struct tcp_sock *tp = tcp_sk(sk); |
| 2011 | unsigned long delay; |
| 2012 | |
| 2013 | /* Delay early retransmit and entering fast recovery for |
| 2014 | * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples |
| 2015 | * available, or RTO is scheduled to fire first. |
| 2016 | */ |
| 2017 | if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || |
| 2018 | (flag & FLAG_ECE) || !tp->srtt_us) |
| 2019 | return false; |
| 2020 | |
| 2021 | delay = max(usecs_to_jiffies(tp->srtt_us >> 5), |
| 2022 | msecs_to_jiffies(2)); |
| 2023 | |
| 2024 | if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) |
| 2025 | return false; |
| 2026 | |
| 2027 | inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, |
| 2028 | TCP_RTO_MAX); |
| 2029 | return true; |
| 2030 | } |
| 2031 | |
| 2032 | /* Linux NewReno/SACK/FACK/ECN state machine. |
| 2033 | * -------------------------------------- |
| 2034 | * |
| 2035 | * "Open" Normal state, no dubious events, fast path. |
| 2036 | * "Disorder" In all the respects it is "Open", |
| 2037 | * but requires a bit more attention. It is entered when |
| 2038 | * we see some SACKs or dupacks. It is split of "Open" |
| 2039 | * mainly to move some processing from fast path to slow one. |
| 2040 | * "CWR" CWND was reduced due to some Congestion Notification event. |
| 2041 | * It can be ECN, ICMP source quench, local device congestion. |
| 2042 | * "Recovery" CWND was reduced, we are fast-retransmitting. |
| 2043 | * "Loss" CWND was reduced due to RTO timeout or SACK reneging. |
| 2044 | * |
| 2045 | * tcp_fastretrans_alert() is entered: |
| 2046 | * - each incoming ACK, if state is not "Open" |
| 2047 | * - when arrived ACK is unusual, namely: |
| 2048 | * * SACK |
| 2049 | * * Duplicate ACK. |
| 2050 | * * ECN ECE. |
| 2051 | * |
| 2052 | * Counting packets in flight is pretty simple. |
| 2053 | * |
| 2054 | * in_flight = packets_out - left_out + retrans_out |
| 2055 | * |
| 2056 | * packets_out is SND.NXT-SND.UNA counted in packets. |
| 2057 | * |
| 2058 | * retrans_out is number of retransmitted segments. |
| 2059 | * |
| 2060 | * left_out is number of segments left network, but not ACKed yet. |
| 2061 | * |
| 2062 | * left_out = sacked_out + lost_out |
| 2063 | * |
| 2064 | * sacked_out: Packets, which arrived to receiver out of order |
| 2065 | * and hence not ACKed. With SACKs this number is simply |
| 2066 | * amount of SACKed data. Even without SACKs |
| 2067 | * it is easy to give pretty reliable estimate of this number, |
| 2068 | * counting duplicate ACKs. |
| 2069 | * |
| 2070 | * lost_out: Packets lost by network. TCP has no explicit |
| 2071 | * "loss notification" feedback from network (for now). |
| 2072 | * It means that this number can be only _guessed_. |
| 2073 | * Actually, it is the heuristics to predict lossage that |
| 2074 | * distinguishes different algorithms. |
| 2075 | * |
| 2076 | * F.e. after RTO, when all the queue is considered as lost, |
| 2077 | * lost_out = packets_out and in_flight = retrans_out. |
| 2078 | * |
| 2079 | * Essentially, we have now two algorithms counting |
| 2080 | * lost packets. |
| 2081 | * |
| 2082 | * FACK: It is the simplest heuristics. As soon as we decided |
| 2083 | * that something is lost, we decide that _all_ not SACKed |
| 2084 | * packets until the most forward SACK are lost. I.e. |
| 2085 | * lost_out = fackets_out - sacked_out and left_out = fackets_out. |
| 2086 | * It is absolutely correct estimate, if network does not reorder |
| 2087 | * packets. And it loses any connection to reality when reordering |
| 2088 | * takes place. We use FACK by default until reordering |
| 2089 | * is suspected on the path to this destination. |
| 2090 | * |
| 2091 | * NewReno: when Recovery is entered, we assume that one segment |
| 2092 | * is lost (classic Reno). While we are in Recovery and |
| 2093 | * a partial ACK arrives, we assume that one more packet |
| 2094 | * is lost (NewReno). This heuristics are the same in NewReno |
| 2095 | * and SACK. |
| 2096 | * |
| 2097 | * Imagine, that's all! Forget about all this shamanism about CWND inflation |
| 2098 | * deflation etc. CWND is real congestion window, never inflated, changes |
| 2099 | * only according to classic VJ rules. |
| 2100 | * |
| 2101 | * Really tricky (and requiring careful tuning) part of algorithm |
| 2102 | * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). |
| 2103 | * The first determines the moment _when_ we should reduce CWND and, |
| 2104 | * hence, slow down forward transmission. In fact, it determines the moment |
| 2105 | * when we decide that hole is caused by loss, rather than by a reorder. |
| 2106 | * |
| 2107 | * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill |
| 2108 | * holes, caused by lost packets. |
| 2109 | * |
| 2110 | * And the most logically complicated part of algorithm is undo |
| 2111 | * heuristics. We detect false retransmits due to both too early |
| 2112 | * fast retransmit (reordering) and underestimated RTO, analyzing |
| 2113 | * timestamps and D-SACKs. When we detect that some segments were |
| 2114 | * retransmitted by mistake and CWND reduction was wrong, we undo |
| 2115 | * window reduction and abort recovery phase. This logic is hidden |
| 2116 | * inside several functions named tcp_try_undo_<something>. |
| 2117 | */ |
| 2118 | |
| 2119 | /* This function decides, when we should leave Disordered state |
| 2120 | * and enter Recovery phase, reducing congestion window. |
| 2121 | * |
| 2122 | * Main question: may we further continue forward transmission |
| 2123 | * with the same cwnd? |
| 2124 | */ |
| 2125 | static bool tcp_time_to_recover(struct sock *sk, int flag) |
| 2126 | { |
| 2127 | struct tcp_sock *tp = tcp_sk(sk); |
| 2128 | __u32 packets_out; |
| 2129 | |
| 2130 | /* Trick#1: The loss is proven. */ |
| 2131 | if (tp->lost_out) |
| 2132 | return true; |
| 2133 | |
| 2134 | /* Not-A-Trick#2 : Classic rule... */ |
| 2135 | if (tcp_dupack_heuristics(tp) > tp->reordering) |
| 2136 | return true; |
| 2137 | |
| 2138 | /* Trick#4: It is still not OK... But will it be useful to delay |
| 2139 | * recovery more? |
| 2140 | */ |
| 2141 | packets_out = tp->packets_out; |
| 2142 | if (packets_out <= tp->reordering && |
| 2143 | tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && |
| 2144 | !tcp_may_send_now(sk)) { |
| 2145 | /* We have nothing to send. This connection is limited |
| 2146 | * either by receiver window or by application. |
| 2147 | */ |
| 2148 | return true; |
| 2149 | } |
| 2150 | |
| 2151 | /* If a thin stream is detected, retransmit after first |
| 2152 | * received dupack. Employ only if SACK is supported in order |
| 2153 | * to avoid possible corner-case series of spurious retransmissions |
| 2154 | * Use only if there are no unsent data. |
| 2155 | */ |
| 2156 | if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && |
| 2157 | tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && |
| 2158 | tcp_is_sack(tp) && !tcp_send_head(sk)) |
| 2159 | return true; |
| 2160 | |
| 2161 | /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious |
| 2162 | * retransmissions due to small network reorderings, we implement |
| 2163 | * Mitigation A.3 in the RFC and delay the retransmission for a short |
| 2164 | * interval if appropriate. |
| 2165 | */ |
| 2166 | if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && |
| 2167 | (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && |
| 2168 | !tcp_may_send_now(sk)) |
| 2169 | return !tcp_pause_early_retransmit(sk, flag); |
| 2170 | |
| 2171 | return false; |
| 2172 | } |
| 2173 | |
| 2174 | /* Detect loss in event "A" above by marking head of queue up as lost. |
| 2175 | * For FACK or non-SACK(Reno) senders, the first "packets" number of segments |
| 2176 | * are considered lost. For RFC3517 SACK, a segment is considered lost if it |
| 2177 | * has at least tp->reordering SACKed seqments above it; "packets" refers to |
| 2178 | * the maximum SACKed segments to pass before reaching this limit. |
| 2179 | */ |
| 2180 | static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) |
| 2181 | { |
| 2182 | struct tcp_sock *tp = tcp_sk(sk); |
| 2183 | struct sk_buff *skb; |
| 2184 | int cnt, oldcnt, lost; |
| 2185 | unsigned int mss; |
| 2186 | /* Use SACK to deduce losses of new sequences sent during recovery */ |
| 2187 | const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; |
| 2188 | |
| 2189 | WARN_ON(packets > tp->packets_out); |
| 2190 | if (tp->lost_skb_hint) { |
| 2191 | skb = tp->lost_skb_hint; |
| 2192 | cnt = tp->lost_cnt_hint; |
| 2193 | /* Head already handled? */ |
| 2194 | if (mark_head && skb != tcp_write_queue_head(sk)) |
| 2195 | return; |
| 2196 | } else { |
| 2197 | skb = tcp_write_queue_head(sk); |
| 2198 | cnt = 0; |
| 2199 | } |
| 2200 | |
| 2201 | tcp_for_write_queue_from(skb, sk) { |
| 2202 | if (skb == tcp_send_head(sk)) |
| 2203 | break; |
| 2204 | /* TODO: do this better */ |
| 2205 | /* this is not the most efficient way to do this... */ |
| 2206 | tp->lost_skb_hint = skb; |
| 2207 | tp->lost_cnt_hint = cnt; |
| 2208 | |
| 2209 | if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) |
| 2210 | break; |
| 2211 | |
| 2212 | oldcnt = cnt; |
| 2213 | if (tcp_is_fack(tp) || tcp_is_reno(tp) || |
| 2214 | (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) |
| 2215 | cnt += tcp_skb_pcount(skb); |
| 2216 | |
| 2217 | if (cnt > packets) { |
| 2218 | if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || |
| 2219 | (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || |
| 2220 | (oldcnt >= packets)) |
| 2221 | break; |
| 2222 | |
| 2223 | mss = tcp_skb_mss(skb); |
| 2224 | /* If needed, chop off the prefix to mark as lost. */ |
| 2225 | lost = (packets - oldcnt) * mss; |
| 2226 | if (lost < skb->len && |
| 2227 | tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) |
| 2228 | break; |
| 2229 | cnt = packets; |
| 2230 | } |
| 2231 | |
| 2232 | tcp_skb_mark_lost(tp, skb); |
| 2233 | |
| 2234 | if (mark_head) |
| 2235 | break; |
| 2236 | } |
| 2237 | tcp_verify_left_out(tp); |
| 2238 | } |
| 2239 | |
| 2240 | /* Account newly detected lost packet(s) */ |
| 2241 | |
| 2242 | static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) |
| 2243 | { |
| 2244 | struct tcp_sock *tp = tcp_sk(sk); |
| 2245 | |
| 2246 | if (tcp_is_reno(tp)) { |
| 2247 | tcp_mark_head_lost(sk, 1, 1); |
| 2248 | } else if (tcp_is_fack(tp)) { |
| 2249 | int lost = tp->fackets_out - tp->reordering; |
| 2250 | if (lost <= 0) |
| 2251 | lost = 1; |
| 2252 | tcp_mark_head_lost(sk, lost, 0); |
| 2253 | } else { |
| 2254 | int sacked_upto = tp->sacked_out - tp->reordering; |
| 2255 | if (sacked_upto >= 0) |
| 2256 | tcp_mark_head_lost(sk, sacked_upto, 0); |
| 2257 | else if (fast_rexmit) |
| 2258 | tcp_mark_head_lost(sk, 1, 1); |
| 2259 | } |
| 2260 | } |
| 2261 | |
| 2262 | /* CWND moderation, preventing bursts due to too big ACKs |
| 2263 | * in dubious situations. |
| 2264 | */ |
| 2265 | static inline void tcp_moderate_cwnd(struct tcp_sock *tp) |
| 2266 | { |
| 2267 | tp->snd_cwnd = min(tp->snd_cwnd, |
| 2268 | tcp_packets_in_flight(tp) + tcp_max_burst(tp)); |
| 2269 | tp->snd_cwnd_stamp = tcp_time_stamp; |
| 2270 | } |
| 2271 | |
| 2272 | static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) |
| 2273 | { |
| 2274 | return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && |
| 2275 | before(tp->rx_opt.rcv_tsecr, when); |
| 2276 | } |
| 2277 | |
| 2278 | /* skb is spurious retransmitted if the returned timestamp echo |
| 2279 | * reply is prior to the skb transmission time |
| 2280 | */ |
| 2281 | static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, |
| 2282 | const struct sk_buff *skb) |
| 2283 | { |
| 2284 | return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && |
| 2285 | tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); |
| 2286 | } |
| 2287 | |
| 2288 | /* Nothing was retransmitted or returned timestamp is less |
| 2289 | * than timestamp of the first retransmission. |
| 2290 | */ |
| 2291 | static inline bool tcp_packet_delayed(const struct tcp_sock *tp) |
| 2292 | { |
| 2293 | return !tp->retrans_stamp || |
| 2294 | tcp_tsopt_ecr_before(tp, tp->retrans_stamp); |
| 2295 | } |
| 2296 | |
| 2297 | /* Undo procedures. */ |
| 2298 | |
| 2299 | /* We can clear retrans_stamp when there are no retransmissions in the |
| 2300 | * window. It would seem that it is trivially available for us in |
| 2301 | * tp->retrans_out, however, that kind of assumptions doesn't consider |
| 2302 | * what will happen if errors occur when sending retransmission for the |
| 2303 | * second time. ...It could the that such segment has only |
| 2304 | * TCPCB_EVER_RETRANS set at the present time. It seems that checking |
| 2305 | * the head skb is enough except for some reneging corner cases that |
| 2306 | * are not worth the effort. |
| 2307 | * |
| 2308 | * Main reason for all this complexity is the fact that connection dying |
| 2309 | * time now depends on the validity of the retrans_stamp, in particular, |
| 2310 | * that successive retransmissions of a segment must not advance |
| 2311 | * retrans_stamp under any conditions. |
| 2312 | */ |
| 2313 | static bool tcp_any_retrans_done(const struct sock *sk) |
| 2314 | { |
| 2315 | const struct tcp_sock *tp = tcp_sk(sk); |
| 2316 | struct sk_buff *skb; |
| 2317 | |
| 2318 | if (tp->retrans_out) |
| 2319 | return true; |
| 2320 | |
| 2321 | skb = tcp_write_queue_head(sk); |
| 2322 | if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) |
| 2323 | return true; |
| 2324 | |
| 2325 | return false; |
| 2326 | } |
| 2327 | |
| 2328 | #if FASTRETRANS_DEBUG > 1 |
| 2329 | static void DBGUNDO(struct sock *sk, const char *msg) |
| 2330 | { |
| 2331 | struct tcp_sock *tp = tcp_sk(sk); |
| 2332 | struct inet_sock *inet = inet_sk(sk); |
| 2333 | |
| 2334 | if (sk->sk_family == AF_INET) { |
| 2335 | pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", |
| 2336 | msg, |
| 2337 | &inet->inet_daddr, ntohs(inet->inet_dport), |
| 2338 | tp->snd_cwnd, tcp_left_out(tp), |
| 2339 | tp->snd_ssthresh, tp->prior_ssthresh, |
| 2340 | tp->packets_out); |
| 2341 | } |
| 2342 | #if IS_ENABLED(CONFIG_IPV6) |
| 2343 | else if (sk->sk_family == AF_INET6) { |
| 2344 | pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", |
| 2345 | msg, |
| 2346 | &sk->sk_v6_daddr, ntohs(inet->inet_dport), |
| 2347 | tp->snd_cwnd, tcp_left_out(tp), |
| 2348 | tp->snd_ssthresh, tp->prior_ssthresh, |
| 2349 | tp->packets_out); |
| 2350 | } |
| 2351 | #endif |
| 2352 | } |
| 2353 | #else |
| 2354 | #define DBGUNDO(x...) do { } while (0) |
| 2355 | #endif |
| 2356 | |
| 2357 | static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) |
| 2358 | { |
| 2359 | struct tcp_sock *tp = tcp_sk(sk); |
| 2360 | |
| 2361 | if (unmark_loss) { |
| 2362 | struct sk_buff *skb; |
| 2363 | |
| 2364 | tcp_for_write_queue(skb, sk) { |
| 2365 | if (skb == tcp_send_head(sk)) |
| 2366 | break; |
| 2367 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; |
| 2368 | } |
| 2369 | tp->lost_out = 0; |
| 2370 | tcp_clear_all_retrans_hints(tp); |
| 2371 | } |
| 2372 | |
| 2373 | if (tp->prior_ssthresh) { |
| 2374 | const struct inet_connection_sock *icsk = inet_csk(sk); |
| 2375 | |
| 2376 | if (icsk->icsk_ca_ops->undo_cwnd) |
| 2377 | tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); |
| 2378 | else |
| 2379 | tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); |
| 2380 | |
| 2381 | if (tp->prior_ssthresh > tp->snd_ssthresh) { |
| 2382 | tp->snd_ssthresh = tp->prior_ssthresh; |
| 2383 | tcp_ecn_withdraw_cwr(tp); |
| 2384 | } |
| 2385 | } else { |
| 2386 | tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); |
| 2387 | } |
| 2388 | tp->snd_cwnd_stamp = tcp_time_stamp; |
| 2389 | tp->undo_marker = 0; |
| 2390 | } |
| 2391 | |
| 2392 | static inline bool tcp_may_undo(const struct tcp_sock *tp) |
| 2393 | { |
| 2394 | return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); |
| 2395 | } |
| 2396 | |
| 2397 | /* People celebrate: "We love our President!" */ |
| 2398 | static bool tcp_try_undo_recovery(struct sock *sk) |
| 2399 | { |
| 2400 | struct tcp_sock *tp = tcp_sk(sk); |
| 2401 | |
| 2402 | if (tcp_may_undo(tp)) { |
| 2403 | int mib_idx; |
| 2404 | |
| 2405 | /* Happy end! We did not retransmit anything |
| 2406 | * or our original transmission succeeded. |
| 2407 | */ |
| 2408 | DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); |
| 2409 | tcp_undo_cwnd_reduction(sk, false); |
| 2410 | if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) |
| 2411 | mib_idx = LINUX_MIB_TCPLOSSUNDO; |
| 2412 | else |
| 2413 | mib_idx = LINUX_MIB_TCPFULLUNDO; |
| 2414 | |
| 2415 | NET_INC_STATS_BH(sock_net(sk), mib_idx); |
| 2416 | } |
| 2417 | if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { |
| 2418 | /* Hold old state until something *above* high_seq |
| 2419 | * is ACKed. For Reno it is MUST to prevent false |
| 2420 | * fast retransmits (RFC2582). SACK TCP is safe. */ |
| 2421 | tcp_moderate_cwnd(tp); |
| 2422 | if (!tcp_any_retrans_done(sk)) |
| 2423 | tp->retrans_stamp = 0; |
| 2424 | return true; |
| 2425 | } |
| 2426 | tcp_set_ca_state(sk, TCP_CA_Open); |
| 2427 | return false; |
| 2428 | } |
| 2429 | |
| 2430 | /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ |
| 2431 | static bool tcp_try_undo_dsack(struct sock *sk) |
| 2432 | { |
| 2433 | struct tcp_sock *tp = tcp_sk(sk); |
| 2434 | |
| 2435 | if (tp->undo_marker && !tp->undo_retrans) { |
| 2436 | DBGUNDO(sk, "D-SACK"); |
| 2437 | tcp_undo_cwnd_reduction(sk, false); |
| 2438 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); |
| 2439 | return true; |
| 2440 | } |
| 2441 | return false; |
| 2442 | } |
| 2443 | |
| 2444 | /* Undo during loss recovery after partial ACK or using F-RTO. */ |
| 2445 | static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) |
| 2446 | { |
| 2447 | struct tcp_sock *tp = tcp_sk(sk); |
| 2448 | |
| 2449 | if (frto_undo || tcp_may_undo(tp)) { |
| 2450 | tcp_undo_cwnd_reduction(sk, true); |
| 2451 | |
| 2452 | DBGUNDO(sk, "partial loss"); |
| 2453 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); |
| 2454 | if (frto_undo) |
| 2455 | NET_INC_STATS_BH(sock_net(sk), |
| 2456 | LINUX_MIB_TCPSPURIOUSRTOS); |
| 2457 | inet_csk(sk)->icsk_retransmits = 0; |
| 2458 | if (frto_undo || tcp_is_sack(tp)) |
| 2459 | tcp_set_ca_state(sk, TCP_CA_Open); |
| 2460 | return true; |
| 2461 | } |
| 2462 | return false; |
| 2463 | } |
| 2464 | |
| 2465 | /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. |
| 2466 | * It computes the number of packets to send (sndcnt) based on packets newly |
| 2467 | * delivered: |
| 2468 | * 1) If the packets in flight is larger than ssthresh, PRR spreads the |
| 2469 | * cwnd reductions across a full RTT. |
| 2470 | * 2) Otherwise PRR uses packet conservation to send as much as delivered. |
| 2471 | * But when the retransmits are acked without further losses, PRR |
| 2472 | * slow starts cwnd up to ssthresh to speed up the recovery. |
| 2473 | */ |
| 2474 | static void tcp_init_cwnd_reduction(struct sock *sk) |
| 2475 | { |
| 2476 | struct tcp_sock *tp = tcp_sk(sk); |
| 2477 | |
| 2478 | tp->high_seq = tp->snd_nxt; |
| 2479 | tp->tlp_high_seq = 0; |
| 2480 | tp->snd_cwnd_cnt = 0; |
| 2481 | tp->prior_cwnd = tp->snd_cwnd; |
| 2482 | tp->prr_delivered = 0; |
| 2483 | tp->prr_out = 0; |
| 2484 | tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); |
| 2485 | tcp_ecn_queue_cwr(tp); |
| 2486 | } |
| 2487 | |
| 2488 | static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, |
| 2489 | int fast_rexmit, int flag) |
| 2490 | { |
| 2491 | struct tcp_sock *tp = tcp_sk(sk); |
| 2492 | int sndcnt = 0; |
| 2493 | int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); |
| 2494 | int newly_acked_sacked = prior_unsacked - |
| 2495 | (tp->packets_out - tp->sacked_out); |
| 2496 | |
| 2497 | if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) |
| 2498 | return; |
| 2499 | |
| 2500 | tp->prr_delivered += newly_acked_sacked; |
| 2501 | if (delta < 0) { |
| 2502 | u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + |
| 2503 | tp->prior_cwnd - 1; |
| 2504 | sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; |
| 2505 | } else if ((flag & FLAG_RETRANS_DATA_ACKED) && |
| 2506 | !(flag & FLAG_LOST_RETRANS)) { |
| 2507 | sndcnt = min_t(int, delta, |
| 2508 | max_t(int, tp->prr_delivered - tp->prr_out, |
| 2509 | newly_acked_sacked) + 1); |
| 2510 | } else { |
| 2511 | sndcnt = min(delta, newly_acked_sacked); |
| 2512 | } |
| 2513 | sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); |
| 2514 | tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; |
| 2515 | } |
| 2516 | |
| 2517 | static inline void tcp_end_cwnd_reduction(struct sock *sk) |
| 2518 | { |
| 2519 | struct tcp_sock *tp = tcp_sk(sk); |
| 2520 | |
| 2521 | /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ |
| 2522 | if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && |
| 2523 | (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { |
| 2524 | tp->snd_cwnd = tp->snd_ssthresh; |
| 2525 | tp->snd_cwnd_stamp = tcp_time_stamp; |
| 2526 | } |
| 2527 | tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); |
| 2528 | } |
| 2529 | |
| 2530 | /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ |
| 2531 | void tcp_enter_cwr(struct sock *sk) |
| 2532 | { |
| 2533 | struct tcp_sock *tp = tcp_sk(sk); |
| 2534 | |
| 2535 | tp->prior_ssthresh = 0; |
| 2536 | if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { |
| 2537 | tp->undo_marker = 0; |
| 2538 | tcp_init_cwnd_reduction(sk); |
| 2539 | tcp_set_ca_state(sk, TCP_CA_CWR); |
| 2540 | } |
| 2541 | } |
| 2542 | EXPORT_SYMBOL(tcp_enter_cwr); |
| 2543 | |
| 2544 | static void tcp_try_keep_open(struct sock *sk) |
| 2545 | { |
| 2546 | struct tcp_sock *tp = tcp_sk(sk); |
| 2547 | int state = TCP_CA_Open; |
| 2548 | |
| 2549 | if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) |
| 2550 | state = TCP_CA_Disorder; |
| 2551 | |
| 2552 | if (inet_csk(sk)->icsk_ca_state != state) { |
| 2553 | tcp_set_ca_state(sk, state); |
| 2554 | tp->high_seq = tp->snd_nxt; |
| 2555 | } |
| 2556 | } |
| 2557 | |
| 2558 | static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) |
| 2559 | { |
| 2560 | struct tcp_sock *tp = tcp_sk(sk); |
| 2561 | |
| 2562 | tcp_verify_left_out(tp); |
| 2563 | |
| 2564 | if (!tcp_any_retrans_done(sk)) |
| 2565 | tp->retrans_stamp = 0; |
| 2566 | |
| 2567 | if (flag & FLAG_ECE) |
| 2568 | tcp_enter_cwr(sk); |
| 2569 | |
| 2570 | if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { |
| 2571 | tcp_try_keep_open(sk); |
| 2572 | } else { |
| 2573 | tcp_cwnd_reduction(sk, prior_unsacked, 0, flag); |
| 2574 | } |
| 2575 | } |
| 2576 | |
| 2577 | static void tcp_mtup_probe_failed(struct sock *sk) |
| 2578 | { |
| 2579 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 2580 | |
| 2581 | icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; |
| 2582 | icsk->icsk_mtup.probe_size = 0; |
| 2583 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); |
| 2584 | } |
| 2585 | |
| 2586 | static void tcp_mtup_probe_success(struct sock *sk) |
| 2587 | { |
| 2588 | struct tcp_sock *tp = tcp_sk(sk); |
| 2589 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 2590 | |
| 2591 | /* FIXME: breaks with very large cwnd */ |
| 2592 | tp->prior_ssthresh = tcp_current_ssthresh(sk); |
| 2593 | tp->snd_cwnd = tp->snd_cwnd * |
| 2594 | tcp_mss_to_mtu(sk, tp->mss_cache) / |
| 2595 | icsk->icsk_mtup.probe_size; |
| 2596 | tp->snd_cwnd_cnt = 0; |
| 2597 | tp->snd_cwnd_stamp = tcp_time_stamp; |
| 2598 | tp->snd_ssthresh = tcp_current_ssthresh(sk); |
| 2599 | |
| 2600 | icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; |
| 2601 | icsk->icsk_mtup.probe_size = 0; |
| 2602 | tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); |
| 2603 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); |
| 2604 | } |
| 2605 | |
| 2606 | /* Do a simple retransmit without using the backoff mechanisms in |
| 2607 | * tcp_timer. This is used for path mtu discovery. |
| 2608 | * The socket is already locked here. |
| 2609 | */ |
| 2610 | void tcp_simple_retransmit(struct sock *sk) |
| 2611 | { |
| 2612 | const struct inet_connection_sock *icsk = inet_csk(sk); |
| 2613 | struct tcp_sock *tp = tcp_sk(sk); |
| 2614 | struct sk_buff *skb; |
| 2615 | unsigned int mss = tcp_current_mss(sk); |
| 2616 | u32 prior_lost = tp->lost_out; |
| 2617 | |
| 2618 | tcp_for_write_queue(skb, sk) { |
| 2619 | if (skb == tcp_send_head(sk)) |
| 2620 | break; |
| 2621 | if (tcp_skb_seglen(skb) > mss && |
| 2622 | !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { |
| 2623 | if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { |
| 2624 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; |
| 2625 | tp->retrans_out -= tcp_skb_pcount(skb); |
| 2626 | } |
| 2627 | tcp_skb_mark_lost_uncond_verify(tp, skb); |
| 2628 | } |
| 2629 | } |
| 2630 | |
| 2631 | tcp_clear_retrans_hints_partial(tp); |
| 2632 | |
| 2633 | if (prior_lost == tp->lost_out) |
| 2634 | return; |
| 2635 | |
| 2636 | if (tcp_is_reno(tp)) |
| 2637 | tcp_limit_reno_sacked(tp); |
| 2638 | |
| 2639 | tcp_verify_left_out(tp); |
| 2640 | |
| 2641 | /* Don't muck with the congestion window here. |
| 2642 | * Reason is that we do not increase amount of _data_ |
| 2643 | * in network, but units changed and effective |
| 2644 | * cwnd/ssthresh really reduced now. |
| 2645 | */ |
| 2646 | if (icsk->icsk_ca_state != TCP_CA_Loss) { |
| 2647 | tp->high_seq = tp->snd_nxt; |
| 2648 | tp->snd_ssthresh = tcp_current_ssthresh(sk); |
| 2649 | tp->prior_ssthresh = 0; |
| 2650 | tp->undo_marker = 0; |
| 2651 | tcp_set_ca_state(sk, TCP_CA_Loss); |
| 2652 | } |
| 2653 | tcp_xmit_retransmit_queue(sk); |
| 2654 | } |
| 2655 | EXPORT_SYMBOL(tcp_simple_retransmit); |
| 2656 | |
| 2657 | static void tcp_enter_recovery(struct sock *sk, bool ece_ack) |
| 2658 | { |
| 2659 | struct tcp_sock *tp = tcp_sk(sk); |
| 2660 | int mib_idx; |
| 2661 | |
| 2662 | if (tcp_is_reno(tp)) |
| 2663 | mib_idx = LINUX_MIB_TCPRENORECOVERY; |
| 2664 | else |
| 2665 | mib_idx = LINUX_MIB_TCPSACKRECOVERY; |
| 2666 | |
| 2667 | NET_INC_STATS_BH(sock_net(sk), mib_idx); |
| 2668 | |
| 2669 | tp->prior_ssthresh = 0; |
| 2670 | tcp_init_undo(tp); |
| 2671 | |
| 2672 | if (!tcp_in_cwnd_reduction(sk)) { |
| 2673 | if (!ece_ack) |
| 2674 | tp->prior_ssthresh = tcp_current_ssthresh(sk); |
| 2675 | tcp_init_cwnd_reduction(sk); |
| 2676 | } |
| 2677 | tcp_set_ca_state(sk, TCP_CA_Recovery); |
| 2678 | } |
| 2679 | |
| 2680 | /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are |
| 2681 | * recovered or spurious. Otherwise retransmits more on partial ACKs. |
| 2682 | */ |
| 2683 | static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) |
| 2684 | { |
| 2685 | struct tcp_sock *tp = tcp_sk(sk); |
| 2686 | bool recovered = !before(tp->snd_una, tp->high_seq); |
| 2687 | |
| 2688 | if ((flag & FLAG_SND_UNA_ADVANCED) && |
| 2689 | tcp_try_undo_loss(sk, false)) |
| 2690 | return; |
| 2691 | |
| 2692 | if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ |
| 2693 | /* Step 3.b. A timeout is spurious if not all data are |
| 2694 | * lost, i.e., never-retransmitted data are (s)acked. |
| 2695 | */ |
| 2696 | if ((flag & FLAG_ORIG_SACK_ACKED) && |
| 2697 | tcp_try_undo_loss(sk, true)) |
| 2698 | return; |
| 2699 | |
| 2700 | if (after(tp->snd_nxt, tp->high_seq)) { |
| 2701 | if (flag & FLAG_DATA_SACKED || is_dupack) |
| 2702 | tp->frto = 0; /* Step 3.a. loss was real */ |
| 2703 | } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { |
| 2704 | tp->high_seq = tp->snd_nxt; |
| 2705 | __tcp_push_pending_frames(sk, tcp_current_mss(sk), |
| 2706 | TCP_NAGLE_OFF); |
| 2707 | if (after(tp->snd_nxt, tp->high_seq)) |
| 2708 | return; /* Step 2.b */ |
| 2709 | tp->frto = 0; |
| 2710 | } |
| 2711 | } |
| 2712 | |
| 2713 | if (recovered) { |
| 2714 | /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ |
| 2715 | tcp_try_undo_recovery(sk); |
| 2716 | return; |
| 2717 | } |
| 2718 | if (tcp_is_reno(tp)) { |
| 2719 | /* A Reno DUPACK means new data in F-RTO step 2.b above are |
| 2720 | * delivered. Lower inflight to clock out (re)tranmissions. |
| 2721 | */ |
| 2722 | if (after(tp->snd_nxt, tp->high_seq) && is_dupack) |
| 2723 | tcp_add_reno_sack(sk); |
| 2724 | else if (flag & FLAG_SND_UNA_ADVANCED) |
| 2725 | tcp_reset_reno_sack(tp); |
| 2726 | } |
| 2727 | tcp_xmit_retransmit_queue(sk); |
| 2728 | } |
| 2729 | |
| 2730 | /* Undo during fast recovery after partial ACK. */ |
| 2731 | static bool tcp_try_undo_partial(struct sock *sk, const int acked, |
| 2732 | const int prior_unsacked, int flag) |
| 2733 | { |
| 2734 | struct tcp_sock *tp = tcp_sk(sk); |
| 2735 | |
| 2736 | if (tp->undo_marker && tcp_packet_delayed(tp)) { |
| 2737 | /* Plain luck! Hole if filled with delayed |
| 2738 | * packet, rather than with a retransmit. |
| 2739 | */ |
| 2740 | tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); |
| 2741 | |
| 2742 | /* We are getting evidence that the reordering degree is higher |
| 2743 | * than we realized. If there are no retransmits out then we |
| 2744 | * can undo. Otherwise we clock out new packets but do not |
| 2745 | * mark more packets lost or retransmit more. |
| 2746 | */ |
| 2747 | if (tp->retrans_out) { |
| 2748 | tcp_cwnd_reduction(sk, prior_unsacked, 0, flag); |
| 2749 | return true; |
| 2750 | } |
| 2751 | |
| 2752 | if (!tcp_any_retrans_done(sk)) |
| 2753 | tp->retrans_stamp = 0; |
| 2754 | |
| 2755 | DBGUNDO(sk, "partial recovery"); |
| 2756 | tcp_undo_cwnd_reduction(sk, true); |
| 2757 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); |
| 2758 | tcp_try_keep_open(sk); |
| 2759 | return true; |
| 2760 | } |
| 2761 | return false; |
| 2762 | } |
| 2763 | |
| 2764 | /* Process an event, which can update packets-in-flight not trivially. |
| 2765 | * Main goal of this function is to calculate new estimate for left_out, |
| 2766 | * taking into account both packets sitting in receiver's buffer and |
| 2767 | * packets lost by network. |
| 2768 | * |
| 2769 | * Besides that it does CWND reduction, when packet loss is detected |
| 2770 | * and changes state of machine. |
| 2771 | * |
| 2772 | * It does _not_ decide what to send, it is made in function |
| 2773 | * tcp_xmit_retransmit_queue(). |
| 2774 | */ |
| 2775 | static void tcp_fastretrans_alert(struct sock *sk, const int acked, |
| 2776 | const int prior_unsacked, |
| 2777 | bool is_dupack, int flag) |
| 2778 | { |
| 2779 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 2780 | struct tcp_sock *tp = tcp_sk(sk); |
| 2781 | bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && |
| 2782 | (tcp_fackets_out(tp) > tp->reordering)); |
| 2783 | int fast_rexmit = 0; |
| 2784 | |
| 2785 | if (WARN_ON(!tp->packets_out && tp->sacked_out)) |
| 2786 | tp->sacked_out = 0; |
| 2787 | if (WARN_ON(!tp->sacked_out && tp->fackets_out)) |
| 2788 | tp->fackets_out = 0; |
| 2789 | |
| 2790 | /* Now state machine starts. |
| 2791 | * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ |
| 2792 | if (flag & FLAG_ECE) |
| 2793 | tp->prior_ssthresh = 0; |
| 2794 | |
| 2795 | /* B. In all the states check for reneging SACKs. */ |
| 2796 | if (tcp_check_sack_reneging(sk, flag)) |
| 2797 | return; |
| 2798 | |
| 2799 | /* C. Check consistency of the current state. */ |
| 2800 | tcp_verify_left_out(tp); |
| 2801 | |
| 2802 | /* D. Check state exit conditions. State can be terminated |
| 2803 | * when high_seq is ACKed. */ |
| 2804 | if (icsk->icsk_ca_state == TCP_CA_Open) { |
| 2805 | WARN_ON(tp->retrans_out != 0); |
| 2806 | tp->retrans_stamp = 0; |
| 2807 | } else if (!before(tp->snd_una, tp->high_seq)) { |
| 2808 | switch (icsk->icsk_ca_state) { |
| 2809 | case TCP_CA_CWR: |
| 2810 | /* CWR is to be held something *above* high_seq |
| 2811 | * is ACKed for CWR bit to reach receiver. */ |
| 2812 | if (tp->snd_una != tp->high_seq) { |
| 2813 | tcp_end_cwnd_reduction(sk); |
| 2814 | tcp_set_ca_state(sk, TCP_CA_Open); |
| 2815 | } |
| 2816 | break; |
| 2817 | |
| 2818 | case TCP_CA_Recovery: |
| 2819 | if (tcp_is_reno(tp)) |
| 2820 | tcp_reset_reno_sack(tp); |
| 2821 | if (tcp_try_undo_recovery(sk)) |
| 2822 | return; |
| 2823 | tcp_end_cwnd_reduction(sk); |
| 2824 | break; |
| 2825 | } |
| 2826 | } |
| 2827 | |
| 2828 | /* Use RACK to detect loss */ |
| 2829 | if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS && |
| 2830 | tcp_rack_mark_lost(sk)) |
| 2831 | flag |= FLAG_LOST_RETRANS; |
| 2832 | |
| 2833 | /* E. Process state. */ |
| 2834 | switch (icsk->icsk_ca_state) { |
| 2835 | case TCP_CA_Recovery: |
| 2836 | if (!(flag & FLAG_SND_UNA_ADVANCED)) { |
| 2837 | if (tcp_is_reno(tp) && is_dupack) |
| 2838 | tcp_add_reno_sack(sk); |
| 2839 | } else { |
| 2840 | if (tcp_try_undo_partial(sk, acked, prior_unsacked, flag)) |
| 2841 | return; |
| 2842 | /* Partial ACK arrived. Force fast retransmit. */ |
| 2843 | do_lost = tcp_is_reno(tp) || |
| 2844 | tcp_fackets_out(tp) > tp->reordering; |
| 2845 | } |
| 2846 | if (tcp_try_undo_dsack(sk)) { |
| 2847 | tcp_try_keep_open(sk); |
| 2848 | return; |
| 2849 | } |
| 2850 | break; |
| 2851 | case TCP_CA_Loss: |
| 2852 | tcp_process_loss(sk, flag, is_dupack); |
| 2853 | if (icsk->icsk_ca_state != TCP_CA_Open && |
| 2854 | !(flag & FLAG_LOST_RETRANS)) |
| 2855 | return; |
| 2856 | /* Change state if cwnd is undone or retransmits are lost */ |
| 2857 | default: |
| 2858 | if (tcp_is_reno(tp)) { |
| 2859 | if (flag & FLAG_SND_UNA_ADVANCED) |
| 2860 | tcp_reset_reno_sack(tp); |
| 2861 | if (is_dupack) |
| 2862 | tcp_add_reno_sack(sk); |
| 2863 | } |
| 2864 | |
| 2865 | if (icsk->icsk_ca_state <= TCP_CA_Disorder) |
| 2866 | tcp_try_undo_dsack(sk); |
| 2867 | |
| 2868 | if (!tcp_time_to_recover(sk, flag)) { |
| 2869 | tcp_try_to_open(sk, flag, prior_unsacked); |
| 2870 | return; |
| 2871 | } |
| 2872 | |
| 2873 | /* MTU probe failure: don't reduce cwnd */ |
| 2874 | if (icsk->icsk_ca_state < TCP_CA_CWR && |
| 2875 | icsk->icsk_mtup.probe_size && |
| 2876 | tp->snd_una == tp->mtu_probe.probe_seq_start) { |
| 2877 | tcp_mtup_probe_failed(sk); |
| 2878 | /* Restores the reduction we did in tcp_mtup_probe() */ |
| 2879 | tp->snd_cwnd++; |
| 2880 | tcp_simple_retransmit(sk); |
| 2881 | return; |
| 2882 | } |
| 2883 | |
| 2884 | /* Otherwise enter Recovery state */ |
| 2885 | tcp_enter_recovery(sk, (flag & FLAG_ECE)); |
| 2886 | fast_rexmit = 1; |
| 2887 | } |
| 2888 | |
| 2889 | if (do_lost) |
| 2890 | tcp_update_scoreboard(sk, fast_rexmit); |
| 2891 | tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit, flag); |
| 2892 | tcp_xmit_retransmit_queue(sk); |
| 2893 | } |
| 2894 | |
| 2895 | /* Kathleen Nichols' algorithm for tracking the minimum value of |
| 2896 | * a data stream over some fixed time interval. (E.g., the minimum |
| 2897 | * RTT over the past five minutes.) It uses constant space and constant |
| 2898 | * time per update yet almost always delivers the same minimum as an |
| 2899 | * implementation that has to keep all the data in the window. |
| 2900 | * |
| 2901 | * The algorithm keeps track of the best, 2nd best & 3rd best min |
| 2902 | * values, maintaining an invariant that the measurement time of the |
| 2903 | * n'th best >= n-1'th best. It also makes sure that the three values |
| 2904 | * are widely separated in the time window since that bounds the worse |
| 2905 | * case error when that data is monotonically increasing over the window. |
| 2906 | * |
| 2907 | * Upon getting a new min, we can forget everything earlier because it |
| 2908 | * has no value - the new min is <= everything else in the window by |
| 2909 | * definition and it's the most recent. So we restart fresh on every new min |
| 2910 | * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd |
| 2911 | * best. |
| 2912 | */ |
| 2913 | static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) |
| 2914 | { |
| 2915 | const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ; |
| 2916 | struct rtt_meas *m = tcp_sk(sk)->rtt_min; |
| 2917 | struct rtt_meas rttm = { .rtt = (rtt_us ? : 1), .ts = now }; |
| 2918 | u32 elapsed; |
| 2919 | |
| 2920 | /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */ |
| 2921 | if (unlikely(rttm.rtt <= m[0].rtt)) |
| 2922 | m[0] = m[1] = m[2] = rttm; |
| 2923 | else if (rttm.rtt <= m[1].rtt) |
| 2924 | m[1] = m[2] = rttm; |
| 2925 | else if (rttm.rtt <= m[2].rtt) |
| 2926 | m[2] = rttm; |
| 2927 | |
| 2928 | elapsed = now - m[0].ts; |
| 2929 | if (unlikely(elapsed > wlen)) { |
| 2930 | /* Passed entire window without a new min so make 2nd choice |
| 2931 | * the new min & 3rd choice the new 2nd. So forth and so on. |
| 2932 | */ |
| 2933 | m[0] = m[1]; |
| 2934 | m[1] = m[2]; |
| 2935 | m[2] = rttm; |
| 2936 | if (now - m[0].ts > wlen) { |
| 2937 | m[0] = m[1]; |
| 2938 | m[1] = rttm; |
| 2939 | if (now - m[0].ts > wlen) |
| 2940 | m[0] = rttm; |
| 2941 | } |
| 2942 | } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) { |
| 2943 | /* Passed a quarter of the window without a new min so |
| 2944 | * take 2nd choice from the 2nd quarter of the window. |
| 2945 | */ |
| 2946 | m[2] = m[1] = rttm; |
| 2947 | } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) { |
| 2948 | /* Passed half the window without a new min so take the 3rd |
| 2949 | * choice from the last half of the window. |
| 2950 | */ |
| 2951 | m[2] = rttm; |
| 2952 | } |
| 2953 | } |
| 2954 | |
| 2955 | static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, |
| 2956 | long seq_rtt_us, long sack_rtt_us, |
| 2957 | long ca_rtt_us) |
| 2958 | { |
| 2959 | const struct tcp_sock *tp = tcp_sk(sk); |
| 2960 | |
| 2961 | /* Prefer RTT measured from ACK's timing to TS-ECR. This is because |
| 2962 | * broken middle-boxes or peers may corrupt TS-ECR fields. But |
| 2963 | * Karn's algorithm forbids taking RTT if some retransmitted data |
| 2964 | * is acked (RFC6298). |
| 2965 | */ |
| 2966 | if (seq_rtt_us < 0) |
| 2967 | seq_rtt_us = sack_rtt_us; |
| 2968 | |
| 2969 | /* RTTM Rule: A TSecr value received in a segment is used to |
| 2970 | * update the averaged RTT measurement only if the segment |
| 2971 | * acknowledges some new data, i.e., only if it advances the |
| 2972 | * left edge of the send window. |
| 2973 | * See draft-ietf-tcplw-high-performance-00, section 3.3. |
| 2974 | */ |
| 2975 | if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && |
| 2976 | flag & FLAG_ACKED) |
| 2977 | seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp - |
| 2978 | tp->rx_opt.rcv_tsecr); |
| 2979 | if (seq_rtt_us < 0) |
| 2980 | return false; |
| 2981 | |
| 2982 | /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is |
| 2983 | * always taken together with ACK, SACK, or TS-opts. Any negative |
| 2984 | * values will be skipped with the seq_rtt_us < 0 check above. |
| 2985 | */ |
| 2986 | tcp_update_rtt_min(sk, ca_rtt_us); |
| 2987 | tcp_rtt_estimator(sk, seq_rtt_us); |
| 2988 | tcp_set_rto(sk); |
| 2989 | |
| 2990 | /* RFC6298: only reset backoff on valid RTT measurement. */ |
| 2991 | inet_csk(sk)->icsk_backoff = 0; |
| 2992 | return true; |
| 2993 | } |
| 2994 | |
| 2995 | /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ |
| 2996 | void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) |
| 2997 | { |
| 2998 | long rtt_us = -1L; |
| 2999 | |
| 3000 | if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) { |
| 3001 | struct skb_mstamp now; |
| 3002 | |
| 3003 | skb_mstamp_get(&now); |
| 3004 | rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack); |
| 3005 | } |
| 3006 | |
| 3007 | tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us); |
| 3008 | } |
| 3009 | |
| 3010 | |
| 3011 | static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) |
| 3012 | { |
| 3013 | const struct inet_connection_sock *icsk = inet_csk(sk); |
| 3014 | |
| 3015 | icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); |
| 3016 | tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; |
| 3017 | } |
| 3018 | |
| 3019 | /* Restart timer after forward progress on connection. |
| 3020 | * RFC2988 recommends to restart timer to now+rto. |
| 3021 | */ |
| 3022 | void tcp_rearm_rto(struct sock *sk) |
| 3023 | { |
| 3024 | const struct inet_connection_sock *icsk = inet_csk(sk); |
| 3025 | struct tcp_sock *tp = tcp_sk(sk); |
| 3026 | |
| 3027 | /* If the retrans timer is currently being used by Fast Open |
| 3028 | * for SYN-ACK retrans purpose, stay put. |
| 3029 | */ |
| 3030 | if (tp->fastopen_rsk) |
| 3031 | return; |
| 3032 | |
| 3033 | if (!tp->packets_out) { |
| 3034 | inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); |
| 3035 | } else { |
| 3036 | u32 rto = inet_csk(sk)->icsk_rto; |
| 3037 | /* Offset the time elapsed after installing regular RTO */ |
| 3038 | if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || |
| 3039 | icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { |
| 3040 | struct sk_buff *skb = tcp_write_queue_head(sk); |
| 3041 | const u32 rto_time_stamp = |
| 3042 | tcp_skb_timestamp(skb) + rto; |
| 3043 | s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); |
| 3044 | /* delta may not be positive if the socket is locked |
| 3045 | * when the retrans timer fires and is rescheduled. |
| 3046 | */ |
| 3047 | rto = max(delta, 1); |
| 3048 | } |
| 3049 | inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, |
| 3050 | TCP_RTO_MAX); |
| 3051 | } |
| 3052 | } |
| 3053 | |
| 3054 | /* This function is called when the delayed ER timer fires. TCP enters |
| 3055 | * fast recovery and performs fast-retransmit. |
| 3056 | */ |
| 3057 | void tcp_resume_early_retransmit(struct sock *sk) |
| 3058 | { |
| 3059 | struct tcp_sock *tp = tcp_sk(sk); |
| 3060 | |
| 3061 | tcp_rearm_rto(sk); |
| 3062 | |
| 3063 | /* Stop if ER is disabled after the delayed ER timer is scheduled */ |
| 3064 | if (!tp->do_early_retrans) |
| 3065 | return; |
| 3066 | |
| 3067 | tcp_enter_recovery(sk, false); |
| 3068 | tcp_update_scoreboard(sk, 1); |
| 3069 | tcp_xmit_retransmit_queue(sk); |
| 3070 | } |
| 3071 | |
| 3072 | /* If we get here, the whole TSO packet has not been acked. */ |
| 3073 | static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) |
| 3074 | { |
| 3075 | struct tcp_sock *tp = tcp_sk(sk); |
| 3076 | u32 packets_acked; |
| 3077 | |
| 3078 | BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); |
| 3079 | |
| 3080 | packets_acked = tcp_skb_pcount(skb); |
| 3081 | if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) |
| 3082 | return 0; |
| 3083 | packets_acked -= tcp_skb_pcount(skb); |
| 3084 | |
| 3085 | if (packets_acked) { |
| 3086 | BUG_ON(tcp_skb_pcount(skb) == 0); |
| 3087 | BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); |
| 3088 | } |
| 3089 | |
| 3090 | return packets_acked; |
| 3091 | } |
| 3092 | |
| 3093 | static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, |
| 3094 | u32 prior_snd_una) |
| 3095 | { |
| 3096 | const struct skb_shared_info *shinfo; |
| 3097 | |
| 3098 | /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ |
| 3099 | if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK))) |
| 3100 | return; |
| 3101 | |
| 3102 | shinfo = skb_shinfo(skb); |
| 3103 | if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) && |
| 3104 | between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1)) |
| 3105 | __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); |
| 3106 | } |
| 3107 | |
| 3108 | /* Remove acknowledged frames from the retransmission queue. If our packet |
| 3109 | * is before the ack sequence we can discard it as it's confirmed to have |
| 3110 | * arrived at the other end. |
| 3111 | */ |
| 3112 | static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, |
| 3113 | u32 prior_snd_una, |
| 3114 | struct tcp_sacktag_state *sack) |
| 3115 | { |
| 3116 | const struct inet_connection_sock *icsk = inet_csk(sk); |
| 3117 | struct skb_mstamp first_ackt, last_ackt, now; |
| 3118 | struct tcp_sock *tp = tcp_sk(sk); |
| 3119 | u32 prior_sacked = tp->sacked_out; |
| 3120 | u32 reord = tp->packets_out; |
| 3121 | bool fully_acked = true; |
| 3122 | long sack_rtt_us = -1L; |
| 3123 | long seq_rtt_us = -1L; |
| 3124 | long ca_rtt_us = -1L; |
| 3125 | struct sk_buff *skb; |
| 3126 | u32 pkts_acked = 0; |
| 3127 | bool rtt_update; |
| 3128 | int flag = 0; |
| 3129 | |
| 3130 | first_ackt.v64 = 0; |
| 3131 | |
| 3132 | while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { |
| 3133 | struct tcp_skb_cb *scb = TCP_SKB_CB(skb); |
| 3134 | u8 sacked = scb->sacked; |
| 3135 | u32 acked_pcount; |
| 3136 | |
| 3137 | tcp_ack_tstamp(sk, skb, prior_snd_una); |
| 3138 | |
| 3139 | /* Determine how many packets and what bytes were acked, tso and else */ |
| 3140 | if (after(scb->end_seq, tp->snd_una)) { |
| 3141 | if (tcp_skb_pcount(skb) == 1 || |
| 3142 | !after(tp->snd_una, scb->seq)) |
| 3143 | break; |
| 3144 | |
| 3145 | acked_pcount = tcp_tso_acked(sk, skb); |
| 3146 | if (!acked_pcount) |
| 3147 | break; |
| 3148 | |
| 3149 | fully_acked = false; |
| 3150 | } else { |
| 3151 | /* Speedup tcp_unlink_write_queue() and next loop */ |
| 3152 | prefetchw(skb->next); |
| 3153 | acked_pcount = tcp_skb_pcount(skb); |
| 3154 | } |
| 3155 | |
| 3156 | if (unlikely(sacked & TCPCB_RETRANS)) { |
| 3157 | if (sacked & TCPCB_SACKED_RETRANS) |
| 3158 | tp->retrans_out -= acked_pcount; |
| 3159 | flag |= FLAG_RETRANS_DATA_ACKED; |
| 3160 | } else if (!(sacked & TCPCB_SACKED_ACKED)) { |
| 3161 | last_ackt = skb->skb_mstamp; |
| 3162 | WARN_ON_ONCE(last_ackt.v64 == 0); |
| 3163 | if (!first_ackt.v64) |
| 3164 | first_ackt = last_ackt; |
| 3165 | |
| 3166 | reord = min(pkts_acked, reord); |
| 3167 | if (!after(scb->end_seq, tp->high_seq)) |
| 3168 | flag |= FLAG_ORIG_SACK_ACKED; |
| 3169 | } |
| 3170 | |
| 3171 | if (sacked & TCPCB_SACKED_ACKED) |
| 3172 | tp->sacked_out -= acked_pcount; |
| 3173 | else if (tcp_is_sack(tp) && !tcp_skb_spurious_retrans(tp, skb)) |
| 3174 | tcp_rack_advance(tp, &skb->skb_mstamp, sacked); |
| 3175 | if (sacked & TCPCB_LOST) |
| 3176 | tp->lost_out -= acked_pcount; |
| 3177 | |
| 3178 | tp->packets_out -= acked_pcount; |
| 3179 | pkts_acked += acked_pcount; |
| 3180 | |
| 3181 | /* Initial outgoing SYN's get put onto the write_queue |
| 3182 | * just like anything else we transmit. It is not |
| 3183 | * true data, and if we misinform our callers that |
| 3184 | * this ACK acks real data, we will erroneously exit |
| 3185 | * connection startup slow start one packet too |
| 3186 | * quickly. This is severely frowned upon behavior. |
| 3187 | */ |
| 3188 | if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { |
| 3189 | flag |= FLAG_DATA_ACKED; |
| 3190 | } else { |
| 3191 | flag |= FLAG_SYN_ACKED; |
| 3192 | tp->retrans_stamp = 0; |
| 3193 | } |
| 3194 | |
| 3195 | if (!fully_acked) |
| 3196 | break; |
| 3197 | |
| 3198 | tcp_unlink_write_queue(skb, sk); |
| 3199 | sk_wmem_free_skb(sk, skb); |
| 3200 | if (unlikely(skb == tp->retransmit_skb_hint)) |
| 3201 | tp->retransmit_skb_hint = NULL; |
| 3202 | if (unlikely(skb == tp->lost_skb_hint)) |
| 3203 | tp->lost_skb_hint = NULL; |
| 3204 | } |
| 3205 | |
| 3206 | if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) |
| 3207 | tp->snd_up = tp->snd_una; |
| 3208 | |
| 3209 | if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) |
| 3210 | flag |= FLAG_SACK_RENEGING; |
| 3211 | |
| 3212 | skb_mstamp_get(&now); |
| 3213 | if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) { |
| 3214 | seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); |
| 3215 | ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); |
| 3216 | } |
| 3217 | if (sack->first_sackt.v64) { |
| 3218 | sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt); |
| 3219 | ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt); |
| 3220 | } |
| 3221 | |
| 3222 | rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, |
| 3223 | ca_rtt_us); |
| 3224 | |
| 3225 | if (flag & FLAG_ACKED) { |
| 3226 | tcp_rearm_rto(sk); |
| 3227 | if (unlikely(icsk->icsk_mtup.probe_size && |
| 3228 | !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { |
| 3229 | tcp_mtup_probe_success(sk); |
| 3230 | } |
| 3231 | |
| 3232 | if (tcp_is_reno(tp)) { |
| 3233 | tcp_remove_reno_sacks(sk, pkts_acked); |
| 3234 | } else { |
| 3235 | int delta; |
| 3236 | |
| 3237 | /* Non-retransmitted hole got filled? That's reordering */ |
| 3238 | if (reord < prior_fackets && reord <= tp->fackets_out) |
| 3239 | tcp_update_reordering(sk, tp->fackets_out - reord, 0); |
| 3240 | |
| 3241 | delta = tcp_is_fack(tp) ? pkts_acked : |
| 3242 | prior_sacked - tp->sacked_out; |
| 3243 | tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); |
| 3244 | } |
| 3245 | |
| 3246 | tp->fackets_out -= min(pkts_acked, tp->fackets_out); |
| 3247 | |
| 3248 | } else if (skb && rtt_update && sack_rtt_us >= 0 && |
| 3249 | sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { |
| 3250 | /* Do not re-arm RTO if the sack RTT is measured from data sent |
| 3251 | * after when the head was last (re)transmitted. Otherwise the |
| 3252 | * timeout may continue to extend in loss recovery. |
| 3253 | */ |
| 3254 | tcp_rearm_rto(sk); |
| 3255 | } |
| 3256 | |
| 3257 | if (icsk->icsk_ca_ops->pkts_acked) |
| 3258 | icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us); |
| 3259 | |
| 3260 | #if FASTRETRANS_DEBUG > 0 |
| 3261 | WARN_ON((int)tp->sacked_out < 0); |
| 3262 | WARN_ON((int)tp->lost_out < 0); |
| 3263 | WARN_ON((int)tp->retrans_out < 0); |
| 3264 | if (!tp->packets_out && tcp_is_sack(tp)) { |
| 3265 | icsk = inet_csk(sk); |
| 3266 | if (tp->lost_out) { |
| 3267 | pr_debug("Leak l=%u %d\n", |
| 3268 | tp->lost_out, icsk->icsk_ca_state); |
| 3269 | tp->lost_out = 0; |
| 3270 | } |
| 3271 | if (tp->sacked_out) { |
| 3272 | pr_debug("Leak s=%u %d\n", |
| 3273 | tp->sacked_out, icsk->icsk_ca_state); |
| 3274 | tp->sacked_out = 0; |
| 3275 | } |
| 3276 | if (tp->retrans_out) { |
| 3277 | pr_debug("Leak r=%u %d\n", |
| 3278 | tp->retrans_out, icsk->icsk_ca_state); |
| 3279 | tp->retrans_out = 0; |
| 3280 | } |
| 3281 | } |
| 3282 | #endif |
| 3283 | return flag; |
| 3284 | } |
| 3285 | |
| 3286 | static void tcp_ack_probe(struct sock *sk) |
| 3287 | { |
| 3288 | const struct tcp_sock *tp = tcp_sk(sk); |
| 3289 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 3290 | |
| 3291 | /* Was it a usable window open? */ |
| 3292 | |
| 3293 | if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { |
| 3294 | icsk->icsk_backoff = 0; |
| 3295 | inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); |
| 3296 | /* Socket must be waked up by subsequent tcp_data_snd_check(). |
| 3297 | * This function is not for random using! |
| 3298 | */ |
| 3299 | } else { |
| 3300 | unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); |
| 3301 | |
| 3302 | inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, |
| 3303 | when, TCP_RTO_MAX); |
| 3304 | } |
| 3305 | } |
| 3306 | |
| 3307 | static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) |
| 3308 | { |
| 3309 | return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || |
| 3310 | inet_csk(sk)->icsk_ca_state != TCP_CA_Open; |
| 3311 | } |
| 3312 | |
| 3313 | /* Decide wheather to run the increase function of congestion control. */ |
| 3314 | static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) |
| 3315 | { |
| 3316 | if (tcp_in_cwnd_reduction(sk)) |
| 3317 | return false; |
| 3318 | |
| 3319 | /* If reordering is high then always grow cwnd whenever data is |
| 3320 | * delivered regardless of its ordering. Otherwise stay conservative |
| 3321 | * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ |
| 3322 | * new SACK or ECE mark may first advance cwnd here and later reduce |
| 3323 | * cwnd in tcp_fastretrans_alert() based on more states. |
| 3324 | */ |
| 3325 | if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) |
| 3326 | return flag & FLAG_FORWARD_PROGRESS; |
| 3327 | |
| 3328 | return flag & FLAG_DATA_ACKED; |
| 3329 | } |
| 3330 | |
| 3331 | /* Check that window update is acceptable. |
| 3332 | * The function assumes that snd_una<=ack<=snd_next. |
| 3333 | */ |
| 3334 | static inline bool tcp_may_update_window(const struct tcp_sock *tp, |
| 3335 | const u32 ack, const u32 ack_seq, |
| 3336 | const u32 nwin) |
| 3337 | { |
| 3338 | return after(ack, tp->snd_una) || |
| 3339 | after(ack_seq, tp->snd_wl1) || |
| 3340 | (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); |
| 3341 | } |
| 3342 | |
| 3343 | /* If we update tp->snd_una, also update tp->bytes_acked */ |
| 3344 | static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) |
| 3345 | { |
| 3346 | u32 delta = ack - tp->snd_una; |
| 3347 | |
| 3348 | u64_stats_update_begin(&tp->syncp); |
| 3349 | tp->bytes_acked += delta; |
| 3350 | u64_stats_update_end(&tp->syncp); |
| 3351 | tp->snd_una = ack; |
| 3352 | } |
| 3353 | |
| 3354 | /* If we update tp->rcv_nxt, also update tp->bytes_received */ |
| 3355 | static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) |
| 3356 | { |
| 3357 | u32 delta = seq - tp->rcv_nxt; |
| 3358 | |
| 3359 | u64_stats_update_begin(&tp->syncp); |
| 3360 | tp->bytes_received += delta; |
| 3361 | u64_stats_update_end(&tp->syncp); |
| 3362 | tp->rcv_nxt = seq; |
| 3363 | } |
| 3364 | |
| 3365 | /* Update our send window. |
| 3366 | * |
| 3367 | * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 |
| 3368 | * and in FreeBSD. NetBSD's one is even worse.) is wrong. |
| 3369 | */ |
| 3370 | static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, |
| 3371 | u32 ack_seq) |
| 3372 | { |
| 3373 | struct tcp_sock *tp = tcp_sk(sk); |
| 3374 | int flag = 0; |
| 3375 | u32 nwin = ntohs(tcp_hdr(skb)->window); |
| 3376 | |
| 3377 | if (likely(!tcp_hdr(skb)->syn)) |
| 3378 | nwin <<= tp->rx_opt.snd_wscale; |
| 3379 | |
| 3380 | if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { |
| 3381 | flag |= FLAG_WIN_UPDATE; |
| 3382 | tcp_update_wl(tp, ack_seq); |
| 3383 | |
| 3384 | if (tp->snd_wnd != nwin) { |
| 3385 | tp->snd_wnd = nwin; |
| 3386 | |
| 3387 | /* Note, it is the only place, where |
| 3388 | * fast path is recovered for sending TCP. |
| 3389 | */ |
| 3390 | tp->pred_flags = 0; |
| 3391 | tcp_fast_path_check(sk); |
| 3392 | |
| 3393 | if (tcp_send_head(sk)) |
| 3394 | tcp_slow_start_after_idle_check(sk); |
| 3395 | |
| 3396 | if (nwin > tp->max_window) { |
| 3397 | tp->max_window = nwin; |
| 3398 | tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); |
| 3399 | } |
| 3400 | } |
| 3401 | } |
| 3402 | |
| 3403 | tcp_snd_una_update(tp, ack); |
| 3404 | |
| 3405 | return flag; |
| 3406 | } |
| 3407 | |
| 3408 | static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, |
| 3409 | u32 *last_oow_ack_time) |
| 3410 | { |
| 3411 | if (*last_oow_ack_time) { |
| 3412 | s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); |
| 3413 | |
| 3414 | if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { |
| 3415 | NET_INC_STATS_BH(net, mib_idx); |
| 3416 | return true; /* rate-limited: don't send yet! */ |
| 3417 | } |
| 3418 | } |
| 3419 | |
| 3420 | *last_oow_ack_time = tcp_time_stamp; |
| 3421 | |
| 3422 | return false; /* not rate-limited: go ahead, send dupack now! */ |
| 3423 | } |
| 3424 | |
| 3425 | /* Return true if we're currently rate-limiting out-of-window ACKs and |
| 3426 | * thus shouldn't send a dupack right now. We rate-limit dupacks in |
| 3427 | * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS |
| 3428 | * attacks that send repeated SYNs or ACKs for the same connection. To |
| 3429 | * do this, we do not send a duplicate SYNACK or ACK if the remote |
| 3430 | * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. |
| 3431 | */ |
| 3432 | bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, |
| 3433 | int mib_idx, u32 *last_oow_ack_time) |
| 3434 | { |
| 3435 | /* Data packets without SYNs are not likely part of an ACK loop. */ |
| 3436 | if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && |
| 3437 | !tcp_hdr(skb)->syn) |
| 3438 | return false; |
| 3439 | |
| 3440 | return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); |
| 3441 | } |
| 3442 | |
| 3443 | /* RFC 5961 7 [ACK Throttling] */ |
| 3444 | static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) |
| 3445 | { |
| 3446 | /* unprotected vars, we dont care of overwrites */ |
| 3447 | static u32 challenge_timestamp; |
| 3448 | static unsigned int challenge_count; |
| 3449 | struct tcp_sock *tp = tcp_sk(sk); |
| 3450 | u32 count, now; |
| 3451 | |
| 3452 | /* First check our per-socket dupack rate limit. */ |
| 3453 | if (__tcp_oow_rate_limited(sock_net(sk), |
| 3454 | LINUX_MIB_TCPACKSKIPPEDCHALLENGE, |
| 3455 | &tp->last_oow_ack_time)) |
| 3456 | return; |
| 3457 | |
| 3458 | /* Then check host-wide RFC 5961 rate limit. */ |
| 3459 | now = jiffies / HZ; |
| 3460 | if (now != challenge_timestamp) { |
| 3461 | u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; |
| 3462 | |
| 3463 | challenge_timestamp = now; |
| 3464 | WRITE_ONCE(challenge_count, half + |
| 3465 | prandom_u32_max(sysctl_tcp_challenge_ack_limit)); |
| 3466 | } |
| 3467 | count = READ_ONCE(challenge_count); |
| 3468 | if (count > 0) { |
| 3469 | WRITE_ONCE(challenge_count, count - 1); |
| 3470 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); |
| 3471 | tcp_send_ack(sk); |
| 3472 | } |
| 3473 | } |
| 3474 | |
| 3475 | static void tcp_store_ts_recent(struct tcp_sock *tp) |
| 3476 | { |
| 3477 | tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; |
| 3478 | tp->rx_opt.ts_recent_stamp = get_seconds(); |
| 3479 | } |
| 3480 | |
| 3481 | static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) |
| 3482 | { |
| 3483 | if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { |
| 3484 | /* PAWS bug workaround wrt. ACK frames, the PAWS discard |
| 3485 | * extra check below makes sure this can only happen |
| 3486 | * for pure ACK frames. -DaveM |
| 3487 | * |
| 3488 | * Not only, also it occurs for expired timestamps. |
| 3489 | */ |
| 3490 | |
| 3491 | if (tcp_paws_check(&tp->rx_opt, 0)) |
| 3492 | tcp_store_ts_recent(tp); |
| 3493 | } |
| 3494 | } |
| 3495 | |
| 3496 | /* This routine deals with acks during a TLP episode. |
| 3497 | * We mark the end of a TLP episode on receiving TLP dupack or when |
| 3498 | * ack is after tlp_high_seq. |
| 3499 | * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. |
| 3500 | */ |
| 3501 | static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) |
| 3502 | { |
| 3503 | struct tcp_sock *tp = tcp_sk(sk); |
| 3504 | |
| 3505 | if (before(ack, tp->tlp_high_seq)) |
| 3506 | return; |
| 3507 | |
| 3508 | if (flag & FLAG_DSACKING_ACK) { |
| 3509 | /* This DSACK means original and TLP probe arrived; no loss */ |
| 3510 | tp->tlp_high_seq = 0; |
| 3511 | } else if (after(ack, tp->tlp_high_seq)) { |
| 3512 | /* ACK advances: there was a loss, so reduce cwnd. Reset |
| 3513 | * tlp_high_seq in tcp_init_cwnd_reduction() |
| 3514 | */ |
| 3515 | tcp_init_cwnd_reduction(sk); |
| 3516 | tcp_set_ca_state(sk, TCP_CA_CWR); |
| 3517 | tcp_end_cwnd_reduction(sk); |
| 3518 | tcp_try_keep_open(sk); |
| 3519 | NET_INC_STATS_BH(sock_net(sk), |
| 3520 | LINUX_MIB_TCPLOSSPROBERECOVERY); |
| 3521 | } else if (!(flag & (FLAG_SND_UNA_ADVANCED | |
| 3522 | FLAG_NOT_DUP | FLAG_DATA_SACKED))) { |
| 3523 | /* Pure dupack: original and TLP probe arrived; no loss */ |
| 3524 | tp->tlp_high_seq = 0; |
| 3525 | } |
| 3526 | } |
| 3527 | |
| 3528 | static inline void tcp_in_ack_event(struct sock *sk, u32 flags) |
| 3529 | { |
| 3530 | const struct inet_connection_sock *icsk = inet_csk(sk); |
| 3531 | |
| 3532 | if (icsk->icsk_ca_ops->in_ack_event) |
| 3533 | icsk->icsk_ca_ops->in_ack_event(sk, flags); |
| 3534 | } |
| 3535 | |
| 3536 | /* This routine deals with incoming acks, but not outgoing ones. */ |
| 3537 | static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) |
| 3538 | { |
| 3539 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 3540 | struct tcp_sock *tp = tcp_sk(sk); |
| 3541 | struct tcp_sacktag_state sack_state; |
| 3542 | u32 prior_snd_una = tp->snd_una; |
| 3543 | u32 ack_seq = TCP_SKB_CB(skb)->seq; |
| 3544 | u32 ack = TCP_SKB_CB(skb)->ack_seq; |
| 3545 | bool is_dupack = false; |
| 3546 | u32 prior_fackets; |
| 3547 | int prior_packets = tp->packets_out; |
| 3548 | const int prior_unsacked = tp->packets_out - tp->sacked_out; |
| 3549 | int acked = 0; /* Number of packets newly acked */ |
| 3550 | |
| 3551 | sack_state.first_sackt.v64 = 0; |
| 3552 | |
| 3553 | /* We very likely will need to access write queue head. */ |
| 3554 | prefetchw(sk->sk_write_queue.next); |
| 3555 | |
| 3556 | /* If the ack is older than previous acks |
| 3557 | * then we can probably ignore it. |
| 3558 | */ |
| 3559 | if (before(ack, prior_snd_una)) { |
| 3560 | /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ |
| 3561 | if (before(ack, prior_snd_una - tp->max_window)) { |
| 3562 | tcp_send_challenge_ack(sk, skb); |
| 3563 | return -1; |
| 3564 | } |
| 3565 | goto old_ack; |
| 3566 | } |
| 3567 | |
| 3568 | /* If the ack includes data we haven't sent yet, discard |
| 3569 | * this segment (RFC793 Section 3.9). |
| 3570 | */ |
| 3571 | if (after(ack, tp->snd_nxt)) |
| 3572 | goto invalid_ack; |
| 3573 | |
| 3574 | if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || |
| 3575 | icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) |
| 3576 | tcp_rearm_rto(sk); |
| 3577 | |
| 3578 | if (after(ack, prior_snd_una)) { |
| 3579 | flag |= FLAG_SND_UNA_ADVANCED; |
| 3580 | icsk->icsk_retransmits = 0; |
| 3581 | } |
| 3582 | |
| 3583 | prior_fackets = tp->fackets_out; |
| 3584 | |
| 3585 | /* ts_recent update must be made after we are sure that the packet |
| 3586 | * is in window. |
| 3587 | */ |
| 3588 | if (flag & FLAG_UPDATE_TS_RECENT) |
| 3589 | tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); |
| 3590 | |
| 3591 | if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { |
| 3592 | /* Window is constant, pure forward advance. |
| 3593 | * No more checks are required. |
| 3594 | * Note, we use the fact that SND.UNA>=SND.WL2. |
| 3595 | */ |
| 3596 | tcp_update_wl(tp, ack_seq); |
| 3597 | tcp_snd_una_update(tp, ack); |
| 3598 | flag |= FLAG_WIN_UPDATE; |
| 3599 | |
| 3600 | tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); |
| 3601 | |
| 3602 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); |
| 3603 | } else { |
| 3604 | u32 ack_ev_flags = CA_ACK_SLOWPATH; |
| 3605 | |
| 3606 | if (ack_seq != TCP_SKB_CB(skb)->end_seq) |
| 3607 | flag |= FLAG_DATA; |
| 3608 | else |
| 3609 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); |
| 3610 | |
| 3611 | flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); |
| 3612 | |
| 3613 | if (TCP_SKB_CB(skb)->sacked) |
| 3614 | flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, |
| 3615 | &sack_state); |
| 3616 | |
| 3617 | if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { |
| 3618 | flag |= FLAG_ECE; |
| 3619 | ack_ev_flags |= CA_ACK_ECE; |
| 3620 | } |
| 3621 | |
| 3622 | if (flag & FLAG_WIN_UPDATE) |
| 3623 | ack_ev_flags |= CA_ACK_WIN_UPDATE; |
| 3624 | |
| 3625 | tcp_in_ack_event(sk, ack_ev_flags); |
| 3626 | } |
| 3627 | |
| 3628 | /* We passed data and got it acked, remove any soft error |
| 3629 | * log. Something worked... |
| 3630 | */ |
| 3631 | sk->sk_err_soft = 0; |
| 3632 | icsk->icsk_probes_out = 0; |
| 3633 | tp->rcv_tstamp = tcp_time_stamp; |
| 3634 | if (!prior_packets) |
| 3635 | goto no_queue; |
| 3636 | |
| 3637 | /* See if we can take anything off of the retransmit queue. */ |
| 3638 | acked = tp->packets_out; |
| 3639 | flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, |
| 3640 | &sack_state); |
| 3641 | acked -= tp->packets_out; |
| 3642 | |
| 3643 | if (tcp_ack_is_dubious(sk, flag)) { |
| 3644 | is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); |
| 3645 | tcp_fastretrans_alert(sk, acked, prior_unsacked, |
| 3646 | is_dupack, flag); |
| 3647 | } |
| 3648 | if (tp->tlp_high_seq) |
| 3649 | tcp_process_tlp_ack(sk, ack, flag); |
| 3650 | |
| 3651 | /* Advance cwnd if state allows */ |
| 3652 | if (tcp_may_raise_cwnd(sk, flag)) |
| 3653 | tcp_cong_avoid(sk, ack, acked); |
| 3654 | |
| 3655 | if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { |
| 3656 | struct dst_entry *dst = __sk_dst_get(sk); |
| 3657 | if (dst) |
| 3658 | dst_confirm(dst); |
| 3659 | } |
| 3660 | |
| 3661 | if (icsk->icsk_pending == ICSK_TIME_RETRANS) |
| 3662 | tcp_schedule_loss_probe(sk); |
| 3663 | tcp_update_pacing_rate(sk); |
| 3664 | return 1; |
| 3665 | |
| 3666 | no_queue: |
| 3667 | /* If data was DSACKed, see if we can undo a cwnd reduction. */ |
| 3668 | if (flag & FLAG_DSACKING_ACK) |
| 3669 | tcp_fastretrans_alert(sk, acked, prior_unsacked, |
| 3670 | is_dupack, flag); |
| 3671 | /* If this ack opens up a zero window, clear backoff. It was |
| 3672 | * being used to time the probes, and is probably far higher than |
| 3673 | * it needs to be for normal retransmission. |
| 3674 | */ |
| 3675 | if (tcp_send_head(sk)) |
| 3676 | tcp_ack_probe(sk); |
| 3677 | |
| 3678 | if (tp->tlp_high_seq) |
| 3679 | tcp_process_tlp_ack(sk, ack, flag); |
| 3680 | return 1; |
| 3681 | |
| 3682 | invalid_ack: |
| 3683 | SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); |
| 3684 | return -1; |
| 3685 | |
| 3686 | old_ack: |
| 3687 | /* If data was SACKed, tag it and see if we should send more data. |
| 3688 | * If data was DSACKed, see if we can undo a cwnd reduction. |
| 3689 | */ |
| 3690 | if (TCP_SKB_CB(skb)->sacked) { |
| 3691 | flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, |
| 3692 | &sack_state); |
| 3693 | tcp_fastretrans_alert(sk, acked, prior_unsacked, |
| 3694 | is_dupack, flag); |
| 3695 | } |
| 3696 | |
| 3697 | SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); |
| 3698 | return 0; |
| 3699 | } |
| 3700 | |
| 3701 | static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, |
| 3702 | bool syn, struct tcp_fastopen_cookie *foc, |
| 3703 | bool exp_opt) |
| 3704 | { |
| 3705 | /* Valid only in SYN or SYN-ACK with an even length. */ |
| 3706 | if (!foc || !syn || len < 0 || (len & 1)) |
| 3707 | return; |
| 3708 | |
| 3709 | if (len >= TCP_FASTOPEN_COOKIE_MIN && |
| 3710 | len <= TCP_FASTOPEN_COOKIE_MAX) |
| 3711 | memcpy(foc->val, cookie, len); |
| 3712 | else if (len != 0) |
| 3713 | len = -1; |
| 3714 | foc->len = len; |
| 3715 | foc->exp = exp_opt; |
| 3716 | } |
| 3717 | |
| 3718 | /* Look for tcp options. Normally only called on SYN and SYNACK packets. |
| 3719 | * But, this can also be called on packets in the established flow when |
| 3720 | * the fast version below fails. |
| 3721 | */ |
| 3722 | void tcp_parse_options(const struct sk_buff *skb, |
| 3723 | struct tcp_options_received *opt_rx, int estab, |
| 3724 | struct tcp_fastopen_cookie *foc) |
| 3725 | { |
| 3726 | const unsigned char *ptr; |
| 3727 | const struct tcphdr *th = tcp_hdr(skb); |
| 3728 | int length = (th->doff * 4) - sizeof(struct tcphdr); |
| 3729 | |
| 3730 | ptr = (const unsigned char *)(th + 1); |
| 3731 | opt_rx->saw_tstamp = 0; |
| 3732 | |
| 3733 | while (length > 0) { |
| 3734 | int opcode = *ptr++; |
| 3735 | int opsize; |
| 3736 | |
| 3737 | switch (opcode) { |
| 3738 | case TCPOPT_EOL: |
| 3739 | return; |
| 3740 | case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ |
| 3741 | length--; |
| 3742 | continue; |
| 3743 | default: |
| 3744 | opsize = *ptr++; |
| 3745 | if (opsize < 2) /* "silly options" */ |
| 3746 | return; |
| 3747 | if (opsize > length) |
| 3748 | return; /* don't parse partial options */ |
| 3749 | switch (opcode) { |
| 3750 | case TCPOPT_MSS: |
| 3751 | if (opsize == TCPOLEN_MSS && th->syn && !estab) { |
| 3752 | u16 in_mss = get_unaligned_be16(ptr); |
| 3753 | if (in_mss) { |
| 3754 | if (opt_rx->user_mss && |
| 3755 | opt_rx->user_mss < in_mss) |
| 3756 | in_mss = opt_rx->user_mss; |
| 3757 | opt_rx->mss_clamp = in_mss; |
| 3758 | } |
| 3759 | } |
| 3760 | break; |
| 3761 | case TCPOPT_WINDOW: |
| 3762 | if (opsize == TCPOLEN_WINDOW && th->syn && |
| 3763 | !estab && sysctl_tcp_window_scaling) { |
| 3764 | __u8 snd_wscale = *(__u8 *)ptr; |
| 3765 | opt_rx->wscale_ok = 1; |
| 3766 | if (snd_wscale > 14) { |
| 3767 | net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", |
| 3768 | __func__, |
| 3769 | snd_wscale); |
| 3770 | snd_wscale = 14; |
| 3771 | } |
| 3772 | opt_rx->snd_wscale = snd_wscale; |
| 3773 | } |
| 3774 | break; |
| 3775 | case TCPOPT_TIMESTAMP: |
| 3776 | if ((opsize == TCPOLEN_TIMESTAMP) && |
| 3777 | ((estab && opt_rx->tstamp_ok) || |
| 3778 | (!estab && sysctl_tcp_timestamps))) { |
| 3779 | opt_rx->saw_tstamp = 1; |
| 3780 | opt_rx->rcv_tsval = get_unaligned_be32(ptr); |
| 3781 | opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); |
| 3782 | } |
| 3783 | break; |
| 3784 | case TCPOPT_SACK_PERM: |
| 3785 | if (opsize == TCPOLEN_SACK_PERM && th->syn && |
| 3786 | !estab && sysctl_tcp_sack) { |
| 3787 | opt_rx->sack_ok = TCP_SACK_SEEN; |
| 3788 | tcp_sack_reset(opt_rx); |
| 3789 | } |
| 3790 | break; |
| 3791 | |
| 3792 | case TCPOPT_SACK: |
| 3793 | if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && |
| 3794 | !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && |
| 3795 | opt_rx->sack_ok) { |
| 3796 | TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; |
| 3797 | } |
| 3798 | break; |
| 3799 | #ifdef CONFIG_TCP_MD5SIG |
| 3800 | case TCPOPT_MD5SIG: |
| 3801 | /* |
| 3802 | * The MD5 Hash has already been |
| 3803 | * checked (see tcp_v{4,6}_do_rcv()). |
| 3804 | */ |
| 3805 | break; |
| 3806 | #endif |
| 3807 | case TCPOPT_FASTOPEN: |
| 3808 | tcp_parse_fastopen_option( |
| 3809 | opsize - TCPOLEN_FASTOPEN_BASE, |
| 3810 | ptr, th->syn, foc, false); |
| 3811 | break; |
| 3812 | |
| 3813 | case TCPOPT_EXP: |
| 3814 | /* Fast Open option shares code 254 using a |
| 3815 | * 16 bits magic number. |
| 3816 | */ |
| 3817 | if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && |
| 3818 | get_unaligned_be16(ptr) == |
| 3819 | TCPOPT_FASTOPEN_MAGIC) |
| 3820 | tcp_parse_fastopen_option(opsize - |
| 3821 | TCPOLEN_EXP_FASTOPEN_BASE, |
| 3822 | ptr + 2, th->syn, foc, true); |
| 3823 | break; |
| 3824 | |
| 3825 | } |
| 3826 | ptr += opsize-2; |
| 3827 | length -= opsize; |
| 3828 | } |
| 3829 | } |
| 3830 | } |
| 3831 | EXPORT_SYMBOL(tcp_parse_options); |
| 3832 | |
| 3833 | static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) |
| 3834 | { |
| 3835 | const __be32 *ptr = (const __be32 *)(th + 1); |
| 3836 | |
| 3837 | if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
| 3838 | | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { |
| 3839 | tp->rx_opt.saw_tstamp = 1; |
| 3840 | ++ptr; |
| 3841 | tp->rx_opt.rcv_tsval = ntohl(*ptr); |
| 3842 | ++ptr; |
| 3843 | if (*ptr) |
| 3844 | tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; |
| 3845 | else |
| 3846 | tp->rx_opt.rcv_tsecr = 0; |
| 3847 | return true; |
| 3848 | } |
| 3849 | return false; |
| 3850 | } |
| 3851 | |
| 3852 | /* Fast parse options. This hopes to only see timestamps. |
| 3853 | * If it is wrong it falls back on tcp_parse_options(). |
| 3854 | */ |
| 3855 | static bool tcp_fast_parse_options(const struct sk_buff *skb, |
| 3856 | const struct tcphdr *th, struct tcp_sock *tp) |
| 3857 | { |
| 3858 | /* In the spirit of fast parsing, compare doff directly to constant |
| 3859 | * values. Because equality is used, short doff can be ignored here. |
| 3860 | */ |
| 3861 | if (th->doff == (sizeof(*th) / 4)) { |
| 3862 | tp->rx_opt.saw_tstamp = 0; |
| 3863 | return false; |
| 3864 | } else if (tp->rx_opt.tstamp_ok && |
| 3865 | th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { |
| 3866 | if (tcp_parse_aligned_timestamp(tp, th)) |
| 3867 | return true; |
| 3868 | } |
| 3869 | |
| 3870 | tcp_parse_options(skb, &tp->rx_opt, 1, NULL); |
| 3871 | if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) |
| 3872 | tp->rx_opt.rcv_tsecr -= tp->tsoffset; |
| 3873 | |
| 3874 | return true; |
| 3875 | } |
| 3876 | |
| 3877 | #ifdef CONFIG_TCP_MD5SIG |
| 3878 | /* |
| 3879 | * Parse MD5 Signature option |
| 3880 | */ |
| 3881 | const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) |
| 3882 | { |
| 3883 | int length = (th->doff << 2) - sizeof(*th); |
| 3884 | const u8 *ptr = (const u8 *)(th + 1); |
| 3885 | |
| 3886 | /* If the TCP option is too short, we can short cut */ |
| 3887 | if (length < TCPOLEN_MD5SIG) |
| 3888 | return NULL; |
| 3889 | |
| 3890 | while (length > 0) { |
| 3891 | int opcode = *ptr++; |
| 3892 | int opsize; |
| 3893 | |
| 3894 | switch (opcode) { |
| 3895 | case TCPOPT_EOL: |
| 3896 | return NULL; |
| 3897 | case TCPOPT_NOP: |
| 3898 | length--; |
| 3899 | continue; |
| 3900 | default: |
| 3901 | opsize = *ptr++; |
| 3902 | if (opsize < 2 || opsize > length) |
| 3903 | return NULL; |
| 3904 | if (opcode == TCPOPT_MD5SIG) |
| 3905 | return opsize == TCPOLEN_MD5SIG ? ptr : NULL; |
| 3906 | } |
| 3907 | ptr += opsize - 2; |
| 3908 | length -= opsize; |
| 3909 | } |
| 3910 | return NULL; |
| 3911 | } |
| 3912 | EXPORT_SYMBOL(tcp_parse_md5sig_option); |
| 3913 | #endif |
| 3914 | |
| 3915 | /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM |
| 3916 | * |
| 3917 | * It is not fatal. If this ACK does _not_ change critical state (seqs, window) |
| 3918 | * it can pass through stack. So, the following predicate verifies that |
| 3919 | * this segment is not used for anything but congestion avoidance or |
| 3920 | * fast retransmit. Moreover, we even are able to eliminate most of such |
| 3921 | * second order effects, if we apply some small "replay" window (~RTO) |
| 3922 | * to timestamp space. |
| 3923 | * |
| 3924 | * All these measures still do not guarantee that we reject wrapped ACKs |
| 3925 | * on networks with high bandwidth, when sequence space is recycled fastly, |
| 3926 | * but it guarantees that such events will be very rare and do not affect |
| 3927 | * connection seriously. This doesn't look nice, but alas, PAWS is really |
| 3928 | * buggy extension. |
| 3929 | * |
| 3930 | * [ Later note. Even worse! It is buggy for segments _with_ data. RFC |
| 3931 | * states that events when retransmit arrives after original data are rare. |
| 3932 | * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is |
| 3933 | * the biggest problem on large power networks even with minor reordering. |
| 3934 | * OK, let's give it small replay window. If peer clock is even 1hz, it is safe |
| 3935 | * up to bandwidth of 18Gigabit/sec. 8) ] |
| 3936 | */ |
| 3937 | |
| 3938 | static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) |
| 3939 | { |
| 3940 | const struct tcp_sock *tp = tcp_sk(sk); |
| 3941 | const struct tcphdr *th = tcp_hdr(skb); |
| 3942 | u32 seq = TCP_SKB_CB(skb)->seq; |
| 3943 | u32 ack = TCP_SKB_CB(skb)->ack_seq; |
| 3944 | |
| 3945 | return (/* 1. Pure ACK with correct sequence number. */ |
| 3946 | (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && |
| 3947 | |
| 3948 | /* 2. ... and duplicate ACK. */ |
| 3949 | ack == tp->snd_una && |
| 3950 | |
| 3951 | /* 3. ... and does not update window. */ |
| 3952 | !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && |
| 3953 | |
| 3954 | /* 4. ... and sits in replay window. */ |
| 3955 | (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); |
| 3956 | } |
| 3957 | |
| 3958 | static inline bool tcp_paws_discard(const struct sock *sk, |
| 3959 | const struct sk_buff *skb) |
| 3960 | { |
| 3961 | const struct tcp_sock *tp = tcp_sk(sk); |
| 3962 | |
| 3963 | return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && |
| 3964 | !tcp_disordered_ack(sk, skb); |
| 3965 | } |
| 3966 | |
| 3967 | /* Check segment sequence number for validity. |
| 3968 | * |
| 3969 | * Segment controls are considered valid, if the segment |
| 3970 | * fits to the window after truncation to the window. Acceptability |
| 3971 | * of data (and SYN, FIN, of course) is checked separately. |
| 3972 | * See tcp_data_queue(), for example. |
| 3973 | * |
| 3974 | * Also, controls (RST is main one) are accepted using RCV.WUP instead |
| 3975 | * of RCV.NXT. Peer still did not advance his SND.UNA when we |
| 3976 | * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. |
| 3977 | * (borrowed from freebsd) |
| 3978 | */ |
| 3979 | |
| 3980 | static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) |
| 3981 | { |
| 3982 | return !before(end_seq, tp->rcv_wup) && |
| 3983 | !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); |
| 3984 | } |
| 3985 | |
| 3986 | /* When we get a reset we do this. */ |
| 3987 | void tcp_reset(struct sock *sk) |
| 3988 | { |
| 3989 | /* We want the right error as BSD sees it (and indeed as we do). */ |
| 3990 | switch (sk->sk_state) { |
| 3991 | case TCP_SYN_SENT: |
| 3992 | sk->sk_err = ECONNREFUSED; |
| 3993 | break; |
| 3994 | case TCP_CLOSE_WAIT: |
| 3995 | sk->sk_err = EPIPE; |
| 3996 | break; |
| 3997 | case TCP_CLOSE: |
| 3998 | return; |
| 3999 | default: |
| 4000 | sk->sk_err = ECONNRESET; |
| 4001 | } |
| 4002 | /* This barrier is coupled with smp_rmb() in tcp_poll() */ |
| 4003 | smp_wmb(); |
| 4004 | |
| 4005 | if (!sock_flag(sk, SOCK_DEAD)) |
| 4006 | sk->sk_error_report(sk); |
| 4007 | |
| 4008 | tcp_done(sk); |
| 4009 | } |
| 4010 | |
| 4011 | /* |
| 4012 | * Process the FIN bit. This now behaves as it is supposed to work |
| 4013 | * and the FIN takes effect when it is validly part of sequence |
| 4014 | * space. Not before when we get holes. |
| 4015 | * |
| 4016 | * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT |
| 4017 | * (and thence onto LAST-ACK and finally, CLOSE, we never enter |
| 4018 | * TIME-WAIT) |
| 4019 | * |
| 4020 | * If we are in FINWAIT-1, a received FIN indicates simultaneous |
| 4021 | * close and we go into CLOSING (and later onto TIME-WAIT) |
| 4022 | * |
| 4023 | * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. |
| 4024 | */ |
| 4025 | static void tcp_fin(struct sock *sk) |
| 4026 | { |
| 4027 | struct tcp_sock *tp = tcp_sk(sk); |
| 4028 | |
| 4029 | inet_csk_schedule_ack(sk); |
| 4030 | |
| 4031 | sk->sk_shutdown |= RCV_SHUTDOWN; |
| 4032 | sock_set_flag(sk, SOCK_DONE); |
| 4033 | |
| 4034 | switch (sk->sk_state) { |
| 4035 | case TCP_SYN_RECV: |
| 4036 | case TCP_ESTABLISHED: |
| 4037 | /* Move to CLOSE_WAIT */ |
| 4038 | tcp_set_state(sk, TCP_CLOSE_WAIT); |
| 4039 | inet_csk(sk)->icsk_ack.pingpong = 1; |
| 4040 | break; |
| 4041 | |
| 4042 | case TCP_CLOSE_WAIT: |
| 4043 | case TCP_CLOSING: |
| 4044 | /* Received a retransmission of the FIN, do |
| 4045 | * nothing. |
| 4046 | */ |
| 4047 | break; |
| 4048 | case TCP_LAST_ACK: |
| 4049 | /* RFC793: Remain in the LAST-ACK state. */ |
| 4050 | break; |
| 4051 | |
| 4052 | case TCP_FIN_WAIT1: |
| 4053 | /* This case occurs when a simultaneous close |
| 4054 | * happens, we must ack the received FIN and |
| 4055 | * enter the CLOSING state. |
| 4056 | */ |
| 4057 | tcp_send_ack(sk); |
| 4058 | tcp_set_state(sk, TCP_CLOSING); |
| 4059 | break; |
| 4060 | case TCP_FIN_WAIT2: |
| 4061 | /* Received a FIN -- send ACK and enter TIME_WAIT. */ |
| 4062 | tcp_send_ack(sk); |
| 4063 | tcp_time_wait(sk, TCP_TIME_WAIT, 0); |
| 4064 | break; |
| 4065 | default: |
| 4066 | /* Only TCP_LISTEN and TCP_CLOSE are left, in these |
| 4067 | * cases we should never reach this piece of code. |
| 4068 | */ |
| 4069 | pr_err("%s: Impossible, sk->sk_state=%d\n", |
| 4070 | __func__, sk->sk_state); |
| 4071 | break; |
| 4072 | } |
| 4073 | |
| 4074 | /* It _is_ possible, that we have something out-of-order _after_ FIN. |
| 4075 | * Probably, we should reset in this case. For now drop them. |
| 4076 | */ |
| 4077 | __skb_queue_purge(&tp->out_of_order_queue); |
| 4078 | if (tcp_is_sack(tp)) |
| 4079 | tcp_sack_reset(&tp->rx_opt); |
| 4080 | sk_mem_reclaim(sk); |
| 4081 | |
| 4082 | if (!sock_flag(sk, SOCK_DEAD)) { |
| 4083 | sk->sk_state_change(sk); |
| 4084 | |
| 4085 | /* Do not send POLL_HUP for half duplex close. */ |
| 4086 | if (sk->sk_shutdown == SHUTDOWN_MASK || |
| 4087 | sk->sk_state == TCP_CLOSE) |
| 4088 | sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); |
| 4089 | else |
| 4090 | sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); |
| 4091 | } |
| 4092 | } |
| 4093 | |
| 4094 | static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, |
| 4095 | u32 end_seq) |
| 4096 | { |
| 4097 | if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { |
| 4098 | if (before(seq, sp->start_seq)) |
| 4099 | sp->start_seq = seq; |
| 4100 | if (after(end_seq, sp->end_seq)) |
| 4101 | sp->end_seq = end_seq; |
| 4102 | return true; |
| 4103 | } |
| 4104 | return false; |
| 4105 | } |
| 4106 | |
| 4107 | static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) |
| 4108 | { |
| 4109 | struct tcp_sock *tp = tcp_sk(sk); |
| 4110 | |
| 4111 | if (tcp_is_sack(tp) && sysctl_tcp_dsack) { |
| 4112 | int mib_idx; |
| 4113 | |
| 4114 | if (before(seq, tp->rcv_nxt)) |
| 4115 | mib_idx = LINUX_MIB_TCPDSACKOLDSENT; |
| 4116 | else |
| 4117 | mib_idx = LINUX_MIB_TCPDSACKOFOSENT; |
| 4118 | |
| 4119 | NET_INC_STATS_BH(sock_net(sk), mib_idx); |
| 4120 | |
| 4121 | tp->rx_opt.dsack = 1; |
| 4122 | tp->duplicate_sack[0].start_seq = seq; |
| 4123 | tp->duplicate_sack[0].end_seq = end_seq; |
| 4124 | } |
| 4125 | } |
| 4126 | |
| 4127 | static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) |
| 4128 | { |
| 4129 | struct tcp_sock *tp = tcp_sk(sk); |
| 4130 | |
| 4131 | if (!tp->rx_opt.dsack) |
| 4132 | tcp_dsack_set(sk, seq, end_seq); |
| 4133 | else |
| 4134 | tcp_sack_extend(tp->duplicate_sack, seq, end_seq); |
| 4135 | } |
| 4136 | |
| 4137 | static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) |
| 4138 | { |
| 4139 | struct tcp_sock *tp = tcp_sk(sk); |
| 4140 | |
| 4141 | if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && |
| 4142 | before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { |
| 4143 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); |
| 4144 | tcp_enter_quickack_mode(sk); |
| 4145 | |
| 4146 | if (tcp_is_sack(tp) && sysctl_tcp_dsack) { |
| 4147 | u32 end_seq = TCP_SKB_CB(skb)->end_seq; |
| 4148 | |
| 4149 | if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) |
| 4150 | end_seq = tp->rcv_nxt; |
| 4151 | tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); |
| 4152 | } |
| 4153 | } |
| 4154 | |
| 4155 | tcp_send_ack(sk); |
| 4156 | } |
| 4157 | |
| 4158 | /* These routines update the SACK block as out-of-order packets arrive or |
| 4159 | * in-order packets close up the sequence space. |
| 4160 | */ |
| 4161 | static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) |
| 4162 | { |
| 4163 | int this_sack; |
| 4164 | struct tcp_sack_block *sp = &tp->selective_acks[0]; |
| 4165 | struct tcp_sack_block *swalk = sp + 1; |
| 4166 | |
| 4167 | /* See if the recent change to the first SACK eats into |
| 4168 | * or hits the sequence space of other SACK blocks, if so coalesce. |
| 4169 | */ |
| 4170 | for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { |
| 4171 | if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { |
| 4172 | int i; |
| 4173 | |
| 4174 | /* Zap SWALK, by moving every further SACK up by one slot. |
| 4175 | * Decrease num_sacks. |
| 4176 | */ |
| 4177 | tp->rx_opt.num_sacks--; |
| 4178 | for (i = this_sack; i < tp->rx_opt.num_sacks; i++) |
| 4179 | sp[i] = sp[i + 1]; |
| 4180 | continue; |
| 4181 | } |
| 4182 | this_sack++, swalk++; |
| 4183 | } |
| 4184 | } |
| 4185 | |
| 4186 | static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) |
| 4187 | { |
| 4188 | struct tcp_sock *tp = tcp_sk(sk); |
| 4189 | struct tcp_sack_block *sp = &tp->selective_acks[0]; |
| 4190 | int cur_sacks = tp->rx_opt.num_sacks; |
| 4191 | int this_sack; |
| 4192 | |
| 4193 | if (!cur_sacks) |
| 4194 | goto new_sack; |
| 4195 | |
| 4196 | for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { |
| 4197 | if (tcp_sack_extend(sp, seq, end_seq)) { |
| 4198 | /* Rotate this_sack to the first one. */ |
| 4199 | for (; this_sack > 0; this_sack--, sp--) |
| 4200 | swap(*sp, *(sp - 1)); |
| 4201 | if (cur_sacks > 1) |
| 4202 | tcp_sack_maybe_coalesce(tp); |
| 4203 | return; |
| 4204 | } |
| 4205 | } |
| 4206 | |
| 4207 | /* Could not find an adjacent existing SACK, build a new one, |
| 4208 | * put it at the front, and shift everyone else down. We |
| 4209 | * always know there is at least one SACK present already here. |
| 4210 | * |
| 4211 | * If the sack array is full, forget about the last one. |
| 4212 | */ |
| 4213 | if (this_sack >= TCP_NUM_SACKS) { |
| 4214 | this_sack--; |
| 4215 | tp->rx_opt.num_sacks--; |
| 4216 | sp--; |
| 4217 | } |
| 4218 | for (; this_sack > 0; this_sack--, sp--) |
| 4219 | *sp = *(sp - 1); |
| 4220 | |
| 4221 | new_sack: |
| 4222 | /* Build the new head SACK, and we're done. */ |
| 4223 | sp->start_seq = seq; |
| 4224 | sp->end_seq = end_seq; |
| 4225 | tp->rx_opt.num_sacks++; |
| 4226 | } |
| 4227 | |
| 4228 | /* RCV.NXT advances, some SACKs should be eaten. */ |
| 4229 | |
| 4230 | static void tcp_sack_remove(struct tcp_sock *tp) |
| 4231 | { |
| 4232 | struct tcp_sack_block *sp = &tp->selective_acks[0]; |
| 4233 | int num_sacks = tp->rx_opt.num_sacks; |
| 4234 | int this_sack; |
| 4235 | |
| 4236 | /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ |
| 4237 | if (skb_queue_empty(&tp->out_of_order_queue)) { |
| 4238 | tp->rx_opt.num_sacks = 0; |
| 4239 | return; |
| 4240 | } |
| 4241 | |
| 4242 | for (this_sack = 0; this_sack < num_sacks;) { |
| 4243 | /* Check if the start of the sack is covered by RCV.NXT. */ |
| 4244 | if (!before(tp->rcv_nxt, sp->start_seq)) { |
| 4245 | int i; |
| 4246 | |
| 4247 | /* RCV.NXT must cover all the block! */ |
| 4248 | WARN_ON(before(tp->rcv_nxt, sp->end_seq)); |
| 4249 | |
| 4250 | /* Zap this SACK, by moving forward any other SACKS. */ |
| 4251 | for (i = this_sack+1; i < num_sacks; i++) |
| 4252 | tp->selective_acks[i-1] = tp->selective_acks[i]; |
| 4253 | num_sacks--; |
| 4254 | continue; |
| 4255 | } |
| 4256 | this_sack++; |
| 4257 | sp++; |
| 4258 | } |
| 4259 | tp->rx_opt.num_sacks = num_sacks; |
| 4260 | } |
| 4261 | |
| 4262 | /** |
| 4263 | * tcp_try_coalesce - try to merge skb to prior one |
| 4264 | * @sk: socket |
| 4265 | * @to: prior buffer |
| 4266 | * @from: buffer to add in queue |
| 4267 | * @fragstolen: pointer to boolean |
| 4268 | * |
| 4269 | * Before queueing skb @from after @to, try to merge them |
| 4270 | * to reduce overall memory use and queue lengths, if cost is small. |
| 4271 | * Packets in ofo or receive queues can stay a long time. |
| 4272 | * Better try to coalesce them right now to avoid future collapses. |
| 4273 | * Returns true if caller should free @from instead of queueing it |
| 4274 | */ |
| 4275 | static bool tcp_try_coalesce(struct sock *sk, |
| 4276 | struct sk_buff *to, |
| 4277 | struct sk_buff *from, |
| 4278 | bool *fragstolen) |
| 4279 | { |
| 4280 | int delta; |
| 4281 | |
| 4282 | *fragstolen = false; |
| 4283 | |
| 4284 | /* Its possible this segment overlaps with prior segment in queue */ |
| 4285 | if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) |
| 4286 | return false; |
| 4287 | |
| 4288 | if (!skb_try_coalesce(to, from, fragstolen, &delta)) |
| 4289 | return false; |
| 4290 | |
| 4291 | atomic_add(delta, &sk->sk_rmem_alloc); |
| 4292 | sk_mem_charge(sk, delta); |
| 4293 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); |
| 4294 | TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; |
| 4295 | TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; |
| 4296 | TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; |
| 4297 | return true; |
| 4298 | } |
| 4299 | |
| 4300 | /* This one checks to see if we can put data from the |
| 4301 | * out_of_order queue into the receive_queue. |
| 4302 | */ |
| 4303 | static void tcp_ofo_queue(struct sock *sk) |
| 4304 | { |
| 4305 | struct tcp_sock *tp = tcp_sk(sk); |
| 4306 | __u32 dsack_high = tp->rcv_nxt; |
| 4307 | struct sk_buff *skb, *tail; |
| 4308 | bool fragstolen, eaten; |
| 4309 | |
| 4310 | while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { |
| 4311 | if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) |
| 4312 | break; |
| 4313 | |
| 4314 | if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { |
| 4315 | __u32 dsack = dsack_high; |
| 4316 | if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) |
| 4317 | dsack_high = TCP_SKB_CB(skb)->end_seq; |
| 4318 | tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); |
| 4319 | } |
| 4320 | |
| 4321 | __skb_unlink(skb, &tp->out_of_order_queue); |
| 4322 | if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { |
| 4323 | SOCK_DEBUG(sk, "ofo packet was already received\n"); |
| 4324 | __kfree_skb(skb); |
| 4325 | continue; |
| 4326 | } |
| 4327 | SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", |
| 4328 | tp->rcv_nxt, TCP_SKB_CB(skb)->seq, |
| 4329 | TCP_SKB_CB(skb)->end_seq); |
| 4330 | |
| 4331 | tail = skb_peek_tail(&sk->sk_receive_queue); |
| 4332 | eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); |
| 4333 | tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); |
| 4334 | if (!eaten) |
| 4335 | __skb_queue_tail(&sk->sk_receive_queue, skb); |
| 4336 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) |
| 4337 | tcp_fin(sk); |
| 4338 | if (eaten) |
| 4339 | kfree_skb_partial(skb, fragstolen); |
| 4340 | } |
| 4341 | } |
| 4342 | |
| 4343 | static bool tcp_prune_ofo_queue(struct sock *sk); |
| 4344 | static int tcp_prune_queue(struct sock *sk); |
| 4345 | |
| 4346 | static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, |
| 4347 | unsigned int size) |
| 4348 | { |
| 4349 | if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || |
| 4350 | !sk_rmem_schedule(sk, skb, size)) { |
| 4351 | |
| 4352 | if (tcp_prune_queue(sk) < 0) |
| 4353 | return -1; |
| 4354 | |
| 4355 | if (!sk_rmem_schedule(sk, skb, size)) { |
| 4356 | if (!tcp_prune_ofo_queue(sk)) |
| 4357 | return -1; |
| 4358 | |
| 4359 | if (!sk_rmem_schedule(sk, skb, size)) |
| 4360 | return -1; |
| 4361 | } |
| 4362 | } |
| 4363 | return 0; |
| 4364 | } |
| 4365 | |
| 4366 | static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) |
| 4367 | { |
| 4368 | struct tcp_sock *tp = tcp_sk(sk); |
| 4369 | struct sk_buff *skb1; |
| 4370 | u32 seq, end_seq; |
| 4371 | |
| 4372 | tcp_ecn_check_ce(tp, skb); |
| 4373 | |
| 4374 | if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { |
| 4375 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); |
| 4376 | __kfree_skb(skb); |
| 4377 | return; |
| 4378 | } |
| 4379 | |
| 4380 | /* Disable header prediction. */ |
| 4381 | tp->pred_flags = 0; |
| 4382 | inet_csk_schedule_ack(sk); |
| 4383 | |
| 4384 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); |
| 4385 | SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", |
| 4386 | tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); |
| 4387 | |
| 4388 | skb1 = skb_peek_tail(&tp->out_of_order_queue); |
| 4389 | if (!skb1) { |
| 4390 | /* Initial out of order segment, build 1 SACK. */ |
| 4391 | if (tcp_is_sack(tp)) { |
| 4392 | tp->rx_opt.num_sacks = 1; |
| 4393 | tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; |
| 4394 | tp->selective_acks[0].end_seq = |
| 4395 | TCP_SKB_CB(skb)->end_seq; |
| 4396 | } |
| 4397 | __skb_queue_head(&tp->out_of_order_queue, skb); |
| 4398 | goto end; |
| 4399 | } |
| 4400 | |
| 4401 | seq = TCP_SKB_CB(skb)->seq; |
| 4402 | end_seq = TCP_SKB_CB(skb)->end_seq; |
| 4403 | |
| 4404 | if (seq == TCP_SKB_CB(skb1)->end_seq) { |
| 4405 | bool fragstolen; |
| 4406 | |
| 4407 | if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { |
| 4408 | __skb_queue_after(&tp->out_of_order_queue, skb1, skb); |
| 4409 | } else { |
| 4410 | tcp_grow_window(sk, skb); |
| 4411 | kfree_skb_partial(skb, fragstolen); |
| 4412 | skb = NULL; |
| 4413 | } |
| 4414 | |
| 4415 | if (!tp->rx_opt.num_sacks || |
| 4416 | tp->selective_acks[0].end_seq != seq) |
| 4417 | goto add_sack; |
| 4418 | |
| 4419 | /* Common case: data arrive in order after hole. */ |
| 4420 | tp->selective_acks[0].end_seq = end_seq; |
| 4421 | goto end; |
| 4422 | } |
| 4423 | |
| 4424 | /* Find place to insert this segment. */ |
| 4425 | while (1) { |
| 4426 | if (!after(TCP_SKB_CB(skb1)->seq, seq)) |
| 4427 | break; |
| 4428 | if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { |
| 4429 | skb1 = NULL; |
| 4430 | break; |
| 4431 | } |
| 4432 | skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); |
| 4433 | } |
| 4434 | |
| 4435 | /* Do skb overlap to previous one? */ |
| 4436 | if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { |
| 4437 | if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { |
| 4438 | /* All the bits are present. Drop. */ |
| 4439 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); |
| 4440 | __kfree_skb(skb); |
| 4441 | skb = NULL; |
| 4442 | tcp_dsack_set(sk, seq, end_seq); |
| 4443 | goto add_sack; |
| 4444 | } |
| 4445 | if (after(seq, TCP_SKB_CB(skb1)->seq)) { |
| 4446 | /* Partial overlap. */ |
| 4447 | tcp_dsack_set(sk, seq, |
| 4448 | TCP_SKB_CB(skb1)->end_seq); |
| 4449 | } else { |
| 4450 | if (skb_queue_is_first(&tp->out_of_order_queue, |
| 4451 | skb1)) |
| 4452 | skb1 = NULL; |
| 4453 | else |
| 4454 | skb1 = skb_queue_prev( |
| 4455 | &tp->out_of_order_queue, |
| 4456 | skb1); |
| 4457 | } |
| 4458 | } |
| 4459 | if (!skb1) |
| 4460 | __skb_queue_head(&tp->out_of_order_queue, skb); |
| 4461 | else |
| 4462 | __skb_queue_after(&tp->out_of_order_queue, skb1, skb); |
| 4463 | |
| 4464 | /* And clean segments covered by new one as whole. */ |
| 4465 | while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { |
| 4466 | skb1 = skb_queue_next(&tp->out_of_order_queue, skb); |
| 4467 | |
| 4468 | if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) |
| 4469 | break; |
| 4470 | if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { |
| 4471 | tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, |
| 4472 | end_seq); |
| 4473 | break; |
| 4474 | } |
| 4475 | __skb_unlink(skb1, &tp->out_of_order_queue); |
| 4476 | tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, |
| 4477 | TCP_SKB_CB(skb1)->end_seq); |
| 4478 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); |
| 4479 | __kfree_skb(skb1); |
| 4480 | } |
| 4481 | |
| 4482 | add_sack: |
| 4483 | if (tcp_is_sack(tp)) |
| 4484 | tcp_sack_new_ofo_skb(sk, seq, end_seq); |
| 4485 | end: |
| 4486 | if (skb) { |
| 4487 | tcp_grow_window(sk, skb); |
| 4488 | skb_set_owner_r(skb, sk); |
| 4489 | } |
| 4490 | } |
| 4491 | |
| 4492 | static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, |
| 4493 | bool *fragstolen) |
| 4494 | { |
| 4495 | int eaten; |
| 4496 | struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); |
| 4497 | |
| 4498 | __skb_pull(skb, hdrlen); |
| 4499 | eaten = (tail && |
| 4500 | tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; |
| 4501 | tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); |
| 4502 | if (!eaten) { |
| 4503 | __skb_queue_tail(&sk->sk_receive_queue, skb); |
| 4504 | skb_set_owner_r(skb, sk); |
| 4505 | } |
| 4506 | return eaten; |
| 4507 | } |
| 4508 | |
| 4509 | int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) |
| 4510 | { |
| 4511 | struct sk_buff *skb; |
| 4512 | int err = -ENOMEM; |
| 4513 | int data_len = 0; |
| 4514 | bool fragstolen; |
| 4515 | |
| 4516 | if (size == 0) |
| 4517 | return 0; |
| 4518 | |
| 4519 | if (size > PAGE_SIZE) { |
| 4520 | int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); |
| 4521 | |
| 4522 | data_len = npages << PAGE_SHIFT; |
| 4523 | size = data_len + (size & ~PAGE_MASK); |
| 4524 | } |
| 4525 | skb = alloc_skb_with_frags(size - data_len, data_len, |
| 4526 | PAGE_ALLOC_COSTLY_ORDER, |
| 4527 | &err, sk->sk_allocation); |
| 4528 | if (!skb) |
| 4529 | goto err; |
| 4530 | |
| 4531 | skb_put(skb, size - data_len); |
| 4532 | skb->data_len = data_len; |
| 4533 | skb->len = size; |
| 4534 | |
| 4535 | if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) |
| 4536 | goto err_free; |
| 4537 | |
| 4538 | err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); |
| 4539 | if (err) |
| 4540 | goto err_free; |
| 4541 | |
| 4542 | TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; |
| 4543 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; |
| 4544 | TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; |
| 4545 | |
| 4546 | if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { |
| 4547 | WARN_ON_ONCE(fragstolen); /* should not happen */ |
| 4548 | __kfree_skb(skb); |
| 4549 | } |
| 4550 | return size; |
| 4551 | |
| 4552 | err_free: |
| 4553 | kfree_skb(skb); |
| 4554 | err: |
| 4555 | return err; |
| 4556 | |
| 4557 | } |
| 4558 | |
| 4559 | static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) |
| 4560 | { |
| 4561 | struct tcp_sock *tp = tcp_sk(sk); |
| 4562 | int eaten = -1; |
| 4563 | bool fragstolen = false; |
| 4564 | |
| 4565 | if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) |
| 4566 | goto drop; |
| 4567 | |
| 4568 | skb_dst_drop(skb); |
| 4569 | __skb_pull(skb, tcp_hdr(skb)->doff * 4); |
| 4570 | |
| 4571 | tcp_ecn_accept_cwr(tp, skb); |
| 4572 | |
| 4573 | tp->rx_opt.dsack = 0; |
| 4574 | |
| 4575 | /* Queue data for delivery to the user. |
| 4576 | * Packets in sequence go to the receive queue. |
| 4577 | * Out of sequence packets to the out_of_order_queue. |
| 4578 | */ |
| 4579 | if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { |
| 4580 | if (tcp_receive_window(tp) == 0) |
| 4581 | goto out_of_window; |
| 4582 | |
| 4583 | /* Ok. In sequence. In window. */ |
| 4584 | if (tp->ucopy.task == current && |
| 4585 | tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && |
| 4586 | sock_owned_by_user(sk) && !tp->urg_data) { |
| 4587 | int chunk = min_t(unsigned int, skb->len, |
| 4588 | tp->ucopy.len); |
| 4589 | |
| 4590 | __set_current_state(TASK_RUNNING); |
| 4591 | |
| 4592 | local_bh_enable(); |
| 4593 | if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { |
| 4594 | tp->ucopy.len -= chunk; |
| 4595 | tp->copied_seq += chunk; |
| 4596 | eaten = (chunk == skb->len); |
| 4597 | tcp_rcv_space_adjust(sk); |
| 4598 | } |
| 4599 | local_bh_disable(); |
| 4600 | } |
| 4601 | |
| 4602 | if (eaten <= 0) { |
| 4603 | queue_and_out: |
| 4604 | if (eaten < 0) { |
| 4605 | if (skb_queue_len(&sk->sk_receive_queue) == 0) |
| 4606 | sk_forced_mem_schedule(sk, skb->truesize); |
| 4607 | else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) |
| 4608 | goto drop; |
| 4609 | } |
| 4610 | eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); |
| 4611 | } |
| 4612 | tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); |
| 4613 | if (skb->len) |
| 4614 | tcp_event_data_recv(sk, skb); |
| 4615 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) |
| 4616 | tcp_fin(sk); |
| 4617 | |
| 4618 | if (!skb_queue_empty(&tp->out_of_order_queue)) { |
| 4619 | tcp_ofo_queue(sk); |
| 4620 | |
| 4621 | /* RFC2581. 4.2. SHOULD send immediate ACK, when |
| 4622 | * gap in queue is filled. |
| 4623 | */ |
| 4624 | if (skb_queue_empty(&tp->out_of_order_queue)) |
| 4625 | inet_csk(sk)->icsk_ack.pingpong = 0; |
| 4626 | } |
| 4627 | |
| 4628 | if (tp->rx_opt.num_sacks) |
| 4629 | tcp_sack_remove(tp); |
| 4630 | |
| 4631 | tcp_fast_path_check(sk); |
| 4632 | |
| 4633 | if (eaten > 0) |
| 4634 | kfree_skb_partial(skb, fragstolen); |
| 4635 | if (!sock_flag(sk, SOCK_DEAD)) |
| 4636 | sk->sk_data_ready(sk); |
| 4637 | return; |
| 4638 | } |
| 4639 | |
| 4640 | if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { |
| 4641 | /* A retransmit, 2nd most common case. Force an immediate ack. */ |
| 4642 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); |
| 4643 | tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); |
| 4644 | |
| 4645 | out_of_window: |
| 4646 | tcp_enter_quickack_mode(sk); |
| 4647 | inet_csk_schedule_ack(sk); |
| 4648 | drop: |
| 4649 | __kfree_skb(skb); |
| 4650 | return; |
| 4651 | } |
| 4652 | |
| 4653 | /* Out of window. F.e. zero window probe. */ |
| 4654 | if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) |
| 4655 | goto out_of_window; |
| 4656 | |
| 4657 | tcp_enter_quickack_mode(sk); |
| 4658 | |
| 4659 | if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { |
| 4660 | /* Partial packet, seq < rcv_next < end_seq */ |
| 4661 | SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", |
| 4662 | tp->rcv_nxt, TCP_SKB_CB(skb)->seq, |
| 4663 | TCP_SKB_CB(skb)->end_seq); |
| 4664 | |
| 4665 | tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); |
| 4666 | |
| 4667 | /* If window is closed, drop tail of packet. But after |
| 4668 | * remembering D-SACK for its head made in previous line. |
| 4669 | */ |
| 4670 | if (!tcp_receive_window(tp)) |
| 4671 | goto out_of_window; |
| 4672 | goto queue_and_out; |
| 4673 | } |
| 4674 | |
| 4675 | tcp_data_queue_ofo(sk, skb); |
| 4676 | } |
| 4677 | |
| 4678 | static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, |
| 4679 | struct sk_buff_head *list) |
| 4680 | { |
| 4681 | struct sk_buff *next = NULL; |
| 4682 | |
| 4683 | if (!skb_queue_is_last(list, skb)) |
| 4684 | next = skb_queue_next(list, skb); |
| 4685 | |
| 4686 | __skb_unlink(skb, list); |
| 4687 | __kfree_skb(skb); |
| 4688 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); |
| 4689 | |
| 4690 | return next; |
| 4691 | } |
| 4692 | |
| 4693 | /* Collapse contiguous sequence of skbs head..tail with |
| 4694 | * sequence numbers start..end. |
| 4695 | * |
| 4696 | * If tail is NULL, this means until the end of the list. |
| 4697 | * |
| 4698 | * Segments with FIN/SYN are not collapsed (only because this |
| 4699 | * simplifies code) |
| 4700 | */ |
| 4701 | static void |
| 4702 | tcp_collapse(struct sock *sk, struct sk_buff_head *list, |
| 4703 | struct sk_buff *head, struct sk_buff *tail, |
| 4704 | u32 start, u32 end) |
| 4705 | { |
| 4706 | struct sk_buff *skb, *n; |
| 4707 | bool end_of_skbs; |
| 4708 | |
| 4709 | /* First, check that queue is collapsible and find |
| 4710 | * the point where collapsing can be useful. */ |
| 4711 | skb = head; |
| 4712 | restart: |
| 4713 | end_of_skbs = true; |
| 4714 | skb_queue_walk_from_safe(list, skb, n) { |
| 4715 | if (skb == tail) |
| 4716 | break; |
| 4717 | /* No new bits? It is possible on ofo queue. */ |
| 4718 | if (!before(start, TCP_SKB_CB(skb)->end_seq)) { |
| 4719 | skb = tcp_collapse_one(sk, skb, list); |
| 4720 | if (!skb) |
| 4721 | break; |
| 4722 | goto restart; |
| 4723 | } |
| 4724 | |
| 4725 | /* The first skb to collapse is: |
| 4726 | * - not SYN/FIN and |
| 4727 | * - bloated or contains data before "start" or |
| 4728 | * overlaps to the next one. |
| 4729 | */ |
| 4730 | if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && |
| 4731 | (tcp_win_from_space(skb->truesize) > skb->len || |
| 4732 | before(TCP_SKB_CB(skb)->seq, start))) { |
| 4733 | end_of_skbs = false; |
| 4734 | break; |
| 4735 | } |
| 4736 | |
| 4737 | if (!skb_queue_is_last(list, skb)) { |
| 4738 | struct sk_buff *next = skb_queue_next(list, skb); |
| 4739 | if (next != tail && |
| 4740 | TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { |
| 4741 | end_of_skbs = false; |
| 4742 | break; |
| 4743 | } |
| 4744 | } |
| 4745 | |
| 4746 | /* Decided to skip this, advance start seq. */ |
| 4747 | start = TCP_SKB_CB(skb)->end_seq; |
| 4748 | } |
| 4749 | if (end_of_skbs || |
| 4750 | (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) |
| 4751 | return; |
| 4752 | |
| 4753 | while (before(start, end)) { |
| 4754 | int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); |
| 4755 | struct sk_buff *nskb; |
| 4756 | |
| 4757 | nskb = alloc_skb(copy, GFP_ATOMIC); |
| 4758 | if (!nskb) |
| 4759 | return; |
| 4760 | |
| 4761 | memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); |
| 4762 | TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; |
| 4763 | __skb_queue_before(list, skb, nskb); |
| 4764 | skb_set_owner_r(nskb, sk); |
| 4765 | |
| 4766 | /* Copy data, releasing collapsed skbs. */ |
| 4767 | while (copy > 0) { |
| 4768 | int offset = start - TCP_SKB_CB(skb)->seq; |
| 4769 | int size = TCP_SKB_CB(skb)->end_seq - start; |
| 4770 | |
| 4771 | BUG_ON(offset < 0); |
| 4772 | if (size > 0) { |
| 4773 | size = min(copy, size); |
| 4774 | if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) |
| 4775 | BUG(); |
| 4776 | TCP_SKB_CB(nskb)->end_seq += size; |
| 4777 | copy -= size; |
| 4778 | start += size; |
| 4779 | } |
| 4780 | if (!before(start, TCP_SKB_CB(skb)->end_seq)) { |
| 4781 | skb = tcp_collapse_one(sk, skb, list); |
| 4782 | if (!skb || |
| 4783 | skb == tail || |
| 4784 | (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) |
| 4785 | return; |
| 4786 | } |
| 4787 | } |
| 4788 | } |
| 4789 | } |
| 4790 | |
| 4791 | /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs |
| 4792 | * and tcp_collapse() them until all the queue is collapsed. |
| 4793 | */ |
| 4794 | static void tcp_collapse_ofo_queue(struct sock *sk) |
| 4795 | { |
| 4796 | struct tcp_sock *tp = tcp_sk(sk); |
| 4797 | struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); |
| 4798 | struct sk_buff *head; |
| 4799 | u32 start, end; |
| 4800 | |
| 4801 | if (!skb) |
| 4802 | return; |
| 4803 | |
| 4804 | start = TCP_SKB_CB(skb)->seq; |
| 4805 | end = TCP_SKB_CB(skb)->end_seq; |
| 4806 | head = skb; |
| 4807 | |
| 4808 | for (;;) { |
| 4809 | struct sk_buff *next = NULL; |
| 4810 | |
| 4811 | if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) |
| 4812 | next = skb_queue_next(&tp->out_of_order_queue, skb); |
| 4813 | skb = next; |
| 4814 | |
| 4815 | /* Segment is terminated when we see gap or when |
| 4816 | * we are at the end of all the queue. */ |
| 4817 | if (!skb || |
| 4818 | after(TCP_SKB_CB(skb)->seq, end) || |
| 4819 | before(TCP_SKB_CB(skb)->end_seq, start)) { |
| 4820 | tcp_collapse(sk, &tp->out_of_order_queue, |
| 4821 | head, skb, start, end); |
| 4822 | head = skb; |
| 4823 | if (!skb) |
| 4824 | break; |
| 4825 | /* Start new segment */ |
| 4826 | start = TCP_SKB_CB(skb)->seq; |
| 4827 | end = TCP_SKB_CB(skb)->end_seq; |
| 4828 | } else { |
| 4829 | if (before(TCP_SKB_CB(skb)->seq, start)) |
| 4830 | start = TCP_SKB_CB(skb)->seq; |
| 4831 | if (after(TCP_SKB_CB(skb)->end_seq, end)) |
| 4832 | end = TCP_SKB_CB(skb)->end_seq; |
| 4833 | } |
| 4834 | } |
| 4835 | } |
| 4836 | |
| 4837 | /* |
| 4838 | * Purge the out-of-order queue. |
| 4839 | * Return true if queue was pruned. |
| 4840 | */ |
| 4841 | static bool tcp_prune_ofo_queue(struct sock *sk) |
| 4842 | { |
| 4843 | struct tcp_sock *tp = tcp_sk(sk); |
| 4844 | bool res = false; |
| 4845 | |
| 4846 | if (!skb_queue_empty(&tp->out_of_order_queue)) { |
| 4847 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); |
| 4848 | __skb_queue_purge(&tp->out_of_order_queue); |
| 4849 | |
| 4850 | /* Reset SACK state. A conforming SACK implementation will |
| 4851 | * do the same at a timeout based retransmit. When a connection |
| 4852 | * is in a sad state like this, we care only about integrity |
| 4853 | * of the connection not performance. |
| 4854 | */ |
| 4855 | if (tp->rx_opt.sack_ok) |
| 4856 | tcp_sack_reset(&tp->rx_opt); |
| 4857 | sk_mem_reclaim(sk); |
| 4858 | res = true; |
| 4859 | } |
| 4860 | return res; |
| 4861 | } |
| 4862 | |
| 4863 | /* Reduce allocated memory if we can, trying to get |
| 4864 | * the socket within its memory limits again. |
| 4865 | * |
| 4866 | * Return less than zero if we should start dropping frames |
| 4867 | * until the socket owning process reads some of the data |
| 4868 | * to stabilize the situation. |
| 4869 | */ |
| 4870 | static int tcp_prune_queue(struct sock *sk) |
| 4871 | { |
| 4872 | struct tcp_sock *tp = tcp_sk(sk); |
| 4873 | |
| 4874 | SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); |
| 4875 | |
| 4876 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); |
| 4877 | |
| 4878 | if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) |
| 4879 | tcp_clamp_window(sk); |
| 4880 | else if (tcp_under_memory_pressure(sk)) |
| 4881 | tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); |
| 4882 | |
| 4883 | tcp_collapse_ofo_queue(sk); |
| 4884 | if (!skb_queue_empty(&sk->sk_receive_queue)) |
| 4885 | tcp_collapse(sk, &sk->sk_receive_queue, |
| 4886 | skb_peek(&sk->sk_receive_queue), |
| 4887 | NULL, |
| 4888 | tp->copied_seq, tp->rcv_nxt); |
| 4889 | sk_mem_reclaim(sk); |
| 4890 | |
| 4891 | if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) |
| 4892 | return 0; |
| 4893 | |
| 4894 | /* Collapsing did not help, destructive actions follow. |
| 4895 | * This must not ever occur. */ |
| 4896 | |
| 4897 | tcp_prune_ofo_queue(sk); |
| 4898 | |
| 4899 | if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) |
| 4900 | return 0; |
| 4901 | |
| 4902 | /* If we are really being abused, tell the caller to silently |
| 4903 | * drop receive data on the floor. It will get retransmitted |
| 4904 | * and hopefully then we'll have sufficient space. |
| 4905 | */ |
| 4906 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); |
| 4907 | |
| 4908 | /* Massive buffer overcommit. */ |
| 4909 | tp->pred_flags = 0; |
| 4910 | return -1; |
| 4911 | } |
| 4912 | |
| 4913 | static bool tcp_should_expand_sndbuf(const struct sock *sk) |
| 4914 | { |
| 4915 | const struct tcp_sock *tp = tcp_sk(sk); |
| 4916 | |
| 4917 | /* If the user specified a specific send buffer setting, do |
| 4918 | * not modify it. |
| 4919 | */ |
| 4920 | if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) |
| 4921 | return false; |
| 4922 | |
| 4923 | /* If we are under global TCP memory pressure, do not expand. */ |
| 4924 | if (tcp_under_memory_pressure(sk)) |
| 4925 | return false; |
| 4926 | |
| 4927 | /* If we are under soft global TCP memory pressure, do not expand. */ |
| 4928 | if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) |
| 4929 | return false; |
| 4930 | |
| 4931 | /* If we filled the congestion window, do not expand. */ |
| 4932 | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) |
| 4933 | return false; |
| 4934 | |
| 4935 | return true; |
| 4936 | } |
| 4937 | |
| 4938 | /* When incoming ACK allowed to free some skb from write_queue, |
| 4939 | * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket |
| 4940 | * on the exit from tcp input handler. |
| 4941 | * |
| 4942 | * PROBLEM: sndbuf expansion does not work well with largesend. |
| 4943 | */ |
| 4944 | static void tcp_new_space(struct sock *sk) |
| 4945 | { |
| 4946 | struct tcp_sock *tp = tcp_sk(sk); |
| 4947 | |
| 4948 | if (tcp_should_expand_sndbuf(sk)) { |
| 4949 | tcp_sndbuf_expand(sk); |
| 4950 | tp->snd_cwnd_stamp = tcp_time_stamp; |
| 4951 | } |
| 4952 | |
| 4953 | sk->sk_write_space(sk); |
| 4954 | } |
| 4955 | |
| 4956 | static void tcp_check_space(struct sock *sk) |
| 4957 | { |
| 4958 | if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { |
| 4959 | sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); |
| 4960 | /* pairs with tcp_poll() */ |
| 4961 | smp_mb__after_atomic(); |
| 4962 | if (sk->sk_socket && |
| 4963 | test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) |
| 4964 | tcp_new_space(sk); |
| 4965 | } |
| 4966 | } |
| 4967 | |
| 4968 | static inline void tcp_data_snd_check(struct sock *sk) |
| 4969 | { |
| 4970 | tcp_push_pending_frames(sk); |
| 4971 | tcp_check_space(sk); |
| 4972 | } |
| 4973 | |
| 4974 | /* |
| 4975 | * Check if sending an ack is needed. |
| 4976 | */ |
| 4977 | static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) |
| 4978 | { |
| 4979 | struct tcp_sock *tp = tcp_sk(sk); |
| 4980 | |
| 4981 | /* More than one full frame received... */ |
| 4982 | if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && |
| 4983 | /* ... and right edge of window advances far enough. |
| 4984 | * (tcp_recvmsg() will send ACK otherwise). Or... |
| 4985 | */ |
| 4986 | __tcp_select_window(sk) >= tp->rcv_wnd) || |
| 4987 | /* We ACK each frame or... */ |
| 4988 | tcp_in_quickack_mode(sk) || |
| 4989 | /* We have out of order data. */ |
| 4990 | (ofo_possible && skb_peek(&tp->out_of_order_queue))) { |
| 4991 | /* Then ack it now */ |
| 4992 | tcp_send_ack(sk); |
| 4993 | } else { |
| 4994 | /* Else, send delayed ack. */ |
| 4995 | tcp_send_delayed_ack(sk); |
| 4996 | } |
| 4997 | } |
| 4998 | |
| 4999 | static inline void tcp_ack_snd_check(struct sock *sk) |
| 5000 | { |
| 5001 | if (!inet_csk_ack_scheduled(sk)) { |
| 5002 | /* We sent a data segment already. */ |
| 5003 | return; |
| 5004 | } |
| 5005 | __tcp_ack_snd_check(sk, 1); |
| 5006 | } |
| 5007 | |
| 5008 | /* |
| 5009 | * This routine is only called when we have urgent data |
| 5010 | * signaled. Its the 'slow' part of tcp_urg. It could be |
| 5011 | * moved inline now as tcp_urg is only called from one |
| 5012 | * place. We handle URGent data wrong. We have to - as |
| 5013 | * BSD still doesn't use the correction from RFC961. |
| 5014 | * For 1003.1g we should support a new option TCP_STDURG to permit |
| 5015 | * either form (or just set the sysctl tcp_stdurg). |
| 5016 | */ |
| 5017 | |
| 5018 | static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) |
| 5019 | { |
| 5020 | struct tcp_sock *tp = tcp_sk(sk); |
| 5021 | u32 ptr = ntohs(th->urg_ptr); |
| 5022 | |
| 5023 | if (ptr && !sysctl_tcp_stdurg) |
| 5024 | ptr--; |
| 5025 | ptr += ntohl(th->seq); |
| 5026 | |
| 5027 | /* Ignore urgent data that we've already seen and read. */ |
| 5028 | if (after(tp->copied_seq, ptr)) |
| 5029 | return; |
| 5030 | |
| 5031 | /* Do not replay urg ptr. |
| 5032 | * |
| 5033 | * NOTE: interesting situation not covered by specs. |
| 5034 | * Misbehaving sender may send urg ptr, pointing to segment, |
| 5035 | * which we already have in ofo queue. We are not able to fetch |
| 5036 | * such data and will stay in TCP_URG_NOTYET until will be eaten |
| 5037 | * by recvmsg(). Seems, we are not obliged to handle such wicked |
| 5038 | * situations. But it is worth to think about possibility of some |
| 5039 | * DoSes using some hypothetical application level deadlock. |
| 5040 | */ |
| 5041 | if (before(ptr, tp->rcv_nxt)) |
| 5042 | return; |
| 5043 | |
| 5044 | /* Do we already have a newer (or duplicate) urgent pointer? */ |
| 5045 | if (tp->urg_data && !after(ptr, tp->urg_seq)) |
| 5046 | return; |
| 5047 | |
| 5048 | /* Tell the world about our new urgent pointer. */ |
| 5049 | sk_send_sigurg(sk); |
| 5050 | |
| 5051 | /* We may be adding urgent data when the last byte read was |
| 5052 | * urgent. To do this requires some care. We cannot just ignore |
| 5053 | * tp->copied_seq since we would read the last urgent byte again |
| 5054 | * as data, nor can we alter copied_seq until this data arrives |
| 5055 | * or we break the semantics of SIOCATMARK (and thus sockatmark()) |
| 5056 | * |
| 5057 | * NOTE. Double Dutch. Rendering to plain English: author of comment |
| 5058 | * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); |
| 5059 | * and expect that both A and B disappear from stream. This is _wrong_. |
| 5060 | * Though this happens in BSD with high probability, this is occasional. |
| 5061 | * Any application relying on this is buggy. Note also, that fix "works" |
| 5062 | * only in this artificial test. Insert some normal data between A and B and we will |
| 5063 | * decline of BSD again. Verdict: it is better to remove to trap |
| 5064 | * buggy users. |
| 5065 | */ |
| 5066 | if (tp->urg_seq == tp->copied_seq && tp->urg_data && |
| 5067 | !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { |
| 5068 | struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); |
| 5069 | tp->copied_seq++; |
| 5070 | if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { |
| 5071 | __skb_unlink(skb, &sk->sk_receive_queue); |
| 5072 | __kfree_skb(skb); |
| 5073 | } |
| 5074 | } |
| 5075 | |
| 5076 | tp->urg_data = TCP_URG_NOTYET; |
| 5077 | tp->urg_seq = ptr; |
| 5078 | |
| 5079 | /* Disable header prediction. */ |
| 5080 | tp->pred_flags = 0; |
| 5081 | } |
| 5082 | |
| 5083 | /* This is the 'fast' part of urgent handling. */ |
| 5084 | static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) |
| 5085 | { |
| 5086 | struct tcp_sock *tp = tcp_sk(sk); |
| 5087 | |
| 5088 | /* Check if we get a new urgent pointer - normally not. */ |
| 5089 | if (th->urg) |
| 5090 | tcp_check_urg(sk, th); |
| 5091 | |
| 5092 | /* Do we wait for any urgent data? - normally not... */ |
| 5093 | if (tp->urg_data == TCP_URG_NOTYET) { |
| 5094 | u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - |
| 5095 | th->syn; |
| 5096 | |
| 5097 | /* Is the urgent pointer pointing into this packet? */ |
| 5098 | if (ptr < skb->len) { |
| 5099 | u8 tmp; |
| 5100 | if (skb_copy_bits(skb, ptr, &tmp, 1)) |
| 5101 | BUG(); |
| 5102 | tp->urg_data = TCP_URG_VALID | tmp; |
| 5103 | if (!sock_flag(sk, SOCK_DEAD)) |
| 5104 | sk->sk_data_ready(sk); |
| 5105 | } |
| 5106 | } |
| 5107 | } |
| 5108 | |
| 5109 | static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) |
| 5110 | { |
| 5111 | struct tcp_sock *tp = tcp_sk(sk); |
| 5112 | int chunk = skb->len - hlen; |
| 5113 | int err; |
| 5114 | |
| 5115 | local_bh_enable(); |
| 5116 | if (skb_csum_unnecessary(skb)) |
| 5117 | err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); |
| 5118 | else |
| 5119 | err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); |
| 5120 | |
| 5121 | if (!err) { |
| 5122 | tp->ucopy.len -= chunk; |
| 5123 | tp->copied_seq += chunk; |
| 5124 | tcp_rcv_space_adjust(sk); |
| 5125 | } |
| 5126 | |
| 5127 | local_bh_disable(); |
| 5128 | return err; |
| 5129 | } |
| 5130 | |
| 5131 | static __sum16 __tcp_checksum_complete_user(struct sock *sk, |
| 5132 | struct sk_buff *skb) |
| 5133 | { |
| 5134 | __sum16 result; |
| 5135 | |
| 5136 | if (sock_owned_by_user(sk)) { |
| 5137 | local_bh_enable(); |
| 5138 | result = __tcp_checksum_complete(skb); |
| 5139 | local_bh_disable(); |
| 5140 | } else { |
| 5141 | result = __tcp_checksum_complete(skb); |
| 5142 | } |
| 5143 | return result; |
| 5144 | } |
| 5145 | |
| 5146 | static inline bool tcp_checksum_complete_user(struct sock *sk, |
| 5147 | struct sk_buff *skb) |
| 5148 | { |
| 5149 | return !skb_csum_unnecessary(skb) && |
| 5150 | __tcp_checksum_complete_user(sk, skb); |
| 5151 | } |
| 5152 | |
| 5153 | /* Does PAWS and seqno based validation of an incoming segment, flags will |
| 5154 | * play significant role here. |
| 5155 | */ |
| 5156 | static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, |
| 5157 | const struct tcphdr *th, int syn_inerr) |
| 5158 | { |
| 5159 | struct tcp_sock *tp = tcp_sk(sk); |
| 5160 | |
| 5161 | /* RFC1323: H1. Apply PAWS check first. */ |
| 5162 | if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && |
| 5163 | tcp_paws_discard(sk, skb)) { |
| 5164 | if (!th->rst) { |
| 5165 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); |
| 5166 | if (!tcp_oow_rate_limited(sock_net(sk), skb, |
| 5167 | LINUX_MIB_TCPACKSKIPPEDPAWS, |
| 5168 | &tp->last_oow_ack_time)) |
| 5169 | tcp_send_dupack(sk, skb); |
| 5170 | goto discard; |
| 5171 | } |
| 5172 | /* Reset is accepted even if it did not pass PAWS. */ |
| 5173 | } |
| 5174 | |
| 5175 | /* Step 1: check sequence number */ |
| 5176 | if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { |
| 5177 | /* RFC793, page 37: "In all states except SYN-SENT, all reset |
| 5178 | * (RST) segments are validated by checking their SEQ-fields." |
| 5179 | * And page 69: "If an incoming segment is not acceptable, |
| 5180 | * an acknowledgment should be sent in reply (unless the RST |
| 5181 | * bit is set, if so drop the segment and return)". |
| 5182 | */ |
| 5183 | if (!th->rst) { |
| 5184 | if (th->syn) |
| 5185 | goto syn_challenge; |
| 5186 | if (!tcp_oow_rate_limited(sock_net(sk), skb, |
| 5187 | LINUX_MIB_TCPACKSKIPPEDSEQ, |
| 5188 | &tp->last_oow_ack_time)) |
| 5189 | tcp_send_dupack(sk, skb); |
| 5190 | } |
| 5191 | goto discard; |
| 5192 | } |
| 5193 | |
| 5194 | /* Step 2: check RST bit */ |
| 5195 | if (th->rst) { |
| 5196 | /* RFC 5961 3.2 : |
| 5197 | * If sequence number exactly matches RCV.NXT, then |
| 5198 | * RESET the connection |
| 5199 | * else |
| 5200 | * Send a challenge ACK |
| 5201 | */ |
| 5202 | if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) |
| 5203 | tcp_reset(sk); |
| 5204 | else |
| 5205 | tcp_send_challenge_ack(sk, skb); |
| 5206 | goto discard; |
| 5207 | } |
| 5208 | |
| 5209 | /* step 3: check security and precedence [ignored] */ |
| 5210 | |
| 5211 | /* step 4: Check for a SYN |
| 5212 | * RFC 5961 4.2 : Send a challenge ack |
| 5213 | */ |
| 5214 | if (th->syn) { |
| 5215 | syn_challenge: |
| 5216 | if (syn_inerr) |
| 5217 | TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); |
| 5218 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); |
| 5219 | tcp_send_challenge_ack(sk, skb); |
| 5220 | goto discard; |
| 5221 | } |
| 5222 | |
| 5223 | return true; |
| 5224 | |
| 5225 | discard: |
| 5226 | __kfree_skb(skb); |
| 5227 | return false; |
| 5228 | } |
| 5229 | |
| 5230 | /* |
| 5231 | * TCP receive function for the ESTABLISHED state. |
| 5232 | * |
| 5233 | * It is split into a fast path and a slow path. The fast path is |
| 5234 | * disabled when: |
| 5235 | * - A zero window was announced from us - zero window probing |
| 5236 | * is only handled properly in the slow path. |
| 5237 | * - Out of order segments arrived. |
| 5238 | * - Urgent data is expected. |
| 5239 | * - There is no buffer space left |
| 5240 | * - Unexpected TCP flags/window values/header lengths are received |
| 5241 | * (detected by checking the TCP header against pred_flags) |
| 5242 | * - Data is sent in both directions. Fast path only supports pure senders |
| 5243 | * or pure receivers (this means either the sequence number or the ack |
| 5244 | * value must stay constant) |
| 5245 | * - Unexpected TCP option. |
| 5246 | * |
| 5247 | * When these conditions are not satisfied it drops into a standard |
| 5248 | * receive procedure patterned after RFC793 to handle all cases. |
| 5249 | * The first three cases are guaranteed by proper pred_flags setting, |
| 5250 | * the rest is checked inline. Fast processing is turned on in |
| 5251 | * tcp_data_queue when everything is OK. |
| 5252 | */ |
| 5253 | void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, |
| 5254 | const struct tcphdr *th, unsigned int len) |
| 5255 | { |
| 5256 | struct tcp_sock *tp = tcp_sk(sk); |
| 5257 | |
| 5258 | if (unlikely(!sk->sk_rx_dst)) |
| 5259 | inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); |
| 5260 | /* |
| 5261 | * Header prediction. |
| 5262 | * The code loosely follows the one in the famous |
| 5263 | * "30 instruction TCP receive" Van Jacobson mail. |
| 5264 | * |
| 5265 | * Van's trick is to deposit buffers into socket queue |
| 5266 | * on a device interrupt, to call tcp_recv function |
| 5267 | * on the receive process context and checksum and copy |
| 5268 | * the buffer to user space. smart... |
| 5269 | * |
| 5270 | * Our current scheme is not silly either but we take the |
| 5271 | * extra cost of the net_bh soft interrupt processing... |
| 5272 | * We do checksum and copy also but from device to kernel. |
| 5273 | */ |
| 5274 | |
| 5275 | tp->rx_opt.saw_tstamp = 0; |
| 5276 | |
| 5277 | /* pred_flags is 0xS?10 << 16 + snd_wnd |
| 5278 | * if header_prediction is to be made |
| 5279 | * 'S' will always be tp->tcp_header_len >> 2 |
| 5280 | * '?' will be 0 for the fast path, otherwise pred_flags is 0 to |
| 5281 | * turn it off (when there are holes in the receive |
| 5282 | * space for instance) |
| 5283 | * PSH flag is ignored. |
| 5284 | */ |
| 5285 | |
| 5286 | if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && |
| 5287 | TCP_SKB_CB(skb)->seq == tp->rcv_nxt && |
| 5288 | !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { |
| 5289 | int tcp_header_len = tp->tcp_header_len; |
| 5290 | |
| 5291 | /* Timestamp header prediction: tcp_header_len |
| 5292 | * is automatically equal to th->doff*4 due to pred_flags |
| 5293 | * match. |
| 5294 | */ |
| 5295 | |
| 5296 | /* Check timestamp */ |
| 5297 | if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { |
| 5298 | /* No? Slow path! */ |
| 5299 | if (!tcp_parse_aligned_timestamp(tp, th)) |
| 5300 | goto slow_path; |
| 5301 | |
| 5302 | /* If PAWS failed, check it more carefully in slow path */ |
| 5303 | if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) |
| 5304 | goto slow_path; |
| 5305 | |
| 5306 | /* DO NOT update ts_recent here, if checksum fails |
| 5307 | * and timestamp was corrupted part, it will result |
| 5308 | * in a hung connection since we will drop all |
| 5309 | * future packets due to the PAWS test. |
| 5310 | */ |
| 5311 | } |
| 5312 | |
| 5313 | if (len <= tcp_header_len) { |
| 5314 | /* Bulk data transfer: sender */ |
| 5315 | if (len == tcp_header_len) { |
| 5316 | /* Predicted packet is in window by definition. |
| 5317 | * seq == rcv_nxt and rcv_wup <= rcv_nxt. |
| 5318 | * Hence, check seq<=rcv_wup reduces to: |
| 5319 | */ |
| 5320 | if (tcp_header_len == |
| 5321 | (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && |
| 5322 | tp->rcv_nxt == tp->rcv_wup) |
| 5323 | tcp_store_ts_recent(tp); |
| 5324 | |
| 5325 | /* We know that such packets are checksummed |
| 5326 | * on entry. |
| 5327 | */ |
| 5328 | tcp_ack(sk, skb, 0); |
| 5329 | __kfree_skb(skb); |
| 5330 | tcp_data_snd_check(sk); |
| 5331 | return; |
| 5332 | } else { /* Header too small */ |
| 5333 | TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); |
| 5334 | goto discard; |
| 5335 | } |
| 5336 | } else { |
| 5337 | int eaten = 0; |
| 5338 | bool fragstolen = false; |
| 5339 | |
| 5340 | if (tp->ucopy.task == current && |
| 5341 | tp->copied_seq == tp->rcv_nxt && |
| 5342 | len - tcp_header_len <= tp->ucopy.len && |
| 5343 | sock_owned_by_user(sk)) { |
| 5344 | __set_current_state(TASK_RUNNING); |
| 5345 | |
| 5346 | if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { |
| 5347 | /* Predicted packet is in window by definition. |
| 5348 | * seq == rcv_nxt and rcv_wup <= rcv_nxt. |
| 5349 | * Hence, check seq<=rcv_wup reduces to: |
| 5350 | */ |
| 5351 | if (tcp_header_len == |
| 5352 | (sizeof(struct tcphdr) + |
| 5353 | TCPOLEN_TSTAMP_ALIGNED) && |
| 5354 | tp->rcv_nxt == tp->rcv_wup) |
| 5355 | tcp_store_ts_recent(tp); |
| 5356 | |
| 5357 | tcp_rcv_rtt_measure_ts(sk, skb); |
| 5358 | |
| 5359 | __skb_pull(skb, tcp_header_len); |
| 5360 | tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); |
| 5361 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); |
| 5362 | eaten = 1; |
| 5363 | } |
| 5364 | } |
| 5365 | if (!eaten) { |
| 5366 | if (tcp_checksum_complete_user(sk, skb)) |
| 5367 | goto csum_error; |
| 5368 | |
| 5369 | if ((int)skb->truesize > sk->sk_forward_alloc) |
| 5370 | goto step5; |
| 5371 | |
| 5372 | /* Predicted packet is in window by definition. |
| 5373 | * seq == rcv_nxt and rcv_wup <= rcv_nxt. |
| 5374 | * Hence, check seq<=rcv_wup reduces to: |
| 5375 | */ |
| 5376 | if (tcp_header_len == |
| 5377 | (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && |
| 5378 | tp->rcv_nxt == tp->rcv_wup) |
| 5379 | tcp_store_ts_recent(tp); |
| 5380 | |
| 5381 | tcp_rcv_rtt_measure_ts(sk, skb); |
| 5382 | |
| 5383 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); |
| 5384 | |
| 5385 | /* Bulk data transfer: receiver */ |
| 5386 | eaten = tcp_queue_rcv(sk, skb, tcp_header_len, |
| 5387 | &fragstolen); |
| 5388 | } |
| 5389 | |
| 5390 | tcp_event_data_recv(sk, skb); |
| 5391 | |
| 5392 | if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { |
| 5393 | /* Well, only one small jumplet in fast path... */ |
| 5394 | tcp_ack(sk, skb, FLAG_DATA); |
| 5395 | tcp_data_snd_check(sk); |
| 5396 | if (!inet_csk_ack_scheduled(sk)) |
| 5397 | goto no_ack; |
| 5398 | } |
| 5399 | |
| 5400 | __tcp_ack_snd_check(sk, 0); |
| 5401 | no_ack: |
| 5402 | if (eaten) |
| 5403 | kfree_skb_partial(skb, fragstolen); |
| 5404 | sk->sk_data_ready(sk); |
| 5405 | return; |
| 5406 | } |
| 5407 | } |
| 5408 | |
| 5409 | slow_path: |
| 5410 | if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) |
| 5411 | goto csum_error; |
| 5412 | |
| 5413 | if (!th->ack && !th->rst && !th->syn) |
| 5414 | goto discard; |
| 5415 | |
| 5416 | /* |
| 5417 | * Standard slow path. |
| 5418 | */ |
| 5419 | |
| 5420 | if (!tcp_validate_incoming(sk, skb, th, 1)) |
| 5421 | return; |
| 5422 | |
| 5423 | step5: |
| 5424 | if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) |
| 5425 | goto discard; |
| 5426 | |
| 5427 | tcp_rcv_rtt_measure_ts(sk, skb); |
| 5428 | |
| 5429 | /* Process urgent data. */ |
| 5430 | tcp_urg(sk, skb, th); |
| 5431 | |
| 5432 | /* step 7: process the segment text */ |
| 5433 | tcp_data_queue(sk, skb); |
| 5434 | |
| 5435 | tcp_data_snd_check(sk); |
| 5436 | tcp_ack_snd_check(sk); |
| 5437 | return; |
| 5438 | |
| 5439 | csum_error: |
| 5440 | TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); |
| 5441 | TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); |
| 5442 | |
| 5443 | discard: |
| 5444 | __kfree_skb(skb); |
| 5445 | } |
| 5446 | EXPORT_SYMBOL(tcp_rcv_established); |
| 5447 | |
| 5448 | void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) |
| 5449 | { |
| 5450 | struct tcp_sock *tp = tcp_sk(sk); |
| 5451 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 5452 | |
| 5453 | tcp_set_state(sk, TCP_ESTABLISHED); |
| 5454 | icsk->icsk_ack.lrcvtime = tcp_time_stamp; |
| 5455 | |
| 5456 | if (skb) { |
| 5457 | icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); |
| 5458 | security_inet_conn_established(sk, skb); |
| 5459 | } |
| 5460 | |
| 5461 | /* Make sure socket is routed, for correct metrics. */ |
| 5462 | icsk->icsk_af_ops->rebuild_header(sk); |
| 5463 | |
| 5464 | tcp_init_metrics(sk); |
| 5465 | |
| 5466 | tcp_init_congestion_control(sk); |
| 5467 | |
| 5468 | /* Prevent spurious tcp_cwnd_restart() on first data |
| 5469 | * packet. |
| 5470 | */ |
| 5471 | tp->lsndtime = tcp_time_stamp; |
| 5472 | |
| 5473 | tcp_init_buffer_space(sk); |
| 5474 | |
| 5475 | if (sock_flag(sk, SOCK_KEEPOPEN)) |
| 5476 | inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); |
| 5477 | |
| 5478 | if (!tp->rx_opt.snd_wscale) |
| 5479 | __tcp_fast_path_on(tp, tp->snd_wnd); |
| 5480 | else |
| 5481 | tp->pred_flags = 0; |
| 5482 | |
| 5483 | if (!sock_flag(sk, SOCK_DEAD)) { |
| 5484 | sk->sk_state_change(sk); |
| 5485 | sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); |
| 5486 | } |
| 5487 | } |
| 5488 | |
| 5489 | static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, |
| 5490 | struct tcp_fastopen_cookie *cookie) |
| 5491 | { |
| 5492 | struct tcp_sock *tp = tcp_sk(sk); |
| 5493 | struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; |
| 5494 | u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; |
| 5495 | bool syn_drop = false; |
| 5496 | |
| 5497 | if (mss == tp->rx_opt.user_mss) { |
| 5498 | struct tcp_options_received opt; |
| 5499 | |
| 5500 | /* Get original SYNACK MSS value if user MSS sets mss_clamp */ |
| 5501 | tcp_clear_options(&opt); |
| 5502 | opt.user_mss = opt.mss_clamp = 0; |
| 5503 | tcp_parse_options(synack, &opt, 0, NULL); |
| 5504 | mss = opt.mss_clamp; |
| 5505 | } |
| 5506 | |
| 5507 | if (!tp->syn_fastopen) { |
| 5508 | /* Ignore an unsolicited cookie */ |
| 5509 | cookie->len = -1; |
| 5510 | } else if (tp->total_retrans) { |
| 5511 | /* SYN timed out and the SYN-ACK neither has a cookie nor |
| 5512 | * acknowledges data. Presumably the remote received only |
| 5513 | * the retransmitted (regular) SYNs: either the original |
| 5514 | * SYN-data or the corresponding SYN-ACK was dropped. |
| 5515 | */ |
| 5516 | syn_drop = (cookie->len < 0 && data); |
| 5517 | } else if (cookie->len < 0 && !tp->syn_data) { |
| 5518 | /* We requested a cookie but didn't get it. If we did not use |
| 5519 | * the (old) exp opt format then try so next time (try_exp=1). |
| 5520 | * Otherwise we go back to use the RFC7413 opt (try_exp=2). |
| 5521 | */ |
| 5522 | try_exp = tp->syn_fastopen_exp ? 2 : 1; |
| 5523 | } |
| 5524 | |
| 5525 | tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); |
| 5526 | |
| 5527 | if (data) { /* Retransmit unacked data in SYN */ |
| 5528 | tcp_for_write_queue_from(data, sk) { |
| 5529 | if (data == tcp_send_head(sk) || |
| 5530 | __tcp_retransmit_skb(sk, data)) |
| 5531 | break; |
| 5532 | } |
| 5533 | tcp_rearm_rto(sk); |
| 5534 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); |
| 5535 | return true; |
| 5536 | } |
| 5537 | tp->syn_data_acked = tp->syn_data; |
| 5538 | if (tp->syn_data_acked) |
| 5539 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); |
| 5540 | return false; |
| 5541 | } |
| 5542 | |
| 5543 | static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, |
| 5544 | const struct tcphdr *th) |
| 5545 | { |
| 5546 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 5547 | struct tcp_sock *tp = tcp_sk(sk); |
| 5548 | struct tcp_fastopen_cookie foc = { .len = -1 }; |
| 5549 | int saved_clamp = tp->rx_opt.mss_clamp; |
| 5550 | |
| 5551 | tcp_parse_options(skb, &tp->rx_opt, 0, &foc); |
| 5552 | if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) |
| 5553 | tp->rx_opt.rcv_tsecr -= tp->tsoffset; |
| 5554 | |
| 5555 | if (th->ack) { |
| 5556 | /* rfc793: |
| 5557 | * "If the state is SYN-SENT then |
| 5558 | * first check the ACK bit |
| 5559 | * If the ACK bit is set |
| 5560 | * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send |
| 5561 | * a reset (unless the RST bit is set, if so drop |
| 5562 | * the segment and return)" |
| 5563 | */ |
| 5564 | if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || |
| 5565 | after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) |
| 5566 | goto reset_and_undo; |
| 5567 | |
| 5568 | if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && |
| 5569 | !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, |
| 5570 | tcp_time_stamp)) { |
| 5571 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); |
| 5572 | goto reset_and_undo; |
| 5573 | } |
| 5574 | |
| 5575 | /* Now ACK is acceptable. |
| 5576 | * |
| 5577 | * "If the RST bit is set |
| 5578 | * If the ACK was acceptable then signal the user "error: |
| 5579 | * connection reset", drop the segment, enter CLOSED state, |
| 5580 | * delete TCB, and return." |
| 5581 | */ |
| 5582 | |
| 5583 | if (th->rst) { |
| 5584 | tcp_reset(sk); |
| 5585 | goto discard; |
| 5586 | } |
| 5587 | |
| 5588 | /* rfc793: |
| 5589 | * "fifth, if neither of the SYN or RST bits is set then |
| 5590 | * drop the segment and return." |
| 5591 | * |
| 5592 | * See note below! |
| 5593 | * --ANK(990513) |
| 5594 | */ |
| 5595 | if (!th->syn) |
| 5596 | goto discard_and_undo; |
| 5597 | |
| 5598 | /* rfc793: |
| 5599 | * "If the SYN bit is on ... |
| 5600 | * are acceptable then ... |
| 5601 | * (our SYN has been ACKed), change the connection |
| 5602 | * state to ESTABLISHED..." |
| 5603 | */ |
| 5604 | |
| 5605 | tcp_ecn_rcv_synack(tp, th); |
| 5606 | |
| 5607 | tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); |
| 5608 | tcp_ack(sk, skb, FLAG_SLOWPATH); |
| 5609 | |
| 5610 | /* Ok.. it's good. Set up sequence numbers and |
| 5611 | * move to established. |
| 5612 | */ |
| 5613 | tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; |
| 5614 | tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; |
| 5615 | |
| 5616 | /* RFC1323: The window in SYN & SYN/ACK segments is |
| 5617 | * never scaled. |
| 5618 | */ |
| 5619 | tp->snd_wnd = ntohs(th->window); |
| 5620 | |
| 5621 | if (!tp->rx_opt.wscale_ok) { |
| 5622 | tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; |
| 5623 | tp->window_clamp = min(tp->window_clamp, 65535U); |
| 5624 | } |
| 5625 | |
| 5626 | if (tp->rx_opt.saw_tstamp) { |
| 5627 | tp->rx_opt.tstamp_ok = 1; |
| 5628 | tp->tcp_header_len = |
| 5629 | sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; |
| 5630 | tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; |
| 5631 | tcp_store_ts_recent(tp); |
| 5632 | } else { |
| 5633 | tp->tcp_header_len = sizeof(struct tcphdr); |
| 5634 | } |
| 5635 | |
| 5636 | if (tcp_is_sack(tp) && sysctl_tcp_fack) |
| 5637 | tcp_enable_fack(tp); |
| 5638 | |
| 5639 | tcp_mtup_init(sk); |
| 5640 | tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); |
| 5641 | tcp_initialize_rcv_mss(sk); |
| 5642 | |
| 5643 | /* Remember, tcp_poll() does not lock socket! |
| 5644 | * Change state from SYN-SENT only after copied_seq |
| 5645 | * is initialized. */ |
| 5646 | tp->copied_seq = tp->rcv_nxt; |
| 5647 | |
| 5648 | smp_mb(); |
| 5649 | |
| 5650 | tcp_finish_connect(sk, skb); |
| 5651 | |
| 5652 | if ((tp->syn_fastopen || tp->syn_data) && |
| 5653 | tcp_rcv_fastopen_synack(sk, skb, &foc)) |
| 5654 | return -1; |
| 5655 | |
| 5656 | if (sk->sk_write_pending || |
| 5657 | icsk->icsk_accept_queue.rskq_defer_accept || |
| 5658 | icsk->icsk_ack.pingpong) { |
| 5659 | /* Save one ACK. Data will be ready after |
| 5660 | * several ticks, if write_pending is set. |
| 5661 | * |
| 5662 | * It may be deleted, but with this feature tcpdumps |
| 5663 | * look so _wonderfully_ clever, that I was not able |
| 5664 | * to stand against the temptation 8) --ANK |
| 5665 | */ |
| 5666 | inet_csk_schedule_ack(sk); |
| 5667 | tcp_enter_quickack_mode(sk); |
| 5668 | inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, |
| 5669 | TCP_DELACK_MAX, TCP_RTO_MAX); |
| 5670 | |
| 5671 | discard: |
| 5672 | __kfree_skb(skb); |
| 5673 | return 0; |
| 5674 | } else { |
| 5675 | tcp_send_ack(sk); |
| 5676 | } |
| 5677 | return -1; |
| 5678 | } |
| 5679 | |
| 5680 | /* No ACK in the segment */ |
| 5681 | |
| 5682 | if (th->rst) { |
| 5683 | /* rfc793: |
| 5684 | * "If the RST bit is set |
| 5685 | * |
| 5686 | * Otherwise (no ACK) drop the segment and return." |
| 5687 | */ |
| 5688 | |
| 5689 | goto discard_and_undo; |
| 5690 | } |
| 5691 | |
| 5692 | /* PAWS check. */ |
| 5693 | if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && |
| 5694 | tcp_paws_reject(&tp->rx_opt, 0)) |
| 5695 | goto discard_and_undo; |
| 5696 | |
| 5697 | if (th->syn) { |
| 5698 | /* We see SYN without ACK. It is attempt of |
| 5699 | * simultaneous connect with crossed SYNs. |
| 5700 | * Particularly, it can be connect to self. |
| 5701 | */ |
| 5702 | tcp_set_state(sk, TCP_SYN_RECV); |
| 5703 | |
| 5704 | if (tp->rx_opt.saw_tstamp) { |
| 5705 | tp->rx_opt.tstamp_ok = 1; |
| 5706 | tcp_store_ts_recent(tp); |
| 5707 | tp->tcp_header_len = |
| 5708 | sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; |
| 5709 | } else { |
| 5710 | tp->tcp_header_len = sizeof(struct tcphdr); |
| 5711 | } |
| 5712 | |
| 5713 | tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; |
| 5714 | tp->copied_seq = tp->rcv_nxt; |
| 5715 | tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; |
| 5716 | |
| 5717 | /* RFC1323: The window in SYN & SYN/ACK segments is |
| 5718 | * never scaled. |
| 5719 | */ |
| 5720 | tp->snd_wnd = ntohs(th->window); |
| 5721 | tp->snd_wl1 = TCP_SKB_CB(skb)->seq; |
| 5722 | tp->max_window = tp->snd_wnd; |
| 5723 | |
| 5724 | tcp_ecn_rcv_syn(tp, th); |
| 5725 | |
| 5726 | tcp_mtup_init(sk); |
| 5727 | tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); |
| 5728 | tcp_initialize_rcv_mss(sk); |
| 5729 | |
| 5730 | tcp_send_synack(sk); |
| 5731 | #if 0 |
| 5732 | /* Note, we could accept data and URG from this segment. |
| 5733 | * There are no obstacles to make this (except that we must |
| 5734 | * either change tcp_recvmsg() to prevent it from returning data |
| 5735 | * before 3WHS completes per RFC793, or employ TCP Fast Open). |
| 5736 | * |
| 5737 | * However, if we ignore data in ACKless segments sometimes, |
| 5738 | * we have no reasons to accept it sometimes. |
| 5739 | * Also, seems the code doing it in step6 of tcp_rcv_state_process |
| 5740 | * is not flawless. So, discard packet for sanity. |
| 5741 | * Uncomment this return to process the data. |
| 5742 | */ |
| 5743 | return -1; |
| 5744 | #else |
| 5745 | goto discard; |
| 5746 | #endif |
| 5747 | } |
| 5748 | /* "fifth, if neither of the SYN or RST bits is set then |
| 5749 | * drop the segment and return." |
| 5750 | */ |
| 5751 | |
| 5752 | discard_and_undo: |
| 5753 | tcp_clear_options(&tp->rx_opt); |
| 5754 | tp->rx_opt.mss_clamp = saved_clamp; |
| 5755 | goto discard; |
| 5756 | |
| 5757 | reset_and_undo: |
| 5758 | tcp_clear_options(&tp->rx_opt); |
| 5759 | tp->rx_opt.mss_clamp = saved_clamp; |
| 5760 | return 1; |
| 5761 | } |
| 5762 | |
| 5763 | /* |
| 5764 | * This function implements the receiving procedure of RFC 793 for |
| 5765 | * all states except ESTABLISHED and TIME_WAIT. |
| 5766 | * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be |
| 5767 | * address independent. |
| 5768 | */ |
| 5769 | |
| 5770 | int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) |
| 5771 | { |
| 5772 | struct tcp_sock *tp = tcp_sk(sk); |
| 5773 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 5774 | const struct tcphdr *th = tcp_hdr(skb); |
| 5775 | struct request_sock *req; |
| 5776 | int queued = 0; |
| 5777 | bool acceptable; |
| 5778 | |
| 5779 | tp->rx_opt.saw_tstamp = 0; |
| 5780 | |
| 5781 | switch (sk->sk_state) { |
| 5782 | case TCP_CLOSE: |
| 5783 | goto discard; |
| 5784 | |
| 5785 | case TCP_LISTEN: |
| 5786 | if (th->ack) |
| 5787 | return 1; |
| 5788 | |
| 5789 | if (th->rst) |
| 5790 | goto discard; |
| 5791 | |
| 5792 | if (th->syn) { |
| 5793 | if (th->fin) |
| 5794 | goto discard; |
| 5795 | if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) |
| 5796 | return 1; |
| 5797 | |
| 5798 | /* Now we have several options: In theory there is |
| 5799 | * nothing else in the frame. KA9Q has an option to |
| 5800 | * send data with the syn, BSD accepts data with the |
| 5801 | * syn up to the [to be] advertised window and |
| 5802 | * Solaris 2.1 gives you a protocol error. For now |
| 5803 | * we just ignore it, that fits the spec precisely |
| 5804 | * and avoids incompatibilities. It would be nice in |
| 5805 | * future to drop through and process the data. |
| 5806 | * |
| 5807 | * Now that TTCP is starting to be used we ought to |
| 5808 | * queue this data. |
| 5809 | * But, this leaves one open to an easy denial of |
| 5810 | * service attack, and SYN cookies can't defend |
| 5811 | * against this problem. So, we drop the data |
| 5812 | * in the interest of security over speed unless |
| 5813 | * it's still in use. |
| 5814 | */ |
| 5815 | kfree_skb(skb); |
| 5816 | return 0; |
| 5817 | } |
| 5818 | goto discard; |
| 5819 | |
| 5820 | case TCP_SYN_SENT: |
| 5821 | queued = tcp_rcv_synsent_state_process(sk, skb, th); |
| 5822 | if (queued >= 0) |
| 5823 | return queued; |
| 5824 | |
| 5825 | /* Do step6 onward by hand. */ |
| 5826 | tcp_urg(sk, skb, th); |
| 5827 | __kfree_skb(skb); |
| 5828 | tcp_data_snd_check(sk); |
| 5829 | return 0; |
| 5830 | } |
| 5831 | |
| 5832 | req = tp->fastopen_rsk; |
| 5833 | if (req) { |
| 5834 | WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && |
| 5835 | sk->sk_state != TCP_FIN_WAIT1); |
| 5836 | |
| 5837 | if (!tcp_check_req(sk, skb, req, true)) |
| 5838 | goto discard; |
| 5839 | } |
| 5840 | |
| 5841 | if (!th->ack && !th->rst && !th->syn) |
| 5842 | goto discard; |
| 5843 | |
| 5844 | if (!tcp_validate_incoming(sk, skb, th, 0)) |
| 5845 | return 0; |
| 5846 | |
| 5847 | /* step 5: check the ACK field */ |
| 5848 | acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | |
| 5849 | FLAG_UPDATE_TS_RECENT) > 0; |
| 5850 | |
| 5851 | switch (sk->sk_state) { |
| 5852 | case TCP_SYN_RECV: |
| 5853 | if (!acceptable) |
| 5854 | return 1; |
| 5855 | |
| 5856 | if (!tp->srtt_us) |
| 5857 | tcp_synack_rtt_meas(sk, req); |
| 5858 | |
| 5859 | /* Once we leave TCP_SYN_RECV, we no longer need req |
| 5860 | * so release it. |
| 5861 | */ |
| 5862 | if (req) { |
| 5863 | tp->total_retrans = req->num_retrans; |
| 5864 | reqsk_fastopen_remove(sk, req, false); |
| 5865 | } else { |
| 5866 | /* Make sure socket is routed, for correct metrics. */ |
| 5867 | icsk->icsk_af_ops->rebuild_header(sk); |
| 5868 | tcp_init_congestion_control(sk); |
| 5869 | |
| 5870 | tcp_mtup_init(sk); |
| 5871 | tp->copied_seq = tp->rcv_nxt; |
| 5872 | tcp_init_buffer_space(sk); |
| 5873 | } |
| 5874 | smp_mb(); |
| 5875 | tcp_set_state(sk, TCP_ESTABLISHED); |
| 5876 | sk->sk_state_change(sk); |
| 5877 | |
| 5878 | /* Note, that this wakeup is only for marginal crossed SYN case. |
| 5879 | * Passively open sockets are not waked up, because |
| 5880 | * sk->sk_sleep == NULL and sk->sk_socket == NULL. |
| 5881 | */ |
| 5882 | if (sk->sk_socket) |
| 5883 | sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); |
| 5884 | |
| 5885 | tp->snd_una = TCP_SKB_CB(skb)->ack_seq; |
| 5886 | tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; |
| 5887 | tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); |
| 5888 | |
| 5889 | if (tp->rx_opt.tstamp_ok) |
| 5890 | tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; |
| 5891 | |
| 5892 | if (req) { |
| 5893 | /* Re-arm the timer because data may have been sent out. |
| 5894 | * This is similar to the regular data transmission case |
| 5895 | * when new data has just been ack'ed. |
| 5896 | * |
| 5897 | * (TFO) - we could try to be more aggressive and |
| 5898 | * retransmitting any data sooner based on when they |
| 5899 | * are sent out. |
| 5900 | */ |
| 5901 | tcp_rearm_rto(sk); |
| 5902 | } else |
| 5903 | tcp_init_metrics(sk); |
| 5904 | |
| 5905 | tcp_update_pacing_rate(sk); |
| 5906 | |
| 5907 | /* Prevent spurious tcp_cwnd_restart() on first data packet */ |
| 5908 | tp->lsndtime = tcp_time_stamp; |
| 5909 | |
| 5910 | tcp_initialize_rcv_mss(sk); |
| 5911 | tcp_fast_path_on(tp); |
| 5912 | break; |
| 5913 | |
| 5914 | case TCP_FIN_WAIT1: { |
| 5915 | struct dst_entry *dst; |
| 5916 | int tmo; |
| 5917 | |
| 5918 | /* If we enter the TCP_FIN_WAIT1 state and we are a |
| 5919 | * Fast Open socket and this is the first acceptable |
| 5920 | * ACK we have received, this would have acknowledged |
| 5921 | * our SYNACK so stop the SYNACK timer. |
| 5922 | */ |
| 5923 | if (req) { |
| 5924 | /* Return RST if ack_seq is invalid. |
| 5925 | * Note that RFC793 only says to generate a |
| 5926 | * DUPACK for it but for TCP Fast Open it seems |
| 5927 | * better to treat this case like TCP_SYN_RECV |
| 5928 | * above. |
| 5929 | */ |
| 5930 | if (!acceptable) |
| 5931 | return 1; |
| 5932 | /* We no longer need the request sock. */ |
| 5933 | reqsk_fastopen_remove(sk, req, false); |
| 5934 | tcp_rearm_rto(sk); |
| 5935 | } |
| 5936 | if (tp->snd_una != tp->write_seq) |
| 5937 | break; |
| 5938 | |
| 5939 | tcp_set_state(sk, TCP_FIN_WAIT2); |
| 5940 | sk->sk_shutdown |= SEND_SHUTDOWN; |
| 5941 | |
| 5942 | dst = __sk_dst_get(sk); |
| 5943 | if (dst) |
| 5944 | dst_confirm(dst); |
| 5945 | |
| 5946 | if (!sock_flag(sk, SOCK_DEAD)) { |
| 5947 | /* Wake up lingering close() */ |
| 5948 | sk->sk_state_change(sk); |
| 5949 | break; |
| 5950 | } |
| 5951 | |
| 5952 | if (tp->linger2 < 0 || |
| 5953 | (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && |
| 5954 | after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { |
| 5955 | tcp_done(sk); |
| 5956 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); |
| 5957 | return 1; |
| 5958 | } |
| 5959 | |
| 5960 | tmo = tcp_fin_time(sk); |
| 5961 | if (tmo > TCP_TIMEWAIT_LEN) { |
| 5962 | inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); |
| 5963 | } else if (th->fin || sock_owned_by_user(sk)) { |
| 5964 | /* Bad case. We could lose such FIN otherwise. |
| 5965 | * It is not a big problem, but it looks confusing |
| 5966 | * and not so rare event. We still can lose it now, |
| 5967 | * if it spins in bh_lock_sock(), but it is really |
| 5968 | * marginal case. |
| 5969 | */ |
| 5970 | inet_csk_reset_keepalive_timer(sk, tmo); |
| 5971 | } else { |
| 5972 | tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); |
| 5973 | goto discard; |
| 5974 | } |
| 5975 | break; |
| 5976 | } |
| 5977 | |
| 5978 | case TCP_CLOSING: |
| 5979 | if (tp->snd_una == tp->write_seq) { |
| 5980 | tcp_time_wait(sk, TCP_TIME_WAIT, 0); |
| 5981 | goto discard; |
| 5982 | } |
| 5983 | break; |
| 5984 | |
| 5985 | case TCP_LAST_ACK: |
| 5986 | if (tp->snd_una == tp->write_seq) { |
| 5987 | tcp_update_metrics(sk); |
| 5988 | tcp_done(sk); |
| 5989 | goto discard; |
| 5990 | } |
| 5991 | break; |
| 5992 | } |
| 5993 | |
| 5994 | /* step 6: check the URG bit */ |
| 5995 | tcp_urg(sk, skb, th); |
| 5996 | |
| 5997 | /* step 7: process the segment text */ |
| 5998 | switch (sk->sk_state) { |
| 5999 | case TCP_CLOSE_WAIT: |
| 6000 | case TCP_CLOSING: |
| 6001 | case TCP_LAST_ACK: |
| 6002 | if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) |
| 6003 | break; |
| 6004 | case TCP_FIN_WAIT1: |
| 6005 | case TCP_FIN_WAIT2: |
| 6006 | /* RFC 793 says to queue data in these states, |
| 6007 | * RFC 1122 says we MUST send a reset. |
| 6008 | * BSD 4.4 also does reset. |
| 6009 | */ |
| 6010 | if (sk->sk_shutdown & RCV_SHUTDOWN) { |
| 6011 | if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && |
| 6012 | after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { |
| 6013 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); |
| 6014 | tcp_reset(sk); |
| 6015 | return 1; |
| 6016 | } |
| 6017 | } |
| 6018 | /* Fall through */ |
| 6019 | case TCP_ESTABLISHED: |
| 6020 | tcp_data_queue(sk, skb); |
| 6021 | queued = 1; |
| 6022 | break; |
| 6023 | } |
| 6024 | |
| 6025 | /* tcp_data could move socket to TIME-WAIT */ |
| 6026 | if (sk->sk_state != TCP_CLOSE) { |
| 6027 | tcp_data_snd_check(sk); |
| 6028 | tcp_ack_snd_check(sk); |
| 6029 | } |
| 6030 | |
| 6031 | if (!queued) { |
| 6032 | discard: |
| 6033 | __kfree_skb(skb); |
| 6034 | } |
| 6035 | return 0; |
| 6036 | } |
| 6037 | EXPORT_SYMBOL(tcp_rcv_state_process); |
| 6038 | |
| 6039 | static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) |
| 6040 | { |
| 6041 | struct inet_request_sock *ireq = inet_rsk(req); |
| 6042 | |
| 6043 | if (family == AF_INET) |
| 6044 | net_dbg_ratelimited("drop open request from %pI4/%u\n", |
| 6045 | &ireq->ir_rmt_addr, port); |
| 6046 | #if IS_ENABLED(CONFIG_IPV6) |
| 6047 | else if (family == AF_INET6) |
| 6048 | net_dbg_ratelimited("drop open request from %pI6/%u\n", |
| 6049 | &ireq->ir_v6_rmt_addr, port); |
| 6050 | #endif |
| 6051 | } |
| 6052 | |
| 6053 | /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set |
| 6054 | * |
| 6055 | * If we receive a SYN packet with these bits set, it means a |
| 6056 | * network is playing bad games with TOS bits. In order to |
| 6057 | * avoid possible false congestion notifications, we disable |
| 6058 | * TCP ECN negotiation. |
| 6059 | * |
| 6060 | * Exception: tcp_ca wants ECN. This is required for DCTCP |
| 6061 | * congestion control: Linux DCTCP asserts ECT on all packets, |
| 6062 | * including SYN, which is most optimal solution; however, |
| 6063 | * others, such as FreeBSD do not. |
| 6064 | */ |
| 6065 | static void tcp_ecn_create_request(struct request_sock *req, |
| 6066 | const struct sk_buff *skb, |
| 6067 | const struct sock *listen_sk, |
| 6068 | const struct dst_entry *dst) |
| 6069 | { |
| 6070 | const struct tcphdr *th = tcp_hdr(skb); |
| 6071 | const struct net *net = sock_net(listen_sk); |
| 6072 | bool th_ecn = th->ece && th->cwr; |
| 6073 | bool ect, ecn_ok; |
| 6074 | u32 ecn_ok_dst; |
| 6075 | |
| 6076 | if (!th_ecn) |
| 6077 | return; |
| 6078 | |
| 6079 | ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); |
| 6080 | ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); |
| 6081 | ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; |
| 6082 | |
| 6083 | if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || |
| 6084 | (ecn_ok_dst & DST_FEATURE_ECN_CA)) |
| 6085 | inet_rsk(req)->ecn_ok = 1; |
| 6086 | } |
| 6087 | |
| 6088 | static void tcp_openreq_init(struct request_sock *req, |
| 6089 | const struct tcp_options_received *rx_opt, |
| 6090 | struct sk_buff *skb, const struct sock *sk) |
| 6091 | { |
| 6092 | struct inet_request_sock *ireq = inet_rsk(req); |
| 6093 | |
| 6094 | req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ |
| 6095 | req->cookie_ts = 0; |
| 6096 | tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; |
| 6097 | tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; |
| 6098 | skb_mstamp_get(&tcp_rsk(req)->snt_synack); |
| 6099 | tcp_rsk(req)->last_oow_ack_time = 0; |
| 6100 | req->mss = rx_opt->mss_clamp; |
| 6101 | req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; |
| 6102 | ireq->tstamp_ok = rx_opt->tstamp_ok; |
| 6103 | ireq->sack_ok = rx_opt->sack_ok; |
| 6104 | ireq->snd_wscale = rx_opt->snd_wscale; |
| 6105 | ireq->wscale_ok = rx_opt->wscale_ok; |
| 6106 | ireq->acked = 0; |
| 6107 | ireq->ecn_ok = 0; |
| 6108 | ireq->ir_rmt_port = tcp_hdr(skb)->source; |
| 6109 | ireq->ir_num = ntohs(tcp_hdr(skb)->dest); |
| 6110 | ireq->ir_mark = inet_request_mark(sk, skb); |
| 6111 | } |
| 6112 | |
| 6113 | struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, |
| 6114 | struct sock *sk_listener, |
| 6115 | bool attach_listener) |
| 6116 | { |
| 6117 | struct request_sock *req = reqsk_alloc(ops, sk_listener, |
| 6118 | attach_listener); |
| 6119 | |
| 6120 | if (req) { |
| 6121 | struct inet_request_sock *ireq = inet_rsk(req); |
| 6122 | |
| 6123 | kmemcheck_annotate_bitfield(ireq, flags); |
| 6124 | ireq->ireq_opt = NULL; |
| 6125 | atomic64_set(&ireq->ir_cookie, 0); |
| 6126 | ireq->ireq_state = TCP_NEW_SYN_RECV; |
| 6127 | write_pnet(&ireq->ireq_net, sock_net(sk_listener)); |
| 6128 | ireq->ireq_family = sk_listener->sk_family; |
| 6129 | } |
| 6130 | |
| 6131 | return req; |
| 6132 | } |
| 6133 | EXPORT_SYMBOL(inet_reqsk_alloc); |
| 6134 | |
| 6135 | /* |
| 6136 | * Return true if a syncookie should be sent |
| 6137 | */ |
| 6138 | static bool tcp_syn_flood_action(const struct sock *sk, |
| 6139 | const struct sk_buff *skb, |
| 6140 | const char *proto) |
| 6141 | { |
| 6142 | struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; |
| 6143 | const char *msg = "Dropping request"; |
| 6144 | bool want_cookie = false; |
| 6145 | |
| 6146 | #ifdef CONFIG_SYN_COOKIES |
| 6147 | if (sysctl_tcp_syncookies) { |
| 6148 | msg = "Sending cookies"; |
| 6149 | want_cookie = true; |
| 6150 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); |
| 6151 | } else |
| 6152 | #endif |
| 6153 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); |
| 6154 | |
| 6155 | if (!queue->synflood_warned && |
| 6156 | sysctl_tcp_syncookies != 2 && |
| 6157 | xchg(&queue->synflood_warned, 1) == 0) |
| 6158 | pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", |
| 6159 | proto, ntohs(tcp_hdr(skb)->dest), msg); |
| 6160 | |
| 6161 | return want_cookie; |
| 6162 | } |
| 6163 | |
| 6164 | static void tcp_reqsk_record_syn(const struct sock *sk, |
| 6165 | struct request_sock *req, |
| 6166 | const struct sk_buff *skb) |
| 6167 | { |
| 6168 | if (tcp_sk(sk)->save_syn) { |
| 6169 | u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); |
| 6170 | u32 *copy; |
| 6171 | |
| 6172 | copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); |
| 6173 | if (copy) { |
| 6174 | copy[0] = len; |
| 6175 | memcpy(©[1], skb_network_header(skb), len); |
| 6176 | req->saved_syn = copy; |
| 6177 | } |
| 6178 | } |
| 6179 | } |
| 6180 | |
| 6181 | int tcp_conn_request(struct request_sock_ops *rsk_ops, |
| 6182 | const struct tcp_request_sock_ops *af_ops, |
| 6183 | struct sock *sk, struct sk_buff *skb) |
| 6184 | { |
| 6185 | struct tcp_fastopen_cookie foc = { .len = -1 }; |
| 6186 | __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; |
| 6187 | struct tcp_options_received tmp_opt; |
| 6188 | struct tcp_sock *tp = tcp_sk(sk); |
| 6189 | struct sock *fastopen_sk = NULL; |
| 6190 | struct dst_entry *dst = NULL; |
| 6191 | struct request_sock *req; |
| 6192 | bool want_cookie = false; |
| 6193 | struct flowi fl; |
| 6194 | |
| 6195 | /* TW buckets are converted to open requests without |
| 6196 | * limitations, they conserve resources and peer is |
| 6197 | * evidently real one. |
| 6198 | */ |
| 6199 | if ((sysctl_tcp_syncookies == 2 || |
| 6200 | inet_csk_reqsk_queue_is_full(sk)) && !isn) { |
| 6201 | want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); |
| 6202 | if (!want_cookie) |
| 6203 | goto drop; |
| 6204 | } |
| 6205 | |
| 6206 | |
| 6207 | /* Accept backlog is full. If we have already queued enough |
| 6208 | * of warm entries in syn queue, drop request. It is better than |
| 6209 | * clogging syn queue with openreqs with exponentially increasing |
| 6210 | * timeout. |
| 6211 | */ |
| 6212 | if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { |
| 6213 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); |
| 6214 | goto drop; |
| 6215 | } |
| 6216 | |
| 6217 | req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); |
| 6218 | if (!req) |
| 6219 | goto drop; |
| 6220 | |
| 6221 | tcp_rsk(req)->af_specific = af_ops; |
| 6222 | |
| 6223 | tcp_clear_options(&tmp_opt); |
| 6224 | tmp_opt.mss_clamp = af_ops->mss_clamp; |
| 6225 | tmp_opt.user_mss = tp->rx_opt.user_mss; |
| 6226 | tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); |
| 6227 | |
| 6228 | if (want_cookie && !tmp_opt.saw_tstamp) |
| 6229 | tcp_clear_options(&tmp_opt); |
| 6230 | |
| 6231 | tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; |
| 6232 | tcp_openreq_init(req, &tmp_opt, skb, sk); |
| 6233 | |
| 6234 | /* Note: tcp_v6_init_req() might override ir_iif for link locals */ |
| 6235 | inet_rsk(req)->ir_iif = sk->sk_bound_dev_if; |
| 6236 | |
| 6237 | af_ops->init_req(req, sk, skb); |
| 6238 | |
| 6239 | if (security_inet_conn_request(sk, skb, req)) |
| 6240 | goto drop_and_free; |
| 6241 | |
| 6242 | if (!want_cookie && !isn) { |
| 6243 | /* VJ's idea. We save last timestamp seen |
| 6244 | * from the destination in peer table, when entering |
| 6245 | * state TIME-WAIT, and check against it before |
| 6246 | * accepting new connection request. |
| 6247 | * |
| 6248 | * If "isn" is not zero, this request hit alive |
| 6249 | * timewait bucket, so that all the necessary checks |
| 6250 | * are made in the function processing timewait state. |
| 6251 | */ |
| 6252 | if (tcp_death_row.sysctl_tw_recycle) { |
| 6253 | bool strict; |
| 6254 | |
| 6255 | dst = af_ops->route_req(sk, &fl, req, &strict); |
| 6256 | |
| 6257 | if (dst && strict && |
| 6258 | !tcp_peer_is_proven(req, dst, true, |
| 6259 | tmp_opt.saw_tstamp)) { |
| 6260 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); |
| 6261 | goto drop_and_release; |
| 6262 | } |
| 6263 | } |
| 6264 | /* Kill the following clause, if you dislike this way. */ |
| 6265 | else if (!sysctl_tcp_syncookies && |
| 6266 | (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < |
| 6267 | (sysctl_max_syn_backlog >> 2)) && |
| 6268 | !tcp_peer_is_proven(req, dst, false, |
| 6269 | tmp_opt.saw_tstamp)) { |
| 6270 | /* Without syncookies last quarter of |
| 6271 | * backlog is filled with destinations, |
| 6272 | * proven to be alive. |
| 6273 | * It means that we continue to communicate |
| 6274 | * to destinations, already remembered |
| 6275 | * to the moment of synflood. |
| 6276 | */ |
| 6277 | pr_drop_req(req, ntohs(tcp_hdr(skb)->source), |
| 6278 | rsk_ops->family); |
| 6279 | goto drop_and_release; |
| 6280 | } |
| 6281 | |
| 6282 | isn = af_ops->init_seq(skb); |
| 6283 | } |
| 6284 | if (!dst) { |
| 6285 | dst = af_ops->route_req(sk, &fl, req, NULL); |
| 6286 | if (!dst) |
| 6287 | goto drop_and_free; |
| 6288 | } |
| 6289 | |
| 6290 | tcp_ecn_create_request(req, skb, sk, dst); |
| 6291 | |
| 6292 | if (want_cookie) { |
| 6293 | isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); |
| 6294 | req->cookie_ts = tmp_opt.tstamp_ok; |
| 6295 | if (!tmp_opt.tstamp_ok) |
| 6296 | inet_rsk(req)->ecn_ok = 0; |
| 6297 | } |
| 6298 | |
| 6299 | tcp_rsk(req)->snt_isn = isn; |
| 6300 | tcp_rsk(req)->txhash = net_tx_rndhash(); |
| 6301 | tcp_openreq_init_rwin(req, sk, dst); |
| 6302 | if (!want_cookie) { |
| 6303 | tcp_reqsk_record_syn(sk, req, skb); |
| 6304 | fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); |
| 6305 | } |
| 6306 | if (fastopen_sk) { |
| 6307 | af_ops->send_synack(fastopen_sk, dst, &fl, req, |
| 6308 | &foc, false); |
| 6309 | /* Add the child socket directly into the accept queue */ |
| 6310 | inet_csk_reqsk_queue_add(sk, req, fastopen_sk); |
| 6311 | sk->sk_data_ready(sk); |
| 6312 | bh_unlock_sock(fastopen_sk); |
| 6313 | sock_put(fastopen_sk); |
| 6314 | } else { |
| 6315 | tcp_rsk(req)->tfo_listener = false; |
| 6316 | if (!want_cookie) |
| 6317 | inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); |
| 6318 | af_ops->send_synack(sk, dst, &fl, req, |
| 6319 | &foc, !want_cookie); |
| 6320 | if (want_cookie) |
| 6321 | goto drop_and_free; |
| 6322 | } |
| 6323 | reqsk_put(req); |
| 6324 | return 0; |
| 6325 | |
| 6326 | drop_and_release: |
| 6327 | dst_release(dst); |
| 6328 | drop_and_free: |
| 6329 | reqsk_free(req); |
| 6330 | drop: |
| 6331 | NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); |
| 6332 | return 0; |
| 6333 | } |
| 6334 | EXPORT_SYMBOL(tcp_conn_request); |