blob: 5e4a30d5262c90a77cf86b0a591df7eedd40f526 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64#define pr_fmt(fmt) "TCP: " fmt
65
66#include <linux/mm.h>
67#include <linux/slab.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <linux/kernel.h>
71#include <linux/prefetch.h>
72#include <net/dst.h>
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
77#include <linux/errqueue.h>
78
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84int sysctl_tcp_max_reordering __read_mostly = 300;
85EXPORT_SYMBOL(sysctl_tcp_reordering);
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
88int sysctl_tcp_adv_win_scale __read_mostly = 1;
89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91/* rfc5961 challenge ack rate limiting */
92int sysctl_tcp_challenge_ack_limit = 1000;
93
94int sysctl_tcp_stdurg __read_mostly;
95int sysctl_tcp_rfc1337 __read_mostly;
96int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97int sysctl_tcp_frto __read_mostly = 2;
98int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
99
100int sysctl_tcp_thin_dupack __read_mostly;
101
102int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103int sysctl_tcp_early_retrans __read_mostly = 3;
104int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
105
106#define FLAG_DATA 0x01 /* Incoming frame contained data. */
107#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111#define FLAG_DATA_SACKED 0x20 /* New SACK. */
112#define FLAG_ECE 0x40 /* ECE in this ACK */
113#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
114#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
115#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
116#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
117#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
118#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
119#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
120
121#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
122#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
123#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
124#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
125
126#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128
129/* Adapt the MSS value used to make delayed ack decision to the
130 * real world.
131 */
132static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133{
134 struct inet_connection_sock *icsk = inet_csk(sk);
135 const unsigned int lss = icsk->icsk_ack.last_seg_size;
136 unsigned int len;
137
138 icsk->icsk_ack.last_seg_size = 0;
139
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
142 */
143 len = skb_shinfo(skb)->gso_size ? : skb->len;
144 if (len >= icsk->icsk_ack.rcv_mss) {
145 icsk->icsk_ack.rcv_mss = len;
146 } else {
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
149 *
150 * "len" is invariant segment length, including TCP header.
151 */
152 len += skb->data - skb_transport_header(skb);
153 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
158 */
159 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
164 */
165 len -= tcp_sk(sk)->tcp_header_len;
166 icsk->icsk_ack.last_seg_size = len;
167 if (len == lss) {
168 icsk->icsk_ack.rcv_mss = len;
169 return;
170 }
171 }
172 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175 }
176}
177
178static void tcp_incr_quickack(struct sock *sk)
179{
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182
183 if (quickacks == 0)
184 quickacks = 2;
185 if (quickacks > icsk->icsk_ack.quick)
186 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187}
188
189static void tcp_enter_quickack_mode(struct sock *sk)
190{
191 struct inet_connection_sock *icsk = inet_csk(sk);
192 tcp_incr_quickack(sk);
193 icsk->icsk_ack.pingpong = 0;
194 icsk->icsk_ack.ato = TCP_ATO_MIN;
195}
196
197/* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
199 */
200
201static bool tcp_in_quickack_mode(struct sock *sk)
202{
203 const struct inet_connection_sock *icsk = inet_csk(sk);
204 const struct dst_entry *dst = __sk_dst_get(sk);
205
206 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
207 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
208}
209
210static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
211{
212 if (tp->ecn_flags & TCP_ECN_OK)
213 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
214}
215
216static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
217{
218 if (tcp_hdr(skb)->cwr)
219 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220}
221
222static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
223{
224 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
225}
226
227static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
228{
229 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
230 case INET_ECN_NOT_ECT:
231 /* Funny extension: if ECT is not set on a segment,
232 * and we already seen ECT on a previous segment,
233 * it is probably a retransmit.
234 */
235 if (tp->ecn_flags & TCP_ECN_SEEN)
236 tcp_enter_quickack_mode((struct sock *)tp);
237 break;
238 case INET_ECN_CE:
239 if (tcp_ca_needs_ecn((struct sock *)tp))
240 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
241
242 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
243 /* Better not delay acks, sender can have a very low cwnd */
244 tcp_enter_quickack_mode((struct sock *)tp);
245 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
246 }
247 tp->ecn_flags |= TCP_ECN_SEEN;
248 break;
249 default:
250 if (tcp_ca_needs_ecn((struct sock *)tp))
251 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
252 tp->ecn_flags |= TCP_ECN_SEEN;
253 break;
254 }
255}
256
257static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
258{
259 if (tp->ecn_flags & TCP_ECN_OK)
260 __tcp_ecn_check_ce(tp, skb);
261}
262
263static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
264{
265 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
266 tp->ecn_flags &= ~TCP_ECN_OK;
267}
268
269static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
270{
271 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
272 tp->ecn_flags &= ~TCP_ECN_OK;
273}
274
275static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
276{
277 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
278 return true;
279 return false;
280}
281
282/* Buffer size and advertised window tuning.
283 *
284 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
285 */
286
287static void tcp_sndbuf_expand(struct sock *sk)
288{
289 const struct tcp_sock *tp = tcp_sk(sk);
290 int sndmem, per_mss;
291 u32 nr_segs;
292
293 /* Worst case is non GSO/TSO : each frame consumes one skb
294 * and skb->head is kmalloced using power of two area of memory
295 */
296 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
297 MAX_TCP_HEADER +
298 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
299
300 per_mss = roundup_pow_of_two(per_mss) +
301 SKB_DATA_ALIGN(sizeof(struct sk_buff));
302
303 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
304 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
305
306 /* Fast Recovery (RFC 5681 3.2) :
307 * Cubic needs 1.7 factor, rounded to 2 to include
308 * extra cushion (application might react slowly to POLLOUT)
309 */
310 sndmem = 2 * nr_segs * per_mss;
311
312 if (sk->sk_sndbuf < sndmem)
313 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
314}
315
316/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
317 *
318 * All tcp_full_space() is split to two parts: "network" buffer, allocated
319 * forward and advertised in receiver window (tp->rcv_wnd) and
320 * "application buffer", required to isolate scheduling/application
321 * latencies from network.
322 * window_clamp is maximal advertised window. It can be less than
323 * tcp_full_space(), in this case tcp_full_space() - window_clamp
324 * is reserved for "application" buffer. The less window_clamp is
325 * the smoother our behaviour from viewpoint of network, but the lower
326 * throughput and the higher sensitivity of the connection to losses. 8)
327 *
328 * rcv_ssthresh is more strict window_clamp used at "slow start"
329 * phase to predict further behaviour of this connection.
330 * It is used for two goals:
331 * - to enforce header prediction at sender, even when application
332 * requires some significant "application buffer". It is check #1.
333 * - to prevent pruning of receive queue because of misprediction
334 * of receiver window. Check #2.
335 *
336 * The scheme does not work when sender sends good segments opening
337 * window and then starts to feed us spaghetti. But it should work
338 * in common situations. Otherwise, we have to rely on queue collapsing.
339 */
340
341/* Slow part of check#2. */
342static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
343{
344 struct tcp_sock *tp = tcp_sk(sk);
345 /* Optimize this! */
346 int truesize = tcp_win_from_space(skb->truesize) >> 1;
347 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
348
349 while (tp->rcv_ssthresh <= window) {
350 if (truesize <= skb->len)
351 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
352
353 truesize >>= 1;
354 window >>= 1;
355 }
356 return 0;
357}
358
359static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
360{
361 struct tcp_sock *tp = tcp_sk(sk);
362
363 /* Check #1 */
364 if (tp->rcv_ssthresh < tp->window_clamp &&
365 (int)tp->rcv_ssthresh < tcp_space(sk) &&
366 !tcp_under_memory_pressure(sk)) {
367 int incr;
368
369 /* Check #2. Increase window, if skb with such overhead
370 * will fit to rcvbuf in future.
371 */
372 if (tcp_win_from_space(skb->truesize) <= skb->len)
373 incr = 2 * tp->advmss;
374 else
375 incr = __tcp_grow_window(sk, skb);
376
377 if (incr) {
378 incr = max_t(int, incr, 2 * skb->len);
379 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
380 tp->window_clamp);
381 inet_csk(sk)->icsk_ack.quick |= 1;
382 }
383 }
384}
385
386/* 3. Tuning rcvbuf, when connection enters established state. */
387static void tcp_fixup_rcvbuf(struct sock *sk)
388{
389 u32 mss = tcp_sk(sk)->advmss;
390 int rcvmem;
391
392 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
393 tcp_default_init_rwnd(mss);
394
395 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
396 * Allow enough cushion so that sender is not limited by our window
397 */
398 if (sysctl_tcp_moderate_rcvbuf)
399 rcvmem <<= 2;
400
401 if (sk->sk_rcvbuf < rcvmem)
402 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
403}
404
405/* 4. Try to fixup all. It is made immediately after connection enters
406 * established state.
407 */
408void tcp_init_buffer_space(struct sock *sk)
409{
410 struct tcp_sock *tp = tcp_sk(sk);
411 int maxwin;
412
413 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
414 tcp_fixup_rcvbuf(sk);
415 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
416 tcp_sndbuf_expand(sk);
417
418 tp->rcvq_space.space = tp->rcv_wnd;
419 tp->rcvq_space.time = tcp_time_stamp;
420 tp->rcvq_space.seq = tp->copied_seq;
421
422 maxwin = tcp_full_space(sk);
423
424 if (tp->window_clamp >= maxwin) {
425 tp->window_clamp = maxwin;
426
427 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
428 tp->window_clamp = max(maxwin -
429 (maxwin >> sysctl_tcp_app_win),
430 4 * tp->advmss);
431 }
432
433 /* Force reservation of one segment. */
434 if (sysctl_tcp_app_win &&
435 tp->window_clamp > 2 * tp->advmss &&
436 tp->window_clamp + tp->advmss > maxwin)
437 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
438
439 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
440 tp->snd_cwnd_stamp = tcp_time_stamp;
441}
442
443/* 5. Recalculate window clamp after socket hit its memory bounds. */
444static void tcp_clamp_window(struct sock *sk)
445{
446 struct tcp_sock *tp = tcp_sk(sk);
447 struct inet_connection_sock *icsk = inet_csk(sk);
448
449 icsk->icsk_ack.quick = 0;
450
451 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
452 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
453 !tcp_under_memory_pressure(sk) &&
454 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
455 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
456 sysctl_tcp_rmem[2]);
457 }
458 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
459 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
460}
461
462/* Initialize RCV_MSS value.
463 * RCV_MSS is an our guess about MSS used by the peer.
464 * We haven't any direct information about the MSS.
465 * It's better to underestimate the RCV_MSS rather than overestimate.
466 * Overestimations make us ACKing less frequently than needed.
467 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
468 */
469void tcp_initialize_rcv_mss(struct sock *sk)
470{
471 const struct tcp_sock *tp = tcp_sk(sk);
472 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
473
474 hint = min(hint, tp->rcv_wnd / 2);
475 hint = min(hint, TCP_MSS_DEFAULT);
476 hint = max(hint, TCP_MIN_MSS);
477
478 inet_csk(sk)->icsk_ack.rcv_mss = hint;
479}
480EXPORT_SYMBOL(tcp_initialize_rcv_mss);
481
482/* Receiver "autotuning" code.
483 *
484 * The algorithm for RTT estimation w/o timestamps is based on
485 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
486 * <http://public.lanl.gov/radiant/pubs.html#DRS>
487 *
488 * More detail on this code can be found at
489 * <http://staff.psc.edu/jheffner/>,
490 * though this reference is out of date. A new paper
491 * is pending.
492 */
493static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
494{
495 u32 new_sample = tp->rcv_rtt_est.rtt;
496 long m = sample;
497
498 if (m == 0)
499 m = 1;
500
501 if (new_sample != 0) {
502 /* If we sample in larger samples in the non-timestamp
503 * case, we could grossly overestimate the RTT especially
504 * with chatty applications or bulk transfer apps which
505 * are stalled on filesystem I/O.
506 *
507 * Also, since we are only going for a minimum in the
508 * non-timestamp case, we do not smooth things out
509 * else with timestamps disabled convergence takes too
510 * long.
511 */
512 if (!win_dep) {
513 m -= (new_sample >> 3);
514 new_sample += m;
515 } else {
516 m <<= 3;
517 if (m < new_sample)
518 new_sample = m;
519 }
520 } else {
521 /* No previous measure. */
522 new_sample = m << 3;
523 }
524
525 if (tp->rcv_rtt_est.rtt != new_sample)
526 tp->rcv_rtt_est.rtt = new_sample;
527}
528
529static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
530{
531 if (tp->rcv_rtt_est.time == 0)
532 goto new_measure;
533 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
534 return;
535 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
536
537new_measure:
538 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
539 tp->rcv_rtt_est.time = tcp_time_stamp;
540}
541
542static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
543 const struct sk_buff *skb)
544{
545 struct tcp_sock *tp = tcp_sk(sk);
546 if (tp->rx_opt.rcv_tsecr &&
547 (TCP_SKB_CB(skb)->end_seq -
548 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
549 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
550}
551
552/*
553 * This function should be called every time data is copied to user space.
554 * It calculates the appropriate TCP receive buffer space.
555 */
556void tcp_rcv_space_adjust(struct sock *sk)
557{
558 struct tcp_sock *tp = tcp_sk(sk);
559 int time;
560 int copied;
561
562 time = tcp_time_stamp - tp->rcvq_space.time;
563 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
564 return;
565
566 /* Number of bytes copied to user in last RTT */
567 copied = tp->copied_seq - tp->rcvq_space.seq;
568 if (copied <= tp->rcvq_space.space)
569 goto new_measure;
570
571 /* A bit of theory :
572 * copied = bytes received in previous RTT, our base window
573 * To cope with packet losses, we need a 2x factor
574 * To cope with slow start, and sender growing its cwin by 100 %
575 * every RTT, we need a 4x factor, because the ACK we are sending
576 * now is for the next RTT, not the current one :
577 * <prev RTT . ><current RTT .. ><next RTT .... >
578 */
579
580 if (sysctl_tcp_moderate_rcvbuf &&
581 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
582 int rcvwin, rcvmem, rcvbuf;
583
584 /* minimal window to cope with packet losses, assuming
585 * steady state. Add some cushion because of small variations.
586 */
587 rcvwin = (copied << 1) + 16 * tp->advmss;
588
589 /* If rate increased by 25%,
590 * assume slow start, rcvwin = 3 * copied
591 * If rate increased by 50%,
592 * assume sender can use 2x growth, rcvwin = 4 * copied
593 */
594 if (copied >=
595 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
596 if (copied >=
597 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
598 rcvwin <<= 1;
599 else
600 rcvwin += (rcvwin >> 1);
601 }
602
603 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
604 while (tcp_win_from_space(rcvmem) < tp->advmss)
605 rcvmem += 128;
606
607 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
608 if (rcvbuf > sk->sk_rcvbuf) {
609 sk->sk_rcvbuf = rcvbuf;
610
611 /* Make the window clamp follow along. */
612 tp->window_clamp = rcvwin;
613 }
614 }
615 tp->rcvq_space.space = copied;
616
617new_measure:
618 tp->rcvq_space.seq = tp->copied_seq;
619 tp->rcvq_space.time = tcp_time_stamp;
620}
621
622/* There is something which you must keep in mind when you analyze the
623 * behavior of the tp->ato delayed ack timeout interval. When a
624 * connection starts up, we want to ack as quickly as possible. The
625 * problem is that "good" TCP's do slow start at the beginning of data
626 * transmission. The means that until we send the first few ACK's the
627 * sender will sit on his end and only queue most of his data, because
628 * he can only send snd_cwnd unacked packets at any given time. For
629 * each ACK we send, he increments snd_cwnd and transmits more of his
630 * queue. -DaveM
631 */
632static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
633{
634 struct tcp_sock *tp = tcp_sk(sk);
635 struct inet_connection_sock *icsk = inet_csk(sk);
636 u32 now;
637
638 inet_csk_schedule_ack(sk);
639
640 tcp_measure_rcv_mss(sk, skb);
641
642 tcp_rcv_rtt_measure(tp);
643
644 now = tcp_time_stamp;
645
646 if (!icsk->icsk_ack.ato) {
647 /* The _first_ data packet received, initialize
648 * delayed ACK engine.
649 */
650 tcp_incr_quickack(sk);
651 icsk->icsk_ack.ato = TCP_ATO_MIN;
652 } else {
653 int m = now - icsk->icsk_ack.lrcvtime;
654
655 if (m <= TCP_ATO_MIN / 2) {
656 /* The fastest case is the first. */
657 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
658 } else if (m < icsk->icsk_ack.ato) {
659 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
660 if (icsk->icsk_ack.ato > icsk->icsk_rto)
661 icsk->icsk_ack.ato = icsk->icsk_rto;
662 } else if (m > icsk->icsk_rto) {
663 /* Too long gap. Apparently sender failed to
664 * restart window, so that we send ACKs quickly.
665 */
666 tcp_incr_quickack(sk);
667 sk_mem_reclaim(sk);
668 }
669 }
670 icsk->icsk_ack.lrcvtime = now;
671
672 tcp_ecn_check_ce(tp, skb);
673
674 if (skb->len >= 128)
675 tcp_grow_window(sk, skb);
676}
677
678/* Called to compute a smoothed rtt estimate. The data fed to this
679 * routine either comes from timestamps, or from segments that were
680 * known _not_ to have been retransmitted [see Karn/Partridge
681 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
682 * piece by Van Jacobson.
683 * NOTE: the next three routines used to be one big routine.
684 * To save cycles in the RFC 1323 implementation it was better to break
685 * it up into three procedures. -- erics
686 */
687static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
688{
689 struct tcp_sock *tp = tcp_sk(sk);
690 long m = mrtt_us; /* RTT */
691 u32 srtt = tp->srtt_us;
692
693 /* The following amusing code comes from Jacobson's
694 * article in SIGCOMM '88. Note that rtt and mdev
695 * are scaled versions of rtt and mean deviation.
696 * This is designed to be as fast as possible
697 * m stands for "measurement".
698 *
699 * On a 1990 paper the rto value is changed to:
700 * RTO = rtt + 4 * mdev
701 *
702 * Funny. This algorithm seems to be very broken.
703 * These formulae increase RTO, when it should be decreased, increase
704 * too slowly, when it should be increased quickly, decrease too quickly
705 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
706 * does not matter how to _calculate_ it. Seems, it was trap
707 * that VJ failed to avoid. 8)
708 */
709 if (srtt != 0) {
710 m -= (srtt >> 3); /* m is now error in rtt est */
711 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
712 if (m < 0) {
713 m = -m; /* m is now abs(error) */
714 m -= (tp->mdev_us >> 2); /* similar update on mdev */
715 /* This is similar to one of Eifel findings.
716 * Eifel blocks mdev updates when rtt decreases.
717 * This solution is a bit different: we use finer gain
718 * for mdev in this case (alpha*beta).
719 * Like Eifel it also prevents growth of rto,
720 * but also it limits too fast rto decreases,
721 * happening in pure Eifel.
722 */
723 if (m > 0)
724 m >>= 3;
725 } else {
726 m -= (tp->mdev_us >> 2); /* similar update on mdev */
727 }
728 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
729 if (tp->mdev_us > tp->mdev_max_us) {
730 tp->mdev_max_us = tp->mdev_us;
731 if (tp->mdev_max_us > tp->rttvar_us)
732 tp->rttvar_us = tp->mdev_max_us;
733 }
734 if (after(tp->snd_una, tp->rtt_seq)) {
735 if (tp->mdev_max_us < tp->rttvar_us)
736 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
737 tp->rtt_seq = tp->snd_nxt;
738 tp->mdev_max_us = tcp_rto_min_us(sk);
739 }
740 } else {
741 /* no previous measure. */
742 srtt = m << 3; /* take the measured time to be rtt */
743 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
744 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
745 tp->mdev_max_us = tp->rttvar_us;
746 tp->rtt_seq = tp->snd_nxt;
747 }
748 tp->srtt_us = max(1U, srtt);
749}
750
751/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
752 * Note: TCP stack does not yet implement pacing.
753 * FQ packet scheduler can be used to implement cheap but effective
754 * TCP pacing, to smooth the burst on large writes when packets
755 * in flight is significantly lower than cwnd (or rwin)
756 */
757int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
758int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
759
760static void tcp_update_pacing_rate(struct sock *sk)
761{
762 const struct tcp_sock *tp = tcp_sk(sk);
763 u64 rate;
764
765 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
766 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
767
768 /* current rate is (cwnd * mss) / srtt
769 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
770 * In Congestion Avoidance phase, set it to 120 % the current rate.
771 *
772 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
773 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
774 * end of slow start and should slow down.
775 */
776 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
777 rate *= sysctl_tcp_pacing_ss_ratio;
778 else
779 rate *= sysctl_tcp_pacing_ca_ratio;
780
781 rate *= max(tp->snd_cwnd, tp->packets_out);
782
783 if (likely(tp->srtt_us))
784 do_div(rate, tp->srtt_us);
785
786 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
787 * without any lock. We want to make sure compiler wont store
788 * intermediate values in this location.
789 */
790 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
791 sk->sk_max_pacing_rate);
792}
793
794/* Calculate rto without backoff. This is the second half of Van Jacobson's
795 * routine referred to above.
796 */
797static void tcp_set_rto(struct sock *sk)
798{
799 const struct tcp_sock *tp = tcp_sk(sk);
800 /* Old crap is replaced with new one. 8)
801 *
802 * More seriously:
803 * 1. If rtt variance happened to be less 50msec, it is hallucination.
804 * It cannot be less due to utterly erratic ACK generation made
805 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
806 * to do with delayed acks, because at cwnd>2 true delack timeout
807 * is invisible. Actually, Linux-2.4 also generates erratic
808 * ACKs in some circumstances.
809 */
810 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
811
812 /* 2. Fixups made earlier cannot be right.
813 * If we do not estimate RTO correctly without them,
814 * all the algo is pure shit and should be replaced
815 * with correct one. It is exactly, which we pretend to do.
816 */
817
818 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
819 * guarantees that rto is higher.
820 */
821 tcp_bound_rto(sk);
822}
823
824__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
825{
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd)
829 cwnd = TCP_INIT_CWND;
830 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831}
832
833/*
834 * Packet counting of FACK is based on in-order assumptions, therefore TCP
835 * disables it when reordering is detected
836 */
837void tcp_disable_fack(struct tcp_sock *tp)
838{
839 /* RFC3517 uses different metric in lost marker => reset on change */
840 if (tcp_is_fack(tp))
841 tp->lost_skb_hint = NULL;
842 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
843}
844
845/* Take a notice that peer is sending D-SACKs */
846static void tcp_dsack_seen(struct tcp_sock *tp)
847{
848 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
849}
850
851static void tcp_update_reordering(struct sock *sk, const int metric,
852 const int ts)
853{
854 struct tcp_sock *tp = tcp_sk(sk);
855 if (metric > tp->reordering) {
856 int mib_idx;
857
858 tp->reordering = min(sysctl_tcp_max_reordering, metric);
859
860 /* This exciting event is worth to be remembered. 8) */
861 if (ts)
862 mib_idx = LINUX_MIB_TCPTSREORDER;
863 else if (tcp_is_reno(tp))
864 mib_idx = LINUX_MIB_TCPRENOREORDER;
865 else if (tcp_is_fack(tp))
866 mib_idx = LINUX_MIB_TCPFACKREORDER;
867 else
868 mib_idx = LINUX_MIB_TCPSACKREORDER;
869
870 NET_INC_STATS_BH(sock_net(sk), mib_idx);
871#if FASTRETRANS_DEBUG > 1
872 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 tp->reordering,
875 tp->fackets_out,
876 tp->sacked_out,
877 tp->undo_marker ? tp->undo_retrans : 0);
878#endif
879 tcp_disable_fack(tp);
880 }
881
882 if (metric > 0)
883 tcp_disable_early_retrans(tp);
884 tp->rack.reord = 1;
885}
886
887/* This must be called before lost_out is incremented */
888static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
889{
890 if (!tp->retransmit_skb_hint ||
891 before(TCP_SKB_CB(skb)->seq,
892 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
893 tp->retransmit_skb_hint = skb;
894
895 if (!tp->lost_out ||
896 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
897 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
898}
899
900static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
901{
902 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
903 tcp_verify_retransmit_hint(tp, skb);
904
905 tp->lost_out += tcp_skb_pcount(skb);
906 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
907 }
908}
909
910void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
911{
912 tcp_verify_retransmit_hint(tp, skb);
913
914 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
915 tp->lost_out += tcp_skb_pcount(skb);
916 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
917 }
918}
919
920/* This procedure tags the retransmission queue when SACKs arrive.
921 *
922 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
923 * Packets in queue with these bits set are counted in variables
924 * sacked_out, retrans_out and lost_out, correspondingly.
925 *
926 * Valid combinations are:
927 * Tag InFlight Description
928 * 0 1 - orig segment is in flight.
929 * S 0 - nothing flies, orig reached receiver.
930 * L 0 - nothing flies, orig lost by net.
931 * R 2 - both orig and retransmit are in flight.
932 * L|R 1 - orig is lost, retransmit is in flight.
933 * S|R 1 - orig reached receiver, retrans is still in flight.
934 * (L|S|R is logically valid, it could occur when L|R is sacked,
935 * but it is equivalent to plain S and code short-curcuits it to S.
936 * L|S is logically invalid, it would mean -1 packet in flight 8))
937 *
938 * These 6 states form finite state machine, controlled by the following events:
939 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
940 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
941 * 3. Loss detection event of two flavors:
942 * A. Scoreboard estimator decided the packet is lost.
943 * A'. Reno "three dupacks" marks head of queue lost.
944 * A''. Its FACK modification, head until snd.fack is lost.
945 * B. SACK arrives sacking SND.NXT at the moment, when the
946 * segment was retransmitted.
947 * 4. D-SACK added new rule: D-SACK changes any tag to S.
948 *
949 * It is pleasant to note, that state diagram turns out to be commutative,
950 * so that we are allowed not to be bothered by order of our actions,
951 * when multiple events arrive simultaneously. (see the function below).
952 *
953 * Reordering detection.
954 * --------------------
955 * Reordering metric is maximal distance, which a packet can be displaced
956 * in packet stream. With SACKs we can estimate it:
957 *
958 * 1. SACK fills old hole and the corresponding segment was not
959 * ever retransmitted -> reordering. Alas, we cannot use it
960 * when segment was retransmitted.
961 * 2. The last flaw is solved with D-SACK. D-SACK arrives
962 * for retransmitted and already SACKed segment -> reordering..
963 * Both of these heuristics are not used in Loss state, when we cannot
964 * account for retransmits accurately.
965 *
966 * SACK block validation.
967 * ----------------------
968 *
969 * SACK block range validation checks that the received SACK block fits to
970 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
971 * Note that SND.UNA is not included to the range though being valid because
972 * it means that the receiver is rather inconsistent with itself reporting
973 * SACK reneging when it should advance SND.UNA. Such SACK block this is
974 * perfectly valid, however, in light of RFC2018 which explicitly states
975 * that "SACK block MUST reflect the newest segment. Even if the newest
976 * segment is going to be discarded ...", not that it looks very clever
977 * in case of head skb. Due to potentional receiver driven attacks, we
978 * choose to avoid immediate execution of a walk in write queue due to
979 * reneging and defer head skb's loss recovery to standard loss recovery
980 * procedure that will eventually trigger (nothing forbids us doing this).
981 *
982 * Implements also blockage to start_seq wrap-around. Problem lies in the
983 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
984 * there's no guarantee that it will be before snd_nxt (n). The problem
985 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
986 * wrap (s_w):
987 *
988 * <- outs wnd -> <- wrapzone ->
989 * u e n u_w e_w s n_w
990 * | | | | | | |
991 * |<------------+------+----- TCP seqno space --------------+---------->|
992 * ...-- <2^31 ->| |<--------...
993 * ...---- >2^31 ------>| |<--------...
994 *
995 * Current code wouldn't be vulnerable but it's better still to discard such
996 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
997 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
998 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
999 * equal to the ideal case (infinite seqno space without wrap caused issues).
1000 *
1001 * With D-SACK the lower bound is extended to cover sequence space below
1002 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1003 * again, D-SACK block must not to go across snd_una (for the same reason as
1004 * for the normal SACK blocks, explained above). But there all simplicity
1005 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1006 * fully below undo_marker they do not affect behavior in anyway and can
1007 * therefore be safely ignored. In rare cases (which are more or less
1008 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1009 * fragmentation and packet reordering past skb's retransmission. To consider
1010 * them correctly, the acceptable range must be extended even more though
1011 * the exact amount is rather hard to quantify. However, tp->max_window can
1012 * be used as an exaggerated estimate.
1013 */
1014static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1015 u32 start_seq, u32 end_seq)
1016{
1017 /* Too far in future, or reversed (interpretation is ambiguous) */
1018 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1019 return false;
1020
1021 /* Nasty start_seq wrap-around check (see comments above) */
1022 if (!before(start_seq, tp->snd_nxt))
1023 return false;
1024
1025 /* In outstanding window? ...This is valid exit for D-SACKs too.
1026 * start_seq == snd_una is non-sensical (see comments above)
1027 */
1028 if (after(start_seq, tp->snd_una))
1029 return true;
1030
1031 if (!is_dsack || !tp->undo_marker)
1032 return false;
1033
1034 /* ...Then it's D-SACK, and must reside below snd_una completely */
1035 if (after(end_seq, tp->snd_una))
1036 return false;
1037
1038 if (!before(start_seq, tp->undo_marker))
1039 return true;
1040
1041 /* Too old */
1042 if (!after(end_seq, tp->undo_marker))
1043 return false;
1044
1045 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1046 * start_seq < undo_marker and end_seq >= undo_marker.
1047 */
1048 return !before(start_seq, end_seq - tp->max_window);
1049}
1050
1051static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1052 struct tcp_sack_block_wire *sp, int num_sacks,
1053 u32 prior_snd_una)
1054{
1055 struct tcp_sock *tp = tcp_sk(sk);
1056 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1057 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1058 bool dup_sack = false;
1059
1060 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1061 dup_sack = true;
1062 tcp_dsack_seen(tp);
1063 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1064 } else if (num_sacks > 1) {
1065 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1066 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1067
1068 if (!after(end_seq_0, end_seq_1) &&
1069 !before(start_seq_0, start_seq_1)) {
1070 dup_sack = true;
1071 tcp_dsack_seen(tp);
1072 NET_INC_STATS_BH(sock_net(sk),
1073 LINUX_MIB_TCPDSACKOFORECV);
1074 }
1075 }
1076
1077 /* D-SACK for already forgotten data... Do dumb counting. */
1078 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1079 !after(end_seq_0, prior_snd_una) &&
1080 after(end_seq_0, tp->undo_marker))
1081 tp->undo_retrans--;
1082
1083 return dup_sack;
1084}
1085
1086struct tcp_sacktag_state {
1087 int reord;
1088 int fack_count;
1089 /* Timestamps for earliest and latest never-retransmitted segment
1090 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1091 * but congestion control should still get an accurate delay signal.
1092 */
1093 struct skb_mstamp first_sackt;
1094 struct skb_mstamp last_sackt;
1095 int flag;
1096};
1097
1098/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1099 * the incoming SACK may not exactly match but we can find smaller MSS
1100 * aligned portion of it that matches. Therefore we might need to fragment
1101 * which may fail and creates some hassle (caller must handle error case
1102 * returns).
1103 *
1104 * FIXME: this could be merged to shift decision code
1105 */
1106static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1107 u32 start_seq, u32 end_seq)
1108{
1109 int err;
1110 bool in_sack;
1111 unsigned int pkt_len;
1112 unsigned int mss;
1113
1114 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1115 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1116
1117 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1118 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1119 mss = tcp_skb_mss(skb);
1120 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1121
1122 if (!in_sack) {
1123 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1124 if (pkt_len < mss)
1125 pkt_len = mss;
1126 } else {
1127 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1128 if (pkt_len < mss)
1129 return -EINVAL;
1130 }
1131
1132 /* Round if necessary so that SACKs cover only full MSSes
1133 * and/or the remaining small portion (if present)
1134 */
1135 if (pkt_len > mss) {
1136 unsigned int new_len = (pkt_len / mss) * mss;
1137 if (!in_sack && new_len < pkt_len)
1138 new_len += mss;
1139 pkt_len = new_len;
1140 }
1141
1142 if (pkt_len >= skb->len && !in_sack)
1143 return 0;
1144
1145 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1146 if (err < 0)
1147 return err;
1148 }
1149
1150 return in_sack;
1151}
1152
1153/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1154static u8 tcp_sacktag_one(struct sock *sk,
1155 struct tcp_sacktag_state *state, u8 sacked,
1156 u32 start_seq, u32 end_seq,
1157 int dup_sack, int pcount,
1158 const struct skb_mstamp *xmit_time)
1159{
1160 struct tcp_sock *tp = tcp_sk(sk);
1161 int fack_count = state->fack_count;
1162
1163 /* Account D-SACK for retransmitted packet. */
1164 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1165 if (tp->undo_marker && tp->undo_retrans > 0 &&
1166 after(end_seq, tp->undo_marker))
1167 tp->undo_retrans--;
1168 if (sacked & TCPCB_SACKED_ACKED)
1169 state->reord = min(fack_count, state->reord);
1170 }
1171
1172 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1173 if (!after(end_seq, tp->snd_una))
1174 return sacked;
1175
1176 if (!(sacked & TCPCB_SACKED_ACKED)) {
1177 tcp_rack_advance(tp, xmit_time, sacked);
1178
1179 if (sacked & TCPCB_SACKED_RETRANS) {
1180 /* If the segment is not tagged as lost,
1181 * we do not clear RETRANS, believing
1182 * that retransmission is still in flight.
1183 */
1184 if (sacked & TCPCB_LOST) {
1185 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1186 tp->lost_out -= pcount;
1187 tp->retrans_out -= pcount;
1188 }
1189 } else {
1190 if (!(sacked & TCPCB_RETRANS)) {
1191 /* New sack for not retransmitted frame,
1192 * which was in hole. It is reordering.
1193 */
1194 if (before(start_seq,
1195 tcp_highest_sack_seq(tp)))
1196 state->reord = min(fack_count,
1197 state->reord);
1198 if (!after(end_seq, tp->high_seq))
1199 state->flag |= FLAG_ORIG_SACK_ACKED;
1200 if (state->first_sackt.v64 == 0)
1201 state->first_sackt = *xmit_time;
1202 state->last_sackt = *xmit_time;
1203 }
1204
1205 if (sacked & TCPCB_LOST) {
1206 sacked &= ~TCPCB_LOST;
1207 tp->lost_out -= pcount;
1208 }
1209 }
1210
1211 sacked |= TCPCB_SACKED_ACKED;
1212 state->flag |= FLAG_DATA_SACKED;
1213 tp->sacked_out += pcount;
1214
1215 fack_count += pcount;
1216
1217 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1218 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1219 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1220 tp->lost_cnt_hint += pcount;
1221
1222 if (fack_count > tp->fackets_out)
1223 tp->fackets_out = fack_count;
1224 }
1225
1226 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1227 * frames and clear it. undo_retrans is decreased above, L|R frames
1228 * are accounted above as well.
1229 */
1230 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1231 sacked &= ~TCPCB_SACKED_RETRANS;
1232 tp->retrans_out -= pcount;
1233 }
1234
1235 return sacked;
1236}
1237
1238/* Shift newly-SACKed bytes from this skb to the immediately previous
1239 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1240 */
1241static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1242 struct tcp_sacktag_state *state,
1243 unsigned int pcount, int shifted, int mss,
1244 bool dup_sack)
1245{
1246 struct tcp_sock *tp = tcp_sk(sk);
1247 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1248 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1249 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1250
1251 BUG_ON(!pcount);
1252
1253 /* Adjust counters and hints for the newly sacked sequence
1254 * range but discard the return value since prev is already
1255 * marked. We must tag the range first because the seq
1256 * advancement below implicitly advances
1257 * tcp_highest_sack_seq() when skb is highest_sack.
1258 */
1259 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1260 start_seq, end_seq, dup_sack, pcount,
1261 &skb->skb_mstamp);
1262
1263 if (skb == tp->lost_skb_hint)
1264 tp->lost_cnt_hint += pcount;
1265
1266 TCP_SKB_CB(prev)->end_seq += shifted;
1267 TCP_SKB_CB(skb)->seq += shifted;
1268
1269 tcp_skb_pcount_add(prev, pcount);
Kyle Swensone01461f2021-03-15 11:14:57 -06001270 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001271 tcp_skb_pcount_add(skb, -pcount);
1272
1273 /* When we're adding to gso_segs == 1, gso_size will be zero,
1274 * in theory this shouldn't be necessary but as long as DSACK
1275 * code can come after this skb later on it's better to keep
1276 * setting gso_size to something.
1277 */
1278 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1279 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1280
1281 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1282 if (tcp_skb_pcount(skb) <= 1)
1283 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1284
1285 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1286 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1287
1288 if (skb->len > 0) {
1289 BUG_ON(!tcp_skb_pcount(skb));
1290 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1291 return false;
1292 }
1293
1294 /* Whole SKB was eaten :-) */
1295
1296 if (skb == tp->retransmit_skb_hint)
1297 tp->retransmit_skb_hint = prev;
1298 if (skb == tp->lost_skb_hint) {
1299 tp->lost_skb_hint = prev;
1300 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1301 }
1302
1303 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1304 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1305 TCP_SKB_CB(prev)->end_seq++;
1306
1307 if (skb == tcp_highest_sack(sk))
1308 tcp_advance_highest_sack(sk, skb);
1309
1310 tcp_unlink_write_queue(skb, sk);
1311 sk_wmem_free_skb(sk, skb);
1312
1313 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1314
1315 return true;
1316}
1317
1318/* I wish gso_size would have a bit more sane initialization than
1319 * something-or-zero which complicates things
1320 */
1321static int tcp_skb_seglen(const struct sk_buff *skb)
1322{
1323 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1324}
1325
1326/* Shifting pages past head area doesn't work */
1327static int skb_can_shift(const struct sk_buff *skb)
1328{
1329 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1330}
1331
Kyle Swensone01461f2021-03-15 11:14:57 -06001332int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1333 int pcount, int shiftlen)
1334{
1335 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1336 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1337 * to make sure not storing more than 65535 * 8 bytes per skb,
1338 * even if current MSS is bigger.
1339 */
1340 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1341 return 0;
1342 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1343 return 0;
1344 return skb_shift(to, from, shiftlen);
1345}
1346
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001347/* Try collapsing SACK blocks spanning across multiple skbs to a single
1348 * skb.
1349 */
1350static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1351 struct tcp_sacktag_state *state,
1352 u32 start_seq, u32 end_seq,
1353 bool dup_sack)
1354{
1355 struct tcp_sock *tp = tcp_sk(sk);
1356 struct sk_buff *prev;
1357 int mss;
Kyle Swensone01461f2021-03-15 11:14:57 -06001358 int next_pcount;
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001359 int pcount = 0;
1360 int len;
1361 int in_sack;
1362
1363 if (!sk_can_gso(sk))
1364 goto fallback;
1365
1366 /* Normally R but no L won't result in plain S */
1367 if (!dup_sack &&
1368 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1369 goto fallback;
1370 if (!skb_can_shift(skb))
1371 goto fallback;
1372 /* This frame is about to be dropped (was ACKed). */
1373 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1374 goto fallback;
1375
1376 /* Can only happen with delayed DSACK + discard craziness */
1377 if (unlikely(skb == tcp_write_queue_head(sk)))
1378 goto fallback;
1379 prev = tcp_write_queue_prev(sk, skb);
1380
1381 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1382 goto fallback;
1383
1384 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1385 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1386
1387 if (in_sack) {
1388 len = skb->len;
1389 pcount = tcp_skb_pcount(skb);
1390 mss = tcp_skb_seglen(skb);
1391
1392 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1393 * drop this restriction as unnecessary
1394 */
1395 if (mss != tcp_skb_seglen(prev))
1396 goto fallback;
1397 } else {
1398 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1399 goto noop;
1400 /* CHECKME: This is non-MSS split case only?, this will
1401 * cause skipped skbs due to advancing loop btw, original
1402 * has that feature too
1403 */
1404 if (tcp_skb_pcount(skb) <= 1)
1405 goto noop;
1406
1407 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1408 if (!in_sack) {
1409 /* TODO: head merge to next could be attempted here
1410 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1411 * though it might not be worth of the additional hassle
1412 *
1413 * ...we can probably just fallback to what was done
1414 * previously. We could try merging non-SACKed ones
1415 * as well but it probably isn't going to buy off
1416 * because later SACKs might again split them, and
1417 * it would make skb timestamp tracking considerably
1418 * harder problem.
1419 */
1420 goto fallback;
1421 }
1422
1423 len = end_seq - TCP_SKB_CB(skb)->seq;
1424 BUG_ON(len < 0);
1425 BUG_ON(len > skb->len);
1426
1427 /* MSS boundaries should be honoured or else pcount will
1428 * severely break even though it makes things bit trickier.
1429 * Optimize common case to avoid most of the divides
1430 */
1431 mss = tcp_skb_mss(skb);
1432
1433 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1434 * drop this restriction as unnecessary
1435 */
1436 if (mss != tcp_skb_seglen(prev))
1437 goto fallback;
1438
1439 if (len == mss) {
1440 pcount = 1;
1441 } else if (len < mss) {
1442 goto noop;
1443 } else {
1444 pcount = len / mss;
1445 len = pcount * mss;
1446 }
1447 }
1448
1449 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1450 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1451 goto fallback;
1452
Kyle Swensone01461f2021-03-15 11:14:57 -06001453 if (!tcp_skb_shift(prev, skb, pcount, len))
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001454 goto fallback;
1455 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1456 goto out;
1457
1458 /* Hole filled allows collapsing with the next as well, this is very
1459 * useful when hole on every nth skb pattern happens
1460 */
1461 if (prev == tcp_write_queue_tail(sk))
1462 goto out;
1463 skb = tcp_write_queue_next(sk, prev);
1464
1465 if (!skb_can_shift(skb) ||
1466 (skb == tcp_send_head(sk)) ||
1467 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1468 (mss != tcp_skb_seglen(skb)))
1469 goto out;
1470
1471 len = skb->len;
Kyle Swensone01461f2021-03-15 11:14:57 -06001472 next_pcount = tcp_skb_pcount(skb);
1473 if (tcp_skb_shift(prev, skb, next_pcount, len)) {
1474 pcount += next_pcount;
1475 tcp_shifted_skb(sk, skb, state, next_pcount, len, mss, 0);
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001476 }
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001477out:
1478 state->fack_count += pcount;
1479 return prev;
1480
1481noop:
1482 return skb;
1483
1484fallback:
1485 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1486 return NULL;
1487}
1488
1489static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1490 struct tcp_sack_block *next_dup,
1491 struct tcp_sacktag_state *state,
1492 u32 start_seq, u32 end_seq,
1493 bool dup_sack_in)
1494{
1495 struct tcp_sock *tp = tcp_sk(sk);
1496 struct sk_buff *tmp;
1497
1498 tcp_for_write_queue_from(skb, sk) {
1499 int in_sack = 0;
1500 bool dup_sack = dup_sack_in;
1501
1502 if (skb == tcp_send_head(sk))
1503 break;
1504
1505 /* queue is in-order => we can short-circuit the walk early */
1506 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1507 break;
1508
1509 if (next_dup &&
1510 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1511 in_sack = tcp_match_skb_to_sack(sk, skb,
1512 next_dup->start_seq,
1513 next_dup->end_seq);
1514 if (in_sack > 0)
1515 dup_sack = true;
1516 }
1517
1518 /* skb reference here is a bit tricky to get right, since
1519 * shifting can eat and free both this skb and the next,
1520 * so not even _safe variant of the loop is enough.
1521 */
1522 if (in_sack <= 0) {
1523 tmp = tcp_shift_skb_data(sk, skb, state,
1524 start_seq, end_seq, dup_sack);
1525 if (tmp) {
1526 if (tmp != skb) {
1527 skb = tmp;
1528 continue;
1529 }
1530
1531 in_sack = 0;
1532 } else {
1533 in_sack = tcp_match_skb_to_sack(sk, skb,
1534 start_seq,
1535 end_seq);
1536 }
1537 }
1538
1539 if (unlikely(in_sack < 0))
1540 break;
1541
1542 if (in_sack) {
1543 TCP_SKB_CB(skb)->sacked =
1544 tcp_sacktag_one(sk,
1545 state,
1546 TCP_SKB_CB(skb)->sacked,
1547 TCP_SKB_CB(skb)->seq,
1548 TCP_SKB_CB(skb)->end_seq,
1549 dup_sack,
1550 tcp_skb_pcount(skb),
1551 &skb->skb_mstamp);
1552
1553 if (!before(TCP_SKB_CB(skb)->seq,
1554 tcp_highest_sack_seq(tp)))
1555 tcp_advance_highest_sack(sk, skb);
1556 }
1557
1558 state->fack_count += tcp_skb_pcount(skb);
1559 }
1560 return skb;
1561}
1562
1563/* Avoid all extra work that is being done by sacktag while walking in
1564 * a normal way
1565 */
1566static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1567 struct tcp_sacktag_state *state,
1568 u32 skip_to_seq)
1569{
1570 tcp_for_write_queue_from(skb, sk) {
1571 if (skb == tcp_send_head(sk))
1572 break;
1573
1574 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1575 break;
1576
1577 state->fack_count += tcp_skb_pcount(skb);
1578 }
1579 return skb;
1580}
1581
1582static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1583 struct sock *sk,
1584 struct tcp_sack_block *next_dup,
1585 struct tcp_sacktag_state *state,
1586 u32 skip_to_seq)
1587{
1588 if (!next_dup)
1589 return skb;
1590
1591 if (before(next_dup->start_seq, skip_to_seq)) {
1592 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1593 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1594 next_dup->start_seq, next_dup->end_seq,
1595 1);
1596 }
1597
1598 return skb;
1599}
1600
1601static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1602{
1603 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1604}
1605
1606static int
1607tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1608 u32 prior_snd_una, struct tcp_sacktag_state *state)
1609{
1610 struct tcp_sock *tp = tcp_sk(sk);
1611 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1612 TCP_SKB_CB(ack_skb)->sacked);
1613 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1614 struct tcp_sack_block sp[TCP_NUM_SACKS];
1615 struct tcp_sack_block *cache;
1616 struct sk_buff *skb;
1617 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1618 int used_sacks;
1619 bool found_dup_sack = false;
1620 int i, j;
1621 int first_sack_index;
1622
1623 state->flag = 0;
1624 state->reord = tp->packets_out;
1625
1626 if (!tp->sacked_out) {
1627 if (WARN_ON(tp->fackets_out))
1628 tp->fackets_out = 0;
1629 tcp_highest_sack_reset(sk);
1630 }
1631
1632 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1633 num_sacks, prior_snd_una);
1634 if (found_dup_sack)
1635 state->flag |= FLAG_DSACKING_ACK;
1636
1637 /* Eliminate too old ACKs, but take into
1638 * account more or less fresh ones, they can
1639 * contain valid SACK info.
1640 */
1641 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1642 return 0;
1643
1644 if (!tp->packets_out)
1645 goto out;
1646
1647 used_sacks = 0;
1648 first_sack_index = 0;
1649 for (i = 0; i < num_sacks; i++) {
1650 bool dup_sack = !i && found_dup_sack;
1651
1652 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1653 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1654
1655 if (!tcp_is_sackblock_valid(tp, dup_sack,
1656 sp[used_sacks].start_seq,
1657 sp[used_sacks].end_seq)) {
1658 int mib_idx;
1659
1660 if (dup_sack) {
1661 if (!tp->undo_marker)
1662 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1663 else
1664 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1665 } else {
1666 /* Don't count olds caused by ACK reordering */
1667 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1668 !after(sp[used_sacks].end_seq, tp->snd_una))
1669 continue;
1670 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1671 }
1672
1673 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1674 if (i == 0)
1675 first_sack_index = -1;
1676 continue;
1677 }
1678
1679 /* Ignore very old stuff early */
1680 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1681 continue;
1682
1683 used_sacks++;
1684 }
1685
1686 /* order SACK blocks to allow in order walk of the retrans queue */
1687 for (i = used_sacks - 1; i > 0; i--) {
1688 for (j = 0; j < i; j++) {
1689 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1690 swap(sp[j], sp[j + 1]);
1691
1692 /* Track where the first SACK block goes to */
1693 if (j == first_sack_index)
1694 first_sack_index = j + 1;
1695 }
1696 }
1697 }
1698
1699 skb = tcp_write_queue_head(sk);
1700 state->fack_count = 0;
1701 i = 0;
1702
1703 if (!tp->sacked_out) {
1704 /* It's already past, so skip checking against it */
1705 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1706 } else {
1707 cache = tp->recv_sack_cache;
1708 /* Skip empty blocks in at head of the cache */
1709 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1710 !cache->end_seq)
1711 cache++;
1712 }
1713
1714 while (i < used_sacks) {
1715 u32 start_seq = sp[i].start_seq;
1716 u32 end_seq = sp[i].end_seq;
1717 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1718 struct tcp_sack_block *next_dup = NULL;
1719
1720 if (found_dup_sack && ((i + 1) == first_sack_index))
1721 next_dup = &sp[i + 1];
1722
1723 /* Skip too early cached blocks */
1724 while (tcp_sack_cache_ok(tp, cache) &&
1725 !before(start_seq, cache->end_seq))
1726 cache++;
1727
1728 /* Can skip some work by looking recv_sack_cache? */
1729 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1730 after(end_seq, cache->start_seq)) {
1731
1732 /* Head todo? */
1733 if (before(start_seq, cache->start_seq)) {
1734 skb = tcp_sacktag_skip(skb, sk, state,
1735 start_seq);
1736 skb = tcp_sacktag_walk(skb, sk, next_dup,
1737 state,
1738 start_seq,
1739 cache->start_seq,
1740 dup_sack);
1741 }
1742
1743 /* Rest of the block already fully processed? */
1744 if (!after(end_seq, cache->end_seq))
1745 goto advance_sp;
1746
1747 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1748 state,
1749 cache->end_seq);
1750
1751 /* ...tail remains todo... */
1752 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1753 /* ...but better entrypoint exists! */
1754 skb = tcp_highest_sack(sk);
1755 if (!skb)
1756 break;
1757 state->fack_count = tp->fackets_out;
1758 cache++;
1759 goto walk;
1760 }
1761
1762 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1763 /* Check overlap against next cached too (past this one already) */
1764 cache++;
1765 continue;
1766 }
1767
1768 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1769 skb = tcp_highest_sack(sk);
1770 if (!skb)
1771 break;
1772 state->fack_count = tp->fackets_out;
1773 }
1774 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1775
1776walk:
1777 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1778 start_seq, end_seq, dup_sack);
1779
1780advance_sp:
1781 i++;
1782 }
1783
1784 /* Clear the head of the cache sack blocks so we can skip it next time */
1785 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1786 tp->recv_sack_cache[i].start_seq = 0;
1787 tp->recv_sack_cache[i].end_seq = 0;
1788 }
1789 for (j = 0; j < used_sacks; j++)
1790 tp->recv_sack_cache[i++] = sp[j];
1791
1792 if ((state->reord < tp->fackets_out) &&
1793 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1794 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1795
1796 tcp_verify_left_out(tp);
1797out:
1798
1799#if FASTRETRANS_DEBUG > 0
1800 WARN_ON((int)tp->sacked_out < 0);
1801 WARN_ON((int)tp->lost_out < 0);
1802 WARN_ON((int)tp->retrans_out < 0);
1803 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1804#endif
1805 return state->flag;
1806}
1807
1808/* Limits sacked_out so that sum with lost_out isn't ever larger than
1809 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1810 */
1811static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1812{
1813 u32 holes;
1814
1815 holes = max(tp->lost_out, 1U);
1816 holes = min(holes, tp->packets_out);
1817
1818 if ((tp->sacked_out + holes) > tp->packets_out) {
1819 tp->sacked_out = tp->packets_out - holes;
1820 return true;
1821 }
1822 return false;
1823}
1824
1825/* If we receive more dupacks than we expected counting segments
1826 * in assumption of absent reordering, interpret this as reordering.
1827 * The only another reason could be bug in receiver TCP.
1828 */
1829static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1830{
1831 struct tcp_sock *tp = tcp_sk(sk);
1832 if (tcp_limit_reno_sacked(tp))
1833 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1834}
1835
1836/* Emulate SACKs for SACKless connection: account for a new dupack. */
1837
1838static void tcp_add_reno_sack(struct sock *sk)
1839{
1840 struct tcp_sock *tp = tcp_sk(sk);
1841 tp->sacked_out++;
1842 tcp_check_reno_reordering(sk, 0);
1843 tcp_verify_left_out(tp);
1844}
1845
1846/* Account for ACK, ACKing some data in Reno Recovery phase. */
1847
1848static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1849{
1850 struct tcp_sock *tp = tcp_sk(sk);
1851
1852 if (acked > 0) {
1853 /* One ACK acked hole. The rest eat duplicate ACKs. */
1854 if (acked - 1 >= tp->sacked_out)
1855 tp->sacked_out = 0;
1856 else
1857 tp->sacked_out -= acked - 1;
1858 }
1859 tcp_check_reno_reordering(sk, acked);
1860 tcp_verify_left_out(tp);
1861}
1862
1863static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1864{
1865 tp->sacked_out = 0;
1866}
1867
1868void tcp_clear_retrans(struct tcp_sock *tp)
1869{
1870 tp->retrans_out = 0;
1871 tp->lost_out = 0;
1872 tp->undo_marker = 0;
1873 tp->undo_retrans = -1;
1874 tp->fackets_out = 0;
1875 tp->sacked_out = 0;
1876}
1877
1878static inline void tcp_init_undo(struct tcp_sock *tp)
1879{
1880 tp->undo_marker = tp->snd_una;
1881 /* Retransmission still in flight may cause DSACKs later. */
1882 tp->undo_retrans = tp->retrans_out ? : -1;
1883}
1884
1885/* Enter Loss state. If we detect SACK reneging, forget all SACK information
1886 * and reset tags completely, otherwise preserve SACKs. If receiver
1887 * dropped its ofo queue, we will know this due to reneging detection.
1888 */
1889void tcp_enter_loss(struct sock *sk)
1890{
1891 const struct inet_connection_sock *icsk = inet_csk(sk);
1892 struct tcp_sock *tp = tcp_sk(sk);
1893 struct sk_buff *skb;
1894 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1895 bool is_reneg; /* is receiver reneging on SACKs? */
1896
1897 /* Reduce ssthresh if it has not yet been made inside this window. */
1898 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1899 !after(tp->high_seq, tp->snd_una) ||
1900 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1901 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1902 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1903 tcp_ca_event(sk, CA_EVENT_LOSS);
1904 tcp_init_undo(tp);
1905 }
1906 tp->snd_cwnd = 1;
1907 tp->snd_cwnd_cnt = 0;
1908 tp->snd_cwnd_stamp = tcp_time_stamp;
1909
1910 tp->retrans_out = 0;
1911 tp->lost_out = 0;
1912
1913 if (tcp_is_reno(tp))
1914 tcp_reset_reno_sack(tp);
1915
1916 skb = tcp_write_queue_head(sk);
1917 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1918 if (is_reneg) {
1919 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1920 tp->sacked_out = 0;
1921 tp->fackets_out = 0;
1922 }
1923 tcp_clear_all_retrans_hints(tp);
1924
1925 tcp_for_write_queue(skb, sk) {
1926 if (skb == tcp_send_head(sk))
1927 break;
1928
1929 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1930 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1931 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1932 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1933 tp->lost_out += tcp_skb_pcount(skb);
1934 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1935 }
1936 }
1937 tcp_verify_left_out(tp);
1938
1939 /* Timeout in disordered state after receiving substantial DUPACKs
1940 * suggests that the degree of reordering is over-estimated.
1941 */
1942 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1943 tp->sacked_out >= sysctl_tcp_reordering)
1944 tp->reordering = min_t(unsigned int, tp->reordering,
1945 sysctl_tcp_reordering);
1946 tcp_set_ca_state(sk, TCP_CA_Loss);
1947 tp->high_seq = tp->snd_nxt;
1948 tcp_ecn_queue_cwr(tp);
1949
1950 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1951 * loss recovery is underway except recurring timeout(s) on
1952 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1953 */
1954 tp->frto = sysctl_tcp_frto &&
1955 (new_recovery || icsk->icsk_retransmits) &&
1956 !inet_csk(sk)->icsk_mtup.probe_size;
1957}
1958
1959/* If ACK arrived pointing to a remembered SACK, it means that our
1960 * remembered SACKs do not reflect real state of receiver i.e.
1961 * receiver _host_ is heavily congested (or buggy).
1962 *
1963 * To avoid big spurious retransmission bursts due to transient SACK
1964 * scoreboard oddities that look like reneging, we give the receiver a
1965 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1966 * restore sanity to the SACK scoreboard. If the apparent reneging
1967 * persists until this RTO then we'll clear the SACK scoreboard.
1968 */
1969static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1970{
1971 if (flag & FLAG_SACK_RENEGING) {
1972 struct tcp_sock *tp = tcp_sk(sk);
1973 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1974 msecs_to_jiffies(10));
1975
1976 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1977 delay, TCP_RTO_MAX);
1978 return true;
1979 }
1980 return false;
1981}
1982
1983static inline int tcp_fackets_out(const struct tcp_sock *tp)
1984{
1985 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1986}
1987
1988/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1989 * counter when SACK is enabled (without SACK, sacked_out is used for
1990 * that purpose).
1991 *
1992 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1993 * segments up to the highest received SACK block so far and holes in
1994 * between them.
1995 *
1996 * With reordering, holes may still be in flight, so RFC3517 recovery
1997 * uses pure sacked_out (total number of SACKed segments) even though
1998 * it violates the RFC that uses duplicate ACKs, often these are equal
1999 * but when e.g. out-of-window ACKs or packet duplication occurs,
2000 * they differ. Since neither occurs due to loss, TCP should really
2001 * ignore them.
2002 */
2003static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2004{
2005 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2006}
2007
2008static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2009{
2010 struct tcp_sock *tp = tcp_sk(sk);
2011 unsigned long delay;
2012
2013 /* Delay early retransmit and entering fast recovery for
2014 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2015 * available, or RTO is scheduled to fire first.
2016 */
2017 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2018 (flag & FLAG_ECE) || !tp->srtt_us)
2019 return false;
2020
2021 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2022 msecs_to_jiffies(2));
2023
2024 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2025 return false;
2026
2027 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2028 TCP_RTO_MAX);
2029 return true;
2030}
2031
2032/* Linux NewReno/SACK/FACK/ECN state machine.
2033 * --------------------------------------
2034 *
2035 * "Open" Normal state, no dubious events, fast path.
2036 * "Disorder" In all the respects it is "Open",
2037 * but requires a bit more attention. It is entered when
2038 * we see some SACKs or dupacks. It is split of "Open"
2039 * mainly to move some processing from fast path to slow one.
2040 * "CWR" CWND was reduced due to some Congestion Notification event.
2041 * It can be ECN, ICMP source quench, local device congestion.
2042 * "Recovery" CWND was reduced, we are fast-retransmitting.
2043 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2044 *
2045 * tcp_fastretrans_alert() is entered:
2046 * - each incoming ACK, if state is not "Open"
2047 * - when arrived ACK is unusual, namely:
2048 * * SACK
2049 * * Duplicate ACK.
2050 * * ECN ECE.
2051 *
2052 * Counting packets in flight is pretty simple.
2053 *
2054 * in_flight = packets_out - left_out + retrans_out
2055 *
2056 * packets_out is SND.NXT-SND.UNA counted in packets.
2057 *
2058 * retrans_out is number of retransmitted segments.
2059 *
2060 * left_out is number of segments left network, but not ACKed yet.
2061 *
2062 * left_out = sacked_out + lost_out
2063 *
2064 * sacked_out: Packets, which arrived to receiver out of order
2065 * and hence not ACKed. With SACKs this number is simply
2066 * amount of SACKed data. Even without SACKs
2067 * it is easy to give pretty reliable estimate of this number,
2068 * counting duplicate ACKs.
2069 *
2070 * lost_out: Packets lost by network. TCP has no explicit
2071 * "loss notification" feedback from network (for now).
2072 * It means that this number can be only _guessed_.
2073 * Actually, it is the heuristics to predict lossage that
2074 * distinguishes different algorithms.
2075 *
2076 * F.e. after RTO, when all the queue is considered as lost,
2077 * lost_out = packets_out and in_flight = retrans_out.
2078 *
2079 * Essentially, we have now two algorithms counting
2080 * lost packets.
2081 *
2082 * FACK: It is the simplest heuristics. As soon as we decided
2083 * that something is lost, we decide that _all_ not SACKed
2084 * packets until the most forward SACK are lost. I.e.
2085 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2086 * It is absolutely correct estimate, if network does not reorder
2087 * packets. And it loses any connection to reality when reordering
2088 * takes place. We use FACK by default until reordering
2089 * is suspected on the path to this destination.
2090 *
2091 * NewReno: when Recovery is entered, we assume that one segment
2092 * is lost (classic Reno). While we are in Recovery and
2093 * a partial ACK arrives, we assume that one more packet
2094 * is lost (NewReno). This heuristics are the same in NewReno
2095 * and SACK.
2096 *
2097 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2098 * deflation etc. CWND is real congestion window, never inflated, changes
2099 * only according to classic VJ rules.
2100 *
2101 * Really tricky (and requiring careful tuning) part of algorithm
2102 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2103 * The first determines the moment _when_ we should reduce CWND and,
2104 * hence, slow down forward transmission. In fact, it determines the moment
2105 * when we decide that hole is caused by loss, rather than by a reorder.
2106 *
2107 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2108 * holes, caused by lost packets.
2109 *
2110 * And the most logically complicated part of algorithm is undo
2111 * heuristics. We detect false retransmits due to both too early
2112 * fast retransmit (reordering) and underestimated RTO, analyzing
2113 * timestamps and D-SACKs. When we detect that some segments were
2114 * retransmitted by mistake and CWND reduction was wrong, we undo
2115 * window reduction and abort recovery phase. This logic is hidden
2116 * inside several functions named tcp_try_undo_<something>.
2117 */
2118
2119/* This function decides, when we should leave Disordered state
2120 * and enter Recovery phase, reducing congestion window.
2121 *
2122 * Main question: may we further continue forward transmission
2123 * with the same cwnd?
2124 */
2125static bool tcp_time_to_recover(struct sock *sk, int flag)
2126{
2127 struct tcp_sock *tp = tcp_sk(sk);
2128 __u32 packets_out;
2129
2130 /* Trick#1: The loss is proven. */
2131 if (tp->lost_out)
2132 return true;
2133
2134 /* Not-A-Trick#2 : Classic rule... */
2135 if (tcp_dupack_heuristics(tp) > tp->reordering)
2136 return true;
2137
2138 /* Trick#4: It is still not OK... But will it be useful to delay
2139 * recovery more?
2140 */
2141 packets_out = tp->packets_out;
2142 if (packets_out <= tp->reordering &&
2143 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2144 !tcp_may_send_now(sk)) {
2145 /* We have nothing to send. This connection is limited
2146 * either by receiver window or by application.
2147 */
2148 return true;
2149 }
2150
2151 /* If a thin stream is detected, retransmit after first
2152 * received dupack. Employ only if SACK is supported in order
2153 * to avoid possible corner-case series of spurious retransmissions
2154 * Use only if there are no unsent data.
2155 */
2156 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2157 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2158 tcp_is_sack(tp) && !tcp_send_head(sk))
2159 return true;
2160
2161 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2162 * retransmissions due to small network reorderings, we implement
2163 * Mitigation A.3 in the RFC and delay the retransmission for a short
2164 * interval if appropriate.
2165 */
2166 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2167 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2168 !tcp_may_send_now(sk))
2169 return !tcp_pause_early_retransmit(sk, flag);
2170
2171 return false;
2172}
2173
2174/* Detect loss in event "A" above by marking head of queue up as lost.
2175 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2176 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2177 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2178 * the maximum SACKed segments to pass before reaching this limit.
2179 */
2180static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2181{
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 struct sk_buff *skb;
2184 int cnt, oldcnt, lost;
2185 unsigned int mss;
2186 /* Use SACK to deduce losses of new sequences sent during recovery */
2187 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2188
2189 WARN_ON(packets > tp->packets_out);
2190 if (tp->lost_skb_hint) {
2191 skb = tp->lost_skb_hint;
2192 cnt = tp->lost_cnt_hint;
2193 /* Head already handled? */
2194 if (mark_head && skb != tcp_write_queue_head(sk))
2195 return;
2196 } else {
2197 skb = tcp_write_queue_head(sk);
2198 cnt = 0;
2199 }
2200
2201 tcp_for_write_queue_from(skb, sk) {
2202 if (skb == tcp_send_head(sk))
2203 break;
2204 /* TODO: do this better */
2205 /* this is not the most efficient way to do this... */
2206 tp->lost_skb_hint = skb;
2207 tp->lost_cnt_hint = cnt;
2208
2209 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2210 break;
2211
2212 oldcnt = cnt;
2213 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2214 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2215 cnt += tcp_skb_pcount(skb);
2216
2217 if (cnt > packets) {
2218 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2219 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2220 (oldcnt >= packets))
2221 break;
2222
2223 mss = tcp_skb_mss(skb);
2224 /* If needed, chop off the prefix to mark as lost. */
2225 lost = (packets - oldcnt) * mss;
2226 if (lost < skb->len &&
2227 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2228 break;
2229 cnt = packets;
2230 }
2231
2232 tcp_skb_mark_lost(tp, skb);
2233
2234 if (mark_head)
2235 break;
2236 }
2237 tcp_verify_left_out(tp);
2238}
2239
2240/* Account newly detected lost packet(s) */
2241
2242static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2243{
2244 struct tcp_sock *tp = tcp_sk(sk);
2245
2246 if (tcp_is_reno(tp)) {
2247 tcp_mark_head_lost(sk, 1, 1);
2248 } else if (tcp_is_fack(tp)) {
2249 int lost = tp->fackets_out - tp->reordering;
2250 if (lost <= 0)
2251 lost = 1;
2252 tcp_mark_head_lost(sk, lost, 0);
2253 } else {
2254 int sacked_upto = tp->sacked_out - tp->reordering;
2255 if (sacked_upto >= 0)
2256 tcp_mark_head_lost(sk, sacked_upto, 0);
2257 else if (fast_rexmit)
2258 tcp_mark_head_lost(sk, 1, 1);
2259 }
2260}
2261
2262/* CWND moderation, preventing bursts due to too big ACKs
2263 * in dubious situations.
2264 */
2265static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2266{
2267 tp->snd_cwnd = min(tp->snd_cwnd,
2268 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2269 tp->snd_cwnd_stamp = tcp_time_stamp;
2270}
2271
2272static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2273{
2274 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2275 before(tp->rx_opt.rcv_tsecr, when);
2276}
2277
2278/* skb is spurious retransmitted if the returned timestamp echo
2279 * reply is prior to the skb transmission time
2280 */
2281static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2282 const struct sk_buff *skb)
2283{
2284 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2285 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2286}
2287
2288/* Nothing was retransmitted or returned timestamp is less
2289 * than timestamp of the first retransmission.
2290 */
2291static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2292{
2293 return !tp->retrans_stamp ||
2294 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2295}
2296
2297/* Undo procedures. */
2298
2299/* We can clear retrans_stamp when there are no retransmissions in the
2300 * window. It would seem that it is trivially available for us in
2301 * tp->retrans_out, however, that kind of assumptions doesn't consider
2302 * what will happen if errors occur when sending retransmission for the
2303 * second time. ...It could the that such segment has only
2304 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2305 * the head skb is enough except for some reneging corner cases that
2306 * are not worth the effort.
2307 *
2308 * Main reason for all this complexity is the fact that connection dying
2309 * time now depends on the validity of the retrans_stamp, in particular,
2310 * that successive retransmissions of a segment must not advance
2311 * retrans_stamp under any conditions.
2312 */
2313static bool tcp_any_retrans_done(const struct sock *sk)
2314{
2315 const struct tcp_sock *tp = tcp_sk(sk);
2316 struct sk_buff *skb;
2317
2318 if (tp->retrans_out)
2319 return true;
2320
2321 skb = tcp_write_queue_head(sk);
2322 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2323 return true;
2324
2325 return false;
2326}
2327
2328#if FASTRETRANS_DEBUG > 1
2329static void DBGUNDO(struct sock *sk, const char *msg)
2330{
2331 struct tcp_sock *tp = tcp_sk(sk);
2332 struct inet_sock *inet = inet_sk(sk);
2333
2334 if (sk->sk_family == AF_INET) {
2335 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2336 msg,
2337 &inet->inet_daddr, ntohs(inet->inet_dport),
2338 tp->snd_cwnd, tcp_left_out(tp),
2339 tp->snd_ssthresh, tp->prior_ssthresh,
2340 tp->packets_out);
2341 }
2342#if IS_ENABLED(CONFIG_IPV6)
2343 else if (sk->sk_family == AF_INET6) {
2344 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2345 msg,
2346 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2347 tp->snd_cwnd, tcp_left_out(tp),
2348 tp->snd_ssthresh, tp->prior_ssthresh,
2349 tp->packets_out);
2350 }
2351#endif
2352}
2353#else
2354#define DBGUNDO(x...) do { } while (0)
2355#endif
2356
2357static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2358{
2359 struct tcp_sock *tp = tcp_sk(sk);
2360
2361 if (unmark_loss) {
2362 struct sk_buff *skb;
2363
2364 tcp_for_write_queue(skb, sk) {
2365 if (skb == tcp_send_head(sk))
2366 break;
2367 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2368 }
2369 tp->lost_out = 0;
2370 tcp_clear_all_retrans_hints(tp);
2371 }
2372
2373 if (tp->prior_ssthresh) {
2374 const struct inet_connection_sock *icsk = inet_csk(sk);
2375
2376 if (icsk->icsk_ca_ops->undo_cwnd)
2377 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2378 else
2379 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2380
2381 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2382 tp->snd_ssthresh = tp->prior_ssthresh;
2383 tcp_ecn_withdraw_cwr(tp);
2384 }
2385 } else {
2386 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2387 }
2388 tp->snd_cwnd_stamp = tcp_time_stamp;
2389 tp->undo_marker = 0;
2390}
2391
2392static inline bool tcp_may_undo(const struct tcp_sock *tp)
2393{
2394 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2395}
2396
2397/* People celebrate: "We love our President!" */
2398static bool tcp_try_undo_recovery(struct sock *sk)
2399{
2400 struct tcp_sock *tp = tcp_sk(sk);
2401
2402 if (tcp_may_undo(tp)) {
2403 int mib_idx;
2404
2405 /* Happy end! We did not retransmit anything
2406 * or our original transmission succeeded.
2407 */
2408 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2409 tcp_undo_cwnd_reduction(sk, false);
2410 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2411 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2412 else
2413 mib_idx = LINUX_MIB_TCPFULLUNDO;
2414
2415 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2416 }
2417 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2418 /* Hold old state until something *above* high_seq
2419 * is ACKed. For Reno it is MUST to prevent false
2420 * fast retransmits (RFC2582). SACK TCP is safe. */
2421 tcp_moderate_cwnd(tp);
2422 if (!tcp_any_retrans_done(sk))
2423 tp->retrans_stamp = 0;
2424 return true;
2425 }
2426 tcp_set_ca_state(sk, TCP_CA_Open);
2427 return false;
2428}
2429
2430/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2431static bool tcp_try_undo_dsack(struct sock *sk)
2432{
2433 struct tcp_sock *tp = tcp_sk(sk);
2434
2435 if (tp->undo_marker && !tp->undo_retrans) {
2436 DBGUNDO(sk, "D-SACK");
2437 tcp_undo_cwnd_reduction(sk, false);
2438 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2439 return true;
2440 }
2441 return false;
2442}
2443
2444/* Undo during loss recovery after partial ACK or using F-RTO. */
2445static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2446{
2447 struct tcp_sock *tp = tcp_sk(sk);
2448
2449 if (frto_undo || tcp_may_undo(tp)) {
2450 tcp_undo_cwnd_reduction(sk, true);
2451
2452 DBGUNDO(sk, "partial loss");
2453 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2454 if (frto_undo)
2455 NET_INC_STATS_BH(sock_net(sk),
2456 LINUX_MIB_TCPSPURIOUSRTOS);
2457 inet_csk(sk)->icsk_retransmits = 0;
2458 if (frto_undo || tcp_is_sack(tp))
2459 tcp_set_ca_state(sk, TCP_CA_Open);
2460 return true;
2461 }
2462 return false;
2463}
2464
2465/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2466 * It computes the number of packets to send (sndcnt) based on packets newly
2467 * delivered:
2468 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2469 * cwnd reductions across a full RTT.
2470 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2471 * But when the retransmits are acked without further losses, PRR
2472 * slow starts cwnd up to ssthresh to speed up the recovery.
2473 */
2474static void tcp_init_cwnd_reduction(struct sock *sk)
2475{
2476 struct tcp_sock *tp = tcp_sk(sk);
2477
2478 tp->high_seq = tp->snd_nxt;
2479 tp->tlp_high_seq = 0;
2480 tp->snd_cwnd_cnt = 0;
2481 tp->prior_cwnd = tp->snd_cwnd;
2482 tp->prr_delivered = 0;
2483 tp->prr_out = 0;
2484 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2485 tcp_ecn_queue_cwr(tp);
2486}
2487
2488static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2489 int fast_rexmit, int flag)
2490{
2491 struct tcp_sock *tp = tcp_sk(sk);
2492 int sndcnt = 0;
2493 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2494 int newly_acked_sacked = prior_unsacked -
2495 (tp->packets_out - tp->sacked_out);
2496
2497 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2498 return;
2499
2500 tp->prr_delivered += newly_acked_sacked;
2501 if (delta < 0) {
2502 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2503 tp->prior_cwnd - 1;
2504 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2505 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2506 !(flag & FLAG_LOST_RETRANS)) {
2507 sndcnt = min_t(int, delta,
2508 max_t(int, tp->prr_delivered - tp->prr_out,
2509 newly_acked_sacked) + 1);
2510 } else {
2511 sndcnt = min(delta, newly_acked_sacked);
2512 }
2513 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2514 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2515}
2516
2517static inline void tcp_end_cwnd_reduction(struct sock *sk)
2518{
2519 struct tcp_sock *tp = tcp_sk(sk);
2520
2521 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2522 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2523 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2524 tp->snd_cwnd = tp->snd_ssthresh;
2525 tp->snd_cwnd_stamp = tcp_time_stamp;
2526 }
2527 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2528}
2529
2530/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2531void tcp_enter_cwr(struct sock *sk)
2532{
2533 struct tcp_sock *tp = tcp_sk(sk);
2534
2535 tp->prior_ssthresh = 0;
2536 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2537 tp->undo_marker = 0;
2538 tcp_init_cwnd_reduction(sk);
2539 tcp_set_ca_state(sk, TCP_CA_CWR);
2540 }
2541}
2542EXPORT_SYMBOL(tcp_enter_cwr);
2543
2544static void tcp_try_keep_open(struct sock *sk)
2545{
2546 struct tcp_sock *tp = tcp_sk(sk);
2547 int state = TCP_CA_Open;
2548
2549 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2550 state = TCP_CA_Disorder;
2551
2552 if (inet_csk(sk)->icsk_ca_state != state) {
2553 tcp_set_ca_state(sk, state);
2554 tp->high_seq = tp->snd_nxt;
2555 }
2556}
2557
2558static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2559{
2560 struct tcp_sock *tp = tcp_sk(sk);
2561
2562 tcp_verify_left_out(tp);
2563
2564 if (!tcp_any_retrans_done(sk))
2565 tp->retrans_stamp = 0;
2566
2567 if (flag & FLAG_ECE)
2568 tcp_enter_cwr(sk);
2569
2570 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2571 tcp_try_keep_open(sk);
2572 } else {
2573 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2574 }
2575}
2576
2577static void tcp_mtup_probe_failed(struct sock *sk)
2578{
2579 struct inet_connection_sock *icsk = inet_csk(sk);
2580
2581 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2582 icsk->icsk_mtup.probe_size = 0;
2583 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2584}
2585
2586static void tcp_mtup_probe_success(struct sock *sk)
2587{
2588 struct tcp_sock *tp = tcp_sk(sk);
2589 struct inet_connection_sock *icsk = inet_csk(sk);
2590
2591 /* FIXME: breaks with very large cwnd */
2592 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2593 tp->snd_cwnd = tp->snd_cwnd *
2594 tcp_mss_to_mtu(sk, tp->mss_cache) /
2595 icsk->icsk_mtup.probe_size;
2596 tp->snd_cwnd_cnt = 0;
2597 tp->snd_cwnd_stamp = tcp_time_stamp;
2598 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2599
2600 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2601 icsk->icsk_mtup.probe_size = 0;
2602 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2603 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2604}
2605
2606/* Do a simple retransmit without using the backoff mechanisms in
2607 * tcp_timer. This is used for path mtu discovery.
2608 * The socket is already locked here.
2609 */
2610void tcp_simple_retransmit(struct sock *sk)
2611{
2612 const struct inet_connection_sock *icsk = inet_csk(sk);
2613 struct tcp_sock *tp = tcp_sk(sk);
2614 struct sk_buff *skb;
2615 unsigned int mss = tcp_current_mss(sk);
2616 u32 prior_lost = tp->lost_out;
2617
2618 tcp_for_write_queue(skb, sk) {
2619 if (skb == tcp_send_head(sk))
2620 break;
2621 if (tcp_skb_seglen(skb) > mss &&
2622 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2623 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2624 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2625 tp->retrans_out -= tcp_skb_pcount(skb);
2626 }
2627 tcp_skb_mark_lost_uncond_verify(tp, skb);
2628 }
2629 }
2630
2631 tcp_clear_retrans_hints_partial(tp);
2632
2633 if (prior_lost == tp->lost_out)
2634 return;
2635
2636 if (tcp_is_reno(tp))
2637 tcp_limit_reno_sacked(tp);
2638
2639 tcp_verify_left_out(tp);
2640
2641 /* Don't muck with the congestion window here.
2642 * Reason is that we do not increase amount of _data_
2643 * in network, but units changed and effective
2644 * cwnd/ssthresh really reduced now.
2645 */
2646 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2647 tp->high_seq = tp->snd_nxt;
2648 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2649 tp->prior_ssthresh = 0;
2650 tp->undo_marker = 0;
2651 tcp_set_ca_state(sk, TCP_CA_Loss);
2652 }
2653 tcp_xmit_retransmit_queue(sk);
2654}
2655EXPORT_SYMBOL(tcp_simple_retransmit);
2656
2657static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2658{
2659 struct tcp_sock *tp = tcp_sk(sk);
2660 int mib_idx;
2661
2662 if (tcp_is_reno(tp))
2663 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2664 else
2665 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2666
2667 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2668
2669 tp->prior_ssthresh = 0;
2670 tcp_init_undo(tp);
2671
2672 if (!tcp_in_cwnd_reduction(sk)) {
2673 if (!ece_ack)
2674 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2675 tcp_init_cwnd_reduction(sk);
2676 }
2677 tcp_set_ca_state(sk, TCP_CA_Recovery);
2678}
2679
2680/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2681 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2682 */
2683static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2684{
2685 struct tcp_sock *tp = tcp_sk(sk);
2686 bool recovered = !before(tp->snd_una, tp->high_seq);
2687
2688 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2689 tcp_try_undo_loss(sk, false))
2690 return;
2691
2692 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2693 /* Step 3.b. A timeout is spurious if not all data are
2694 * lost, i.e., never-retransmitted data are (s)acked.
2695 */
2696 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2697 tcp_try_undo_loss(sk, true))
2698 return;
2699
2700 if (after(tp->snd_nxt, tp->high_seq)) {
2701 if (flag & FLAG_DATA_SACKED || is_dupack)
2702 tp->frto = 0; /* Step 3.a. loss was real */
2703 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2704 tp->high_seq = tp->snd_nxt;
2705 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2706 TCP_NAGLE_OFF);
2707 if (after(tp->snd_nxt, tp->high_seq))
2708 return; /* Step 2.b */
2709 tp->frto = 0;
2710 }
2711 }
2712
2713 if (recovered) {
2714 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2715 tcp_try_undo_recovery(sk);
2716 return;
2717 }
2718 if (tcp_is_reno(tp)) {
2719 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2720 * delivered. Lower inflight to clock out (re)tranmissions.
2721 */
2722 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2723 tcp_add_reno_sack(sk);
2724 else if (flag & FLAG_SND_UNA_ADVANCED)
2725 tcp_reset_reno_sack(tp);
2726 }
2727 tcp_xmit_retransmit_queue(sk);
2728}
2729
2730/* Undo during fast recovery after partial ACK. */
2731static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2732 const int prior_unsacked, int flag)
2733{
2734 struct tcp_sock *tp = tcp_sk(sk);
2735
2736 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2737 /* Plain luck! Hole if filled with delayed
2738 * packet, rather than with a retransmit.
2739 */
2740 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2741
2742 /* We are getting evidence that the reordering degree is higher
2743 * than we realized. If there are no retransmits out then we
2744 * can undo. Otherwise we clock out new packets but do not
2745 * mark more packets lost or retransmit more.
2746 */
2747 if (tp->retrans_out) {
2748 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2749 return true;
2750 }
2751
2752 if (!tcp_any_retrans_done(sk))
2753 tp->retrans_stamp = 0;
2754
2755 DBGUNDO(sk, "partial recovery");
2756 tcp_undo_cwnd_reduction(sk, true);
2757 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2758 tcp_try_keep_open(sk);
2759 return true;
2760 }
2761 return false;
2762}
2763
2764/* Process an event, which can update packets-in-flight not trivially.
2765 * Main goal of this function is to calculate new estimate for left_out,
2766 * taking into account both packets sitting in receiver's buffer and
2767 * packets lost by network.
2768 *
2769 * Besides that it does CWND reduction, when packet loss is detected
2770 * and changes state of machine.
2771 *
2772 * It does _not_ decide what to send, it is made in function
2773 * tcp_xmit_retransmit_queue().
2774 */
2775static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2776 const int prior_unsacked,
2777 bool is_dupack, int flag)
2778{
2779 struct inet_connection_sock *icsk = inet_csk(sk);
2780 struct tcp_sock *tp = tcp_sk(sk);
2781 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2782 (tcp_fackets_out(tp) > tp->reordering));
2783 int fast_rexmit = 0;
2784
2785 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2786 tp->sacked_out = 0;
2787 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2788 tp->fackets_out = 0;
2789
2790 /* Now state machine starts.
2791 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2792 if (flag & FLAG_ECE)
2793 tp->prior_ssthresh = 0;
2794
2795 /* B. In all the states check for reneging SACKs. */
2796 if (tcp_check_sack_reneging(sk, flag))
2797 return;
2798
2799 /* C. Check consistency of the current state. */
2800 tcp_verify_left_out(tp);
2801
2802 /* D. Check state exit conditions. State can be terminated
2803 * when high_seq is ACKed. */
2804 if (icsk->icsk_ca_state == TCP_CA_Open) {
2805 WARN_ON(tp->retrans_out != 0);
2806 tp->retrans_stamp = 0;
2807 } else if (!before(tp->snd_una, tp->high_seq)) {
2808 switch (icsk->icsk_ca_state) {
2809 case TCP_CA_CWR:
2810 /* CWR is to be held something *above* high_seq
2811 * is ACKed for CWR bit to reach receiver. */
2812 if (tp->snd_una != tp->high_seq) {
2813 tcp_end_cwnd_reduction(sk);
2814 tcp_set_ca_state(sk, TCP_CA_Open);
2815 }
2816 break;
2817
2818 case TCP_CA_Recovery:
2819 if (tcp_is_reno(tp))
2820 tcp_reset_reno_sack(tp);
2821 if (tcp_try_undo_recovery(sk))
2822 return;
2823 tcp_end_cwnd_reduction(sk);
2824 break;
2825 }
2826 }
2827
2828 /* Use RACK to detect loss */
2829 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2830 tcp_rack_mark_lost(sk))
2831 flag |= FLAG_LOST_RETRANS;
2832
2833 /* E. Process state. */
2834 switch (icsk->icsk_ca_state) {
2835 case TCP_CA_Recovery:
2836 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2837 if (tcp_is_reno(tp) && is_dupack)
2838 tcp_add_reno_sack(sk);
2839 } else {
2840 if (tcp_try_undo_partial(sk, acked, prior_unsacked, flag))
2841 return;
2842 /* Partial ACK arrived. Force fast retransmit. */
2843 do_lost = tcp_is_reno(tp) ||
2844 tcp_fackets_out(tp) > tp->reordering;
2845 }
2846 if (tcp_try_undo_dsack(sk)) {
2847 tcp_try_keep_open(sk);
2848 return;
2849 }
2850 break;
2851 case TCP_CA_Loss:
2852 tcp_process_loss(sk, flag, is_dupack);
2853 if (icsk->icsk_ca_state != TCP_CA_Open &&
2854 !(flag & FLAG_LOST_RETRANS))
2855 return;
2856 /* Change state if cwnd is undone or retransmits are lost */
2857 default:
2858 if (tcp_is_reno(tp)) {
2859 if (flag & FLAG_SND_UNA_ADVANCED)
2860 tcp_reset_reno_sack(tp);
2861 if (is_dupack)
2862 tcp_add_reno_sack(sk);
2863 }
2864
2865 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2866 tcp_try_undo_dsack(sk);
2867
2868 if (!tcp_time_to_recover(sk, flag)) {
2869 tcp_try_to_open(sk, flag, prior_unsacked);
2870 return;
2871 }
2872
2873 /* MTU probe failure: don't reduce cwnd */
2874 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2875 icsk->icsk_mtup.probe_size &&
2876 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2877 tcp_mtup_probe_failed(sk);
2878 /* Restores the reduction we did in tcp_mtup_probe() */
2879 tp->snd_cwnd++;
2880 tcp_simple_retransmit(sk);
2881 return;
2882 }
2883
2884 /* Otherwise enter Recovery state */
2885 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2886 fast_rexmit = 1;
2887 }
2888
2889 if (do_lost)
2890 tcp_update_scoreboard(sk, fast_rexmit);
2891 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit, flag);
2892 tcp_xmit_retransmit_queue(sk);
2893}
2894
2895/* Kathleen Nichols' algorithm for tracking the minimum value of
2896 * a data stream over some fixed time interval. (E.g., the minimum
2897 * RTT over the past five minutes.) It uses constant space and constant
2898 * time per update yet almost always delivers the same minimum as an
2899 * implementation that has to keep all the data in the window.
2900 *
2901 * The algorithm keeps track of the best, 2nd best & 3rd best min
2902 * values, maintaining an invariant that the measurement time of the
2903 * n'th best >= n-1'th best. It also makes sure that the three values
2904 * are widely separated in the time window since that bounds the worse
2905 * case error when that data is monotonically increasing over the window.
2906 *
2907 * Upon getting a new min, we can forget everything earlier because it
2908 * has no value - the new min is <= everything else in the window by
2909 * definition and it's the most recent. So we restart fresh on every new min
2910 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2911 * best.
2912 */
2913static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2914{
2915 const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2916 struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2917 struct rtt_meas rttm = { .rtt = (rtt_us ? : 1), .ts = now };
2918 u32 elapsed;
2919
2920 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2921 if (unlikely(rttm.rtt <= m[0].rtt))
2922 m[0] = m[1] = m[2] = rttm;
2923 else if (rttm.rtt <= m[1].rtt)
2924 m[1] = m[2] = rttm;
2925 else if (rttm.rtt <= m[2].rtt)
2926 m[2] = rttm;
2927
2928 elapsed = now - m[0].ts;
2929 if (unlikely(elapsed > wlen)) {
2930 /* Passed entire window without a new min so make 2nd choice
2931 * the new min & 3rd choice the new 2nd. So forth and so on.
2932 */
2933 m[0] = m[1];
2934 m[1] = m[2];
2935 m[2] = rttm;
2936 if (now - m[0].ts > wlen) {
2937 m[0] = m[1];
2938 m[1] = rttm;
2939 if (now - m[0].ts > wlen)
2940 m[0] = rttm;
2941 }
2942 } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2943 /* Passed a quarter of the window without a new min so
2944 * take 2nd choice from the 2nd quarter of the window.
2945 */
2946 m[2] = m[1] = rttm;
2947 } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2948 /* Passed half the window without a new min so take the 3rd
2949 * choice from the last half of the window.
2950 */
2951 m[2] = rttm;
2952 }
2953}
2954
2955static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2956 long seq_rtt_us, long sack_rtt_us,
2957 long ca_rtt_us)
2958{
2959 const struct tcp_sock *tp = tcp_sk(sk);
2960
2961 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2962 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2963 * Karn's algorithm forbids taking RTT if some retransmitted data
2964 * is acked (RFC6298).
2965 */
2966 if (seq_rtt_us < 0)
2967 seq_rtt_us = sack_rtt_us;
2968
2969 /* RTTM Rule: A TSecr value received in a segment is used to
2970 * update the averaged RTT measurement only if the segment
2971 * acknowledges some new data, i.e., only if it advances the
2972 * left edge of the send window.
2973 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2974 */
2975 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2976 flag & FLAG_ACKED)
2977 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2978 tp->rx_opt.rcv_tsecr);
2979 if (seq_rtt_us < 0)
2980 return false;
2981
2982 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2983 * always taken together with ACK, SACK, or TS-opts. Any negative
2984 * values will be skipped with the seq_rtt_us < 0 check above.
2985 */
2986 tcp_update_rtt_min(sk, ca_rtt_us);
2987 tcp_rtt_estimator(sk, seq_rtt_us);
2988 tcp_set_rto(sk);
2989
2990 /* RFC6298: only reset backoff on valid RTT measurement. */
2991 inet_csk(sk)->icsk_backoff = 0;
2992 return true;
2993}
2994
2995/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2996void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2997{
2998 long rtt_us = -1L;
2999
3000 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
3001 struct skb_mstamp now;
3002
3003 skb_mstamp_get(&now);
3004 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
3005 }
3006
3007 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
3008}
3009
3010
3011static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3012{
3013 const struct inet_connection_sock *icsk = inet_csk(sk);
3014
3015 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3016 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3017}
3018
3019/* Restart timer after forward progress on connection.
3020 * RFC2988 recommends to restart timer to now+rto.
3021 */
3022void tcp_rearm_rto(struct sock *sk)
3023{
3024 const struct inet_connection_sock *icsk = inet_csk(sk);
3025 struct tcp_sock *tp = tcp_sk(sk);
3026
3027 /* If the retrans timer is currently being used by Fast Open
3028 * for SYN-ACK retrans purpose, stay put.
3029 */
3030 if (tp->fastopen_rsk)
3031 return;
3032
3033 if (!tp->packets_out) {
3034 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3035 } else {
3036 u32 rto = inet_csk(sk)->icsk_rto;
3037 /* Offset the time elapsed after installing regular RTO */
3038 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3039 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3040 struct sk_buff *skb = tcp_write_queue_head(sk);
3041 const u32 rto_time_stamp =
3042 tcp_skb_timestamp(skb) + rto;
3043 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3044 /* delta may not be positive if the socket is locked
3045 * when the retrans timer fires and is rescheduled.
3046 */
3047 rto = max(delta, 1);
3048 }
3049 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3050 TCP_RTO_MAX);
3051 }
3052}
3053
3054/* This function is called when the delayed ER timer fires. TCP enters
3055 * fast recovery and performs fast-retransmit.
3056 */
3057void tcp_resume_early_retransmit(struct sock *sk)
3058{
3059 struct tcp_sock *tp = tcp_sk(sk);
3060
3061 tcp_rearm_rto(sk);
3062
3063 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3064 if (!tp->do_early_retrans)
3065 return;
3066
3067 tcp_enter_recovery(sk, false);
3068 tcp_update_scoreboard(sk, 1);
3069 tcp_xmit_retransmit_queue(sk);
3070}
3071
3072/* If we get here, the whole TSO packet has not been acked. */
3073static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3074{
3075 struct tcp_sock *tp = tcp_sk(sk);
3076 u32 packets_acked;
3077
3078 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3079
3080 packets_acked = tcp_skb_pcount(skb);
3081 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3082 return 0;
3083 packets_acked -= tcp_skb_pcount(skb);
3084
3085 if (packets_acked) {
3086 BUG_ON(tcp_skb_pcount(skb) == 0);
3087 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3088 }
3089
3090 return packets_acked;
3091}
3092
3093static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3094 u32 prior_snd_una)
3095{
3096 const struct skb_shared_info *shinfo;
3097
3098 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3099 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3100 return;
3101
3102 shinfo = skb_shinfo(skb);
3103 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3104 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3105 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3106}
3107
3108/* Remove acknowledged frames from the retransmission queue. If our packet
3109 * is before the ack sequence we can discard it as it's confirmed to have
3110 * arrived at the other end.
3111 */
3112static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3113 u32 prior_snd_una,
3114 struct tcp_sacktag_state *sack)
3115{
3116 const struct inet_connection_sock *icsk = inet_csk(sk);
3117 struct skb_mstamp first_ackt, last_ackt, now;
3118 struct tcp_sock *tp = tcp_sk(sk);
3119 u32 prior_sacked = tp->sacked_out;
3120 u32 reord = tp->packets_out;
3121 bool fully_acked = true;
3122 long sack_rtt_us = -1L;
3123 long seq_rtt_us = -1L;
3124 long ca_rtt_us = -1L;
3125 struct sk_buff *skb;
3126 u32 pkts_acked = 0;
3127 bool rtt_update;
3128 int flag = 0;
3129
3130 first_ackt.v64 = 0;
3131
3132 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3133 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3134 u8 sacked = scb->sacked;
3135 u32 acked_pcount;
3136
3137 tcp_ack_tstamp(sk, skb, prior_snd_una);
3138
3139 /* Determine how many packets and what bytes were acked, tso and else */
3140 if (after(scb->end_seq, tp->snd_una)) {
3141 if (tcp_skb_pcount(skb) == 1 ||
3142 !after(tp->snd_una, scb->seq))
3143 break;
3144
3145 acked_pcount = tcp_tso_acked(sk, skb);
3146 if (!acked_pcount)
3147 break;
3148
3149 fully_acked = false;
3150 } else {
3151 /* Speedup tcp_unlink_write_queue() and next loop */
3152 prefetchw(skb->next);
3153 acked_pcount = tcp_skb_pcount(skb);
3154 }
3155
3156 if (unlikely(sacked & TCPCB_RETRANS)) {
3157 if (sacked & TCPCB_SACKED_RETRANS)
3158 tp->retrans_out -= acked_pcount;
3159 flag |= FLAG_RETRANS_DATA_ACKED;
3160 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3161 last_ackt = skb->skb_mstamp;
3162 WARN_ON_ONCE(last_ackt.v64 == 0);
3163 if (!first_ackt.v64)
3164 first_ackt = last_ackt;
3165
3166 reord = min(pkts_acked, reord);
3167 if (!after(scb->end_seq, tp->high_seq))
3168 flag |= FLAG_ORIG_SACK_ACKED;
3169 }
3170
3171 if (sacked & TCPCB_SACKED_ACKED)
3172 tp->sacked_out -= acked_pcount;
3173 else if (tcp_is_sack(tp) && !tcp_skb_spurious_retrans(tp, skb))
3174 tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3175 if (sacked & TCPCB_LOST)
3176 tp->lost_out -= acked_pcount;
3177
3178 tp->packets_out -= acked_pcount;
3179 pkts_acked += acked_pcount;
3180
3181 /* Initial outgoing SYN's get put onto the write_queue
3182 * just like anything else we transmit. It is not
3183 * true data, and if we misinform our callers that
3184 * this ACK acks real data, we will erroneously exit
3185 * connection startup slow start one packet too
3186 * quickly. This is severely frowned upon behavior.
3187 */
3188 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3189 flag |= FLAG_DATA_ACKED;
3190 } else {
3191 flag |= FLAG_SYN_ACKED;
3192 tp->retrans_stamp = 0;
3193 }
3194
3195 if (!fully_acked)
3196 break;
3197
3198 tcp_unlink_write_queue(skb, sk);
3199 sk_wmem_free_skb(sk, skb);
3200 if (unlikely(skb == tp->retransmit_skb_hint))
3201 tp->retransmit_skb_hint = NULL;
3202 if (unlikely(skb == tp->lost_skb_hint))
3203 tp->lost_skb_hint = NULL;
3204 }
3205
3206 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3207 tp->snd_up = tp->snd_una;
3208
3209 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3210 flag |= FLAG_SACK_RENEGING;
3211
3212 skb_mstamp_get(&now);
3213 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3214 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3215 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3216 }
3217 if (sack->first_sackt.v64) {
3218 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3219 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3220 }
3221
3222 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3223 ca_rtt_us);
3224
3225 if (flag & FLAG_ACKED) {
3226 tcp_rearm_rto(sk);
3227 if (unlikely(icsk->icsk_mtup.probe_size &&
3228 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3229 tcp_mtup_probe_success(sk);
3230 }
3231
3232 if (tcp_is_reno(tp)) {
3233 tcp_remove_reno_sacks(sk, pkts_acked);
3234 } else {
3235 int delta;
3236
3237 /* Non-retransmitted hole got filled? That's reordering */
3238 if (reord < prior_fackets && reord <= tp->fackets_out)
3239 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3240
3241 delta = tcp_is_fack(tp) ? pkts_acked :
3242 prior_sacked - tp->sacked_out;
3243 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3244 }
3245
3246 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3247
3248 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3249 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3250 /* Do not re-arm RTO if the sack RTT is measured from data sent
3251 * after when the head was last (re)transmitted. Otherwise the
3252 * timeout may continue to extend in loss recovery.
3253 */
3254 tcp_rearm_rto(sk);
3255 }
3256
3257 if (icsk->icsk_ca_ops->pkts_acked)
3258 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3259
3260#if FASTRETRANS_DEBUG > 0
3261 WARN_ON((int)tp->sacked_out < 0);
3262 WARN_ON((int)tp->lost_out < 0);
3263 WARN_ON((int)tp->retrans_out < 0);
3264 if (!tp->packets_out && tcp_is_sack(tp)) {
3265 icsk = inet_csk(sk);
3266 if (tp->lost_out) {
3267 pr_debug("Leak l=%u %d\n",
3268 tp->lost_out, icsk->icsk_ca_state);
3269 tp->lost_out = 0;
3270 }
3271 if (tp->sacked_out) {
3272 pr_debug("Leak s=%u %d\n",
3273 tp->sacked_out, icsk->icsk_ca_state);
3274 tp->sacked_out = 0;
3275 }
3276 if (tp->retrans_out) {
3277 pr_debug("Leak r=%u %d\n",
3278 tp->retrans_out, icsk->icsk_ca_state);
3279 tp->retrans_out = 0;
3280 }
3281 }
3282#endif
3283 return flag;
3284}
3285
3286static void tcp_ack_probe(struct sock *sk)
3287{
3288 const struct tcp_sock *tp = tcp_sk(sk);
3289 struct inet_connection_sock *icsk = inet_csk(sk);
3290
3291 /* Was it a usable window open? */
3292
3293 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3294 icsk->icsk_backoff = 0;
3295 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3296 /* Socket must be waked up by subsequent tcp_data_snd_check().
3297 * This function is not for random using!
3298 */
3299 } else {
3300 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3301
3302 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3303 when, TCP_RTO_MAX);
3304 }
3305}
3306
3307static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3308{
3309 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3310 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3311}
3312
3313/* Decide wheather to run the increase function of congestion control. */
3314static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3315{
3316 if (tcp_in_cwnd_reduction(sk))
3317 return false;
3318
3319 /* If reordering is high then always grow cwnd whenever data is
3320 * delivered regardless of its ordering. Otherwise stay conservative
3321 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3322 * new SACK or ECE mark may first advance cwnd here and later reduce
3323 * cwnd in tcp_fastretrans_alert() based on more states.
3324 */
3325 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3326 return flag & FLAG_FORWARD_PROGRESS;
3327
3328 return flag & FLAG_DATA_ACKED;
3329}
3330
3331/* Check that window update is acceptable.
3332 * The function assumes that snd_una<=ack<=snd_next.
3333 */
3334static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3335 const u32 ack, const u32 ack_seq,
3336 const u32 nwin)
3337{
3338 return after(ack, tp->snd_una) ||
3339 after(ack_seq, tp->snd_wl1) ||
3340 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3341}
3342
3343/* If we update tp->snd_una, also update tp->bytes_acked */
3344static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3345{
3346 u32 delta = ack - tp->snd_una;
3347
3348 u64_stats_update_begin(&tp->syncp);
3349 tp->bytes_acked += delta;
3350 u64_stats_update_end(&tp->syncp);
3351 tp->snd_una = ack;
3352}
3353
3354/* If we update tp->rcv_nxt, also update tp->bytes_received */
3355static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3356{
3357 u32 delta = seq - tp->rcv_nxt;
3358
3359 u64_stats_update_begin(&tp->syncp);
3360 tp->bytes_received += delta;
3361 u64_stats_update_end(&tp->syncp);
3362 tp->rcv_nxt = seq;
3363}
3364
3365/* Update our send window.
3366 *
3367 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3368 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3369 */
3370static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3371 u32 ack_seq)
3372{
3373 struct tcp_sock *tp = tcp_sk(sk);
3374 int flag = 0;
3375 u32 nwin = ntohs(tcp_hdr(skb)->window);
3376
3377 if (likely(!tcp_hdr(skb)->syn))
3378 nwin <<= tp->rx_opt.snd_wscale;
3379
3380 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3381 flag |= FLAG_WIN_UPDATE;
3382 tcp_update_wl(tp, ack_seq);
3383
3384 if (tp->snd_wnd != nwin) {
3385 tp->snd_wnd = nwin;
3386
3387 /* Note, it is the only place, where
3388 * fast path is recovered for sending TCP.
3389 */
3390 tp->pred_flags = 0;
3391 tcp_fast_path_check(sk);
3392
3393 if (tcp_send_head(sk))
3394 tcp_slow_start_after_idle_check(sk);
3395
3396 if (nwin > tp->max_window) {
3397 tp->max_window = nwin;
3398 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3399 }
3400 }
3401 }
3402
3403 tcp_snd_una_update(tp, ack);
3404
3405 return flag;
3406}
3407
3408static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3409 u32 *last_oow_ack_time)
3410{
3411 if (*last_oow_ack_time) {
3412 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3413
3414 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3415 NET_INC_STATS_BH(net, mib_idx);
3416 return true; /* rate-limited: don't send yet! */
3417 }
3418 }
3419
3420 *last_oow_ack_time = tcp_time_stamp;
3421
3422 return false; /* not rate-limited: go ahead, send dupack now! */
3423}
3424
3425/* Return true if we're currently rate-limiting out-of-window ACKs and
3426 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3427 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3428 * attacks that send repeated SYNs or ACKs for the same connection. To
3429 * do this, we do not send a duplicate SYNACK or ACK if the remote
3430 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3431 */
3432bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3433 int mib_idx, u32 *last_oow_ack_time)
3434{
3435 /* Data packets without SYNs are not likely part of an ACK loop. */
3436 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3437 !tcp_hdr(skb)->syn)
3438 return false;
3439
3440 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3441}
3442
3443/* RFC 5961 7 [ACK Throttling] */
3444static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3445{
3446 /* unprotected vars, we dont care of overwrites */
3447 static u32 challenge_timestamp;
3448 static unsigned int challenge_count;
3449 struct tcp_sock *tp = tcp_sk(sk);
3450 u32 count, now;
3451
3452 /* First check our per-socket dupack rate limit. */
3453 if (__tcp_oow_rate_limited(sock_net(sk),
3454 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3455 &tp->last_oow_ack_time))
3456 return;
3457
3458 /* Then check host-wide RFC 5961 rate limit. */
3459 now = jiffies / HZ;
3460 if (now != challenge_timestamp) {
3461 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3462
3463 challenge_timestamp = now;
3464 WRITE_ONCE(challenge_count, half +
3465 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3466 }
3467 count = READ_ONCE(challenge_count);
3468 if (count > 0) {
3469 WRITE_ONCE(challenge_count, count - 1);
3470 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3471 tcp_send_ack(sk);
3472 }
3473}
3474
3475static void tcp_store_ts_recent(struct tcp_sock *tp)
3476{
3477 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3478 tp->rx_opt.ts_recent_stamp = get_seconds();
3479}
3480
3481static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3482{
3483 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3484 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3485 * extra check below makes sure this can only happen
3486 * for pure ACK frames. -DaveM
3487 *
3488 * Not only, also it occurs for expired timestamps.
3489 */
3490
3491 if (tcp_paws_check(&tp->rx_opt, 0))
3492 tcp_store_ts_recent(tp);
3493 }
3494}
3495
3496/* This routine deals with acks during a TLP episode.
3497 * We mark the end of a TLP episode on receiving TLP dupack or when
3498 * ack is after tlp_high_seq.
3499 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3500 */
3501static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3502{
3503 struct tcp_sock *tp = tcp_sk(sk);
3504
3505 if (before(ack, tp->tlp_high_seq))
3506 return;
3507
3508 if (flag & FLAG_DSACKING_ACK) {
3509 /* This DSACK means original and TLP probe arrived; no loss */
3510 tp->tlp_high_seq = 0;
3511 } else if (after(ack, tp->tlp_high_seq)) {
3512 /* ACK advances: there was a loss, so reduce cwnd. Reset
3513 * tlp_high_seq in tcp_init_cwnd_reduction()
3514 */
3515 tcp_init_cwnd_reduction(sk);
3516 tcp_set_ca_state(sk, TCP_CA_CWR);
3517 tcp_end_cwnd_reduction(sk);
3518 tcp_try_keep_open(sk);
3519 NET_INC_STATS_BH(sock_net(sk),
3520 LINUX_MIB_TCPLOSSPROBERECOVERY);
3521 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3522 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3523 /* Pure dupack: original and TLP probe arrived; no loss */
3524 tp->tlp_high_seq = 0;
3525 }
3526}
3527
3528static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3529{
3530 const struct inet_connection_sock *icsk = inet_csk(sk);
3531
3532 if (icsk->icsk_ca_ops->in_ack_event)
3533 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3534}
3535
3536/* This routine deals with incoming acks, but not outgoing ones. */
3537static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3538{
3539 struct inet_connection_sock *icsk = inet_csk(sk);
3540 struct tcp_sock *tp = tcp_sk(sk);
3541 struct tcp_sacktag_state sack_state;
3542 u32 prior_snd_una = tp->snd_una;
3543 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3544 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3545 bool is_dupack = false;
3546 u32 prior_fackets;
3547 int prior_packets = tp->packets_out;
3548 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3549 int acked = 0; /* Number of packets newly acked */
3550
3551 sack_state.first_sackt.v64 = 0;
3552
3553 /* We very likely will need to access write queue head. */
3554 prefetchw(sk->sk_write_queue.next);
3555
3556 /* If the ack is older than previous acks
3557 * then we can probably ignore it.
3558 */
3559 if (before(ack, prior_snd_una)) {
3560 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3561 if (before(ack, prior_snd_una - tp->max_window)) {
3562 tcp_send_challenge_ack(sk, skb);
3563 return -1;
3564 }
3565 goto old_ack;
3566 }
3567
3568 /* If the ack includes data we haven't sent yet, discard
3569 * this segment (RFC793 Section 3.9).
3570 */
3571 if (after(ack, tp->snd_nxt))
3572 goto invalid_ack;
3573
3574 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3575 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3576 tcp_rearm_rto(sk);
3577
3578 if (after(ack, prior_snd_una)) {
3579 flag |= FLAG_SND_UNA_ADVANCED;
3580 icsk->icsk_retransmits = 0;
3581 }
3582
3583 prior_fackets = tp->fackets_out;
3584
3585 /* ts_recent update must be made after we are sure that the packet
3586 * is in window.
3587 */
3588 if (flag & FLAG_UPDATE_TS_RECENT)
3589 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3590
3591 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3592 /* Window is constant, pure forward advance.
3593 * No more checks are required.
3594 * Note, we use the fact that SND.UNA>=SND.WL2.
3595 */
3596 tcp_update_wl(tp, ack_seq);
3597 tcp_snd_una_update(tp, ack);
3598 flag |= FLAG_WIN_UPDATE;
3599
3600 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3601
3602 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3603 } else {
3604 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3605
3606 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3607 flag |= FLAG_DATA;
3608 else
3609 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3610
3611 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3612
3613 if (TCP_SKB_CB(skb)->sacked)
3614 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3615 &sack_state);
3616
3617 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3618 flag |= FLAG_ECE;
3619 ack_ev_flags |= CA_ACK_ECE;
3620 }
3621
3622 if (flag & FLAG_WIN_UPDATE)
3623 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3624
3625 tcp_in_ack_event(sk, ack_ev_flags);
3626 }
3627
3628 /* We passed data and got it acked, remove any soft error
3629 * log. Something worked...
3630 */
3631 sk->sk_err_soft = 0;
3632 icsk->icsk_probes_out = 0;
3633 tp->rcv_tstamp = tcp_time_stamp;
3634 if (!prior_packets)
3635 goto no_queue;
3636
3637 /* See if we can take anything off of the retransmit queue. */
3638 acked = tp->packets_out;
3639 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3640 &sack_state);
3641 acked -= tp->packets_out;
3642
3643 if (tcp_ack_is_dubious(sk, flag)) {
3644 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3645 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3646 is_dupack, flag);
3647 }
3648 if (tp->tlp_high_seq)
3649 tcp_process_tlp_ack(sk, ack, flag);
3650
3651 /* Advance cwnd if state allows */
3652 if (tcp_may_raise_cwnd(sk, flag))
3653 tcp_cong_avoid(sk, ack, acked);
3654
3655 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3656 struct dst_entry *dst = __sk_dst_get(sk);
3657 if (dst)
3658 dst_confirm(dst);
3659 }
3660
3661 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3662 tcp_schedule_loss_probe(sk);
3663 tcp_update_pacing_rate(sk);
3664 return 1;
3665
3666no_queue:
3667 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3668 if (flag & FLAG_DSACKING_ACK)
3669 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3670 is_dupack, flag);
3671 /* If this ack opens up a zero window, clear backoff. It was
3672 * being used to time the probes, and is probably far higher than
3673 * it needs to be for normal retransmission.
3674 */
3675 if (tcp_send_head(sk))
3676 tcp_ack_probe(sk);
3677
3678 if (tp->tlp_high_seq)
3679 tcp_process_tlp_ack(sk, ack, flag);
3680 return 1;
3681
3682invalid_ack:
3683 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3684 return -1;
3685
3686old_ack:
3687 /* If data was SACKed, tag it and see if we should send more data.
3688 * If data was DSACKed, see if we can undo a cwnd reduction.
3689 */
3690 if (TCP_SKB_CB(skb)->sacked) {
3691 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3692 &sack_state);
3693 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3694 is_dupack, flag);
3695 }
3696
3697 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3698 return 0;
3699}
3700
3701static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3702 bool syn, struct tcp_fastopen_cookie *foc,
3703 bool exp_opt)
3704{
3705 /* Valid only in SYN or SYN-ACK with an even length. */
3706 if (!foc || !syn || len < 0 || (len & 1))
3707 return;
3708
3709 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3710 len <= TCP_FASTOPEN_COOKIE_MAX)
3711 memcpy(foc->val, cookie, len);
3712 else if (len != 0)
3713 len = -1;
3714 foc->len = len;
3715 foc->exp = exp_opt;
3716}
3717
3718/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3719 * But, this can also be called on packets in the established flow when
3720 * the fast version below fails.
3721 */
3722void tcp_parse_options(const struct sk_buff *skb,
3723 struct tcp_options_received *opt_rx, int estab,
3724 struct tcp_fastopen_cookie *foc)
3725{
3726 const unsigned char *ptr;
3727 const struct tcphdr *th = tcp_hdr(skb);
3728 int length = (th->doff * 4) - sizeof(struct tcphdr);
3729
3730 ptr = (const unsigned char *)(th + 1);
3731 opt_rx->saw_tstamp = 0;
3732
3733 while (length > 0) {
3734 int opcode = *ptr++;
3735 int opsize;
3736
3737 switch (opcode) {
3738 case TCPOPT_EOL:
3739 return;
3740 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3741 length--;
3742 continue;
3743 default:
3744 opsize = *ptr++;
3745 if (opsize < 2) /* "silly options" */
3746 return;
3747 if (opsize > length)
3748 return; /* don't parse partial options */
3749 switch (opcode) {
3750 case TCPOPT_MSS:
3751 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3752 u16 in_mss = get_unaligned_be16(ptr);
3753 if (in_mss) {
3754 if (opt_rx->user_mss &&
3755 opt_rx->user_mss < in_mss)
3756 in_mss = opt_rx->user_mss;
3757 opt_rx->mss_clamp = in_mss;
3758 }
3759 }
3760 break;
3761 case TCPOPT_WINDOW:
3762 if (opsize == TCPOLEN_WINDOW && th->syn &&
3763 !estab && sysctl_tcp_window_scaling) {
3764 __u8 snd_wscale = *(__u8 *)ptr;
3765 opt_rx->wscale_ok = 1;
3766 if (snd_wscale > 14) {
3767 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3768 __func__,
3769 snd_wscale);
3770 snd_wscale = 14;
3771 }
3772 opt_rx->snd_wscale = snd_wscale;
3773 }
3774 break;
3775 case TCPOPT_TIMESTAMP:
3776 if ((opsize == TCPOLEN_TIMESTAMP) &&
3777 ((estab && opt_rx->tstamp_ok) ||
3778 (!estab && sysctl_tcp_timestamps))) {
3779 opt_rx->saw_tstamp = 1;
3780 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3781 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3782 }
3783 break;
3784 case TCPOPT_SACK_PERM:
3785 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3786 !estab && sysctl_tcp_sack) {
3787 opt_rx->sack_ok = TCP_SACK_SEEN;
3788 tcp_sack_reset(opt_rx);
3789 }
3790 break;
3791
3792 case TCPOPT_SACK:
3793 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3794 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3795 opt_rx->sack_ok) {
3796 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3797 }
3798 break;
3799#ifdef CONFIG_TCP_MD5SIG
3800 case TCPOPT_MD5SIG:
3801 /*
3802 * The MD5 Hash has already been
3803 * checked (see tcp_v{4,6}_do_rcv()).
3804 */
3805 break;
3806#endif
3807 case TCPOPT_FASTOPEN:
3808 tcp_parse_fastopen_option(
3809 opsize - TCPOLEN_FASTOPEN_BASE,
3810 ptr, th->syn, foc, false);
3811 break;
3812
3813 case TCPOPT_EXP:
3814 /* Fast Open option shares code 254 using a
3815 * 16 bits magic number.
3816 */
3817 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3818 get_unaligned_be16(ptr) ==
3819 TCPOPT_FASTOPEN_MAGIC)
3820 tcp_parse_fastopen_option(opsize -
3821 TCPOLEN_EXP_FASTOPEN_BASE,
3822 ptr + 2, th->syn, foc, true);
3823 break;
3824
3825 }
3826 ptr += opsize-2;
3827 length -= opsize;
3828 }
3829 }
3830}
3831EXPORT_SYMBOL(tcp_parse_options);
3832
3833static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3834{
3835 const __be32 *ptr = (const __be32 *)(th + 1);
3836
3837 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3838 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3839 tp->rx_opt.saw_tstamp = 1;
3840 ++ptr;
3841 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3842 ++ptr;
3843 if (*ptr)
3844 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3845 else
3846 tp->rx_opt.rcv_tsecr = 0;
3847 return true;
3848 }
3849 return false;
3850}
3851
3852/* Fast parse options. This hopes to only see timestamps.
3853 * If it is wrong it falls back on tcp_parse_options().
3854 */
3855static bool tcp_fast_parse_options(const struct sk_buff *skb,
3856 const struct tcphdr *th, struct tcp_sock *tp)
3857{
3858 /* In the spirit of fast parsing, compare doff directly to constant
3859 * values. Because equality is used, short doff can be ignored here.
3860 */
3861 if (th->doff == (sizeof(*th) / 4)) {
3862 tp->rx_opt.saw_tstamp = 0;
3863 return false;
3864 } else if (tp->rx_opt.tstamp_ok &&
3865 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3866 if (tcp_parse_aligned_timestamp(tp, th))
3867 return true;
3868 }
3869
3870 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3871 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3872 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3873
3874 return true;
3875}
3876
3877#ifdef CONFIG_TCP_MD5SIG
3878/*
3879 * Parse MD5 Signature option
3880 */
3881const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3882{
3883 int length = (th->doff << 2) - sizeof(*th);
3884 const u8 *ptr = (const u8 *)(th + 1);
3885
3886 /* If the TCP option is too short, we can short cut */
3887 if (length < TCPOLEN_MD5SIG)
3888 return NULL;
3889
3890 while (length > 0) {
3891 int opcode = *ptr++;
3892 int opsize;
3893
3894 switch (opcode) {
3895 case TCPOPT_EOL:
3896 return NULL;
3897 case TCPOPT_NOP:
3898 length--;
3899 continue;
3900 default:
3901 opsize = *ptr++;
3902 if (opsize < 2 || opsize > length)
3903 return NULL;
3904 if (opcode == TCPOPT_MD5SIG)
3905 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3906 }
3907 ptr += opsize - 2;
3908 length -= opsize;
3909 }
3910 return NULL;
3911}
3912EXPORT_SYMBOL(tcp_parse_md5sig_option);
3913#endif
3914
3915/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3916 *
3917 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3918 * it can pass through stack. So, the following predicate verifies that
3919 * this segment is not used for anything but congestion avoidance or
3920 * fast retransmit. Moreover, we even are able to eliminate most of such
3921 * second order effects, if we apply some small "replay" window (~RTO)
3922 * to timestamp space.
3923 *
3924 * All these measures still do not guarantee that we reject wrapped ACKs
3925 * on networks with high bandwidth, when sequence space is recycled fastly,
3926 * but it guarantees that such events will be very rare and do not affect
3927 * connection seriously. This doesn't look nice, but alas, PAWS is really
3928 * buggy extension.
3929 *
3930 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3931 * states that events when retransmit arrives after original data are rare.
3932 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3933 * the biggest problem on large power networks even with minor reordering.
3934 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3935 * up to bandwidth of 18Gigabit/sec. 8) ]
3936 */
3937
3938static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3939{
3940 const struct tcp_sock *tp = tcp_sk(sk);
3941 const struct tcphdr *th = tcp_hdr(skb);
3942 u32 seq = TCP_SKB_CB(skb)->seq;
3943 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3944
3945 return (/* 1. Pure ACK with correct sequence number. */
3946 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3947
3948 /* 2. ... and duplicate ACK. */
3949 ack == tp->snd_una &&
3950
3951 /* 3. ... and does not update window. */
3952 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3953
3954 /* 4. ... and sits in replay window. */
3955 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3956}
3957
3958static inline bool tcp_paws_discard(const struct sock *sk,
3959 const struct sk_buff *skb)
3960{
3961 const struct tcp_sock *tp = tcp_sk(sk);
3962
3963 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3964 !tcp_disordered_ack(sk, skb);
3965}
3966
3967/* Check segment sequence number for validity.
3968 *
3969 * Segment controls are considered valid, if the segment
3970 * fits to the window after truncation to the window. Acceptability
3971 * of data (and SYN, FIN, of course) is checked separately.
3972 * See tcp_data_queue(), for example.
3973 *
3974 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3975 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3976 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3977 * (borrowed from freebsd)
3978 */
3979
3980static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3981{
3982 return !before(end_seq, tp->rcv_wup) &&
3983 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3984}
3985
3986/* When we get a reset we do this. */
3987void tcp_reset(struct sock *sk)
3988{
3989 /* We want the right error as BSD sees it (and indeed as we do). */
3990 switch (sk->sk_state) {
3991 case TCP_SYN_SENT:
3992 sk->sk_err = ECONNREFUSED;
3993 break;
3994 case TCP_CLOSE_WAIT:
3995 sk->sk_err = EPIPE;
3996 break;
3997 case TCP_CLOSE:
3998 return;
3999 default:
4000 sk->sk_err = ECONNRESET;
4001 }
4002 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4003 smp_wmb();
4004
4005 if (!sock_flag(sk, SOCK_DEAD))
4006 sk->sk_error_report(sk);
4007
4008 tcp_done(sk);
4009}
4010
4011/*
4012 * Process the FIN bit. This now behaves as it is supposed to work
4013 * and the FIN takes effect when it is validly part of sequence
4014 * space. Not before when we get holes.
4015 *
4016 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4017 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4018 * TIME-WAIT)
4019 *
4020 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4021 * close and we go into CLOSING (and later onto TIME-WAIT)
4022 *
4023 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4024 */
4025static void tcp_fin(struct sock *sk)
4026{
4027 struct tcp_sock *tp = tcp_sk(sk);
4028
4029 inet_csk_schedule_ack(sk);
4030
4031 sk->sk_shutdown |= RCV_SHUTDOWN;
4032 sock_set_flag(sk, SOCK_DONE);
4033
4034 switch (sk->sk_state) {
4035 case TCP_SYN_RECV:
4036 case TCP_ESTABLISHED:
4037 /* Move to CLOSE_WAIT */
4038 tcp_set_state(sk, TCP_CLOSE_WAIT);
4039 inet_csk(sk)->icsk_ack.pingpong = 1;
4040 break;
4041
4042 case TCP_CLOSE_WAIT:
4043 case TCP_CLOSING:
4044 /* Received a retransmission of the FIN, do
4045 * nothing.
4046 */
4047 break;
4048 case TCP_LAST_ACK:
4049 /* RFC793: Remain in the LAST-ACK state. */
4050 break;
4051
4052 case TCP_FIN_WAIT1:
4053 /* This case occurs when a simultaneous close
4054 * happens, we must ack the received FIN and
4055 * enter the CLOSING state.
4056 */
4057 tcp_send_ack(sk);
4058 tcp_set_state(sk, TCP_CLOSING);
4059 break;
4060 case TCP_FIN_WAIT2:
4061 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4062 tcp_send_ack(sk);
4063 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4064 break;
4065 default:
4066 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4067 * cases we should never reach this piece of code.
4068 */
4069 pr_err("%s: Impossible, sk->sk_state=%d\n",
4070 __func__, sk->sk_state);
4071 break;
4072 }
4073
4074 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4075 * Probably, we should reset in this case. For now drop them.
4076 */
4077 __skb_queue_purge(&tp->out_of_order_queue);
4078 if (tcp_is_sack(tp))
4079 tcp_sack_reset(&tp->rx_opt);
4080 sk_mem_reclaim(sk);
4081
4082 if (!sock_flag(sk, SOCK_DEAD)) {
4083 sk->sk_state_change(sk);
4084
4085 /* Do not send POLL_HUP for half duplex close. */
4086 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4087 sk->sk_state == TCP_CLOSE)
4088 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4089 else
4090 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4091 }
4092}
4093
4094static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4095 u32 end_seq)
4096{
4097 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4098 if (before(seq, sp->start_seq))
4099 sp->start_seq = seq;
4100 if (after(end_seq, sp->end_seq))
4101 sp->end_seq = end_seq;
4102 return true;
4103 }
4104 return false;
4105}
4106
4107static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4108{
4109 struct tcp_sock *tp = tcp_sk(sk);
4110
4111 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4112 int mib_idx;
4113
4114 if (before(seq, tp->rcv_nxt))
4115 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4116 else
4117 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4118
4119 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4120
4121 tp->rx_opt.dsack = 1;
4122 tp->duplicate_sack[0].start_seq = seq;
4123 tp->duplicate_sack[0].end_seq = end_seq;
4124 }
4125}
4126
4127static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4128{
4129 struct tcp_sock *tp = tcp_sk(sk);
4130
4131 if (!tp->rx_opt.dsack)
4132 tcp_dsack_set(sk, seq, end_seq);
4133 else
4134 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4135}
4136
4137static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4138{
4139 struct tcp_sock *tp = tcp_sk(sk);
4140
4141 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4142 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4143 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4144 tcp_enter_quickack_mode(sk);
4145
4146 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4147 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4148
4149 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4150 end_seq = tp->rcv_nxt;
4151 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4152 }
4153 }
4154
4155 tcp_send_ack(sk);
4156}
4157
4158/* These routines update the SACK block as out-of-order packets arrive or
4159 * in-order packets close up the sequence space.
4160 */
4161static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4162{
4163 int this_sack;
4164 struct tcp_sack_block *sp = &tp->selective_acks[0];
4165 struct tcp_sack_block *swalk = sp + 1;
4166
4167 /* See if the recent change to the first SACK eats into
4168 * or hits the sequence space of other SACK blocks, if so coalesce.
4169 */
4170 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4171 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4172 int i;
4173
4174 /* Zap SWALK, by moving every further SACK up by one slot.
4175 * Decrease num_sacks.
4176 */
4177 tp->rx_opt.num_sacks--;
4178 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4179 sp[i] = sp[i + 1];
4180 continue;
4181 }
4182 this_sack++, swalk++;
4183 }
4184}
4185
4186static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4187{
4188 struct tcp_sock *tp = tcp_sk(sk);
4189 struct tcp_sack_block *sp = &tp->selective_acks[0];
4190 int cur_sacks = tp->rx_opt.num_sacks;
4191 int this_sack;
4192
4193 if (!cur_sacks)
4194 goto new_sack;
4195
4196 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4197 if (tcp_sack_extend(sp, seq, end_seq)) {
4198 /* Rotate this_sack to the first one. */
4199 for (; this_sack > 0; this_sack--, sp--)
4200 swap(*sp, *(sp - 1));
4201 if (cur_sacks > 1)
4202 tcp_sack_maybe_coalesce(tp);
4203 return;
4204 }
4205 }
4206
4207 /* Could not find an adjacent existing SACK, build a new one,
4208 * put it at the front, and shift everyone else down. We
4209 * always know there is at least one SACK present already here.
4210 *
4211 * If the sack array is full, forget about the last one.
4212 */
4213 if (this_sack >= TCP_NUM_SACKS) {
4214 this_sack--;
4215 tp->rx_opt.num_sacks--;
4216 sp--;
4217 }
4218 for (; this_sack > 0; this_sack--, sp--)
4219 *sp = *(sp - 1);
4220
4221new_sack:
4222 /* Build the new head SACK, and we're done. */
4223 sp->start_seq = seq;
4224 sp->end_seq = end_seq;
4225 tp->rx_opt.num_sacks++;
4226}
4227
4228/* RCV.NXT advances, some SACKs should be eaten. */
4229
4230static void tcp_sack_remove(struct tcp_sock *tp)
4231{
4232 struct tcp_sack_block *sp = &tp->selective_acks[0];
4233 int num_sacks = tp->rx_opt.num_sacks;
4234 int this_sack;
4235
4236 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4237 if (skb_queue_empty(&tp->out_of_order_queue)) {
4238 tp->rx_opt.num_sacks = 0;
4239 return;
4240 }
4241
4242 for (this_sack = 0; this_sack < num_sacks;) {
4243 /* Check if the start of the sack is covered by RCV.NXT. */
4244 if (!before(tp->rcv_nxt, sp->start_seq)) {
4245 int i;
4246
4247 /* RCV.NXT must cover all the block! */
4248 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4249
4250 /* Zap this SACK, by moving forward any other SACKS. */
4251 for (i = this_sack+1; i < num_sacks; i++)
4252 tp->selective_acks[i-1] = tp->selective_acks[i];
4253 num_sacks--;
4254 continue;
4255 }
4256 this_sack++;
4257 sp++;
4258 }
4259 tp->rx_opt.num_sacks = num_sacks;
4260}
4261
4262/**
4263 * tcp_try_coalesce - try to merge skb to prior one
4264 * @sk: socket
4265 * @to: prior buffer
4266 * @from: buffer to add in queue
4267 * @fragstolen: pointer to boolean
4268 *
4269 * Before queueing skb @from after @to, try to merge them
4270 * to reduce overall memory use and queue lengths, if cost is small.
4271 * Packets in ofo or receive queues can stay a long time.
4272 * Better try to coalesce them right now to avoid future collapses.
4273 * Returns true if caller should free @from instead of queueing it
4274 */
4275static bool tcp_try_coalesce(struct sock *sk,
4276 struct sk_buff *to,
4277 struct sk_buff *from,
4278 bool *fragstolen)
4279{
4280 int delta;
4281
4282 *fragstolen = false;
4283
4284 /* Its possible this segment overlaps with prior segment in queue */
4285 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4286 return false;
4287
4288 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4289 return false;
4290
4291 atomic_add(delta, &sk->sk_rmem_alloc);
4292 sk_mem_charge(sk, delta);
4293 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4294 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4295 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4296 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4297 return true;
4298}
4299
4300/* This one checks to see if we can put data from the
4301 * out_of_order queue into the receive_queue.
4302 */
4303static void tcp_ofo_queue(struct sock *sk)
4304{
4305 struct tcp_sock *tp = tcp_sk(sk);
4306 __u32 dsack_high = tp->rcv_nxt;
4307 struct sk_buff *skb, *tail;
4308 bool fragstolen, eaten;
4309
4310 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4311 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4312 break;
4313
4314 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4315 __u32 dsack = dsack_high;
4316 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4317 dsack_high = TCP_SKB_CB(skb)->end_seq;
4318 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4319 }
4320
4321 __skb_unlink(skb, &tp->out_of_order_queue);
4322 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4323 SOCK_DEBUG(sk, "ofo packet was already received\n");
4324 __kfree_skb(skb);
4325 continue;
4326 }
4327 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4328 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4329 TCP_SKB_CB(skb)->end_seq);
4330
4331 tail = skb_peek_tail(&sk->sk_receive_queue);
4332 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4333 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4334 if (!eaten)
4335 __skb_queue_tail(&sk->sk_receive_queue, skb);
4336 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4337 tcp_fin(sk);
4338 if (eaten)
4339 kfree_skb_partial(skb, fragstolen);
4340 }
4341}
4342
4343static bool tcp_prune_ofo_queue(struct sock *sk);
4344static int tcp_prune_queue(struct sock *sk);
4345
4346static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4347 unsigned int size)
4348{
4349 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4350 !sk_rmem_schedule(sk, skb, size)) {
4351
4352 if (tcp_prune_queue(sk) < 0)
4353 return -1;
4354
4355 if (!sk_rmem_schedule(sk, skb, size)) {
4356 if (!tcp_prune_ofo_queue(sk))
4357 return -1;
4358
4359 if (!sk_rmem_schedule(sk, skb, size))
4360 return -1;
4361 }
4362 }
4363 return 0;
4364}
4365
4366static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4367{
4368 struct tcp_sock *tp = tcp_sk(sk);
4369 struct sk_buff *skb1;
4370 u32 seq, end_seq;
4371
4372 tcp_ecn_check_ce(tp, skb);
4373
4374 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4375 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4376 __kfree_skb(skb);
4377 return;
4378 }
4379
4380 /* Disable header prediction. */
4381 tp->pred_flags = 0;
4382 inet_csk_schedule_ack(sk);
4383
4384 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4385 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4386 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4387
4388 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4389 if (!skb1) {
4390 /* Initial out of order segment, build 1 SACK. */
4391 if (tcp_is_sack(tp)) {
4392 tp->rx_opt.num_sacks = 1;
4393 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4394 tp->selective_acks[0].end_seq =
4395 TCP_SKB_CB(skb)->end_seq;
4396 }
4397 __skb_queue_head(&tp->out_of_order_queue, skb);
4398 goto end;
4399 }
4400
4401 seq = TCP_SKB_CB(skb)->seq;
4402 end_seq = TCP_SKB_CB(skb)->end_seq;
4403
4404 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4405 bool fragstolen;
4406
4407 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4408 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4409 } else {
4410 tcp_grow_window(sk, skb);
4411 kfree_skb_partial(skb, fragstolen);
4412 skb = NULL;
4413 }
4414
4415 if (!tp->rx_opt.num_sacks ||
4416 tp->selective_acks[0].end_seq != seq)
4417 goto add_sack;
4418
4419 /* Common case: data arrive in order after hole. */
4420 tp->selective_acks[0].end_seq = end_seq;
4421 goto end;
4422 }
4423
4424 /* Find place to insert this segment. */
4425 while (1) {
4426 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4427 break;
4428 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4429 skb1 = NULL;
4430 break;
4431 }
4432 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4433 }
4434
4435 /* Do skb overlap to previous one? */
4436 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4437 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4438 /* All the bits are present. Drop. */
4439 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4440 __kfree_skb(skb);
4441 skb = NULL;
4442 tcp_dsack_set(sk, seq, end_seq);
4443 goto add_sack;
4444 }
4445 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4446 /* Partial overlap. */
4447 tcp_dsack_set(sk, seq,
4448 TCP_SKB_CB(skb1)->end_seq);
4449 } else {
4450 if (skb_queue_is_first(&tp->out_of_order_queue,
4451 skb1))
4452 skb1 = NULL;
4453 else
4454 skb1 = skb_queue_prev(
4455 &tp->out_of_order_queue,
4456 skb1);
4457 }
4458 }
4459 if (!skb1)
4460 __skb_queue_head(&tp->out_of_order_queue, skb);
4461 else
4462 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4463
4464 /* And clean segments covered by new one as whole. */
4465 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4466 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4467
4468 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4469 break;
4470 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4471 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4472 end_seq);
4473 break;
4474 }
4475 __skb_unlink(skb1, &tp->out_of_order_queue);
4476 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4477 TCP_SKB_CB(skb1)->end_seq);
4478 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4479 __kfree_skb(skb1);
4480 }
4481
4482add_sack:
4483 if (tcp_is_sack(tp))
4484 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4485end:
4486 if (skb) {
4487 tcp_grow_window(sk, skb);
4488 skb_set_owner_r(skb, sk);
4489 }
4490}
4491
4492static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4493 bool *fragstolen)
4494{
4495 int eaten;
4496 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4497
4498 __skb_pull(skb, hdrlen);
4499 eaten = (tail &&
4500 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4501 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4502 if (!eaten) {
4503 __skb_queue_tail(&sk->sk_receive_queue, skb);
4504 skb_set_owner_r(skb, sk);
4505 }
4506 return eaten;
4507}
4508
4509int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4510{
4511 struct sk_buff *skb;
4512 int err = -ENOMEM;
4513 int data_len = 0;
4514 bool fragstolen;
4515
4516 if (size == 0)
4517 return 0;
4518
4519 if (size > PAGE_SIZE) {
4520 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4521
4522 data_len = npages << PAGE_SHIFT;
4523 size = data_len + (size & ~PAGE_MASK);
4524 }
4525 skb = alloc_skb_with_frags(size - data_len, data_len,
4526 PAGE_ALLOC_COSTLY_ORDER,
4527 &err, sk->sk_allocation);
4528 if (!skb)
4529 goto err;
4530
4531 skb_put(skb, size - data_len);
4532 skb->data_len = data_len;
4533 skb->len = size;
4534
4535 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4536 goto err_free;
4537
4538 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4539 if (err)
4540 goto err_free;
4541
4542 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4543 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4544 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4545
4546 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4547 WARN_ON_ONCE(fragstolen); /* should not happen */
4548 __kfree_skb(skb);
4549 }
4550 return size;
4551
4552err_free:
4553 kfree_skb(skb);
4554err:
4555 return err;
4556
4557}
4558
4559static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4560{
4561 struct tcp_sock *tp = tcp_sk(sk);
4562 int eaten = -1;
4563 bool fragstolen = false;
4564
4565 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4566 goto drop;
4567
4568 skb_dst_drop(skb);
4569 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4570
4571 tcp_ecn_accept_cwr(tp, skb);
4572
4573 tp->rx_opt.dsack = 0;
4574
4575 /* Queue data for delivery to the user.
4576 * Packets in sequence go to the receive queue.
4577 * Out of sequence packets to the out_of_order_queue.
4578 */
4579 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4580 if (tcp_receive_window(tp) == 0)
4581 goto out_of_window;
4582
4583 /* Ok. In sequence. In window. */
4584 if (tp->ucopy.task == current &&
4585 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4586 sock_owned_by_user(sk) && !tp->urg_data) {
4587 int chunk = min_t(unsigned int, skb->len,
4588 tp->ucopy.len);
4589
4590 __set_current_state(TASK_RUNNING);
4591
4592 local_bh_enable();
4593 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4594 tp->ucopy.len -= chunk;
4595 tp->copied_seq += chunk;
4596 eaten = (chunk == skb->len);
4597 tcp_rcv_space_adjust(sk);
4598 }
4599 local_bh_disable();
4600 }
4601
4602 if (eaten <= 0) {
4603queue_and_out:
4604 if (eaten < 0) {
4605 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4606 sk_forced_mem_schedule(sk, skb->truesize);
4607 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4608 goto drop;
4609 }
4610 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4611 }
4612 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4613 if (skb->len)
4614 tcp_event_data_recv(sk, skb);
4615 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4616 tcp_fin(sk);
4617
4618 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4619 tcp_ofo_queue(sk);
4620
4621 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4622 * gap in queue is filled.
4623 */
4624 if (skb_queue_empty(&tp->out_of_order_queue))
4625 inet_csk(sk)->icsk_ack.pingpong = 0;
4626 }
4627
4628 if (tp->rx_opt.num_sacks)
4629 tcp_sack_remove(tp);
4630
4631 tcp_fast_path_check(sk);
4632
4633 if (eaten > 0)
4634 kfree_skb_partial(skb, fragstolen);
4635 if (!sock_flag(sk, SOCK_DEAD))
4636 sk->sk_data_ready(sk);
4637 return;
4638 }
4639
4640 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4641 /* A retransmit, 2nd most common case. Force an immediate ack. */
4642 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4643 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4644
4645out_of_window:
4646 tcp_enter_quickack_mode(sk);
4647 inet_csk_schedule_ack(sk);
4648drop:
4649 __kfree_skb(skb);
4650 return;
4651 }
4652
4653 /* Out of window. F.e. zero window probe. */
4654 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4655 goto out_of_window;
4656
4657 tcp_enter_quickack_mode(sk);
4658
4659 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4660 /* Partial packet, seq < rcv_next < end_seq */
4661 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4662 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4663 TCP_SKB_CB(skb)->end_seq);
4664
4665 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4666
4667 /* If window is closed, drop tail of packet. But after
4668 * remembering D-SACK for its head made in previous line.
4669 */
4670 if (!tcp_receive_window(tp))
4671 goto out_of_window;
4672 goto queue_and_out;
4673 }
4674
4675 tcp_data_queue_ofo(sk, skb);
4676}
4677
4678static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4679 struct sk_buff_head *list)
4680{
4681 struct sk_buff *next = NULL;
4682
4683 if (!skb_queue_is_last(list, skb))
4684 next = skb_queue_next(list, skb);
4685
4686 __skb_unlink(skb, list);
4687 __kfree_skb(skb);
4688 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4689
4690 return next;
4691}
4692
4693/* Collapse contiguous sequence of skbs head..tail with
4694 * sequence numbers start..end.
4695 *
4696 * If tail is NULL, this means until the end of the list.
4697 *
4698 * Segments with FIN/SYN are not collapsed (only because this
4699 * simplifies code)
4700 */
4701static void
4702tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4703 struct sk_buff *head, struct sk_buff *tail,
4704 u32 start, u32 end)
4705{
4706 struct sk_buff *skb, *n;
4707 bool end_of_skbs;
4708
4709 /* First, check that queue is collapsible and find
4710 * the point where collapsing can be useful. */
4711 skb = head;
4712restart:
4713 end_of_skbs = true;
4714 skb_queue_walk_from_safe(list, skb, n) {
4715 if (skb == tail)
4716 break;
4717 /* No new bits? It is possible on ofo queue. */
4718 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4719 skb = tcp_collapse_one(sk, skb, list);
4720 if (!skb)
4721 break;
4722 goto restart;
4723 }
4724
4725 /* The first skb to collapse is:
4726 * - not SYN/FIN and
4727 * - bloated or contains data before "start" or
4728 * overlaps to the next one.
4729 */
4730 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4731 (tcp_win_from_space(skb->truesize) > skb->len ||
4732 before(TCP_SKB_CB(skb)->seq, start))) {
4733 end_of_skbs = false;
4734 break;
4735 }
4736
4737 if (!skb_queue_is_last(list, skb)) {
4738 struct sk_buff *next = skb_queue_next(list, skb);
4739 if (next != tail &&
4740 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4741 end_of_skbs = false;
4742 break;
4743 }
4744 }
4745
4746 /* Decided to skip this, advance start seq. */
4747 start = TCP_SKB_CB(skb)->end_seq;
4748 }
4749 if (end_of_skbs ||
4750 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4751 return;
4752
4753 while (before(start, end)) {
4754 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4755 struct sk_buff *nskb;
4756
4757 nskb = alloc_skb(copy, GFP_ATOMIC);
4758 if (!nskb)
4759 return;
4760
4761 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4762 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4763 __skb_queue_before(list, skb, nskb);
4764 skb_set_owner_r(nskb, sk);
4765
4766 /* Copy data, releasing collapsed skbs. */
4767 while (copy > 0) {
4768 int offset = start - TCP_SKB_CB(skb)->seq;
4769 int size = TCP_SKB_CB(skb)->end_seq - start;
4770
4771 BUG_ON(offset < 0);
4772 if (size > 0) {
4773 size = min(copy, size);
4774 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4775 BUG();
4776 TCP_SKB_CB(nskb)->end_seq += size;
4777 copy -= size;
4778 start += size;
4779 }
4780 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4781 skb = tcp_collapse_one(sk, skb, list);
4782 if (!skb ||
4783 skb == tail ||
4784 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4785 return;
4786 }
4787 }
4788 }
4789}
4790
4791/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4792 * and tcp_collapse() them until all the queue is collapsed.
4793 */
4794static void tcp_collapse_ofo_queue(struct sock *sk)
4795{
4796 struct tcp_sock *tp = tcp_sk(sk);
4797 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4798 struct sk_buff *head;
4799 u32 start, end;
4800
4801 if (!skb)
4802 return;
4803
4804 start = TCP_SKB_CB(skb)->seq;
4805 end = TCP_SKB_CB(skb)->end_seq;
4806 head = skb;
4807
4808 for (;;) {
4809 struct sk_buff *next = NULL;
4810
4811 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4812 next = skb_queue_next(&tp->out_of_order_queue, skb);
4813 skb = next;
4814
4815 /* Segment is terminated when we see gap or when
4816 * we are at the end of all the queue. */
4817 if (!skb ||
4818 after(TCP_SKB_CB(skb)->seq, end) ||
4819 before(TCP_SKB_CB(skb)->end_seq, start)) {
4820 tcp_collapse(sk, &tp->out_of_order_queue,
4821 head, skb, start, end);
4822 head = skb;
4823 if (!skb)
4824 break;
4825 /* Start new segment */
4826 start = TCP_SKB_CB(skb)->seq;
4827 end = TCP_SKB_CB(skb)->end_seq;
4828 } else {
4829 if (before(TCP_SKB_CB(skb)->seq, start))
4830 start = TCP_SKB_CB(skb)->seq;
4831 if (after(TCP_SKB_CB(skb)->end_seq, end))
4832 end = TCP_SKB_CB(skb)->end_seq;
4833 }
4834 }
4835}
4836
4837/*
4838 * Purge the out-of-order queue.
4839 * Return true if queue was pruned.
4840 */
4841static bool tcp_prune_ofo_queue(struct sock *sk)
4842{
4843 struct tcp_sock *tp = tcp_sk(sk);
4844 bool res = false;
4845
4846 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4847 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4848 __skb_queue_purge(&tp->out_of_order_queue);
4849
4850 /* Reset SACK state. A conforming SACK implementation will
4851 * do the same at a timeout based retransmit. When a connection
4852 * is in a sad state like this, we care only about integrity
4853 * of the connection not performance.
4854 */
4855 if (tp->rx_opt.sack_ok)
4856 tcp_sack_reset(&tp->rx_opt);
4857 sk_mem_reclaim(sk);
4858 res = true;
4859 }
4860 return res;
4861}
4862
4863/* Reduce allocated memory if we can, trying to get
4864 * the socket within its memory limits again.
4865 *
4866 * Return less than zero if we should start dropping frames
4867 * until the socket owning process reads some of the data
4868 * to stabilize the situation.
4869 */
4870static int tcp_prune_queue(struct sock *sk)
4871{
4872 struct tcp_sock *tp = tcp_sk(sk);
4873
4874 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4875
4876 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4877
4878 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4879 tcp_clamp_window(sk);
4880 else if (tcp_under_memory_pressure(sk))
4881 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4882
4883 tcp_collapse_ofo_queue(sk);
4884 if (!skb_queue_empty(&sk->sk_receive_queue))
4885 tcp_collapse(sk, &sk->sk_receive_queue,
4886 skb_peek(&sk->sk_receive_queue),
4887 NULL,
4888 tp->copied_seq, tp->rcv_nxt);
4889 sk_mem_reclaim(sk);
4890
4891 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4892 return 0;
4893
4894 /* Collapsing did not help, destructive actions follow.
4895 * This must not ever occur. */
4896
4897 tcp_prune_ofo_queue(sk);
4898
4899 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4900 return 0;
4901
4902 /* If we are really being abused, tell the caller to silently
4903 * drop receive data on the floor. It will get retransmitted
4904 * and hopefully then we'll have sufficient space.
4905 */
4906 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4907
4908 /* Massive buffer overcommit. */
4909 tp->pred_flags = 0;
4910 return -1;
4911}
4912
4913static bool tcp_should_expand_sndbuf(const struct sock *sk)
4914{
4915 const struct tcp_sock *tp = tcp_sk(sk);
4916
4917 /* If the user specified a specific send buffer setting, do
4918 * not modify it.
4919 */
4920 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4921 return false;
4922
4923 /* If we are under global TCP memory pressure, do not expand. */
4924 if (tcp_under_memory_pressure(sk))
4925 return false;
4926
4927 /* If we are under soft global TCP memory pressure, do not expand. */
4928 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4929 return false;
4930
4931 /* If we filled the congestion window, do not expand. */
4932 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4933 return false;
4934
4935 return true;
4936}
4937
4938/* When incoming ACK allowed to free some skb from write_queue,
4939 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4940 * on the exit from tcp input handler.
4941 *
4942 * PROBLEM: sndbuf expansion does not work well with largesend.
4943 */
4944static void tcp_new_space(struct sock *sk)
4945{
4946 struct tcp_sock *tp = tcp_sk(sk);
4947
4948 if (tcp_should_expand_sndbuf(sk)) {
4949 tcp_sndbuf_expand(sk);
4950 tp->snd_cwnd_stamp = tcp_time_stamp;
4951 }
4952
4953 sk->sk_write_space(sk);
4954}
4955
4956static void tcp_check_space(struct sock *sk)
4957{
4958 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4959 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4960 /* pairs with tcp_poll() */
4961 smp_mb__after_atomic();
4962 if (sk->sk_socket &&
4963 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4964 tcp_new_space(sk);
4965 }
4966}
4967
4968static inline void tcp_data_snd_check(struct sock *sk)
4969{
4970 tcp_push_pending_frames(sk);
4971 tcp_check_space(sk);
4972}
4973
4974/*
4975 * Check if sending an ack is needed.
4976 */
4977static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4978{
4979 struct tcp_sock *tp = tcp_sk(sk);
4980
4981 /* More than one full frame received... */
4982 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4983 /* ... and right edge of window advances far enough.
4984 * (tcp_recvmsg() will send ACK otherwise). Or...
4985 */
4986 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4987 /* We ACK each frame or... */
4988 tcp_in_quickack_mode(sk) ||
4989 /* We have out of order data. */
4990 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4991 /* Then ack it now */
4992 tcp_send_ack(sk);
4993 } else {
4994 /* Else, send delayed ack. */
4995 tcp_send_delayed_ack(sk);
4996 }
4997}
4998
4999static inline void tcp_ack_snd_check(struct sock *sk)
5000{
5001 if (!inet_csk_ack_scheduled(sk)) {
5002 /* We sent a data segment already. */
5003 return;
5004 }
5005 __tcp_ack_snd_check(sk, 1);
5006}
5007
5008/*
5009 * This routine is only called when we have urgent data
5010 * signaled. Its the 'slow' part of tcp_urg. It could be
5011 * moved inline now as tcp_urg is only called from one
5012 * place. We handle URGent data wrong. We have to - as
5013 * BSD still doesn't use the correction from RFC961.
5014 * For 1003.1g we should support a new option TCP_STDURG to permit
5015 * either form (or just set the sysctl tcp_stdurg).
5016 */
5017
5018static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5019{
5020 struct tcp_sock *tp = tcp_sk(sk);
5021 u32 ptr = ntohs(th->urg_ptr);
5022
5023 if (ptr && !sysctl_tcp_stdurg)
5024 ptr--;
5025 ptr += ntohl(th->seq);
5026
5027 /* Ignore urgent data that we've already seen and read. */
5028 if (after(tp->copied_seq, ptr))
5029 return;
5030
5031 /* Do not replay urg ptr.
5032 *
5033 * NOTE: interesting situation not covered by specs.
5034 * Misbehaving sender may send urg ptr, pointing to segment,
5035 * which we already have in ofo queue. We are not able to fetch
5036 * such data and will stay in TCP_URG_NOTYET until will be eaten
5037 * by recvmsg(). Seems, we are not obliged to handle such wicked
5038 * situations. But it is worth to think about possibility of some
5039 * DoSes using some hypothetical application level deadlock.
5040 */
5041 if (before(ptr, tp->rcv_nxt))
5042 return;
5043
5044 /* Do we already have a newer (or duplicate) urgent pointer? */
5045 if (tp->urg_data && !after(ptr, tp->urg_seq))
5046 return;
5047
5048 /* Tell the world about our new urgent pointer. */
5049 sk_send_sigurg(sk);
5050
5051 /* We may be adding urgent data when the last byte read was
5052 * urgent. To do this requires some care. We cannot just ignore
5053 * tp->copied_seq since we would read the last urgent byte again
5054 * as data, nor can we alter copied_seq until this data arrives
5055 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5056 *
5057 * NOTE. Double Dutch. Rendering to plain English: author of comment
5058 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5059 * and expect that both A and B disappear from stream. This is _wrong_.
5060 * Though this happens in BSD with high probability, this is occasional.
5061 * Any application relying on this is buggy. Note also, that fix "works"
5062 * only in this artificial test. Insert some normal data between A and B and we will
5063 * decline of BSD again. Verdict: it is better to remove to trap
5064 * buggy users.
5065 */
5066 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5067 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5068 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5069 tp->copied_seq++;
5070 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5071 __skb_unlink(skb, &sk->sk_receive_queue);
5072 __kfree_skb(skb);
5073 }
5074 }
5075
5076 tp->urg_data = TCP_URG_NOTYET;
5077 tp->urg_seq = ptr;
5078
5079 /* Disable header prediction. */
5080 tp->pred_flags = 0;
5081}
5082
5083/* This is the 'fast' part of urgent handling. */
5084static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5085{
5086 struct tcp_sock *tp = tcp_sk(sk);
5087
5088 /* Check if we get a new urgent pointer - normally not. */
5089 if (th->urg)
5090 tcp_check_urg(sk, th);
5091
5092 /* Do we wait for any urgent data? - normally not... */
5093 if (tp->urg_data == TCP_URG_NOTYET) {
5094 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5095 th->syn;
5096
5097 /* Is the urgent pointer pointing into this packet? */
5098 if (ptr < skb->len) {
5099 u8 tmp;
5100 if (skb_copy_bits(skb, ptr, &tmp, 1))
5101 BUG();
5102 tp->urg_data = TCP_URG_VALID | tmp;
5103 if (!sock_flag(sk, SOCK_DEAD))
5104 sk->sk_data_ready(sk);
5105 }
5106 }
5107}
5108
5109static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5110{
5111 struct tcp_sock *tp = tcp_sk(sk);
5112 int chunk = skb->len - hlen;
5113 int err;
5114
5115 local_bh_enable();
5116 if (skb_csum_unnecessary(skb))
5117 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5118 else
5119 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5120
5121 if (!err) {
5122 tp->ucopy.len -= chunk;
5123 tp->copied_seq += chunk;
5124 tcp_rcv_space_adjust(sk);
5125 }
5126
5127 local_bh_disable();
5128 return err;
5129}
5130
5131static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5132 struct sk_buff *skb)
5133{
5134 __sum16 result;
5135
5136 if (sock_owned_by_user(sk)) {
5137 local_bh_enable();
5138 result = __tcp_checksum_complete(skb);
5139 local_bh_disable();
5140 } else {
5141 result = __tcp_checksum_complete(skb);
5142 }
5143 return result;
5144}
5145
5146static inline bool tcp_checksum_complete_user(struct sock *sk,
5147 struct sk_buff *skb)
5148{
5149 return !skb_csum_unnecessary(skb) &&
5150 __tcp_checksum_complete_user(sk, skb);
5151}
5152
5153/* Does PAWS and seqno based validation of an incoming segment, flags will
5154 * play significant role here.
5155 */
5156static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5157 const struct tcphdr *th, int syn_inerr)
5158{
5159 struct tcp_sock *tp = tcp_sk(sk);
5160
5161 /* RFC1323: H1. Apply PAWS check first. */
5162 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5163 tcp_paws_discard(sk, skb)) {
5164 if (!th->rst) {
5165 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5166 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5167 LINUX_MIB_TCPACKSKIPPEDPAWS,
5168 &tp->last_oow_ack_time))
5169 tcp_send_dupack(sk, skb);
5170 goto discard;
5171 }
5172 /* Reset is accepted even if it did not pass PAWS. */
5173 }
5174
5175 /* Step 1: check sequence number */
5176 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5177 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5178 * (RST) segments are validated by checking their SEQ-fields."
5179 * And page 69: "If an incoming segment is not acceptable,
5180 * an acknowledgment should be sent in reply (unless the RST
5181 * bit is set, if so drop the segment and return)".
5182 */
5183 if (!th->rst) {
5184 if (th->syn)
5185 goto syn_challenge;
5186 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5187 LINUX_MIB_TCPACKSKIPPEDSEQ,
5188 &tp->last_oow_ack_time))
5189 tcp_send_dupack(sk, skb);
5190 }
5191 goto discard;
5192 }
5193
5194 /* Step 2: check RST bit */
5195 if (th->rst) {
5196 /* RFC 5961 3.2 :
5197 * If sequence number exactly matches RCV.NXT, then
5198 * RESET the connection
5199 * else
5200 * Send a challenge ACK
5201 */
5202 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5203 tcp_reset(sk);
5204 else
5205 tcp_send_challenge_ack(sk, skb);
5206 goto discard;
5207 }
5208
5209 /* step 3: check security and precedence [ignored] */
5210
5211 /* step 4: Check for a SYN
5212 * RFC 5961 4.2 : Send a challenge ack
5213 */
5214 if (th->syn) {
5215syn_challenge:
5216 if (syn_inerr)
5217 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5218 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5219 tcp_send_challenge_ack(sk, skb);
5220 goto discard;
5221 }
5222
5223 return true;
5224
5225discard:
5226 __kfree_skb(skb);
5227 return false;
5228}
5229
5230/*
5231 * TCP receive function for the ESTABLISHED state.
5232 *
5233 * It is split into a fast path and a slow path. The fast path is
5234 * disabled when:
5235 * - A zero window was announced from us - zero window probing
5236 * is only handled properly in the slow path.
5237 * - Out of order segments arrived.
5238 * - Urgent data is expected.
5239 * - There is no buffer space left
5240 * - Unexpected TCP flags/window values/header lengths are received
5241 * (detected by checking the TCP header against pred_flags)
5242 * - Data is sent in both directions. Fast path only supports pure senders
5243 * or pure receivers (this means either the sequence number or the ack
5244 * value must stay constant)
5245 * - Unexpected TCP option.
5246 *
5247 * When these conditions are not satisfied it drops into a standard
5248 * receive procedure patterned after RFC793 to handle all cases.
5249 * The first three cases are guaranteed by proper pred_flags setting,
5250 * the rest is checked inline. Fast processing is turned on in
5251 * tcp_data_queue when everything is OK.
5252 */
5253void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5254 const struct tcphdr *th, unsigned int len)
5255{
5256 struct tcp_sock *tp = tcp_sk(sk);
5257
5258 if (unlikely(!sk->sk_rx_dst))
5259 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5260 /*
5261 * Header prediction.
5262 * The code loosely follows the one in the famous
5263 * "30 instruction TCP receive" Van Jacobson mail.
5264 *
5265 * Van's trick is to deposit buffers into socket queue
5266 * on a device interrupt, to call tcp_recv function
5267 * on the receive process context and checksum and copy
5268 * the buffer to user space. smart...
5269 *
5270 * Our current scheme is not silly either but we take the
5271 * extra cost of the net_bh soft interrupt processing...
5272 * We do checksum and copy also but from device to kernel.
5273 */
5274
5275 tp->rx_opt.saw_tstamp = 0;
5276
5277 /* pred_flags is 0xS?10 << 16 + snd_wnd
5278 * if header_prediction is to be made
5279 * 'S' will always be tp->tcp_header_len >> 2
5280 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5281 * turn it off (when there are holes in the receive
5282 * space for instance)
5283 * PSH flag is ignored.
5284 */
5285
5286 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5287 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5288 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5289 int tcp_header_len = tp->tcp_header_len;
5290
5291 /* Timestamp header prediction: tcp_header_len
5292 * is automatically equal to th->doff*4 due to pred_flags
5293 * match.
5294 */
5295
5296 /* Check timestamp */
5297 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5298 /* No? Slow path! */
5299 if (!tcp_parse_aligned_timestamp(tp, th))
5300 goto slow_path;
5301
5302 /* If PAWS failed, check it more carefully in slow path */
5303 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5304 goto slow_path;
5305
5306 /* DO NOT update ts_recent here, if checksum fails
5307 * and timestamp was corrupted part, it will result
5308 * in a hung connection since we will drop all
5309 * future packets due to the PAWS test.
5310 */
5311 }
5312
5313 if (len <= tcp_header_len) {
5314 /* Bulk data transfer: sender */
5315 if (len == tcp_header_len) {
5316 /* Predicted packet is in window by definition.
5317 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5318 * Hence, check seq<=rcv_wup reduces to:
5319 */
5320 if (tcp_header_len ==
5321 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5322 tp->rcv_nxt == tp->rcv_wup)
5323 tcp_store_ts_recent(tp);
5324
5325 /* We know that such packets are checksummed
5326 * on entry.
5327 */
5328 tcp_ack(sk, skb, 0);
5329 __kfree_skb(skb);
5330 tcp_data_snd_check(sk);
5331 return;
5332 } else { /* Header too small */
5333 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5334 goto discard;
5335 }
5336 } else {
5337 int eaten = 0;
5338 bool fragstolen = false;
5339
5340 if (tp->ucopy.task == current &&
5341 tp->copied_seq == tp->rcv_nxt &&
5342 len - tcp_header_len <= tp->ucopy.len &&
5343 sock_owned_by_user(sk)) {
5344 __set_current_state(TASK_RUNNING);
5345
5346 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5347 /* Predicted packet is in window by definition.
5348 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5349 * Hence, check seq<=rcv_wup reduces to:
5350 */
5351 if (tcp_header_len ==
5352 (sizeof(struct tcphdr) +
5353 TCPOLEN_TSTAMP_ALIGNED) &&
5354 tp->rcv_nxt == tp->rcv_wup)
5355 tcp_store_ts_recent(tp);
5356
5357 tcp_rcv_rtt_measure_ts(sk, skb);
5358
5359 __skb_pull(skb, tcp_header_len);
5360 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5361 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5362 eaten = 1;
5363 }
5364 }
5365 if (!eaten) {
5366 if (tcp_checksum_complete_user(sk, skb))
5367 goto csum_error;
5368
5369 if ((int)skb->truesize > sk->sk_forward_alloc)
5370 goto step5;
5371
5372 /* Predicted packet is in window by definition.
5373 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5374 * Hence, check seq<=rcv_wup reduces to:
5375 */
5376 if (tcp_header_len ==
5377 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5378 tp->rcv_nxt == tp->rcv_wup)
5379 tcp_store_ts_recent(tp);
5380
5381 tcp_rcv_rtt_measure_ts(sk, skb);
5382
5383 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5384
5385 /* Bulk data transfer: receiver */
5386 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5387 &fragstolen);
5388 }
5389
5390 tcp_event_data_recv(sk, skb);
5391
5392 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5393 /* Well, only one small jumplet in fast path... */
5394 tcp_ack(sk, skb, FLAG_DATA);
5395 tcp_data_snd_check(sk);
5396 if (!inet_csk_ack_scheduled(sk))
5397 goto no_ack;
5398 }
5399
5400 __tcp_ack_snd_check(sk, 0);
5401no_ack:
5402 if (eaten)
5403 kfree_skb_partial(skb, fragstolen);
5404 sk->sk_data_ready(sk);
5405 return;
5406 }
5407 }
5408
5409slow_path:
5410 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5411 goto csum_error;
5412
5413 if (!th->ack && !th->rst && !th->syn)
5414 goto discard;
5415
5416 /*
5417 * Standard slow path.
5418 */
5419
5420 if (!tcp_validate_incoming(sk, skb, th, 1))
5421 return;
5422
5423step5:
5424 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5425 goto discard;
5426
5427 tcp_rcv_rtt_measure_ts(sk, skb);
5428
5429 /* Process urgent data. */
5430 tcp_urg(sk, skb, th);
5431
5432 /* step 7: process the segment text */
5433 tcp_data_queue(sk, skb);
5434
5435 tcp_data_snd_check(sk);
5436 tcp_ack_snd_check(sk);
5437 return;
5438
5439csum_error:
5440 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5441 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5442
5443discard:
5444 __kfree_skb(skb);
5445}
5446EXPORT_SYMBOL(tcp_rcv_established);
5447
5448void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5449{
5450 struct tcp_sock *tp = tcp_sk(sk);
5451 struct inet_connection_sock *icsk = inet_csk(sk);
5452
5453 tcp_set_state(sk, TCP_ESTABLISHED);
5454 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5455
5456 if (skb) {
5457 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5458 security_inet_conn_established(sk, skb);
5459 }
5460
5461 /* Make sure socket is routed, for correct metrics. */
5462 icsk->icsk_af_ops->rebuild_header(sk);
5463
5464 tcp_init_metrics(sk);
5465
5466 tcp_init_congestion_control(sk);
5467
5468 /* Prevent spurious tcp_cwnd_restart() on first data
5469 * packet.
5470 */
5471 tp->lsndtime = tcp_time_stamp;
5472
5473 tcp_init_buffer_space(sk);
5474
5475 if (sock_flag(sk, SOCK_KEEPOPEN))
5476 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5477
5478 if (!tp->rx_opt.snd_wscale)
5479 __tcp_fast_path_on(tp, tp->snd_wnd);
5480 else
5481 tp->pred_flags = 0;
5482
5483 if (!sock_flag(sk, SOCK_DEAD)) {
5484 sk->sk_state_change(sk);
5485 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5486 }
5487}
5488
5489static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5490 struct tcp_fastopen_cookie *cookie)
5491{
5492 struct tcp_sock *tp = tcp_sk(sk);
5493 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5494 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5495 bool syn_drop = false;
5496
5497 if (mss == tp->rx_opt.user_mss) {
5498 struct tcp_options_received opt;
5499
5500 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5501 tcp_clear_options(&opt);
5502 opt.user_mss = opt.mss_clamp = 0;
5503 tcp_parse_options(synack, &opt, 0, NULL);
5504 mss = opt.mss_clamp;
5505 }
5506
5507 if (!tp->syn_fastopen) {
5508 /* Ignore an unsolicited cookie */
5509 cookie->len = -1;
5510 } else if (tp->total_retrans) {
5511 /* SYN timed out and the SYN-ACK neither has a cookie nor
5512 * acknowledges data. Presumably the remote received only
5513 * the retransmitted (regular) SYNs: either the original
5514 * SYN-data or the corresponding SYN-ACK was dropped.
5515 */
5516 syn_drop = (cookie->len < 0 && data);
5517 } else if (cookie->len < 0 && !tp->syn_data) {
5518 /* We requested a cookie but didn't get it. If we did not use
5519 * the (old) exp opt format then try so next time (try_exp=1).
5520 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5521 */
5522 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5523 }
5524
5525 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5526
5527 if (data) { /* Retransmit unacked data in SYN */
5528 tcp_for_write_queue_from(data, sk) {
5529 if (data == tcp_send_head(sk) ||
5530 __tcp_retransmit_skb(sk, data))
5531 break;
5532 }
5533 tcp_rearm_rto(sk);
5534 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5535 return true;
5536 }
5537 tp->syn_data_acked = tp->syn_data;
5538 if (tp->syn_data_acked)
5539 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5540 return false;
5541}
5542
5543static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5544 const struct tcphdr *th)
5545{
5546 struct inet_connection_sock *icsk = inet_csk(sk);
5547 struct tcp_sock *tp = tcp_sk(sk);
5548 struct tcp_fastopen_cookie foc = { .len = -1 };
5549 int saved_clamp = tp->rx_opt.mss_clamp;
5550
5551 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5552 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5553 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5554
5555 if (th->ack) {
5556 /* rfc793:
5557 * "If the state is SYN-SENT then
5558 * first check the ACK bit
5559 * If the ACK bit is set
5560 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5561 * a reset (unless the RST bit is set, if so drop
5562 * the segment and return)"
5563 */
5564 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5565 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5566 goto reset_and_undo;
5567
5568 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5569 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5570 tcp_time_stamp)) {
5571 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5572 goto reset_and_undo;
5573 }
5574
5575 /* Now ACK is acceptable.
5576 *
5577 * "If the RST bit is set
5578 * If the ACK was acceptable then signal the user "error:
5579 * connection reset", drop the segment, enter CLOSED state,
5580 * delete TCB, and return."
5581 */
5582
5583 if (th->rst) {
5584 tcp_reset(sk);
5585 goto discard;
5586 }
5587
5588 /* rfc793:
5589 * "fifth, if neither of the SYN or RST bits is set then
5590 * drop the segment and return."
5591 *
5592 * See note below!
5593 * --ANK(990513)
5594 */
5595 if (!th->syn)
5596 goto discard_and_undo;
5597
5598 /* rfc793:
5599 * "If the SYN bit is on ...
5600 * are acceptable then ...
5601 * (our SYN has been ACKed), change the connection
5602 * state to ESTABLISHED..."
5603 */
5604
5605 tcp_ecn_rcv_synack(tp, th);
5606
5607 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5608 tcp_ack(sk, skb, FLAG_SLOWPATH);
5609
5610 /* Ok.. it's good. Set up sequence numbers and
5611 * move to established.
5612 */
5613 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5614 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5615
5616 /* RFC1323: The window in SYN & SYN/ACK segments is
5617 * never scaled.
5618 */
5619 tp->snd_wnd = ntohs(th->window);
5620
5621 if (!tp->rx_opt.wscale_ok) {
5622 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5623 tp->window_clamp = min(tp->window_clamp, 65535U);
5624 }
5625
5626 if (tp->rx_opt.saw_tstamp) {
5627 tp->rx_opt.tstamp_ok = 1;
5628 tp->tcp_header_len =
5629 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5630 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5631 tcp_store_ts_recent(tp);
5632 } else {
5633 tp->tcp_header_len = sizeof(struct tcphdr);
5634 }
5635
5636 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5637 tcp_enable_fack(tp);
5638
5639 tcp_mtup_init(sk);
5640 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5641 tcp_initialize_rcv_mss(sk);
5642
5643 /* Remember, tcp_poll() does not lock socket!
5644 * Change state from SYN-SENT only after copied_seq
5645 * is initialized. */
5646 tp->copied_seq = tp->rcv_nxt;
5647
5648 smp_mb();
5649
5650 tcp_finish_connect(sk, skb);
5651
5652 if ((tp->syn_fastopen || tp->syn_data) &&
5653 tcp_rcv_fastopen_synack(sk, skb, &foc))
5654 return -1;
5655
5656 if (sk->sk_write_pending ||
5657 icsk->icsk_accept_queue.rskq_defer_accept ||
5658 icsk->icsk_ack.pingpong) {
5659 /* Save one ACK. Data will be ready after
5660 * several ticks, if write_pending is set.
5661 *
5662 * It may be deleted, but with this feature tcpdumps
5663 * look so _wonderfully_ clever, that I was not able
5664 * to stand against the temptation 8) --ANK
5665 */
5666 inet_csk_schedule_ack(sk);
5667 tcp_enter_quickack_mode(sk);
5668 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5669 TCP_DELACK_MAX, TCP_RTO_MAX);
5670
5671discard:
5672 __kfree_skb(skb);
5673 return 0;
5674 } else {
5675 tcp_send_ack(sk);
5676 }
5677 return -1;
5678 }
5679
5680 /* No ACK in the segment */
5681
5682 if (th->rst) {
5683 /* rfc793:
5684 * "If the RST bit is set
5685 *
5686 * Otherwise (no ACK) drop the segment and return."
5687 */
5688
5689 goto discard_and_undo;
5690 }
5691
5692 /* PAWS check. */
5693 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5694 tcp_paws_reject(&tp->rx_opt, 0))
5695 goto discard_and_undo;
5696
5697 if (th->syn) {
5698 /* We see SYN without ACK. It is attempt of
5699 * simultaneous connect with crossed SYNs.
5700 * Particularly, it can be connect to self.
5701 */
5702 tcp_set_state(sk, TCP_SYN_RECV);
5703
5704 if (tp->rx_opt.saw_tstamp) {
5705 tp->rx_opt.tstamp_ok = 1;
5706 tcp_store_ts_recent(tp);
5707 tp->tcp_header_len =
5708 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5709 } else {
5710 tp->tcp_header_len = sizeof(struct tcphdr);
5711 }
5712
5713 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5714 tp->copied_seq = tp->rcv_nxt;
5715 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5716
5717 /* RFC1323: The window in SYN & SYN/ACK segments is
5718 * never scaled.
5719 */
5720 tp->snd_wnd = ntohs(th->window);
5721 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5722 tp->max_window = tp->snd_wnd;
5723
5724 tcp_ecn_rcv_syn(tp, th);
5725
5726 tcp_mtup_init(sk);
5727 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5728 tcp_initialize_rcv_mss(sk);
5729
5730 tcp_send_synack(sk);
5731#if 0
5732 /* Note, we could accept data and URG from this segment.
5733 * There are no obstacles to make this (except that we must
5734 * either change tcp_recvmsg() to prevent it from returning data
5735 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5736 *
5737 * However, if we ignore data in ACKless segments sometimes,
5738 * we have no reasons to accept it sometimes.
5739 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5740 * is not flawless. So, discard packet for sanity.
5741 * Uncomment this return to process the data.
5742 */
5743 return -1;
5744#else
5745 goto discard;
5746#endif
5747 }
5748 /* "fifth, if neither of the SYN or RST bits is set then
5749 * drop the segment and return."
5750 */
5751
5752discard_and_undo:
5753 tcp_clear_options(&tp->rx_opt);
5754 tp->rx_opt.mss_clamp = saved_clamp;
5755 goto discard;
5756
5757reset_and_undo:
5758 tcp_clear_options(&tp->rx_opt);
5759 tp->rx_opt.mss_clamp = saved_clamp;
5760 return 1;
5761}
5762
5763/*
5764 * This function implements the receiving procedure of RFC 793 for
5765 * all states except ESTABLISHED and TIME_WAIT.
5766 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5767 * address independent.
5768 */
5769
5770int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5771{
5772 struct tcp_sock *tp = tcp_sk(sk);
5773 struct inet_connection_sock *icsk = inet_csk(sk);
5774 const struct tcphdr *th = tcp_hdr(skb);
5775 struct request_sock *req;
5776 int queued = 0;
5777 bool acceptable;
5778
5779 tp->rx_opt.saw_tstamp = 0;
5780
5781 switch (sk->sk_state) {
5782 case TCP_CLOSE:
5783 goto discard;
5784
5785 case TCP_LISTEN:
5786 if (th->ack)
5787 return 1;
5788
5789 if (th->rst)
5790 goto discard;
5791
5792 if (th->syn) {
5793 if (th->fin)
5794 goto discard;
5795 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5796 return 1;
5797
5798 /* Now we have several options: In theory there is
5799 * nothing else in the frame. KA9Q has an option to
5800 * send data with the syn, BSD accepts data with the
5801 * syn up to the [to be] advertised window and
5802 * Solaris 2.1 gives you a protocol error. For now
5803 * we just ignore it, that fits the spec precisely
5804 * and avoids incompatibilities. It would be nice in
5805 * future to drop through and process the data.
5806 *
5807 * Now that TTCP is starting to be used we ought to
5808 * queue this data.
5809 * But, this leaves one open to an easy denial of
5810 * service attack, and SYN cookies can't defend
5811 * against this problem. So, we drop the data
5812 * in the interest of security over speed unless
5813 * it's still in use.
5814 */
5815 kfree_skb(skb);
5816 return 0;
5817 }
5818 goto discard;
5819
5820 case TCP_SYN_SENT:
5821 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5822 if (queued >= 0)
5823 return queued;
5824
5825 /* Do step6 onward by hand. */
5826 tcp_urg(sk, skb, th);
5827 __kfree_skb(skb);
5828 tcp_data_snd_check(sk);
5829 return 0;
5830 }
5831
5832 req = tp->fastopen_rsk;
5833 if (req) {
5834 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5835 sk->sk_state != TCP_FIN_WAIT1);
5836
5837 if (!tcp_check_req(sk, skb, req, true))
5838 goto discard;
5839 }
5840
5841 if (!th->ack && !th->rst && !th->syn)
5842 goto discard;
5843
5844 if (!tcp_validate_incoming(sk, skb, th, 0))
5845 return 0;
5846
5847 /* step 5: check the ACK field */
5848 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5849 FLAG_UPDATE_TS_RECENT) > 0;
5850
5851 switch (sk->sk_state) {
5852 case TCP_SYN_RECV:
5853 if (!acceptable)
5854 return 1;
5855
5856 if (!tp->srtt_us)
5857 tcp_synack_rtt_meas(sk, req);
5858
5859 /* Once we leave TCP_SYN_RECV, we no longer need req
5860 * so release it.
5861 */
5862 if (req) {
5863 tp->total_retrans = req->num_retrans;
5864 reqsk_fastopen_remove(sk, req, false);
5865 } else {
5866 /* Make sure socket is routed, for correct metrics. */
5867 icsk->icsk_af_ops->rebuild_header(sk);
5868 tcp_init_congestion_control(sk);
5869
5870 tcp_mtup_init(sk);
5871 tp->copied_seq = tp->rcv_nxt;
5872 tcp_init_buffer_space(sk);
5873 }
5874 smp_mb();
5875 tcp_set_state(sk, TCP_ESTABLISHED);
5876 sk->sk_state_change(sk);
5877
5878 /* Note, that this wakeup is only for marginal crossed SYN case.
5879 * Passively open sockets are not waked up, because
5880 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5881 */
5882 if (sk->sk_socket)
5883 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5884
5885 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5886 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5887 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5888
5889 if (tp->rx_opt.tstamp_ok)
5890 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5891
5892 if (req) {
5893 /* Re-arm the timer because data may have been sent out.
5894 * This is similar to the regular data transmission case
5895 * when new data has just been ack'ed.
5896 *
5897 * (TFO) - we could try to be more aggressive and
5898 * retransmitting any data sooner based on when they
5899 * are sent out.
5900 */
5901 tcp_rearm_rto(sk);
5902 } else
5903 tcp_init_metrics(sk);
5904
5905 tcp_update_pacing_rate(sk);
5906
5907 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5908 tp->lsndtime = tcp_time_stamp;
5909
5910 tcp_initialize_rcv_mss(sk);
5911 tcp_fast_path_on(tp);
5912 break;
5913
5914 case TCP_FIN_WAIT1: {
5915 struct dst_entry *dst;
5916 int tmo;
5917
5918 /* If we enter the TCP_FIN_WAIT1 state and we are a
5919 * Fast Open socket and this is the first acceptable
5920 * ACK we have received, this would have acknowledged
5921 * our SYNACK so stop the SYNACK timer.
5922 */
5923 if (req) {
5924 /* Return RST if ack_seq is invalid.
5925 * Note that RFC793 only says to generate a
5926 * DUPACK for it but for TCP Fast Open it seems
5927 * better to treat this case like TCP_SYN_RECV
5928 * above.
5929 */
5930 if (!acceptable)
5931 return 1;
5932 /* We no longer need the request sock. */
5933 reqsk_fastopen_remove(sk, req, false);
5934 tcp_rearm_rto(sk);
5935 }
5936 if (tp->snd_una != tp->write_seq)
5937 break;
5938
5939 tcp_set_state(sk, TCP_FIN_WAIT2);
5940 sk->sk_shutdown |= SEND_SHUTDOWN;
5941
5942 dst = __sk_dst_get(sk);
5943 if (dst)
5944 dst_confirm(dst);
5945
5946 if (!sock_flag(sk, SOCK_DEAD)) {
5947 /* Wake up lingering close() */
5948 sk->sk_state_change(sk);
5949 break;
5950 }
5951
5952 if (tp->linger2 < 0 ||
5953 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5954 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5955 tcp_done(sk);
5956 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5957 return 1;
5958 }
5959
5960 tmo = tcp_fin_time(sk);
5961 if (tmo > TCP_TIMEWAIT_LEN) {
5962 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5963 } else if (th->fin || sock_owned_by_user(sk)) {
5964 /* Bad case. We could lose such FIN otherwise.
5965 * It is not a big problem, but it looks confusing
5966 * and not so rare event. We still can lose it now,
5967 * if it spins in bh_lock_sock(), but it is really
5968 * marginal case.
5969 */
5970 inet_csk_reset_keepalive_timer(sk, tmo);
5971 } else {
5972 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5973 goto discard;
5974 }
5975 break;
5976 }
5977
5978 case TCP_CLOSING:
5979 if (tp->snd_una == tp->write_seq) {
5980 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5981 goto discard;
5982 }
5983 break;
5984
5985 case TCP_LAST_ACK:
5986 if (tp->snd_una == tp->write_seq) {
5987 tcp_update_metrics(sk);
5988 tcp_done(sk);
5989 goto discard;
5990 }
5991 break;
5992 }
5993
5994 /* step 6: check the URG bit */
5995 tcp_urg(sk, skb, th);
5996
5997 /* step 7: process the segment text */
5998 switch (sk->sk_state) {
5999 case TCP_CLOSE_WAIT:
6000 case TCP_CLOSING:
6001 case TCP_LAST_ACK:
6002 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6003 break;
6004 case TCP_FIN_WAIT1:
6005 case TCP_FIN_WAIT2:
6006 /* RFC 793 says to queue data in these states,
6007 * RFC 1122 says we MUST send a reset.
6008 * BSD 4.4 also does reset.
6009 */
6010 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6011 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6012 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6013 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6014 tcp_reset(sk);
6015 return 1;
6016 }
6017 }
6018 /* Fall through */
6019 case TCP_ESTABLISHED:
6020 tcp_data_queue(sk, skb);
6021 queued = 1;
6022 break;
6023 }
6024
6025 /* tcp_data could move socket to TIME-WAIT */
6026 if (sk->sk_state != TCP_CLOSE) {
6027 tcp_data_snd_check(sk);
6028 tcp_ack_snd_check(sk);
6029 }
6030
6031 if (!queued) {
6032discard:
6033 __kfree_skb(skb);
6034 }
6035 return 0;
6036}
6037EXPORT_SYMBOL(tcp_rcv_state_process);
6038
6039static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6040{
6041 struct inet_request_sock *ireq = inet_rsk(req);
6042
6043 if (family == AF_INET)
6044 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6045 &ireq->ir_rmt_addr, port);
6046#if IS_ENABLED(CONFIG_IPV6)
6047 else if (family == AF_INET6)
6048 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6049 &ireq->ir_v6_rmt_addr, port);
6050#endif
6051}
6052
6053/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6054 *
6055 * If we receive a SYN packet with these bits set, it means a
6056 * network is playing bad games with TOS bits. In order to
6057 * avoid possible false congestion notifications, we disable
6058 * TCP ECN negotiation.
6059 *
6060 * Exception: tcp_ca wants ECN. This is required for DCTCP
6061 * congestion control: Linux DCTCP asserts ECT on all packets,
6062 * including SYN, which is most optimal solution; however,
6063 * others, such as FreeBSD do not.
6064 */
6065static void tcp_ecn_create_request(struct request_sock *req,
6066 const struct sk_buff *skb,
6067 const struct sock *listen_sk,
6068 const struct dst_entry *dst)
6069{
6070 const struct tcphdr *th = tcp_hdr(skb);
6071 const struct net *net = sock_net(listen_sk);
6072 bool th_ecn = th->ece && th->cwr;
6073 bool ect, ecn_ok;
6074 u32 ecn_ok_dst;
6075
6076 if (!th_ecn)
6077 return;
6078
6079 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6080 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6081 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6082
6083 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6084 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6085 inet_rsk(req)->ecn_ok = 1;
6086}
6087
6088static void tcp_openreq_init(struct request_sock *req,
6089 const struct tcp_options_received *rx_opt,
6090 struct sk_buff *skb, const struct sock *sk)
6091{
6092 struct inet_request_sock *ireq = inet_rsk(req);
6093
6094 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6095 req->cookie_ts = 0;
6096 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6097 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6098 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6099 tcp_rsk(req)->last_oow_ack_time = 0;
6100 req->mss = rx_opt->mss_clamp;
6101 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6102 ireq->tstamp_ok = rx_opt->tstamp_ok;
6103 ireq->sack_ok = rx_opt->sack_ok;
6104 ireq->snd_wscale = rx_opt->snd_wscale;
6105 ireq->wscale_ok = rx_opt->wscale_ok;
6106 ireq->acked = 0;
6107 ireq->ecn_ok = 0;
6108 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6109 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6110 ireq->ir_mark = inet_request_mark(sk, skb);
6111}
6112
6113struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6114 struct sock *sk_listener,
6115 bool attach_listener)
6116{
6117 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6118 attach_listener);
6119
6120 if (req) {
6121 struct inet_request_sock *ireq = inet_rsk(req);
6122
6123 kmemcheck_annotate_bitfield(ireq, flags);
6124 ireq->ireq_opt = NULL;
6125 atomic64_set(&ireq->ir_cookie, 0);
6126 ireq->ireq_state = TCP_NEW_SYN_RECV;
6127 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6128 ireq->ireq_family = sk_listener->sk_family;
6129 }
6130
6131 return req;
6132}
6133EXPORT_SYMBOL(inet_reqsk_alloc);
6134
6135/*
6136 * Return true if a syncookie should be sent
6137 */
6138static bool tcp_syn_flood_action(const struct sock *sk,
6139 const struct sk_buff *skb,
6140 const char *proto)
6141{
6142 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6143 const char *msg = "Dropping request";
6144 bool want_cookie = false;
6145
6146#ifdef CONFIG_SYN_COOKIES
6147 if (sysctl_tcp_syncookies) {
6148 msg = "Sending cookies";
6149 want_cookie = true;
6150 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6151 } else
6152#endif
6153 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6154
6155 if (!queue->synflood_warned &&
6156 sysctl_tcp_syncookies != 2 &&
6157 xchg(&queue->synflood_warned, 1) == 0)
6158 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6159 proto, ntohs(tcp_hdr(skb)->dest), msg);
6160
6161 return want_cookie;
6162}
6163
6164static void tcp_reqsk_record_syn(const struct sock *sk,
6165 struct request_sock *req,
6166 const struct sk_buff *skb)
6167{
6168 if (tcp_sk(sk)->save_syn) {
6169 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6170 u32 *copy;
6171
6172 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6173 if (copy) {
6174 copy[0] = len;
6175 memcpy(&copy[1], skb_network_header(skb), len);
6176 req->saved_syn = copy;
6177 }
6178 }
6179}
6180
6181int tcp_conn_request(struct request_sock_ops *rsk_ops,
6182 const struct tcp_request_sock_ops *af_ops,
6183 struct sock *sk, struct sk_buff *skb)
6184{
6185 struct tcp_fastopen_cookie foc = { .len = -1 };
6186 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6187 struct tcp_options_received tmp_opt;
6188 struct tcp_sock *tp = tcp_sk(sk);
6189 struct sock *fastopen_sk = NULL;
6190 struct dst_entry *dst = NULL;
6191 struct request_sock *req;
6192 bool want_cookie = false;
6193 struct flowi fl;
6194
6195 /* TW buckets are converted to open requests without
6196 * limitations, they conserve resources and peer is
6197 * evidently real one.
6198 */
6199 if ((sysctl_tcp_syncookies == 2 ||
6200 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6201 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6202 if (!want_cookie)
6203 goto drop;
6204 }
6205
6206
6207 /* Accept backlog is full. If we have already queued enough
6208 * of warm entries in syn queue, drop request. It is better than
6209 * clogging syn queue with openreqs with exponentially increasing
6210 * timeout.
6211 */
6212 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6213 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6214 goto drop;
6215 }
6216
6217 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6218 if (!req)
6219 goto drop;
6220
6221 tcp_rsk(req)->af_specific = af_ops;
6222
6223 tcp_clear_options(&tmp_opt);
6224 tmp_opt.mss_clamp = af_ops->mss_clamp;
6225 tmp_opt.user_mss = tp->rx_opt.user_mss;
6226 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6227
6228 if (want_cookie && !tmp_opt.saw_tstamp)
6229 tcp_clear_options(&tmp_opt);
6230
6231 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6232 tcp_openreq_init(req, &tmp_opt, skb, sk);
6233
6234 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6235 inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6236
6237 af_ops->init_req(req, sk, skb);
6238
6239 if (security_inet_conn_request(sk, skb, req))
6240 goto drop_and_free;
6241
6242 if (!want_cookie && !isn) {
6243 /* VJ's idea. We save last timestamp seen
6244 * from the destination in peer table, when entering
6245 * state TIME-WAIT, and check against it before
6246 * accepting new connection request.
6247 *
6248 * If "isn" is not zero, this request hit alive
6249 * timewait bucket, so that all the necessary checks
6250 * are made in the function processing timewait state.
6251 */
6252 if (tcp_death_row.sysctl_tw_recycle) {
6253 bool strict;
6254
6255 dst = af_ops->route_req(sk, &fl, req, &strict);
6256
6257 if (dst && strict &&
6258 !tcp_peer_is_proven(req, dst, true,
6259 tmp_opt.saw_tstamp)) {
6260 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6261 goto drop_and_release;
6262 }
6263 }
6264 /* Kill the following clause, if you dislike this way. */
6265 else if (!sysctl_tcp_syncookies &&
6266 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6267 (sysctl_max_syn_backlog >> 2)) &&
6268 !tcp_peer_is_proven(req, dst, false,
6269 tmp_opt.saw_tstamp)) {
6270 /* Without syncookies last quarter of
6271 * backlog is filled with destinations,
6272 * proven to be alive.
6273 * It means that we continue to communicate
6274 * to destinations, already remembered
6275 * to the moment of synflood.
6276 */
6277 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6278 rsk_ops->family);
6279 goto drop_and_release;
6280 }
6281
6282 isn = af_ops->init_seq(skb);
6283 }
6284 if (!dst) {
6285 dst = af_ops->route_req(sk, &fl, req, NULL);
6286 if (!dst)
6287 goto drop_and_free;
6288 }
6289
6290 tcp_ecn_create_request(req, skb, sk, dst);
6291
6292 if (want_cookie) {
6293 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6294 req->cookie_ts = tmp_opt.tstamp_ok;
6295 if (!tmp_opt.tstamp_ok)
6296 inet_rsk(req)->ecn_ok = 0;
6297 }
6298
6299 tcp_rsk(req)->snt_isn = isn;
6300 tcp_rsk(req)->txhash = net_tx_rndhash();
6301 tcp_openreq_init_rwin(req, sk, dst);
6302 if (!want_cookie) {
6303 tcp_reqsk_record_syn(sk, req, skb);
6304 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6305 }
6306 if (fastopen_sk) {
6307 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6308 &foc, false);
6309 /* Add the child socket directly into the accept queue */
6310 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6311 sk->sk_data_ready(sk);
6312 bh_unlock_sock(fastopen_sk);
6313 sock_put(fastopen_sk);
6314 } else {
6315 tcp_rsk(req)->tfo_listener = false;
6316 if (!want_cookie)
6317 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6318 af_ops->send_synack(sk, dst, &fl, req,
6319 &foc, !want_cookie);
6320 if (want_cookie)
6321 goto drop_and_free;
6322 }
6323 reqsk_put(req);
6324 return 0;
6325
6326drop_and_release:
6327 dst_release(dst);
6328drop_and_free:
6329 reqsk_free(req);
6330drop:
6331 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6332 return 0;
6333}
6334EXPORT_SYMBOL(tcp_conn_request);