blob: 4a116d766c159f809d9e885dfea5b71bdc3d5dcb [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*********************************************************************
2 *
3 * Filename: af_irda.c
4 * Version: 0.9
5 * Description: IrDA sockets implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun May 31 10:12:43 1998
9 * Modified at: Sat Dec 25 21:10:23 1999
10 * Modified by: Dag Brattli <dag@brattli.net>
11 * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
12 *
13 * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no>
14 * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 * All Rights Reserved.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License as
19 * published by the Free Software Foundation; either version 2 of
20 * the License, or (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, see <http://www.gnu.org/licenses/>.
29 *
30 * Linux-IrDA now supports four different types of IrDA sockets:
31 *
32 * o SOCK_STREAM: TinyTP connections with SAR disabled. The
33 * max SDU size is 0 for conn. of this type
34 * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
35 * fragment the messages, but will preserve
36 * the message boundaries
37 * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
38 * (unreliable) transfers
39 * IRDAPROTO_ULTRA: Connectionless and unreliable data
40 *
41 ********************************************************************/
42
43#include <linux/capability.h>
44#include <linux/module.h>
45#include <linux/types.h>
46#include <linux/socket.h>
47#include <linux/sockios.h>
48#include <linux/slab.h>
49#include <linux/init.h>
50#include <linux/net.h>
51#include <linux/irda.h>
52#include <linux/poll.h>
53
54#include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */
55#include <asm/uaccess.h>
56
57#include <net/sock.h>
58#include <net/tcp_states.h>
59
60#include <net/irda/af_irda.h>
61
62static int irda_create(struct net *net, struct socket *sock, int protocol, int kern);
63
64static const struct proto_ops irda_stream_ops;
65static const struct proto_ops irda_seqpacket_ops;
66static const struct proto_ops irda_dgram_ops;
67
68#ifdef CONFIG_IRDA_ULTRA
69static const struct proto_ops irda_ultra_ops;
70#define ULTRA_MAX_DATA 382
71#endif /* CONFIG_IRDA_ULTRA */
72
73#define IRDA_MAX_HEADER (TTP_MAX_HEADER)
74
75/*
76 * Function irda_data_indication (instance, sap, skb)
77 *
78 * Received some data from TinyTP. Just queue it on the receive queue
79 *
80 */
81static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
82{
83 struct irda_sock *self;
84 struct sock *sk;
85 int err;
86
87 self = instance;
88 sk = instance;
89
90 err = sock_queue_rcv_skb(sk, skb);
91 if (err) {
92 pr_debug("%s(), error: no more mem!\n", __func__);
93 self->rx_flow = FLOW_STOP;
94
95 /* When we return error, TTP will need to requeue the skb */
96 return err;
97 }
98
99 return 0;
100}
101
102/*
103 * Function irda_disconnect_indication (instance, sap, reason, skb)
104 *
105 * Connection has been closed. Check reason to find out why
106 *
107 */
108static void irda_disconnect_indication(void *instance, void *sap,
109 LM_REASON reason, struct sk_buff *skb)
110{
111 struct irda_sock *self;
112 struct sock *sk;
113
114 self = instance;
115
116 pr_debug("%s(%p)\n", __func__, self);
117
118 /* Don't care about it, but let's not leak it */
119 if(skb)
120 dev_kfree_skb(skb);
121
122 sk = instance;
123 if (sk == NULL) {
124 pr_debug("%s(%p) : BUG : sk is NULL\n",
125 __func__, self);
126 return;
127 }
128
129 /* Prevent race conditions with irda_release() and irda_shutdown() */
130 bh_lock_sock(sk);
131 if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
132 sk->sk_state = TCP_CLOSE;
133 sk->sk_shutdown |= SEND_SHUTDOWN;
134
135 sk->sk_state_change(sk);
136
137 /* Close our TSAP.
138 * If we leave it open, IrLMP put it back into the list of
139 * unconnected LSAPs. The problem is that any incoming request
140 * can then be matched to this socket (and it will be, because
141 * it is at the head of the list). This would prevent any
142 * listening socket waiting on the same TSAP to get those
143 * requests. Some apps forget to close sockets, or hang to it
144 * a bit too long, so we may stay in this dead state long
145 * enough to be noticed...
146 * Note : all socket function do check sk->sk_state, so we are
147 * safe...
148 * Jean II
149 */
150 if (self->tsap) {
151 irttp_close_tsap(self->tsap);
152 self->tsap = NULL;
153 }
154 }
155 bh_unlock_sock(sk);
156
157 /* Note : once we are there, there is not much you want to do
158 * with the socket anymore, apart from closing it.
159 * For example, bind() and connect() won't reset sk->sk_err,
160 * sk->sk_shutdown and sk->sk_flags to valid values...
161 * Jean II
162 */
163}
164
165/*
166 * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
167 *
168 * Connections has been confirmed by the remote device
169 *
170 */
171static void irda_connect_confirm(void *instance, void *sap,
172 struct qos_info *qos,
173 __u32 max_sdu_size, __u8 max_header_size,
174 struct sk_buff *skb)
175{
176 struct irda_sock *self;
177 struct sock *sk;
178
179 self = instance;
180
181 pr_debug("%s(%p)\n", __func__, self);
182
183 sk = instance;
184 if (sk == NULL) {
185 dev_kfree_skb(skb);
186 return;
187 }
188
189 dev_kfree_skb(skb);
190 // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);
191
192 /* How much header space do we need to reserve */
193 self->max_header_size = max_header_size;
194
195 /* IrTTP max SDU size in transmit direction */
196 self->max_sdu_size_tx = max_sdu_size;
197
198 /* Find out what the largest chunk of data that we can transmit is */
199 switch (sk->sk_type) {
200 case SOCK_STREAM:
201 if (max_sdu_size != 0) {
202 net_err_ratelimited("%s: max_sdu_size must be 0\n",
203 __func__);
204 return;
205 }
206 self->max_data_size = irttp_get_max_seg_size(self->tsap);
207 break;
208 case SOCK_SEQPACKET:
209 if (max_sdu_size == 0) {
210 net_err_ratelimited("%s: max_sdu_size cannot be 0\n",
211 __func__);
212 return;
213 }
214 self->max_data_size = max_sdu_size;
215 break;
216 default:
217 self->max_data_size = irttp_get_max_seg_size(self->tsap);
218 }
219
220 pr_debug("%s(), max_data_size=%d\n", __func__,
221 self->max_data_size);
222
223 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
224
225 /* We are now connected! */
226 sk->sk_state = TCP_ESTABLISHED;
227 sk->sk_state_change(sk);
228}
229
230/*
231 * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
232 *
233 * Incoming connection
234 *
235 */
236static void irda_connect_indication(void *instance, void *sap,
237 struct qos_info *qos, __u32 max_sdu_size,
238 __u8 max_header_size, struct sk_buff *skb)
239{
240 struct irda_sock *self;
241 struct sock *sk;
242
243 self = instance;
244
245 pr_debug("%s(%p)\n", __func__, self);
246
247 sk = instance;
248 if (sk == NULL) {
249 dev_kfree_skb(skb);
250 return;
251 }
252
253 /* How much header space do we need to reserve */
254 self->max_header_size = max_header_size;
255
256 /* IrTTP max SDU size in transmit direction */
257 self->max_sdu_size_tx = max_sdu_size;
258
259 /* Find out what the largest chunk of data that we can transmit is */
260 switch (sk->sk_type) {
261 case SOCK_STREAM:
262 if (max_sdu_size != 0) {
263 net_err_ratelimited("%s: max_sdu_size must be 0\n",
264 __func__);
265 kfree_skb(skb);
266 return;
267 }
268 self->max_data_size = irttp_get_max_seg_size(self->tsap);
269 break;
270 case SOCK_SEQPACKET:
271 if (max_sdu_size == 0) {
272 net_err_ratelimited("%s: max_sdu_size cannot be 0\n",
273 __func__);
274 kfree_skb(skb);
275 return;
276 }
277 self->max_data_size = max_sdu_size;
278 break;
279 default:
280 self->max_data_size = irttp_get_max_seg_size(self->tsap);
281 }
282
283 pr_debug("%s(), max_data_size=%d\n", __func__,
284 self->max_data_size);
285
286 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
287
288 skb_queue_tail(&sk->sk_receive_queue, skb);
289 sk->sk_state_change(sk);
290}
291
292/*
293 * Function irda_connect_response (handle)
294 *
295 * Accept incoming connection
296 *
297 */
298static void irda_connect_response(struct irda_sock *self)
299{
300 struct sk_buff *skb;
301
302 skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER, GFP_KERNEL);
303 if (skb == NULL) {
304 pr_debug("%s() Unable to allocate sk_buff!\n",
305 __func__);
306 return;
307 }
308
309 /* Reserve space for MUX_CONTROL and LAP header */
310 skb_reserve(skb, IRDA_MAX_HEADER);
311
312 irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
313}
314
315/*
316 * Function irda_flow_indication (instance, sap, flow)
317 *
318 * Used by TinyTP to tell us if it can accept more data or not
319 *
320 */
321static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
322{
323 struct irda_sock *self;
324 struct sock *sk;
325
326 self = instance;
327 sk = instance;
328 BUG_ON(sk == NULL);
329
330 switch (flow) {
331 case FLOW_STOP:
332 pr_debug("%s(), IrTTP wants us to slow down\n",
333 __func__);
334 self->tx_flow = flow;
335 break;
336 case FLOW_START:
337 self->tx_flow = flow;
338 pr_debug("%s(), IrTTP wants us to start again\n",
339 __func__);
340 wake_up_interruptible(sk_sleep(sk));
341 break;
342 default:
343 pr_debug("%s(), Unknown flow command!\n", __func__);
344 /* Unknown flow command, better stop */
345 self->tx_flow = flow;
346 break;
347 }
348}
349
350/*
351 * Function irda_getvalue_confirm (obj_id, value, priv)
352 *
353 * Got answer from remote LM-IAS, just pass object to requester...
354 *
355 * Note : duplicate from above, but we need our own version that
356 * doesn't touch the dtsap_sel and save the full value structure...
357 */
358static void irda_getvalue_confirm(int result, __u16 obj_id,
359 struct ias_value *value, void *priv)
360{
361 struct irda_sock *self;
362
363 self = priv;
364 if (!self) {
365 net_warn_ratelimited("%s: lost myself!\n", __func__);
366 return;
367 }
368
369 pr_debug("%s(%p)\n", __func__, self);
370
371 /* We probably don't need to make any more queries */
372 iriap_close(self->iriap);
373 self->iriap = NULL;
374
375 /* Check if request succeeded */
376 if (result != IAS_SUCCESS) {
377 pr_debug("%s(), IAS query failed! (%d)\n", __func__,
378 result);
379
380 self->errno = result; /* We really need it later */
381
382 /* Wake up any processes waiting for result */
383 wake_up_interruptible(&self->query_wait);
384
385 return;
386 }
387
388 /* Pass the object to the caller (so the caller must delete it) */
389 self->ias_result = value;
390 self->errno = 0;
391
392 /* Wake up any processes waiting for result */
393 wake_up_interruptible(&self->query_wait);
394}
395
396/*
397 * Function irda_selective_discovery_indication (discovery)
398 *
399 * Got a selective discovery indication from IrLMP.
400 *
401 * IrLMP is telling us that this node is new and matching our hint bit
402 * filter. Wake up any process waiting for answer...
403 */
404static void irda_selective_discovery_indication(discinfo_t *discovery,
405 DISCOVERY_MODE mode,
406 void *priv)
407{
408 struct irda_sock *self;
409
410 self = priv;
411 if (!self) {
412 net_warn_ratelimited("%s: lost myself!\n", __func__);
413 return;
414 }
415
416 /* Pass parameter to the caller */
417 self->cachedaddr = discovery->daddr;
418
419 /* Wake up process if its waiting for device to be discovered */
420 wake_up_interruptible(&self->query_wait);
421}
422
423/*
424 * Function irda_discovery_timeout (priv)
425 *
426 * Timeout in the selective discovery process
427 *
428 * We were waiting for a node to be discovered, but nothing has come up
429 * so far. Wake up the user and tell him that we failed...
430 */
431static void irda_discovery_timeout(u_long priv)
432{
433 struct irda_sock *self;
434
435 self = (struct irda_sock *) priv;
436 BUG_ON(self == NULL);
437
438 /* Nothing for the caller */
439 self->cachelog = NULL;
440 self->cachedaddr = 0;
441 self->errno = -ETIME;
442
443 /* Wake up process if its still waiting... */
444 wake_up_interruptible(&self->query_wait);
445}
446
447/*
448 * Function irda_open_tsap (self)
449 *
450 * Open local Transport Service Access Point (TSAP)
451 *
452 */
453static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
454{
455 notify_t notify;
456
457 if (self->tsap) {
458 pr_debug("%s: busy!\n", __func__);
459 return -EBUSY;
460 }
461
462 /* Initialize callbacks to be used by the IrDA stack */
463 irda_notify_init(&notify);
464 notify.connect_confirm = irda_connect_confirm;
465 notify.connect_indication = irda_connect_indication;
466 notify.disconnect_indication = irda_disconnect_indication;
467 notify.data_indication = irda_data_indication;
468 notify.udata_indication = irda_data_indication;
469 notify.flow_indication = irda_flow_indication;
470 notify.instance = self;
471 strncpy(notify.name, name, NOTIFY_MAX_NAME);
472
473 self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
474 &notify);
475 if (self->tsap == NULL) {
476 pr_debug("%s(), Unable to allocate TSAP!\n",
477 __func__);
478 return -ENOMEM;
479 }
480 /* Remember which TSAP selector we actually got */
481 self->stsap_sel = self->tsap->stsap_sel;
482
483 return 0;
484}
485
486/*
487 * Function irda_open_lsap (self)
488 *
489 * Open local Link Service Access Point (LSAP). Used for opening Ultra
490 * sockets
491 */
492#ifdef CONFIG_IRDA_ULTRA
493static int irda_open_lsap(struct irda_sock *self, int pid)
494{
495 notify_t notify;
496
497 if (self->lsap) {
498 net_warn_ratelimited("%s(), busy!\n", __func__);
499 return -EBUSY;
500 }
501
502 /* Initialize callbacks to be used by the IrDA stack */
503 irda_notify_init(&notify);
504 notify.udata_indication = irda_data_indication;
505 notify.instance = self;
506 strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);
507
508 self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
509 if (self->lsap == NULL) {
510 pr_debug("%s(), Unable to allocate LSAP!\n", __func__);
511 return -ENOMEM;
512 }
513
514 return 0;
515}
516#endif /* CONFIG_IRDA_ULTRA */
517
518/*
519 * Function irda_find_lsap_sel (self, name)
520 *
521 * Try to lookup LSAP selector in remote LM-IAS
522 *
523 * Basically, we start a IAP query, and then go to sleep. When the query
524 * return, irda_getvalue_confirm will wake us up, and we can examine the
525 * result of the query...
526 * Note that in some case, the query fail even before we go to sleep,
527 * creating some races...
528 */
529static int irda_find_lsap_sel(struct irda_sock *self, char *name)
530{
531 pr_debug("%s(%p, %s)\n", __func__, self, name);
532
533 if (self->iriap) {
534 net_warn_ratelimited("%s(): busy with a previous query\n",
535 __func__);
536 return -EBUSY;
537 }
538
539 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
540 irda_getvalue_confirm);
541 if(self->iriap == NULL)
542 return -ENOMEM;
543
544 /* Treat unexpected wakeup as disconnect */
545 self->errno = -EHOSTUNREACH;
546
547 /* Query remote LM-IAS */
548 iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
549 name, "IrDA:TinyTP:LsapSel");
550
551 /* Wait for answer, if not yet finished (or failed) */
552 if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
553 /* Treat signals as disconnect */
554 return -EHOSTUNREACH;
555
556 /* Check what happened */
557 if (self->errno)
558 {
559 /* Requested object/attribute doesn't exist */
560 if((self->errno == IAS_CLASS_UNKNOWN) ||
561 (self->errno == IAS_ATTRIB_UNKNOWN))
562 return -EADDRNOTAVAIL;
563 else
564 return -EHOSTUNREACH;
565 }
566
567 /* Get the remote TSAP selector */
568 switch (self->ias_result->type) {
569 case IAS_INTEGER:
570 pr_debug("%s() int=%d\n",
571 __func__, self->ias_result->t.integer);
572
573 if (self->ias_result->t.integer != -1)
574 self->dtsap_sel = self->ias_result->t.integer;
575 else
576 self->dtsap_sel = 0;
577 break;
578 default:
579 self->dtsap_sel = 0;
580 pr_debug("%s(), bad type!\n", __func__);
581 break;
582 }
583 if (self->ias_result)
584 irias_delete_value(self->ias_result);
585
586 if (self->dtsap_sel)
587 return 0;
588
589 return -EADDRNOTAVAIL;
590}
591
592/*
593 * Function irda_discover_daddr_and_lsap_sel (self, name)
594 *
595 * This try to find a device with the requested service.
596 *
597 * It basically look into the discovery log. For each address in the list,
598 * it queries the LM-IAS of the device to find if this device offer
599 * the requested service.
600 * If there is more than one node supporting the service, we complain
601 * to the user (it should move devices around).
602 * The, we set both the destination address and the lsap selector to point
603 * on the service on the unique device we have found.
604 *
605 * Note : this function fails if there is more than one device in range,
606 * because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
607 * Moreover, we would need to wait the LAP disconnection...
608 */
609static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
610{
611 discinfo_t *discoveries; /* Copy of the discovery log */
612 int number; /* Number of nodes in the log */
613 int i;
614 int err = -ENETUNREACH;
615 __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */
616 __u8 dtsap_sel = 0x0; /* TSAP associated with it */
617
618 pr_debug("%s(), name=%s\n", __func__, name);
619
620 /* Ask lmp for the current discovery log
621 * Note : we have to use irlmp_get_discoveries(), as opposed
622 * to play with the cachelog directly, because while we are
623 * making our ias query, le log might change... */
624 discoveries = irlmp_get_discoveries(&number, self->mask.word,
625 self->nslots);
626 /* Check if the we got some results */
627 if (discoveries == NULL)
628 return -ENETUNREACH; /* No nodes discovered */
629
630 /*
631 * Now, check all discovered devices (if any), and connect
632 * client only about the services that the client is
633 * interested in...
634 */
635 for(i = 0; i < number; i++) {
636 /* Try the address in the log */
637 self->daddr = discoveries[i].daddr;
638 self->saddr = 0x0;
639 pr_debug("%s(), trying daddr = %08x\n",
640 __func__, self->daddr);
641
642 /* Query remote LM-IAS for this service */
643 err = irda_find_lsap_sel(self, name);
644 switch (err) {
645 case 0:
646 /* We found the requested service */
647 if(daddr != DEV_ADDR_ANY) {
648 pr_debug("%s(), discovered service ''%s'' in two different devices !!!\n",
649 __func__, name);
650 self->daddr = DEV_ADDR_ANY;
651 kfree(discoveries);
652 return -ENOTUNIQ;
653 }
654 /* First time we found that one, save it ! */
655 daddr = self->daddr;
656 dtsap_sel = self->dtsap_sel;
657 break;
658 case -EADDRNOTAVAIL:
659 /* Requested service simply doesn't exist on this node */
660 break;
661 default:
662 /* Something bad did happen :-( */
663 pr_debug("%s(), unexpected IAS query failure\n",
664 __func__);
665 self->daddr = DEV_ADDR_ANY;
666 kfree(discoveries);
667 return -EHOSTUNREACH;
668 }
669 }
670 /* Cleanup our copy of the discovery log */
671 kfree(discoveries);
672
673 /* Check out what we found */
674 if(daddr == DEV_ADDR_ANY) {
675 pr_debug("%s(), cannot discover service ''%s'' in any device !!!\n",
676 __func__, name);
677 self->daddr = DEV_ADDR_ANY;
678 return -EADDRNOTAVAIL;
679 }
680
681 /* Revert back to discovered device & service */
682 self->daddr = daddr;
683 self->saddr = 0x0;
684 self->dtsap_sel = dtsap_sel;
685
686 pr_debug("%s(), discovered requested service ''%s'' at address %08x\n",
687 __func__, name, self->daddr);
688
689 return 0;
690}
691
692/*
693 * Function irda_getname (sock, uaddr, uaddr_len, peer)
694 *
695 * Return the our own, or peers socket address (sockaddr_irda)
696 *
697 */
698static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
699 int *uaddr_len, int peer)
700{
701 struct sockaddr_irda saddr;
702 struct sock *sk = sock->sk;
703 struct irda_sock *self = irda_sk(sk);
704
705 memset(&saddr, 0, sizeof(saddr));
706 if (peer) {
707 if (sk->sk_state != TCP_ESTABLISHED)
708 return -ENOTCONN;
709
710 saddr.sir_family = AF_IRDA;
711 saddr.sir_lsap_sel = self->dtsap_sel;
712 saddr.sir_addr = self->daddr;
713 } else {
714 saddr.sir_family = AF_IRDA;
715 saddr.sir_lsap_sel = self->stsap_sel;
716 saddr.sir_addr = self->saddr;
717 }
718
719 pr_debug("%s(), tsap_sel = %#x\n", __func__, saddr.sir_lsap_sel);
720 pr_debug("%s(), addr = %08x\n", __func__, saddr.sir_addr);
721
722 /* uaddr_len come to us uninitialised */
723 *uaddr_len = sizeof (struct sockaddr_irda);
724 memcpy(uaddr, &saddr, *uaddr_len);
725
726 return 0;
727}
728
729/*
730 * Function irda_listen (sock, backlog)
731 *
732 * Just move to the listen state
733 *
734 */
735static int irda_listen(struct socket *sock, int backlog)
736{
737 struct sock *sk = sock->sk;
738 int err = -EOPNOTSUPP;
739
740 lock_sock(sk);
741
742 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
743 (sk->sk_type != SOCK_DGRAM))
744 goto out;
745
746 if (sk->sk_state != TCP_LISTEN) {
747 sk->sk_max_ack_backlog = backlog;
748 sk->sk_state = TCP_LISTEN;
749
750 err = 0;
751 }
752out:
753 release_sock(sk);
754
755 return err;
756}
757
758/*
759 * Function irda_bind (sock, uaddr, addr_len)
760 *
761 * Used by servers to register their well known TSAP
762 *
763 */
764static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
765{
766 struct sock *sk = sock->sk;
767 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
768 struct irda_sock *self = irda_sk(sk);
769 int err;
770
771 pr_debug("%s(%p)\n", __func__, self);
772
773 if (addr_len != sizeof(struct sockaddr_irda))
774 return -EINVAL;
775
776 lock_sock(sk);
777#ifdef CONFIG_IRDA_ULTRA
778 /* Special care for Ultra sockets */
779 if ((sk->sk_type == SOCK_DGRAM) &&
780 (sk->sk_protocol == IRDAPROTO_ULTRA)) {
781 self->pid = addr->sir_lsap_sel;
782 err = -EOPNOTSUPP;
783 if (self->pid & 0x80) {
784 pr_debug("%s(), extension in PID not supp!\n",
785 __func__);
786 goto out;
787 }
788 err = irda_open_lsap(self, self->pid);
789 if (err < 0)
790 goto out;
791
792 /* Pretend we are connected */
793 sock->state = SS_CONNECTED;
794 sk->sk_state = TCP_ESTABLISHED;
795 err = 0;
796
797 goto out;
798 }
799#endif /* CONFIG_IRDA_ULTRA */
800
801 self->ias_obj = irias_new_object(addr->sir_name, jiffies);
802 err = -ENOMEM;
803 if (self->ias_obj == NULL)
804 goto out;
805
806 err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
807 if (err < 0) {
808 irias_delete_object(self->ias_obj);
809 self->ias_obj = NULL;
810 goto out;
811 }
812
813 /* Register with LM-IAS */
814 irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
815 self->stsap_sel, IAS_KERNEL_ATTR);
816 irias_insert_object(self->ias_obj);
817
818 err = 0;
819out:
820 release_sock(sk);
821 return err;
822}
823
824/*
825 * Function irda_accept (sock, newsock, flags)
826 *
827 * Wait for incoming connection
828 *
829 */
830static int irda_accept(struct socket *sock, struct socket *newsock, int flags)
831{
832 struct sock *sk = sock->sk;
833 struct irda_sock *new, *self = irda_sk(sk);
834 struct sock *newsk;
835 struct sk_buff *skb;
836 int err;
837
838 err = irda_create(sock_net(sk), newsock, sk->sk_protocol, 0);
839 if (err)
840 return err;
841
842 err = -EINVAL;
843
844 lock_sock(sk);
845 if (sock->state != SS_UNCONNECTED)
846 goto out;
847
848 if ((sk = sock->sk) == NULL)
849 goto out;
850
851 err = -EOPNOTSUPP;
852 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
853 (sk->sk_type != SOCK_DGRAM))
854 goto out;
855
856 err = -EINVAL;
857 if (sk->sk_state != TCP_LISTEN)
858 goto out;
859
860 /*
861 * The read queue this time is holding sockets ready to use
862 * hooked into the SABM we saved
863 */
864
865 /*
866 * We can perform the accept only if there is incoming data
867 * on the listening socket.
868 * So, we will block the caller until we receive any data.
869 * If the caller was waiting on select() or poll() before
870 * calling us, the data is waiting for us ;-)
871 * Jean II
872 */
873 while (1) {
874 skb = skb_dequeue(&sk->sk_receive_queue);
875 if (skb)
876 break;
877
878 /* Non blocking operation */
879 err = -EWOULDBLOCK;
880 if (flags & O_NONBLOCK)
881 goto out;
882
883 err = wait_event_interruptible(*(sk_sleep(sk)),
884 skb_peek(&sk->sk_receive_queue));
885 if (err)
886 goto out;
887 }
888
889 newsk = newsock->sk;
890 err = -EIO;
891 if (newsk == NULL)
892 goto out;
893
894 newsk->sk_state = TCP_ESTABLISHED;
895
896 new = irda_sk(newsk);
897
898 /* Now attach up the new socket */
899 new->tsap = irttp_dup(self->tsap, new);
900 err = -EPERM; /* value does not seem to make sense. -arnd */
901 if (!new->tsap) {
902 pr_debug("%s(), dup failed!\n", __func__);
903 kfree_skb(skb);
904 goto out;
905 }
906
907 new->stsap_sel = new->tsap->stsap_sel;
908 new->dtsap_sel = new->tsap->dtsap_sel;
909 new->saddr = irttp_get_saddr(new->tsap);
910 new->daddr = irttp_get_daddr(new->tsap);
911
912 new->max_sdu_size_tx = self->max_sdu_size_tx;
913 new->max_sdu_size_rx = self->max_sdu_size_rx;
914 new->max_data_size = self->max_data_size;
915 new->max_header_size = self->max_header_size;
916
917 memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));
918
919 /* Clean up the original one to keep it in listen state */
920 irttp_listen(self->tsap);
921
922 kfree_skb(skb);
923 sk->sk_ack_backlog--;
924
925 newsock->state = SS_CONNECTED;
926
927 irda_connect_response(new);
928 err = 0;
929out:
930 release_sock(sk);
931 return err;
932}
933
934/*
935 * Function irda_connect (sock, uaddr, addr_len, flags)
936 *
937 * Connect to a IrDA device
938 *
939 * The main difference with a "standard" connect is that with IrDA we need
940 * to resolve the service name into a TSAP selector (in TCP, port number
941 * doesn't have to be resolved).
942 * Because of this service name resolution, we can offer "auto-connect",
943 * where we connect to a service without specifying a destination address.
944 *
945 * Note : by consulting "errno", the user space caller may learn the cause
946 * of the failure. Most of them are visible in the function, others may come
947 * from subroutines called and are listed here :
948 * o EBUSY : already processing a connect
949 * o EHOSTUNREACH : bad addr->sir_addr argument
950 * o EADDRNOTAVAIL : bad addr->sir_name argument
951 * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
952 * o ENETUNREACH : no node found on the network (auto-connect)
953 */
954static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
955 int addr_len, int flags)
956{
957 struct sock *sk = sock->sk;
958 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
959 struct irda_sock *self = irda_sk(sk);
960 int err;
961
962 pr_debug("%s(%p)\n", __func__, self);
963
964 lock_sock(sk);
965 /* Don't allow connect for Ultra sockets */
966 err = -ESOCKTNOSUPPORT;
967 if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
968 goto out;
969
970 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
971 sock->state = SS_CONNECTED;
972 err = 0;
973 goto out; /* Connect completed during a ERESTARTSYS event */
974 }
975
976 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
977 sock->state = SS_UNCONNECTED;
978 err = -ECONNREFUSED;
979 goto out;
980 }
981
982 err = -EISCONN; /* No reconnect on a seqpacket socket */
983 if (sk->sk_state == TCP_ESTABLISHED)
984 goto out;
985
986 sk->sk_state = TCP_CLOSE;
987 sock->state = SS_UNCONNECTED;
988
989 err = -EINVAL;
990 if (addr_len != sizeof(struct sockaddr_irda))
991 goto out;
992
993 /* Check if user supplied any destination device address */
994 if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
995 /* Try to find one suitable */
996 err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
997 if (err) {
998 pr_debug("%s(), auto-connect failed!\n", __func__);
999 goto out;
1000 }
1001 } else {
1002 /* Use the one provided by the user */
1003 self->daddr = addr->sir_addr;
1004 pr_debug("%s(), daddr = %08x\n", __func__, self->daddr);
1005
1006 /* If we don't have a valid service name, we assume the
1007 * user want to connect on a specific LSAP. Prevent
1008 * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */
1009 if((addr->sir_name[0] != '\0') ||
1010 (addr->sir_lsap_sel >= 0x70)) {
1011 /* Query remote LM-IAS using service name */
1012 err = irda_find_lsap_sel(self, addr->sir_name);
1013 if (err) {
1014 pr_debug("%s(), connect failed!\n", __func__);
1015 goto out;
1016 }
1017 } else {
1018 /* Directly connect to the remote LSAP
1019 * specified by the sir_lsap field.
1020 * Please use with caution, in IrDA LSAPs are
1021 * dynamic and there is no "well-known" LSAP. */
1022 self->dtsap_sel = addr->sir_lsap_sel;
1023 }
1024 }
1025
1026 /* Check if we have opened a local TSAP */
1027 if (!self->tsap) {
1028 err = irda_open_tsap(self, LSAP_ANY, addr->sir_name);
1029 if (err)
1030 goto out;
1031 }
1032
1033 /* Move to connecting socket, start sending Connect Requests */
1034 sock->state = SS_CONNECTING;
1035 sk->sk_state = TCP_SYN_SENT;
1036
1037 /* Connect to remote device */
1038 err = irttp_connect_request(self->tsap, self->dtsap_sel,
1039 self->saddr, self->daddr, NULL,
1040 self->max_sdu_size_rx, NULL);
1041 if (err) {
1042 pr_debug("%s(), connect failed!\n", __func__);
1043 goto out;
1044 }
1045
1046 /* Now the loop */
1047 err = -EINPROGRESS;
1048 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
1049 goto out;
1050
1051 err = -ERESTARTSYS;
1052 if (wait_event_interruptible(*(sk_sleep(sk)),
1053 (sk->sk_state != TCP_SYN_SENT)))
1054 goto out;
1055
1056 if (sk->sk_state != TCP_ESTABLISHED) {
1057 sock->state = SS_UNCONNECTED;
1058 err = sock_error(sk);
1059 if (!err)
1060 err = -ECONNRESET;
1061 goto out;
1062 }
1063
1064 sock->state = SS_CONNECTED;
1065
1066 /* At this point, IrLMP has assigned our source address */
1067 self->saddr = irttp_get_saddr(self->tsap);
1068 err = 0;
1069out:
1070 release_sock(sk);
1071 return err;
1072}
1073
1074static struct proto irda_proto = {
1075 .name = "IRDA",
1076 .owner = THIS_MODULE,
1077 .obj_size = sizeof(struct irda_sock),
1078};
1079
1080/*
1081 * Function irda_create (sock, protocol)
1082 *
1083 * Create IrDA socket
1084 *
1085 */
1086static int irda_create(struct net *net, struct socket *sock, int protocol,
1087 int kern)
1088{
1089 struct sock *sk;
1090 struct irda_sock *self;
1091
1092 if (protocol < 0 || protocol > SK_PROTOCOL_MAX)
1093 return -EINVAL;
1094
1095 if (net != &init_net)
1096 return -EAFNOSUPPORT;
1097
1098 /* Check for valid socket type */
1099 switch (sock->type) {
1100 case SOCK_STREAM: /* For TTP connections with SAR disabled */
1101 case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */
1102 case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */
1103 break;
1104 default:
1105 return -ESOCKTNOSUPPORT;
1106 }
1107
1108 /* Allocate networking socket */
1109 sk = sk_alloc(net, PF_IRDA, GFP_KERNEL, &irda_proto, kern);
1110 if (sk == NULL)
1111 return -ENOMEM;
1112
1113 self = irda_sk(sk);
1114 pr_debug("%s() : self is %p\n", __func__, self);
1115
1116 init_waitqueue_head(&self->query_wait);
1117
1118 switch (sock->type) {
1119 case SOCK_STREAM:
1120 sock->ops = &irda_stream_ops;
1121 self->max_sdu_size_rx = TTP_SAR_DISABLE;
1122 break;
1123 case SOCK_SEQPACKET:
1124 sock->ops = &irda_seqpacket_ops;
1125 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1126 break;
1127 case SOCK_DGRAM:
1128 switch (protocol) {
1129#ifdef CONFIG_IRDA_ULTRA
1130 case IRDAPROTO_ULTRA:
1131 sock->ops = &irda_ultra_ops;
1132 /* Initialise now, because we may send on unbound
1133 * sockets. Jean II */
1134 self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
1135 self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
1136 break;
1137#endif /* CONFIG_IRDA_ULTRA */
1138 case IRDAPROTO_UNITDATA:
1139 sock->ops = &irda_dgram_ops;
1140 /* We let Unitdata conn. be like seqpack conn. */
1141 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1142 break;
1143 default:
1144 sk_free(sk);
1145 return -ESOCKTNOSUPPORT;
1146 }
1147 break;
1148 default:
1149 sk_free(sk);
1150 return -ESOCKTNOSUPPORT;
1151 }
1152
1153 /* Initialise networking socket struct */
1154 sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */
1155 sk->sk_family = PF_IRDA;
1156 sk->sk_protocol = protocol;
1157
1158 /* Register as a client with IrLMP */
1159 self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
1160 self->mask.word = 0xffff;
1161 self->rx_flow = self->tx_flow = FLOW_START;
1162 self->nslots = DISCOVERY_DEFAULT_SLOTS;
1163 self->daddr = DEV_ADDR_ANY; /* Until we get connected */
1164 self->saddr = 0x0; /* so IrLMP assign us any link */
1165 return 0;
1166}
1167
1168/*
1169 * Function irda_destroy_socket (self)
1170 *
1171 * Destroy socket
1172 *
1173 */
1174static void irda_destroy_socket(struct irda_sock *self)
1175{
1176 pr_debug("%s(%p)\n", __func__, self);
1177
1178 /* Unregister with IrLMP */
1179 irlmp_unregister_client(self->ckey);
1180 irlmp_unregister_service(self->skey);
1181
1182 /* Unregister with LM-IAS */
1183 if (self->ias_obj) {
1184 irias_delete_object(self->ias_obj);
1185 self->ias_obj = NULL;
1186 }
1187
1188 if (self->iriap) {
1189 iriap_close(self->iriap);
1190 self->iriap = NULL;
1191 }
1192
1193 if (self->tsap) {
1194 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1195 irttp_close_tsap(self->tsap);
1196 self->tsap = NULL;
1197 }
1198#ifdef CONFIG_IRDA_ULTRA
1199 if (self->lsap) {
1200 irlmp_close_lsap(self->lsap);
1201 self->lsap = NULL;
1202 }
1203#endif /* CONFIG_IRDA_ULTRA */
1204}
1205
1206/*
1207 * Function irda_release (sock)
1208 */
1209static int irda_release(struct socket *sock)
1210{
1211 struct sock *sk = sock->sk;
1212
1213 if (sk == NULL)
1214 return 0;
1215
1216 lock_sock(sk);
1217 sk->sk_state = TCP_CLOSE;
1218 sk->sk_shutdown |= SEND_SHUTDOWN;
1219 sk->sk_state_change(sk);
1220
1221 /* Destroy IrDA socket */
1222 irda_destroy_socket(irda_sk(sk));
1223
1224 sock_orphan(sk);
1225 sock->sk = NULL;
1226 release_sock(sk);
1227
1228 /* Purge queues (see sock_init_data()) */
1229 skb_queue_purge(&sk->sk_receive_queue);
1230
1231 /* Destroy networking socket if we are the last reference on it,
1232 * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
1233 sock_put(sk);
1234
1235 /* Notes on socket locking and deallocation... - Jean II
1236 * In theory we should put pairs of sock_hold() / sock_put() to
1237 * prevent the socket to be destroyed whenever there is an
1238 * outstanding request or outstanding incoming packet or event.
1239 *
1240 * 1) This may include IAS request, both in connect and getsockopt.
1241 * Unfortunately, the situation is a bit more messy than it looks,
1242 * because we close iriap and kfree(self) above.
1243 *
1244 * 2) This may include selective discovery in getsockopt.
1245 * Same stuff as above, irlmp registration and self are gone.
1246 *
1247 * Probably 1 and 2 may not matter, because it's all triggered
1248 * by a process and the socket layer already prevent the
1249 * socket to go away while a process is holding it, through
1250 * sockfd_put() and fput()...
1251 *
1252 * 3) This may include deferred TSAP closure. In particular,
1253 * we may receive a late irda_disconnect_indication()
1254 * Fortunately, (tsap_cb *)->close_pend should protect us
1255 * from that.
1256 *
1257 * I did some testing on SMP, and it looks solid. And the socket
1258 * memory leak is now gone... - Jean II
1259 */
1260
1261 return 0;
1262}
1263
1264/*
1265 * Function irda_sendmsg (sock, msg, len)
1266 *
1267 * Send message down to TinyTP. This function is used for both STREAM and
1268 * SEQPACK services. This is possible since it forces the client to
1269 * fragment the message if necessary
1270 */
1271static int irda_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
1272{
1273 struct sock *sk = sock->sk;
1274 struct irda_sock *self;
1275 struct sk_buff *skb;
1276 int err = -EPIPE;
1277
1278 pr_debug("%s(), len=%zd\n", __func__, len);
1279
1280 /* Note : socket.c set MSG_EOR on SEQPACKET sockets */
1281 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_EOR | MSG_CMSG_COMPAT |
1282 MSG_NOSIGNAL)) {
1283 return -EINVAL;
1284 }
1285
1286 lock_sock(sk);
1287
1288 if (sk->sk_shutdown & SEND_SHUTDOWN)
1289 goto out_err;
1290
1291 if (sk->sk_state != TCP_ESTABLISHED) {
1292 err = -ENOTCONN;
1293 goto out;
1294 }
1295
1296 self = irda_sk(sk);
1297
1298 /* Check if IrTTP is wants us to slow down */
1299
1300 if (wait_event_interruptible(*(sk_sleep(sk)),
1301 (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED))) {
1302 err = -ERESTARTSYS;
1303 goto out;
1304 }
1305
1306 /* Check if we are still connected */
1307 if (sk->sk_state != TCP_ESTABLISHED) {
1308 err = -ENOTCONN;
1309 goto out;
1310 }
1311
1312 /* Check that we don't send out too big frames */
1313 if (len > self->max_data_size) {
1314 pr_debug("%s(), Chopping frame from %zd to %d bytes!\n",
1315 __func__, len, self->max_data_size);
1316 len = self->max_data_size;
1317 }
1318
1319 skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
1320 msg->msg_flags & MSG_DONTWAIT, &err);
1321 if (!skb)
1322 goto out_err;
1323
1324 skb_reserve(skb, self->max_header_size + 16);
1325 skb_reset_transport_header(skb);
1326 skb_put(skb, len);
1327 err = memcpy_from_msg(skb_transport_header(skb), msg, len);
1328 if (err) {
1329 kfree_skb(skb);
1330 goto out_err;
1331 }
1332
1333 /*
1334 * Just send the message to TinyTP, and let it deal with possible
1335 * errors. No need to duplicate all that here
1336 */
1337 err = irttp_data_request(self->tsap, skb);
1338 if (err) {
1339 pr_debug("%s(), err=%d\n", __func__, err);
1340 goto out_err;
1341 }
1342
1343 release_sock(sk);
1344 /* Tell client how much data we actually sent */
1345 return len;
1346
1347out_err:
1348 err = sk_stream_error(sk, msg->msg_flags, err);
1349out:
1350 release_sock(sk);
1351 return err;
1352
1353}
1354
1355/*
1356 * Function irda_recvmsg_dgram (sock, msg, size, flags)
1357 *
1358 * Try to receive message and copy it to user. The frame is discarded
1359 * after being read, regardless of how much the user actually read
1360 */
1361static int irda_recvmsg_dgram(struct socket *sock, struct msghdr *msg,
1362 size_t size, int flags)
1363{
1364 struct sock *sk = sock->sk;
1365 struct irda_sock *self = irda_sk(sk);
1366 struct sk_buff *skb;
1367 size_t copied;
1368 int err;
1369
1370 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1371 flags & MSG_DONTWAIT, &err);
1372 if (!skb)
1373 return err;
1374
1375 skb_reset_transport_header(skb);
1376 copied = skb->len;
1377
1378 if (copied > size) {
1379 pr_debug("%s(), Received truncated frame (%zd < %zd)!\n",
1380 __func__, copied, size);
1381 copied = size;
1382 msg->msg_flags |= MSG_TRUNC;
1383 }
1384 skb_copy_datagram_msg(skb, 0, msg, copied);
1385
1386 skb_free_datagram(sk, skb);
1387
1388 /*
1389 * Check if we have previously stopped IrTTP and we know
1390 * have more free space in our rx_queue. If so tell IrTTP
1391 * to start delivering frames again before our rx_queue gets
1392 * empty
1393 */
1394 if (self->rx_flow == FLOW_STOP) {
1395 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1396 pr_debug("%s(), Starting IrTTP\n", __func__);
1397 self->rx_flow = FLOW_START;
1398 irttp_flow_request(self->tsap, FLOW_START);
1399 }
1400 }
1401
1402 return copied;
1403}
1404
1405/*
1406 * Function irda_recvmsg_stream (sock, msg, size, flags)
1407 */
1408static int irda_recvmsg_stream(struct socket *sock, struct msghdr *msg,
1409 size_t size, int flags)
1410{
1411 struct sock *sk = sock->sk;
1412 struct irda_sock *self = irda_sk(sk);
1413 int noblock = flags & MSG_DONTWAIT;
1414 size_t copied = 0;
1415 int target, err;
1416 long timeo;
1417
1418 if ((err = sock_error(sk)) < 0)
1419 return err;
1420
1421 if (sock->flags & __SO_ACCEPTCON)
1422 return -EINVAL;
1423
1424 err =-EOPNOTSUPP;
1425 if (flags & MSG_OOB)
1426 return -EOPNOTSUPP;
1427
1428 err = 0;
1429 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
1430 timeo = sock_rcvtimeo(sk, noblock);
1431
1432 do {
1433 int chunk;
1434 struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);
1435
1436 if (skb == NULL) {
1437 DEFINE_WAIT(wait);
1438 err = 0;
1439
1440 if (copied >= target)
1441 break;
1442
1443 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1444
1445 /*
1446 * POSIX 1003.1g mandates this order.
1447 */
1448 err = sock_error(sk);
1449 if (err)
1450 ;
1451 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1452 ;
1453 else if (noblock)
1454 err = -EAGAIN;
1455 else if (signal_pending(current))
1456 err = sock_intr_errno(timeo);
1457 else if (sk->sk_state != TCP_ESTABLISHED)
1458 err = -ENOTCONN;
1459 else if (skb_peek(&sk->sk_receive_queue) == NULL)
1460 /* Wait process until data arrives */
1461 schedule();
1462
1463 finish_wait(sk_sleep(sk), &wait);
1464
1465 if (err)
1466 return err;
1467 if (sk->sk_shutdown & RCV_SHUTDOWN)
1468 break;
1469
1470 continue;
1471 }
1472
1473 chunk = min_t(unsigned int, skb->len, size);
1474 if (memcpy_to_msg(msg, skb->data, chunk)) {
1475 skb_queue_head(&sk->sk_receive_queue, skb);
1476 if (copied == 0)
1477 copied = -EFAULT;
1478 break;
1479 }
1480 copied += chunk;
1481 size -= chunk;
1482
1483 /* Mark read part of skb as used */
1484 if (!(flags & MSG_PEEK)) {
1485 skb_pull(skb, chunk);
1486
1487 /* put the skb back if we didn't use it up.. */
1488 if (skb->len) {
1489 pr_debug("%s(), back on q!\n",
1490 __func__);
1491 skb_queue_head(&sk->sk_receive_queue, skb);
1492 break;
1493 }
1494
1495 kfree_skb(skb);
1496 } else {
1497 pr_debug("%s() questionable!?\n", __func__);
1498
1499 /* put message back and return */
1500 skb_queue_head(&sk->sk_receive_queue, skb);
1501 break;
1502 }
1503 } while (size);
1504
1505 /*
1506 * Check if we have previously stopped IrTTP and we know
1507 * have more free space in our rx_queue. If so tell IrTTP
1508 * to start delivering frames again before our rx_queue gets
1509 * empty
1510 */
1511 if (self->rx_flow == FLOW_STOP) {
1512 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1513 pr_debug("%s(), Starting IrTTP\n", __func__);
1514 self->rx_flow = FLOW_START;
1515 irttp_flow_request(self->tsap, FLOW_START);
1516 }
1517 }
1518
1519 return copied;
1520}
1521
1522/*
1523 * Function irda_sendmsg_dgram (sock, msg, len)
1524 *
1525 * Send message down to TinyTP for the unreliable sequenced
1526 * packet service...
1527 *
1528 */
1529static int irda_sendmsg_dgram(struct socket *sock, struct msghdr *msg,
1530 size_t len)
1531{
1532 struct sock *sk = sock->sk;
1533 struct irda_sock *self;
1534 struct sk_buff *skb;
1535 int err;
1536
1537 pr_debug("%s(), len=%zd\n", __func__, len);
1538
1539 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1540 return -EINVAL;
1541
1542 lock_sock(sk);
1543
1544 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1545 send_sig(SIGPIPE, current, 0);
1546 err = -EPIPE;
1547 goto out;
1548 }
1549
1550 err = -ENOTCONN;
1551 if (sk->sk_state != TCP_ESTABLISHED)
1552 goto out;
1553
1554 self = irda_sk(sk);
1555
1556 /*
1557 * Check that we don't send out too big frames. This is an unreliable
1558 * service, so we have no fragmentation and no coalescence
1559 */
1560 if (len > self->max_data_size) {
1561 pr_debug("%s(), Warning too much data! Chopping frame from %zd to %d bytes!\n",
1562 __func__, len, self->max_data_size);
1563 len = self->max_data_size;
1564 }
1565
1566 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1567 msg->msg_flags & MSG_DONTWAIT, &err);
1568 err = -ENOBUFS;
1569 if (!skb)
1570 goto out;
1571
1572 skb_reserve(skb, self->max_header_size);
1573 skb_reset_transport_header(skb);
1574
1575 pr_debug("%s(), appending user data\n", __func__);
1576 skb_put(skb, len);
1577 err = memcpy_from_msg(skb_transport_header(skb), msg, len);
1578 if (err) {
1579 kfree_skb(skb);
1580 goto out;
1581 }
1582
1583 /*
1584 * Just send the message to TinyTP, and let it deal with possible
1585 * errors. No need to duplicate all that here
1586 */
1587 err = irttp_udata_request(self->tsap, skb);
1588 if (err) {
1589 pr_debug("%s(), err=%d\n", __func__, err);
1590 goto out;
1591 }
1592
1593 release_sock(sk);
1594 return len;
1595
1596out:
1597 release_sock(sk);
1598 return err;
1599}
1600
1601/*
1602 * Function irda_sendmsg_ultra (sock, msg, len)
1603 *
1604 * Send message down to IrLMP for the unreliable Ultra
1605 * packet service...
1606 */
1607#ifdef CONFIG_IRDA_ULTRA
1608static int irda_sendmsg_ultra(struct socket *sock, struct msghdr *msg,
1609 size_t len)
1610{
1611 struct sock *sk = sock->sk;
1612 struct irda_sock *self;
1613 __u8 pid = 0;
1614 int bound = 0;
1615 struct sk_buff *skb;
1616 int err;
1617
1618 pr_debug("%s(), len=%zd\n", __func__, len);
1619
1620 err = -EINVAL;
1621 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1622 return -EINVAL;
1623
1624 lock_sock(sk);
1625
1626 err = -EPIPE;
1627 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1628 send_sig(SIGPIPE, current, 0);
1629 goto out;
1630 }
1631
1632 self = irda_sk(sk);
1633
1634 /* Check if an address was specified with sendto. Jean II */
1635 if (msg->msg_name) {
1636 DECLARE_SOCKADDR(struct sockaddr_irda *, addr, msg->msg_name);
1637 err = -EINVAL;
1638 /* Check address, extract pid. Jean II */
1639 if (msg->msg_namelen < sizeof(*addr))
1640 goto out;
1641 if (addr->sir_family != AF_IRDA)
1642 goto out;
1643
1644 pid = addr->sir_lsap_sel;
1645 if (pid & 0x80) {
1646 pr_debug("%s(), extension in PID not supp!\n",
1647 __func__);
1648 err = -EOPNOTSUPP;
1649 goto out;
1650 }
1651 } else {
1652 /* Check that the socket is properly bound to an Ultra
1653 * port. Jean II */
1654 if ((self->lsap == NULL) ||
1655 (sk->sk_state != TCP_ESTABLISHED)) {
1656 pr_debug("%s(), socket not bound to Ultra PID.\n",
1657 __func__);
1658 err = -ENOTCONN;
1659 goto out;
1660 }
1661 /* Use PID from socket */
1662 bound = 1;
1663 }
1664
1665 /*
1666 * Check that we don't send out too big frames. This is an unreliable
1667 * service, so we have no fragmentation and no coalescence
1668 */
1669 if (len > self->max_data_size) {
1670 pr_debug("%s(), Warning too much data! Chopping frame from %zd to %d bytes!\n",
1671 __func__, len, self->max_data_size);
1672 len = self->max_data_size;
1673 }
1674
1675 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1676 msg->msg_flags & MSG_DONTWAIT, &err);
1677 err = -ENOBUFS;
1678 if (!skb)
1679 goto out;
1680
1681 skb_reserve(skb, self->max_header_size);
1682 skb_reset_transport_header(skb);
1683
1684 pr_debug("%s(), appending user data\n", __func__);
1685 skb_put(skb, len);
1686 err = memcpy_from_msg(skb_transport_header(skb), msg, len);
1687 if (err) {
1688 kfree_skb(skb);
1689 goto out;
1690 }
1691
1692 err = irlmp_connless_data_request((bound ? self->lsap : NULL),
1693 skb, pid);
1694 if (err)
1695 pr_debug("%s(), err=%d\n", __func__, err);
1696out:
1697 release_sock(sk);
1698 return err ? : len;
1699}
1700#endif /* CONFIG_IRDA_ULTRA */
1701
1702/*
1703 * Function irda_shutdown (sk, how)
1704 */
1705static int irda_shutdown(struct socket *sock, int how)
1706{
1707 struct sock *sk = sock->sk;
1708 struct irda_sock *self = irda_sk(sk);
1709
1710 pr_debug("%s(%p)\n", __func__, self);
1711
1712 lock_sock(sk);
1713
1714 sk->sk_state = TCP_CLOSE;
1715 sk->sk_shutdown |= SEND_SHUTDOWN;
1716 sk->sk_state_change(sk);
1717
1718 if (self->iriap) {
1719 iriap_close(self->iriap);
1720 self->iriap = NULL;
1721 }
1722
1723 if (self->tsap) {
1724 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1725 irttp_close_tsap(self->tsap);
1726 self->tsap = NULL;
1727 }
1728
1729 /* A few cleanup so the socket look as good as new... */
1730 self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */
1731 self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */
1732 self->saddr = 0x0; /* so IrLMP assign us any link */
1733
1734 release_sock(sk);
1735
1736 return 0;
1737}
1738
1739/*
1740 * Function irda_poll (file, sock, wait)
1741 */
1742static unsigned int irda_poll(struct file * file, struct socket *sock,
1743 poll_table *wait)
1744{
1745 struct sock *sk = sock->sk;
1746 struct irda_sock *self = irda_sk(sk);
1747 unsigned int mask;
1748
1749 poll_wait(file, sk_sleep(sk), wait);
1750 mask = 0;
1751
1752 /* Exceptional events? */
1753 if (sk->sk_err)
1754 mask |= POLLERR;
1755 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1756 pr_debug("%s(), POLLHUP\n", __func__);
1757 mask |= POLLHUP;
1758 }
1759
1760 /* Readable? */
1761 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1762 pr_debug("Socket is readable\n");
1763 mask |= POLLIN | POLLRDNORM;
1764 }
1765
1766 /* Connection-based need to check for termination and startup */
1767 switch (sk->sk_type) {
1768 case SOCK_STREAM:
1769 if (sk->sk_state == TCP_CLOSE) {
1770 pr_debug("%s(), POLLHUP\n", __func__);
1771 mask |= POLLHUP;
1772 }
1773
1774 if (sk->sk_state == TCP_ESTABLISHED) {
1775 if ((self->tx_flow == FLOW_START) &&
1776 sock_writeable(sk))
1777 {
1778 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1779 }
1780 }
1781 break;
1782 case SOCK_SEQPACKET:
1783 if ((self->tx_flow == FLOW_START) &&
1784 sock_writeable(sk))
1785 {
1786 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1787 }
1788 break;
1789 case SOCK_DGRAM:
1790 if (sock_writeable(sk))
1791 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1792 break;
1793 default:
1794 break;
1795 }
1796
1797 return mask;
1798}
1799
1800/*
1801 * Function irda_ioctl (sock, cmd, arg)
1802 */
1803static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1804{
1805 struct sock *sk = sock->sk;
1806 int err;
1807
1808 pr_debug("%s(), cmd=%#x\n", __func__, cmd);
1809
1810 err = -EINVAL;
1811 switch (cmd) {
1812 case TIOCOUTQ: {
1813 long amount;
1814
1815 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1816 if (amount < 0)
1817 amount = 0;
1818 err = put_user(amount, (unsigned int __user *)arg);
1819 break;
1820 }
1821
1822 case TIOCINQ: {
1823 struct sk_buff *skb;
1824 long amount = 0L;
1825 /* These two are safe on a single CPU system as only user tasks fiddle here */
1826 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1827 amount = skb->len;
1828 err = put_user(amount, (unsigned int __user *)arg);
1829 break;
1830 }
1831
1832 case SIOCGSTAMP:
1833 if (sk != NULL)
1834 err = sock_get_timestamp(sk, (struct timeval __user *)arg);
1835 break;
1836
1837 case SIOCGIFADDR:
1838 case SIOCSIFADDR:
1839 case SIOCGIFDSTADDR:
1840 case SIOCSIFDSTADDR:
1841 case SIOCGIFBRDADDR:
1842 case SIOCSIFBRDADDR:
1843 case SIOCGIFNETMASK:
1844 case SIOCSIFNETMASK:
1845 case SIOCGIFMETRIC:
1846 case SIOCSIFMETRIC:
1847 break;
1848 default:
1849 pr_debug("%s(), doing device ioctl!\n", __func__);
1850 err = -ENOIOCTLCMD;
1851 }
1852
1853 return err;
1854}
1855
1856#ifdef CONFIG_COMPAT
1857/*
1858 * Function irda_ioctl (sock, cmd, arg)
1859 */
1860static int irda_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1861{
1862 /*
1863 * All IRDA's ioctl are standard ones.
1864 */
1865 return -ENOIOCTLCMD;
1866}
1867#endif
1868
1869/*
1870 * Function irda_setsockopt (sock, level, optname, optval, optlen)
1871 *
1872 * Set some options for the socket
1873 *
1874 */
1875static int irda_setsockopt(struct socket *sock, int level, int optname,
1876 char __user *optval, unsigned int optlen)
1877{
1878 struct sock *sk = sock->sk;
1879 struct irda_sock *self = irda_sk(sk);
1880 struct irda_ias_set *ias_opt;
1881 struct ias_object *ias_obj;
1882 struct ias_attrib * ias_attr; /* Attribute in IAS object */
1883 int opt, free_ias = 0, err = 0;
1884
1885 pr_debug("%s(%p)\n", __func__, self);
1886
1887 if (level != SOL_IRLMP)
1888 return -ENOPROTOOPT;
1889
1890 lock_sock(sk);
1891
1892 switch (optname) {
1893 case IRLMP_IAS_SET:
1894 /* The user want to add an attribute to an existing IAS object
1895 * (in the IAS database) or to create a new object with this
1896 * attribute.
1897 * We first query IAS to know if the object exist, and then
1898 * create the right attribute...
1899 */
1900
1901 if (optlen != sizeof(struct irda_ias_set)) {
1902 err = -EINVAL;
1903 goto out;
1904 }
1905
1906 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1907 if (ias_opt == NULL) {
1908 err = -ENOMEM;
1909 goto out;
1910 }
1911
1912 /* Copy query to the driver. */
1913 if (copy_from_user(ias_opt, optval, optlen)) {
1914 kfree(ias_opt);
1915 err = -EFAULT;
1916 goto out;
1917 }
1918
1919 /* Find the object we target.
1920 * If the user gives us an empty string, we use the object
1921 * associated with this socket. This will workaround
1922 * duplicated class name - Jean II */
1923 if(ias_opt->irda_class_name[0] == '\0') {
1924 if(self->ias_obj == NULL) {
1925 kfree(ias_opt);
1926 err = -EINVAL;
1927 goto out;
1928 }
1929 ias_obj = self->ias_obj;
1930 } else
1931 ias_obj = irias_find_object(ias_opt->irda_class_name);
1932
1933 /* Only ROOT can mess with the global IAS database.
1934 * Users can only add attributes to the object associated
1935 * with the socket they own - Jean II */
1936 if((!capable(CAP_NET_ADMIN)) &&
1937 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1938 kfree(ias_opt);
1939 err = -EPERM;
1940 goto out;
1941 }
1942
1943 /* If the object doesn't exist, create it */
1944 if(ias_obj == (struct ias_object *) NULL) {
1945 /* Create a new object */
1946 ias_obj = irias_new_object(ias_opt->irda_class_name,
1947 jiffies);
1948 if (ias_obj == NULL) {
1949 kfree(ias_opt);
1950 err = -ENOMEM;
1951 goto out;
1952 }
1953 free_ias = 1;
1954 }
1955
1956 /* Do we have the attribute already ? */
1957 if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
1958 kfree(ias_opt);
1959 if (free_ias) {
1960 kfree(ias_obj->name);
1961 kfree(ias_obj);
1962 }
1963 err = -EINVAL;
1964 goto out;
1965 }
1966
1967 /* Look at the type */
1968 switch(ias_opt->irda_attrib_type) {
1969 case IAS_INTEGER:
1970 /* Add an integer attribute */
1971 irias_add_integer_attrib(
1972 ias_obj,
1973 ias_opt->irda_attrib_name,
1974 ias_opt->attribute.irda_attrib_int,
1975 IAS_USER_ATTR);
1976 break;
1977 case IAS_OCT_SEQ:
1978 /* Check length */
1979 if(ias_opt->attribute.irda_attrib_octet_seq.len >
1980 IAS_MAX_OCTET_STRING) {
1981 kfree(ias_opt);
1982 if (free_ias) {
1983 kfree(ias_obj->name);
1984 kfree(ias_obj);
1985 }
1986
1987 err = -EINVAL;
1988 goto out;
1989 }
1990 /* Add an octet sequence attribute */
1991 irias_add_octseq_attrib(
1992 ias_obj,
1993 ias_opt->irda_attrib_name,
1994 ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
1995 ias_opt->attribute.irda_attrib_octet_seq.len,
1996 IAS_USER_ATTR);
1997 break;
1998 case IAS_STRING:
1999 /* Should check charset & co */
2000 /* Check length */
2001 /* The length is encoded in a __u8, and
2002 * IAS_MAX_STRING == 256, so there is no way
2003 * userspace can pass us a string too large.
2004 * Jean II */
2005 /* NULL terminate the string (avoid troubles) */
2006 ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
2007 /* Add a string attribute */
2008 irias_add_string_attrib(
2009 ias_obj,
2010 ias_opt->irda_attrib_name,
2011 ias_opt->attribute.irda_attrib_string.string,
2012 IAS_USER_ATTR);
2013 break;
2014 default :
2015 kfree(ias_opt);
2016 if (free_ias) {
2017 kfree(ias_obj->name);
2018 kfree(ias_obj);
2019 }
2020 err = -EINVAL;
2021 goto out;
2022 }
2023 irias_insert_object(ias_obj);
2024 kfree(ias_opt);
2025 break;
2026 case IRLMP_IAS_DEL:
2027 /* The user want to delete an object from our local IAS
2028 * database. We just need to query the IAS, check is the
2029 * object is not owned by the kernel and delete it.
2030 */
2031
2032 if (optlen != sizeof(struct irda_ias_set)) {
2033 err = -EINVAL;
2034 goto out;
2035 }
2036
2037 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2038 if (ias_opt == NULL) {
2039 err = -ENOMEM;
2040 goto out;
2041 }
2042
2043 /* Copy query to the driver. */
2044 if (copy_from_user(ias_opt, optval, optlen)) {
2045 kfree(ias_opt);
2046 err = -EFAULT;
2047 goto out;
2048 }
2049
2050 /* Find the object we target.
2051 * If the user gives us an empty string, we use the object
2052 * associated with this socket. This will workaround
2053 * duplicated class name - Jean II */
2054 if(ias_opt->irda_class_name[0] == '\0')
2055 ias_obj = self->ias_obj;
2056 else
2057 ias_obj = irias_find_object(ias_opt->irda_class_name);
2058 if(ias_obj == (struct ias_object *) NULL) {
2059 kfree(ias_opt);
2060 err = -EINVAL;
2061 goto out;
2062 }
2063
2064 /* Only ROOT can mess with the global IAS database.
2065 * Users can only del attributes from the object associated
2066 * with the socket they own - Jean II */
2067 if((!capable(CAP_NET_ADMIN)) &&
2068 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
2069 kfree(ias_opt);
2070 err = -EPERM;
2071 goto out;
2072 }
2073
2074 /* Find the attribute (in the object) we target */
2075 ias_attr = irias_find_attrib(ias_obj,
2076 ias_opt->irda_attrib_name);
2077 if(ias_attr == (struct ias_attrib *) NULL) {
2078 kfree(ias_opt);
2079 err = -EINVAL;
2080 goto out;
2081 }
2082
2083 /* Check is the user space own the object */
2084 if(ias_attr->value->owner != IAS_USER_ATTR) {
2085 pr_debug("%s(), attempting to delete a kernel attribute\n",
2086 __func__);
2087 kfree(ias_opt);
2088 err = -EPERM;
2089 goto out;
2090 }
2091
2092 /* Remove the attribute (and maybe the object) */
2093 irias_delete_attrib(ias_obj, ias_attr, 1);
2094 kfree(ias_opt);
2095 break;
2096 case IRLMP_MAX_SDU_SIZE:
2097 if (optlen < sizeof(int)) {
2098 err = -EINVAL;
2099 goto out;
2100 }
2101
2102 if (get_user(opt, (int __user *)optval)) {
2103 err = -EFAULT;
2104 goto out;
2105 }
2106
2107 /* Only possible for a seqpacket service (TTP with SAR) */
2108 if (sk->sk_type != SOCK_SEQPACKET) {
2109 pr_debug("%s(), setting max_sdu_size = %d\n",
2110 __func__, opt);
2111 self->max_sdu_size_rx = opt;
2112 } else {
2113 net_warn_ratelimited("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
2114 __func__);
2115 err = -ENOPROTOOPT;
2116 goto out;
2117 }
2118 break;
2119 case IRLMP_HINTS_SET:
2120 if (optlen < sizeof(int)) {
2121 err = -EINVAL;
2122 goto out;
2123 }
2124
2125 /* The input is really a (__u8 hints[2]), easier as an int */
2126 if (get_user(opt, (int __user *)optval)) {
2127 err = -EFAULT;
2128 goto out;
2129 }
2130
2131 /* Unregister any old registration */
2132 irlmp_unregister_service(self->skey);
2133
2134 self->skey = irlmp_register_service((__u16) opt);
2135 break;
2136 case IRLMP_HINT_MASK_SET:
2137 /* As opposed to the previous case which set the hint bits
2138 * that we advertise, this one set the filter we use when
2139 * making a discovery (nodes which don't match any hint
2140 * bit in the mask are not reported).
2141 */
2142 if (optlen < sizeof(int)) {
2143 err = -EINVAL;
2144 goto out;
2145 }
2146
2147 /* The input is really a (__u8 hints[2]), easier as an int */
2148 if (get_user(opt, (int __user *)optval)) {
2149 err = -EFAULT;
2150 goto out;
2151 }
2152
2153 /* Set the new hint mask */
2154 self->mask.word = (__u16) opt;
2155 /* Mask out extension bits */
2156 self->mask.word &= 0x7f7f;
2157 /* Check if no bits */
2158 if(!self->mask.word)
2159 self->mask.word = 0xFFFF;
2160
2161 break;
2162 default:
2163 err = -ENOPROTOOPT;
2164 break;
2165 }
2166
2167out:
2168 release_sock(sk);
2169
2170 return err;
2171}
2172
2173/*
2174 * Function irda_extract_ias_value(ias_opt, ias_value)
2175 *
2176 * Translate internal IAS value structure to the user space representation
2177 *
2178 * The external representation of IAS values, as we exchange them with
2179 * user space program is quite different from the internal representation,
2180 * as stored in the IAS database (because we need a flat structure for
2181 * crossing kernel boundary).
2182 * This function transform the former in the latter. We also check
2183 * that the value type is valid.
2184 */
2185static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
2186 struct ias_value *ias_value)
2187{
2188 /* Look at the type */
2189 switch (ias_value->type) {
2190 case IAS_INTEGER:
2191 /* Copy the integer */
2192 ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
2193 break;
2194 case IAS_OCT_SEQ:
2195 /* Set length */
2196 ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
2197 /* Copy over */
2198 memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2199 ias_value->t.oct_seq, ias_value->len);
2200 break;
2201 case IAS_STRING:
2202 /* Set length */
2203 ias_opt->attribute.irda_attrib_string.len = ias_value->len;
2204 ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
2205 /* Copy over */
2206 memcpy(ias_opt->attribute.irda_attrib_string.string,
2207 ias_value->t.string, ias_value->len);
2208 /* NULL terminate the string (avoid troubles) */
2209 ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
2210 break;
2211 case IAS_MISSING:
2212 default :
2213 return -EINVAL;
2214 }
2215
2216 /* Copy type over */
2217 ias_opt->irda_attrib_type = ias_value->type;
2218
2219 return 0;
2220}
2221
2222/*
2223 * Function irda_getsockopt (sock, level, optname, optval, optlen)
2224 */
2225static int irda_getsockopt(struct socket *sock, int level, int optname,
2226 char __user *optval, int __user *optlen)
2227{
2228 struct sock *sk = sock->sk;
2229 struct irda_sock *self = irda_sk(sk);
2230 struct irda_device_list list = { 0 };
2231 struct irda_device_info *discoveries;
2232 struct irda_ias_set * ias_opt; /* IAS get/query params */
2233 struct ias_object * ias_obj; /* Object in IAS */
2234 struct ias_attrib * ias_attr; /* Attribute in IAS object */
2235 int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */
2236 int val = 0;
2237 int len = 0;
2238 int err = 0;
2239 int offset, total;
2240
2241 pr_debug("%s(%p)\n", __func__, self);
2242
2243 if (level != SOL_IRLMP)
2244 return -ENOPROTOOPT;
2245
2246 if (get_user(len, optlen))
2247 return -EFAULT;
2248
2249 if(len < 0)
2250 return -EINVAL;
2251
2252 lock_sock(sk);
2253
2254 switch (optname) {
2255 case IRLMP_ENUMDEVICES:
2256
2257 /* Offset to first device entry */
2258 offset = sizeof(struct irda_device_list) -
2259 sizeof(struct irda_device_info);
2260
2261 if (len < offset) {
2262 err = -EINVAL;
2263 goto out;
2264 }
2265
2266 /* Ask lmp for the current discovery log */
2267 discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
2268 self->nslots);
2269 /* Check if the we got some results */
2270 if (discoveries == NULL) {
2271 err = -EAGAIN;
2272 goto out; /* Didn't find any devices */
2273 }
2274
2275 /* Write total list length back to client */
2276 if (copy_to_user(optval, &list, offset))
2277 err = -EFAULT;
2278
2279 /* Copy the list itself - watch for overflow */
2280 if (list.len > 2048) {
2281 err = -EINVAL;
2282 goto bed;
2283 }
2284 total = offset + (list.len * sizeof(struct irda_device_info));
2285 if (total > len)
2286 total = len;
2287 if (copy_to_user(optval+offset, discoveries, total - offset))
2288 err = -EFAULT;
2289
2290 /* Write total number of bytes used back to client */
2291 if (put_user(total, optlen))
2292 err = -EFAULT;
2293bed:
2294 /* Free up our buffer */
2295 kfree(discoveries);
2296 break;
2297 case IRLMP_MAX_SDU_SIZE:
2298 val = self->max_data_size;
2299 len = sizeof(int);
2300 if (put_user(len, optlen)) {
2301 err = -EFAULT;
2302 goto out;
2303 }
2304
2305 if (copy_to_user(optval, &val, len)) {
2306 err = -EFAULT;
2307 goto out;
2308 }
2309
2310 break;
2311 case IRLMP_IAS_GET:
2312 /* The user want an object from our local IAS database.
2313 * We just need to query the IAS and return the value
2314 * that we found */
2315
2316 /* Check that the user has allocated the right space for us */
2317 if (len != sizeof(struct irda_ias_set)) {
2318 err = -EINVAL;
2319 goto out;
2320 }
2321
2322 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2323 if (ias_opt == NULL) {
2324 err = -ENOMEM;
2325 goto out;
2326 }
2327
2328 /* Copy query to the driver. */
2329 if (copy_from_user(ias_opt, optval, len)) {
2330 kfree(ias_opt);
2331 err = -EFAULT;
2332 goto out;
2333 }
2334
2335 /* Find the object we target.
2336 * If the user gives us an empty string, we use the object
2337 * associated with this socket. This will workaround
2338 * duplicated class name - Jean II */
2339 if(ias_opt->irda_class_name[0] == '\0')
2340 ias_obj = self->ias_obj;
2341 else
2342 ias_obj = irias_find_object(ias_opt->irda_class_name);
2343 if(ias_obj == (struct ias_object *) NULL) {
2344 kfree(ias_opt);
2345 err = -EINVAL;
2346 goto out;
2347 }
2348
2349 /* Find the attribute (in the object) we target */
2350 ias_attr = irias_find_attrib(ias_obj,
2351 ias_opt->irda_attrib_name);
2352 if(ias_attr == (struct ias_attrib *) NULL) {
2353 kfree(ias_opt);
2354 err = -EINVAL;
2355 goto out;
2356 }
2357
2358 /* Translate from internal to user structure */
2359 err = irda_extract_ias_value(ias_opt, ias_attr->value);
2360 if(err) {
2361 kfree(ias_opt);
2362 goto out;
2363 }
2364
2365 /* Copy reply to the user */
2366 if (copy_to_user(optval, ias_opt,
2367 sizeof(struct irda_ias_set))) {
2368 kfree(ias_opt);
2369 err = -EFAULT;
2370 goto out;
2371 }
2372 /* Note : don't need to put optlen, we checked it */
2373 kfree(ias_opt);
2374 break;
2375 case IRLMP_IAS_QUERY:
2376 /* The user want an object from a remote IAS database.
2377 * We need to use IAP to query the remote database and
2378 * then wait for the answer to come back. */
2379
2380 /* Check that the user has allocated the right space for us */
2381 if (len != sizeof(struct irda_ias_set)) {
2382 err = -EINVAL;
2383 goto out;
2384 }
2385
2386 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2387 if (ias_opt == NULL) {
2388 err = -ENOMEM;
2389 goto out;
2390 }
2391
2392 /* Copy query to the driver. */
2393 if (copy_from_user(ias_opt, optval, len)) {
2394 kfree(ias_opt);
2395 err = -EFAULT;
2396 goto out;
2397 }
2398
2399 /* At this point, there are two cases...
2400 * 1) the socket is connected - that's the easy case, we
2401 * just query the device we are connected to...
2402 * 2) the socket is not connected - the user doesn't want
2403 * to connect and/or may not have a valid service name
2404 * (so can't create a fake connection). In this case,
2405 * we assume that the user pass us a valid destination
2406 * address in the requesting structure...
2407 */
2408 if(self->daddr != DEV_ADDR_ANY) {
2409 /* We are connected - reuse known daddr */
2410 daddr = self->daddr;
2411 } else {
2412 /* We are not connected, we must specify a valid
2413 * destination address */
2414 daddr = ias_opt->daddr;
2415 if((!daddr) || (daddr == DEV_ADDR_ANY)) {
2416 kfree(ias_opt);
2417 err = -EINVAL;
2418 goto out;
2419 }
2420 }
2421
2422 /* Check that we can proceed with IAP */
2423 if (self->iriap) {
2424 net_warn_ratelimited("%s: busy with a previous query\n",
2425 __func__);
2426 kfree(ias_opt);
2427 err = -EBUSY;
2428 goto out;
2429 }
2430
2431 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
2432 irda_getvalue_confirm);
2433
2434 if (self->iriap == NULL) {
2435 kfree(ias_opt);
2436 err = -ENOMEM;
2437 goto out;
2438 }
2439
2440 /* Treat unexpected wakeup as disconnect */
2441 self->errno = -EHOSTUNREACH;
2442
2443 /* Query remote LM-IAS */
2444 iriap_getvaluebyclass_request(self->iriap,
2445 self->saddr, daddr,
2446 ias_opt->irda_class_name,
2447 ias_opt->irda_attrib_name);
2448
2449 /* Wait for answer, if not yet finished (or failed) */
2450 if (wait_event_interruptible(self->query_wait,
2451 (self->iriap == NULL))) {
2452 /* pending request uses copy of ias_opt-content
2453 * we can free it regardless! */
2454 kfree(ias_opt);
2455 /* Treat signals as disconnect */
2456 err = -EHOSTUNREACH;
2457 goto out;
2458 }
2459
2460 /* Check what happened */
2461 if (self->errno)
2462 {
2463 kfree(ias_opt);
2464 /* Requested object/attribute doesn't exist */
2465 if((self->errno == IAS_CLASS_UNKNOWN) ||
2466 (self->errno == IAS_ATTRIB_UNKNOWN))
2467 err = -EADDRNOTAVAIL;
2468 else
2469 err = -EHOSTUNREACH;
2470
2471 goto out;
2472 }
2473
2474 /* Translate from internal to user structure */
2475 err = irda_extract_ias_value(ias_opt, self->ias_result);
2476 if (self->ias_result)
2477 irias_delete_value(self->ias_result);
2478 if (err) {
2479 kfree(ias_opt);
2480 goto out;
2481 }
2482
2483 /* Copy reply to the user */
2484 if (copy_to_user(optval, ias_opt,
2485 sizeof(struct irda_ias_set))) {
2486 kfree(ias_opt);
2487 err = -EFAULT;
2488 goto out;
2489 }
2490 /* Note : don't need to put optlen, we checked it */
2491 kfree(ias_opt);
2492 break;
2493 case IRLMP_WAITDEVICE:
2494 /* This function is just another way of seeing life ;-)
2495 * IRLMP_ENUMDEVICES assumes that you have a static network,
2496 * and that you just want to pick one of the devices present.
2497 * On the other hand, in here we assume that no device is
2498 * present and that at some point in the future a device will
2499 * come into range. When this device arrive, we just wake
2500 * up the caller, so that he has time to connect to it before
2501 * the device goes away...
2502 * Note : once the node has been discovered for more than a
2503 * few second, it won't trigger this function, unless it
2504 * goes away and come back changes its hint bits (so we
2505 * might call it IRLMP_WAITNEWDEVICE).
2506 */
2507
2508 /* Check that the user is passing us an int */
2509 if (len != sizeof(int)) {
2510 err = -EINVAL;
2511 goto out;
2512 }
2513 /* Get timeout in ms (max time we block the caller) */
2514 if (get_user(val, (int __user *)optval)) {
2515 err = -EFAULT;
2516 goto out;
2517 }
2518
2519 /* Tell IrLMP we want to be notified */
2520 irlmp_update_client(self->ckey, self->mask.word,
2521 irda_selective_discovery_indication,
2522 NULL, (void *) self);
2523
2524 /* Do some discovery (and also return cached results) */
2525 irlmp_discovery_request(self->nslots);
2526
2527 /* Wait until a node is discovered */
2528 if (!self->cachedaddr) {
2529 pr_debug("%s(), nothing discovered yet, going to sleep...\n",
2530 __func__);
2531
2532 /* Set watchdog timer to expire in <val> ms. */
2533 self->errno = 0;
2534 setup_timer(&self->watchdog, irda_discovery_timeout,
2535 (unsigned long)self);
2536 mod_timer(&self->watchdog,
2537 jiffies + msecs_to_jiffies(val));
2538
2539 /* Wait for IR-LMP to call us back */
2540 err = __wait_event_interruptible(self->query_wait,
2541 (self->cachedaddr != 0 || self->errno == -ETIME));
2542
2543 /* If watchdog is still activated, kill it! */
2544 del_timer(&(self->watchdog));
2545
2546 pr_debug("%s(), ...waking up !\n", __func__);
2547
2548 if (err != 0)
2549 goto out;
2550 }
2551 else
2552 pr_debug("%s(), found immediately !\n",
2553 __func__);
2554
2555 /* Tell IrLMP that we have been notified */
2556 irlmp_update_client(self->ckey, self->mask.word,
2557 NULL, NULL, NULL);
2558
2559 /* Check if the we got some results */
2560 if (!self->cachedaddr) {
2561 err = -EAGAIN; /* Didn't find any devices */
2562 goto out;
2563 }
2564 daddr = self->cachedaddr;
2565 /* Cleanup */
2566 self->cachedaddr = 0;
2567
2568 /* We return the daddr of the device that trigger the
2569 * wakeup. As irlmp pass us only the new devices, we
2570 * are sure that it's not an old device.
2571 * If the user want more details, he should query
2572 * the whole discovery log and pick one device...
2573 */
2574 if (put_user(daddr, (int __user *)optval)) {
2575 err = -EFAULT;
2576 goto out;
2577 }
2578
2579 break;
2580 default:
2581 err = -ENOPROTOOPT;
2582 }
2583
2584out:
2585
2586 release_sock(sk);
2587
2588 return err;
2589}
2590
2591static const struct net_proto_family irda_family_ops = {
2592 .family = PF_IRDA,
2593 .create = irda_create,
2594 .owner = THIS_MODULE,
2595};
2596
2597static const struct proto_ops irda_stream_ops = {
2598 .family = PF_IRDA,
2599 .owner = THIS_MODULE,
2600 .release = irda_release,
2601 .bind = irda_bind,
2602 .connect = irda_connect,
2603 .socketpair = sock_no_socketpair,
2604 .accept = irda_accept,
2605 .getname = irda_getname,
2606 .poll = irda_poll,
2607 .ioctl = irda_ioctl,
2608#ifdef CONFIG_COMPAT
2609 .compat_ioctl = irda_compat_ioctl,
2610#endif
2611 .listen = irda_listen,
2612 .shutdown = irda_shutdown,
2613 .setsockopt = irda_setsockopt,
2614 .getsockopt = irda_getsockopt,
2615 .sendmsg = irda_sendmsg,
2616 .recvmsg = irda_recvmsg_stream,
2617 .mmap = sock_no_mmap,
2618 .sendpage = sock_no_sendpage,
2619};
2620
2621static const struct proto_ops irda_seqpacket_ops = {
2622 .family = PF_IRDA,
2623 .owner = THIS_MODULE,
2624 .release = irda_release,
2625 .bind = irda_bind,
2626 .connect = irda_connect,
2627 .socketpair = sock_no_socketpair,
2628 .accept = irda_accept,
2629 .getname = irda_getname,
2630 .poll = datagram_poll,
2631 .ioctl = irda_ioctl,
2632#ifdef CONFIG_COMPAT
2633 .compat_ioctl = irda_compat_ioctl,
2634#endif
2635 .listen = irda_listen,
2636 .shutdown = irda_shutdown,
2637 .setsockopt = irda_setsockopt,
2638 .getsockopt = irda_getsockopt,
2639 .sendmsg = irda_sendmsg,
2640 .recvmsg = irda_recvmsg_dgram,
2641 .mmap = sock_no_mmap,
2642 .sendpage = sock_no_sendpage,
2643};
2644
2645static const struct proto_ops irda_dgram_ops = {
2646 .family = PF_IRDA,
2647 .owner = THIS_MODULE,
2648 .release = irda_release,
2649 .bind = irda_bind,
2650 .connect = irda_connect,
2651 .socketpair = sock_no_socketpair,
2652 .accept = irda_accept,
2653 .getname = irda_getname,
2654 .poll = datagram_poll,
2655 .ioctl = irda_ioctl,
2656#ifdef CONFIG_COMPAT
2657 .compat_ioctl = irda_compat_ioctl,
2658#endif
2659 .listen = irda_listen,
2660 .shutdown = irda_shutdown,
2661 .setsockopt = irda_setsockopt,
2662 .getsockopt = irda_getsockopt,
2663 .sendmsg = irda_sendmsg_dgram,
2664 .recvmsg = irda_recvmsg_dgram,
2665 .mmap = sock_no_mmap,
2666 .sendpage = sock_no_sendpage,
2667};
2668
2669#ifdef CONFIG_IRDA_ULTRA
2670static const struct proto_ops irda_ultra_ops = {
2671 .family = PF_IRDA,
2672 .owner = THIS_MODULE,
2673 .release = irda_release,
2674 .bind = irda_bind,
2675 .connect = sock_no_connect,
2676 .socketpair = sock_no_socketpair,
2677 .accept = sock_no_accept,
2678 .getname = irda_getname,
2679 .poll = datagram_poll,
2680 .ioctl = irda_ioctl,
2681#ifdef CONFIG_COMPAT
2682 .compat_ioctl = irda_compat_ioctl,
2683#endif
2684 .listen = sock_no_listen,
2685 .shutdown = irda_shutdown,
2686 .setsockopt = irda_setsockopt,
2687 .getsockopt = irda_getsockopt,
2688 .sendmsg = irda_sendmsg_ultra,
2689 .recvmsg = irda_recvmsg_dgram,
2690 .mmap = sock_no_mmap,
2691 .sendpage = sock_no_sendpage,
2692};
2693#endif /* CONFIG_IRDA_ULTRA */
2694
2695/*
2696 * Function irsock_init (pro)
2697 *
2698 * Initialize IrDA protocol
2699 *
2700 */
2701int __init irsock_init(void)
2702{
2703 int rc = proto_register(&irda_proto, 0);
2704
2705 if (rc == 0)
2706 rc = sock_register(&irda_family_ops);
2707
2708 return rc;
2709}
2710
2711/*
2712 * Function irsock_cleanup (void)
2713 *
2714 * Remove IrDA protocol
2715 *
2716 */
2717void irsock_cleanup(void)
2718{
2719 sock_unregister(PF_IRDA);
2720 proto_unregister(&irda_proto);
2721}