Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing) |
| 3 | * |
| 4 | * Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License |
| 8 | * as published by the Free Software Foundation; either version |
| 9 | * 2 of the License, or (at your option) any later version. |
| 10 | * |
| 11 | * Meant to be mostly used for locally generated traffic : |
| 12 | * Fast classification depends on skb->sk being set before reaching us. |
| 13 | * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash. |
| 14 | * All packets belonging to a socket are considered as a 'flow'. |
| 15 | * |
| 16 | * Flows are dynamically allocated and stored in a hash table of RB trees |
| 17 | * They are also part of one Round Robin 'queues' (new or old flows) |
| 18 | * |
| 19 | * Burst avoidance (aka pacing) capability : |
| 20 | * |
| 21 | * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a |
| 22 | * bunch of packets, and this packet scheduler adds delay between |
| 23 | * packets to respect rate limitation. |
| 24 | * |
| 25 | * enqueue() : |
| 26 | * - lookup one RB tree (out of 1024 or more) to find the flow. |
| 27 | * If non existent flow, create it, add it to the tree. |
| 28 | * Add skb to the per flow list of skb (fifo). |
| 29 | * - Use a special fifo for high prio packets |
| 30 | * |
| 31 | * dequeue() : serves flows in Round Robin |
| 32 | * Note : When a flow becomes empty, we do not immediately remove it from |
| 33 | * rb trees, for performance reasons (its expected to send additional packets, |
| 34 | * or SLAB cache will reuse socket for another flow) |
| 35 | */ |
| 36 | |
| 37 | #include <linux/module.h> |
| 38 | #include <linux/types.h> |
| 39 | #include <linux/kernel.h> |
| 40 | #include <linux/jiffies.h> |
| 41 | #include <linux/string.h> |
| 42 | #include <linux/in.h> |
| 43 | #include <linux/errno.h> |
| 44 | #include <linux/init.h> |
| 45 | #include <linux/skbuff.h> |
| 46 | #include <linux/slab.h> |
| 47 | #include <linux/rbtree.h> |
| 48 | #include <linux/hash.h> |
| 49 | #include <linux/prefetch.h> |
| 50 | #include <linux/vmalloc.h> |
| 51 | #include <net/netlink.h> |
| 52 | #include <net/pkt_sched.h> |
| 53 | #include <net/sock.h> |
| 54 | #include <net/tcp_states.h> |
| 55 | #include <net/tcp.h> |
| 56 | |
| 57 | /* |
| 58 | * Per flow structure, dynamically allocated |
| 59 | */ |
| 60 | struct fq_flow { |
| 61 | struct sk_buff *head; /* list of skbs for this flow : first skb */ |
| 62 | union { |
| 63 | struct sk_buff *tail; /* last skb in the list */ |
| 64 | unsigned long age; /* jiffies when flow was emptied, for gc */ |
| 65 | }; |
| 66 | struct rb_node fq_node; /* anchor in fq_root[] trees */ |
| 67 | struct sock *sk; |
| 68 | int qlen; /* number of packets in flow queue */ |
| 69 | int credit; |
| 70 | u32 socket_hash; /* sk_hash */ |
| 71 | struct fq_flow *next; /* next pointer in RR lists, or &detached */ |
| 72 | |
| 73 | struct rb_node rate_node; /* anchor in q->delayed tree */ |
| 74 | u64 time_next_packet; |
| 75 | }; |
| 76 | |
| 77 | struct fq_flow_head { |
| 78 | struct fq_flow *first; |
| 79 | struct fq_flow *last; |
| 80 | }; |
| 81 | |
| 82 | struct fq_sched_data { |
| 83 | struct fq_flow_head new_flows; |
| 84 | |
| 85 | struct fq_flow_head old_flows; |
| 86 | |
| 87 | struct rb_root delayed; /* for rate limited flows */ |
| 88 | u64 time_next_delayed_flow; |
| 89 | |
| 90 | struct fq_flow internal; /* for non classified or high prio packets */ |
| 91 | u32 quantum; |
| 92 | u32 initial_quantum; |
| 93 | u32 flow_refill_delay; |
| 94 | u32 flow_max_rate; /* optional max rate per flow */ |
| 95 | u32 flow_plimit; /* max packets per flow */ |
| 96 | u32 orphan_mask; /* mask for orphaned skb */ |
| 97 | struct rb_root *fq_root; |
| 98 | u8 rate_enable; |
| 99 | u8 fq_trees_log; |
| 100 | |
| 101 | u32 flows; |
| 102 | u32 inactive_flows; |
| 103 | u32 throttled_flows; |
| 104 | |
| 105 | u64 stat_gc_flows; |
| 106 | u64 stat_internal_packets; |
| 107 | u64 stat_tcp_retrans; |
| 108 | u64 stat_throttled; |
| 109 | u64 stat_flows_plimit; |
| 110 | u64 stat_pkts_too_long; |
| 111 | u64 stat_allocation_errors; |
| 112 | struct qdisc_watchdog watchdog; |
| 113 | }; |
| 114 | |
| 115 | /* special value to mark a detached flow (not on old/new list) */ |
| 116 | static struct fq_flow detached, throttled; |
| 117 | |
| 118 | static void fq_flow_set_detached(struct fq_flow *f) |
| 119 | { |
| 120 | f->next = &detached; |
| 121 | f->age = jiffies; |
| 122 | } |
| 123 | |
| 124 | static bool fq_flow_is_detached(const struct fq_flow *f) |
| 125 | { |
| 126 | return f->next == &detached; |
| 127 | } |
| 128 | |
| 129 | static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f) |
| 130 | { |
| 131 | struct rb_node **p = &q->delayed.rb_node, *parent = NULL; |
| 132 | |
| 133 | while (*p) { |
| 134 | struct fq_flow *aux; |
| 135 | |
| 136 | parent = *p; |
| 137 | aux = container_of(parent, struct fq_flow, rate_node); |
| 138 | if (f->time_next_packet >= aux->time_next_packet) |
| 139 | p = &parent->rb_right; |
| 140 | else |
| 141 | p = &parent->rb_left; |
| 142 | } |
| 143 | rb_link_node(&f->rate_node, parent, p); |
| 144 | rb_insert_color(&f->rate_node, &q->delayed); |
| 145 | q->throttled_flows++; |
| 146 | q->stat_throttled++; |
| 147 | |
| 148 | f->next = &throttled; |
| 149 | if (q->time_next_delayed_flow > f->time_next_packet) |
| 150 | q->time_next_delayed_flow = f->time_next_packet; |
| 151 | } |
| 152 | |
| 153 | |
| 154 | static struct kmem_cache *fq_flow_cachep __read_mostly; |
| 155 | |
| 156 | static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow) |
| 157 | { |
| 158 | if (head->first) |
| 159 | head->last->next = flow; |
| 160 | else |
| 161 | head->first = flow; |
| 162 | head->last = flow; |
| 163 | flow->next = NULL; |
| 164 | } |
| 165 | |
| 166 | /* limit number of collected flows per round */ |
| 167 | #define FQ_GC_MAX 8 |
| 168 | #define FQ_GC_AGE (3*HZ) |
| 169 | |
| 170 | static bool fq_gc_candidate(const struct fq_flow *f) |
| 171 | { |
| 172 | return fq_flow_is_detached(f) && |
| 173 | time_after(jiffies, f->age + FQ_GC_AGE); |
| 174 | } |
| 175 | |
| 176 | static void fq_gc(struct fq_sched_data *q, |
| 177 | struct rb_root *root, |
| 178 | struct sock *sk) |
| 179 | { |
| 180 | struct fq_flow *f, *tofree[FQ_GC_MAX]; |
| 181 | struct rb_node **p, *parent; |
| 182 | int fcnt = 0; |
| 183 | |
| 184 | p = &root->rb_node; |
| 185 | parent = NULL; |
| 186 | while (*p) { |
| 187 | parent = *p; |
| 188 | |
| 189 | f = container_of(parent, struct fq_flow, fq_node); |
| 190 | if (f->sk == sk) |
| 191 | break; |
| 192 | |
| 193 | if (fq_gc_candidate(f)) { |
| 194 | tofree[fcnt++] = f; |
| 195 | if (fcnt == FQ_GC_MAX) |
| 196 | break; |
| 197 | } |
| 198 | |
| 199 | if (f->sk > sk) |
| 200 | p = &parent->rb_right; |
| 201 | else |
| 202 | p = &parent->rb_left; |
| 203 | } |
| 204 | |
| 205 | q->flows -= fcnt; |
| 206 | q->inactive_flows -= fcnt; |
| 207 | q->stat_gc_flows += fcnt; |
| 208 | while (fcnt) { |
| 209 | struct fq_flow *f = tofree[--fcnt]; |
| 210 | |
| 211 | rb_erase(&f->fq_node, root); |
| 212 | kmem_cache_free(fq_flow_cachep, f); |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q) |
| 217 | { |
| 218 | struct rb_node **p, *parent; |
| 219 | struct sock *sk = skb->sk; |
| 220 | struct rb_root *root; |
| 221 | struct fq_flow *f; |
| 222 | |
| 223 | /* warning: no starvation prevention... */ |
| 224 | if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL)) |
| 225 | return &q->internal; |
| 226 | |
| 227 | /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket |
| 228 | * or a listener (SYNCOOKIE mode) |
| 229 | * 1) request sockets are not full blown, |
| 230 | * they do not contain sk_pacing_rate |
| 231 | * 2) They are not part of a 'flow' yet |
| 232 | * 3) We do not want to rate limit them (eg SYNFLOOD attack), |
| 233 | * especially if the listener set SO_MAX_PACING_RATE |
| 234 | * 4) We pretend they are orphaned |
| 235 | */ |
| 236 | if (!sk || sk_listener(sk)) { |
| 237 | unsigned long hash = skb_get_hash(skb) & q->orphan_mask; |
| 238 | |
| 239 | /* By forcing low order bit to 1, we make sure to not |
| 240 | * collide with a local flow (socket pointers are word aligned) |
| 241 | */ |
| 242 | sk = (struct sock *)((hash << 1) | 1UL); |
| 243 | skb_orphan(skb); |
| 244 | } |
| 245 | |
| 246 | root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)]; |
| 247 | |
| 248 | if (q->flows >= (2U << q->fq_trees_log) && |
| 249 | q->inactive_flows > q->flows/2) |
| 250 | fq_gc(q, root, sk); |
| 251 | |
| 252 | p = &root->rb_node; |
| 253 | parent = NULL; |
| 254 | while (*p) { |
| 255 | parent = *p; |
| 256 | |
| 257 | f = container_of(parent, struct fq_flow, fq_node); |
| 258 | if (f->sk == sk) { |
| 259 | /* socket might have been reallocated, so check |
| 260 | * if its sk_hash is the same. |
| 261 | * It not, we need to refill credit with |
| 262 | * initial quantum |
| 263 | */ |
| 264 | if (unlikely(skb->sk && |
| 265 | f->socket_hash != sk->sk_hash)) { |
| 266 | f->credit = q->initial_quantum; |
| 267 | f->socket_hash = sk->sk_hash; |
| 268 | f->time_next_packet = 0ULL; |
| 269 | } |
| 270 | return f; |
| 271 | } |
| 272 | if (f->sk > sk) |
| 273 | p = &parent->rb_right; |
| 274 | else |
| 275 | p = &parent->rb_left; |
| 276 | } |
| 277 | |
| 278 | f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN); |
| 279 | if (unlikely(!f)) { |
| 280 | q->stat_allocation_errors++; |
| 281 | return &q->internal; |
| 282 | } |
| 283 | fq_flow_set_detached(f); |
| 284 | f->sk = sk; |
| 285 | if (skb->sk) |
| 286 | f->socket_hash = sk->sk_hash; |
| 287 | f->credit = q->initial_quantum; |
| 288 | |
| 289 | rb_link_node(&f->fq_node, parent, p); |
| 290 | rb_insert_color(&f->fq_node, root); |
| 291 | |
| 292 | q->flows++; |
| 293 | q->inactive_flows++; |
| 294 | return f; |
| 295 | } |
| 296 | |
| 297 | |
| 298 | /* remove one skb from head of flow queue */ |
| 299 | static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow) |
| 300 | { |
| 301 | struct sk_buff *skb = flow->head; |
| 302 | |
| 303 | if (skb) { |
| 304 | flow->head = skb->next; |
| 305 | skb->next = NULL; |
| 306 | flow->qlen--; |
| 307 | qdisc_qstats_backlog_dec(sch, skb); |
| 308 | sch->q.qlen--; |
| 309 | } |
| 310 | return skb; |
| 311 | } |
| 312 | |
| 313 | /* We might add in the future detection of retransmits |
| 314 | * For the time being, just return false |
| 315 | */ |
| 316 | static bool skb_is_retransmit(struct sk_buff *skb) |
| 317 | { |
| 318 | return false; |
| 319 | } |
| 320 | |
| 321 | /* add skb to flow queue |
| 322 | * flow queue is a linked list, kind of FIFO, except for TCP retransmits |
| 323 | * We special case tcp retransmits to be transmitted before other packets. |
| 324 | * We rely on fact that TCP retransmits are unlikely, so we do not waste |
| 325 | * a separate queue or a pointer. |
| 326 | * head-> [retrans pkt 1] |
| 327 | * [retrans pkt 2] |
| 328 | * [ normal pkt 1] |
| 329 | * [ normal pkt 2] |
| 330 | * [ normal pkt 3] |
| 331 | * tail-> [ normal pkt 4] |
| 332 | */ |
| 333 | static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb) |
| 334 | { |
| 335 | struct sk_buff *prev, *head = flow->head; |
| 336 | |
| 337 | skb->next = NULL; |
| 338 | if (!head) { |
| 339 | flow->head = skb; |
| 340 | flow->tail = skb; |
| 341 | return; |
| 342 | } |
| 343 | if (likely(!skb_is_retransmit(skb))) { |
| 344 | flow->tail->next = skb; |
| 345 | flow->tail = skb; |
| 346 | return; |
| 347 | } |
| 348 | |
| 349 | /* This skb is a tcp retransmit, |
| 350 | * find the last retrans packet in the queue |
| 351 | */ |
| 352 | prev = NULL; |
| 353 | while (skb_is_retransmit(head)) { |
| 354 | prev = head; |
| 355 | head = head->next; |
| 356 | if (!head) |
| 357 | break; |
| 358 | } |
| 359 | if (!prev) { /* no rtx packet in queue, become the new head */ |
| 360 | skb->next = flow->head; |
| 361 | flow->head = skb; |
| 362 | } else { |
| 363 | if (prev == flow->tail) |
| 364 | flow->tail = skb; |
| 365 | else |
| 366 | skb->next = prev->next; |
| 367 | prev->next = skb; |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch) |
| 372 | { |
| 373 | struct fq_sched_data *q = qdisc_priv(sch); |
| 374 | struct fq_flow *f; |
| 375 | |
| 376 | if (unlikely(sch->q.qlen >= sch->limit)) |
| 377 | return qdisc_drop(skb, sch); |
| 378 | |
| 379 | f = fq_classify(skb, q); |
| 380 | if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) { |
| 381 | q->stat_flows_plimit++; |
| 382 | return qdisc_drop(skb, sch); |
| 383 | } |
| 384 | |
| 385 | f->qlen++; |
| 386 | if (skb_is_retransmit(skb)) |
| 387 | q->stat_tcp_retrans++; |
| 388 | qdisc_qstats_backlog_inc(sch, skb); |
| 389 | if (fq_flow_is_detached(f)) { |
| 390 | fq_flow_add_tail(&q->new_flows, f); |
| 391 | if (time_after(jiffies, f->age + q->flow_refill_delay)) |
| 392 | f->credit = max_t(u32, f->credit, q->quantum); |
| 393 | q->inactive_flows--; |
| 394 | } |
| 395 | |
| 396 | /* Note: this overwrites f->age */ |
| 397 | flow_queue_add(f, skb); |
| 398 | |
| 399 | if (unlikely(f == &q->internal)) { |
| 400 | q->stat_internal_packets++; |
| 401 | } |
| 402 | sch->q.qlen++; |
| 403 | |
| 404 | return NET_XMIT_SUCCESS; |
| 405 | } |
| 406 | |
| 407 | static void fq_check_throttled(struct fq_sched_data *q, u64 now) |
| 408 | { |
| 409 | struct rb_node *p; |
| 410 | |
| 411 | if (q->time_next_delayed_flow > now) |
| 412 | return; |
| 413 | |
| 414 | q->time_next_delayed_flow = ~0ULL; |
| 415 | while ((p = rb_first(&q->delayed)) != NULL) { |
| 416 | struct fq_flow *f = container_of(p, struct fq_flow, rate_node); |
| 417 | |
| 418 | if (f->time_next_packet > now) { |
| 419 | q->time_next_delayed_flow = f->time_next_packet; |
| 420 | break; |
| 421 | } |
| 422 | rb_erase(p, &q->delayed); |
| 423 | q->throttled_flows--; |
| 424 | fq_flow_add_tail(&q->old_flows, f); |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | static struct sk_buff *fq_dequeue(struct Qdisc *sch) |
| 429 | { |
| 430 | struct fq_sched_data *q = qdisc_priv(sch); |
| 431 | u64 now = ktime_get_ns(); |
| 432 | struct fq_flow_head *head; |
| 433 | struct sk_buff *skb; |
| 434 | struct fq_flow *f; |
| 435 | u32 rate; |
| 436 | |
| 437 | skb = fq_dequeue_head(sch, &q->internal); |
| 438 | if (skb) |
| 439 | goto out; |
| 440 | fq_check_throttled(q, now); |
| 441 | begin: |
| 442 | head = &q->new_flows; |
| 443 | if (!head->first) { |
| 444 | head = &q->old_flows; |
| 445 | if (!head->first) { |
| 446 | if (q->time_next_delayed_flow != ~0ULL) |
| 447 | qdisc_watchdog_schedule_ns(&q->watchdog, |
| 448 | q->time_next_delayed_flow, |
| 449 | false); |
| 450 | return NULL; |
| 451 | } |
| 452 | } |
| 453 | f = head->first; |
| 454 | |
| 455 | if (f->credit <= 0) { |
| 456 | f->credit += q->quantum; |
| 457 | head->first = f->next; |
| 458 | fq_flow_add_tail(&q->old_flows, f); |
| 459 | goto begin; |
| 460 | } |
| 461 | |
| 462 | skb = f->head; |
| 463 | if (unlikely(skb && now < f->time_next_packet && |
| 464 | !skb_is_tcp_pure_ack(skb))) { |
| 465 | head->first = f->next; |
| 466 | fq_flow_set_throttled(q, f); |
| 467 | goto begin; |
| 468 | } |
| 469 | |
| 470 | skb = fq_dequeue_head(sch, f); |
| 471 | if (!skb) { |
| 472 | head->first = f->next; |
| 473 | /* force a pass through old_flows to prevent starvation */ |
| 474 | if ((head == &q->new_flows) && q->old_flows.first) { |
| 475 | fq_flow_add_tail(&q->old_flows, f); |
| 476 | } else { |
| 477 | fq_flow_set_detached(f); |
| 478 | q->inactive_flows++; |
| 479 | } |
| 480 | goto begin; |
| 481 | } |
| 482 | prefetch(&skb->end); |
| 483 | f->credit -= qdisc_pkt_len(skb); |
| 484 | |
| 485 | if (f->credit > 0 || !q->rate_enable) |
| 486 | goto out; |
| 487 | |
| 488 | /* Do not pace locally generated ack packets */ |
| 489 | if (skb_is_tcp_pure_ack(skb)) |
| 490 | goto out; |
| 491 | |
| 492 | rate = q->flow_max_rate; |
| 493 | if (skb->sk) |
| 494 | rate = min(skb->sk->sk_pacing_rate, rate); |
| 495 | |
| 496 | if (rate != ~0U) { |
| 497 | u32 plen = max(qdisc_pkt_len(skb), q->quantum); |
| 498 | u64 len = (u64)plen * NSEC_PER_SEC; |
| 499 | |
| 500 | if (likely(rate)) |
| 501 | do_div(len, rate); |
| 502 | /* Since socket rate can change later, |
| 503 | * clamp the delay to 1 second. |
| 504 | * Really, providers of too big packets should be fixed ! |
| 505 | */ |
| 506 | if (unlikely(len > NSEC_PER_SEC)) { |
| 507 | len = NSEC_PER_SEC; |
| 508 | q->stat_pkts_too_long++; |
| 509 | } |
| 510 | |
| 511 | f->time_next_packet = now + len; |
| 512 | } |
| 513 | out: |
| 514 | qdisc_bstats_update(sch, skb); |
| 515 | return skb; |
| 516 | } |
| 517 | |
| 518 | static void fq_reset(struct Qdisc *sch) |
| 519 | { |
| 520 | struct fq_sched_data *q = qdisc_priv(sch); |
| 521 | struct rb_root *root; |
| 522 | struct sk_buff *skb; |
| 523 | struct rb_node *p; |
| 524 | struct fq_flow *f; |
| 525 | unsigned int idx; |
| 526 | |
| 527 | while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL) |
| 528 | kfree_skb(skb); |
| 529 | |
| 530 | if (!q->fq_root) |
| 531 | return; |
| 532 | |
| 533 | for (idx = 0; idx < (1U << q->fq_trees_log); idx++) { |
| 534 | root = &q->fq_root[idx]; |
| 535 | while ((p = rb_first(root)) != NULL) { |
| 536 | f = container_of(p, struct fq_flow, fq_node); |
| 537 | rb_erase(p, root); |
| 538 | |
| 539 | while ((skb = fq_dequeue_head(sch, f)) != NULL) |
| 540 | kfree_skb(skb); |
| 541 | |
| 542 | kmem_cache_free(fq_flow_cachep, f); |
| 543 | } |
| 544 | } |
| 545 | q->new_flows.first = NULL; |
| 546 | q->old_flows.first = NULL; |
| 547 | q->delayed = RB_ROOT; |
| 548 | q->flows = 0; |
| 549 | q->inactive_flows = 0; |
| 550 | q->throttled_flows = 0; |
| 551 | } |
| 552 | |
| 553 | static void fq_rehash(struct fq_sched_data *q, |
| 554 | struct rb_root *old_array, u32 old_log, |
| 555 | struct rb_root *new_array, u32 new_log) |
| 556 | { |
| 557 | struct rb_node *op, **np, *parent; |
| 558 | struct rb_root *oroot, *nroot; |
| 559 | struct fq_flow *of, *nf; |
| 560 | int fcnt = 0; |
| 561 | u32 idx; |
| 562 | |
| 563 | for (idx = 0; idx < (1U << old_log); idx++) { |
| 564 | oroot = &old_array[idx]; |
| 565 | while ((op = rb_first(oroot)) != NULL) { |
| 566 | rb_erase(op, oroot); |
| 567 | of = container_of(op, struct fq_flow, fq_node); |
| 568 | if (fq_gc_candidate(of)) { |
| 569 | fcnt++; |
| 570 | kmem_cache_free(fq_flow_cachep, of); |
| 571 | continue; |
| 572 | } |
| 573 | nroot = &new_array[hash_32((u32)(long)of->sk, new_log)]; |
| 574 | |
| 575 | np = &nroot->rb_node; |
| 576 | parent = NULL; |
| 577 | while (*np) { |
| 578 | parent = *np; |
| 579 | |
| 580 | nf = container_of(parent, struct fq_flow, fq_node); |
| 581 | BUG_ON(nf->sk == of->sk); |
| 582 | |
| 583 | if (nf->sk > of->sk) |
| 584 | np = &parent->rb_right; |
| 585 | else |
| 586 | np = &parent->rb_left; |
| 587 | } |
| 588 | |
| 589 | rb_link_node(&of->fq_node, parent, np); |
| 590 | rb_insert_color(&of->fq_node, nroot); |
| 591 | } |
| 592 | } |
| 593 | q->flows -= fcnt; |
| 594 | q->inactive_flows -= fcnt; |
| 595 | q->stat_gc_flows += fcnt; |
| 596 | } |
| 597 | |
| 598 | static void *fq_alloc_node(size_t sz, int node) |
| 599 | { |
| 600 | void *ptr; |
| 601 | |
| 602 | ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node); |
| 603 | if (!ptr) |
| 604 | ptr = vmalloc_node(sz, node); |
| 605 | return ptr; |
| 606 | } |
| 607 | |
| 608 | static void fq_free(void *addr) |
| 609 | { |
| 610 | kvfree(addr); |
| 611 | } |
| 612 | |
| 613 | static int fq_resize(struct Qdisc *sch, u32 log) |
| 614 | { |
| 615 | struct fq_sched_data *q = qdisc_priv(sch); |
| 616 | struct rb_root *array; |
| 617 | void *old_fq_root; |
| 618 | u32 idx; |
| 619 | |
| 620 | if (q->fq_root && log == q->fq_trees_log) |
| 621 | return 0; |
| 622 | |
| 623 | /* If XPS was setup, we can allocate memory on right NUMA node */ |
| 624 | array = fq_alloc_node(sizeof(struct rb_root) << log, |
| 625 | netdev_queue_numa_node_read(sch->dev_queue)); |
| 626 | if (!array) |
| 627 | return -ENOMEM; |
| 628 | |
| 629 | for (idx = 0; idx < (1U << log); idx++) |
| 630 | array[idx] = RB_ROOT; |
| 631 | |
| 632 | sch_tree_lock(sch); |
| 633 | |
| 634 | old_fq_root = q->fq_root; |
| 635 | if (old_fq_root) |
| 636 | fq_rehash(q, old_fq_root, q->fq_trees_log, array, log); |
| 637 | |
| 638 | q->fq_root = array; |
| 639 | q->fq_trees_log = log; |
| 640 | |
| 641 | sch_tree_unlock(sch); |
| 642 | |
| 643 | fq_free(old_fq_root); |
| 644 | |
| 645 | return 0; |
| 646 | } |
| 647 | |
| 648 | static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = { |
| 649 | [TCA_FQ_PLIMIT] = { .type = NLA_U32 }, |
| 650 | [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 }, |
| 651 | [TCA_FQ_QUANTUM] = { .type = NLA_U32 }, |
| 652 | [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 }, |
| 653 | [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 }, |
| 654 | [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 }, |
| 655 | [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 }, |
| 656 | [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 }, |
| 657 | [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 }, |
| 658 | }; |
| 659 | |
| 660 | static int fq_change(struct Qdisc *sch, struct nlattr *opt) |
| 661 | { |
| 662 | struct fq_sched_data *q = qdisc_priv(sch); |
| 663 | struct nlattr *tb[TCA_FQ_MAX + 1]; |
| 664 | int err, drop_count = 0; |
| 665 | unsigned drop_len = 0; |
| 666 | u32 fq_log; |
| 667 | |
| 668 | if (!opt) |
| 669 | return -EINVAL; |
| 670 | |
| 671 | err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy); |
| 672 | if (err < 0) |
| 673 | return err; |
| 674 | |
| 675 | sch_tree_lock(sch); |
| 676 | |
| 677 | fq_log = q->fq_trees_log; |
| 678 | |
| 679 | if (tb[TCA_FQ_BUCKETS_LOG]) { |
| 680 | u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]); |
| 681 | |
| 682 | if (nval >= 1 && nval <= ilog2(256*1024)) |
| 683 | fq_log = nval; |
| 684 | else |
| 685 | err = -EINVAL; |
| 686 | } |
| 687 | if (tb[TCA_FQ_PLIMIT]) |
| 688 | sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]); |
| 689 | |
| 690 | if (tb[TCA_FQ_FLOW_PLIMIT]) |
| 691 | q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]); |
| 692 | |
| 693 | if (tb[TCA_FQ_QUANTUM]) { |
| 694 | u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]); |
| 695 | |
| 696 | if (quantum > 0) |
| 697 | q->quantum = quantum; |
| 698 | else |
| 699 | err = -EINVAL; |
| 700 | } |
| 701 | |
| 702 | if (tb[TCA_FQ_INITIAL_QUANTUM]) |
| 703 | q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]); |
| 704 | |
| 705 | if (tb[TCA_FQ_FLOW_DEFAULT_RATE]) |
| 706 | pr_warn_ratelimited("sch_fq: defrate %u ignored.\n", |
| 707 | nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE])); |
| 708 | |
| 709 | if (tb[TCA_FQ_FLOW_MAX_RATE]) |
| 710 | q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]); |
| 711 | |
| 712 | if (tb[TCA_FQ_RATE_ENABLE]) { |
| 713 | u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]); |
| 714 | |
| 715 | if (enable <= 1) |
| 716 | q->rate_enable = enable; |
| 717 | else |
| 718 | err = -EINVAL; |
| 719 | } |
| 720 | |
| 721 | if (tb[TCA_FQ_FLOW_REFILL_DELAY]) { |
| 722 | u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ; |
| 723 | |
| 724 | q->flow_refill_delay = usecs_to_jiffies(usecs_delay); |
| 725 | } |
| 726 | |
| 727 | if (tb[TCA_FQ_ORPHAN_MASK]) |
| 728 | q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]); |
| 729 | |
| 730 | if (!err) { |
| 731 | sch_tree_unlock(sch); |
| 732 | err = fq_resize(sch, fq_log); |
| 733 | sch_tree_lock(sch); |
| 734 | } |
| 735 | while (sch->q.qlen > sch->limit) { |
| 736 | struct sk_buff *skb = fq_dequeue(sch); |
| 737 | |
| 738 | if (!skb) |
| 739 | break; |
| 740 | drop_len += qdisc_pkt_len(skb); |
| 741 | kfree_skb(skb); |
| 742 | drop_count++; |
| 743 | } |
| 744 | qdisc_tree_reduce_backlog(sch, drop_count, drop_len); |
| 745 | |
| 746 | sch_tree_unlock(sch); |
| 747 | return err; |
| 748 | } |
| 749 | |
| 750 | static void fq_destroy(struct Qdisc *sch) |
| 751 | { |
| 752 | struct fq_sched_data *q = qdisc_priv(sch); |
| 753 | |
| 754 | fq_reset(sch); |
| 755 | fq_free(q->fq_root); |
| 756 | qdisc_watchdog_cancel(&q->watchdog); |
| 757 | } |
| 758 | |
| 759 | static int fq_init(struct Qdisc *sch, struct nlattr *opt) |
| 760 | { |
| 761 | struct fq_sched_data *q = qdisc_priv(sch); |
| 762 | int err; |
| 763 | |
| 764 | sch->limit = 10000; |
| 765 | q->flow_plimit = 100; |
| 766 | q->quantum = 2 * psched_mtu(qdisc_dev(sch)); |
| 767 | q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch)); |
| 768 | q->flow_refill_delay = msecs_to_jiffies(40); |
| 769 | q->flow_max_rate = ~0U; |
| 770 | q->rate_enable = 1; |
| 771 | q->new_flows.first = NULL; |
| 772 | q->old_flows.first = NULL; |
| 773 | q->delayed = RB_ROOT; |
| 774 | q->fq_root = NULL; |
| 775 | q->fq_trees_log = ilog2(1024); |
| 776 | q->orphan_mask = 1024 - 1; |
| 777 | qdisc_watchdog_init(&q->watchdog, sch); |
| 778 | |
| 779 | if (opt) |
| 780 | err = fq_change(sch, opt); |
| 781 | else |
| 782 | err = fq_resize(sch, q->fq_trees_log); |
| 783 | |
| 784 | return err; |
| 785 | } |
| 786 | |
| 787 | static int fq_dump(struct Qdisc *sch, struct sk_buff *skb) |
| 788 | { |
| 789 | struct fq_sched_data *q = qdisc_priv(sch); |
| 790 | struct nlattr *opts; |
| 791 | |
| 792 | opts = nla_nest_start(skb, TCA_OPTIONS); |
| 793 | if (opts == NULL) |
| 794 | goto nla_put_failure; |
| 795 | |
| 796 | /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */ |
| 797 | |
| 798 | if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) || |
| 799 | nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) || |
| 800 | nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) || |
| 801 | nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) || |
| 802 | nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) || |
| 803 | nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) || |
| 804 | nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY, |
| 805 | jiffies_to_usecs(q->flow_refill_delay)) || |
| 806 | nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) || |
| 807 | nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log)) |
| 808 | goto nla_put_failure; |
| 809 | |
| 810 | return nla_nest_end(skb, opts); |
| 811 | |
| 812 | nla_put_failure: |
| 813 | return -1; |
| 814 | } |
| 815 | |
| 816 | static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d) |
| 817 | { |
| 818 | struct fq_sched_data *q = qdisc_priv(sch); |
| 819 | u64 now = ktime_get_ns(); |
| 820 | struct tc_fq_qd_stats st = { |
| 821 | .gc_flows = q->stat_gc_flows, |
| 822 | .highprio_packets = q->stat_internal_packets, |
| 823 | .tcp_retrans = q->stat_tcp_retrans, |
| 824 | .throttled = q->stat_throttled, |
| 825 | .flows_plimit = q->stat_flows_plimit, |
| 826 | .pkts_too_long = q->stat_pkts_too_long, |
| 827 | .allocation_errors = q->stat_allocation_errors, |
| 828 | .flows = q->flows, |
| 829 | .inactive_flows = q->inactive_flows, |
| 830 | .throttled_flows = q->throttled_flows, |
| 831 | .time_next_delayed_flow = q->time_next_delayed_flow - now, |
| 832 | }; |
| 833 | |
| 834 | return gnet_stats_copy_app(d, &st, sizeof(st)); |
| 835 | } |
| 836 | |
| 837 | static struct Qdisc_ops fq_qdisc_ops __read_mostly = { |
| 838 | .id = "fq", |
| 839 | .priv_size = sizeof(struct fq_sched_data), |
| 840 | |
| 841 | .enqueue = fq_enqueue, |
| 842 | .dequeue = fq_dequeue, |
| 843 | .peek = qdisc_peek_dequeued, |
| 844 | .init = fq_init, |
| 845 | .reset = fq_reset, |
| 846 | .destroy = fq_destroy, |
| 847 | .change = fq_change, |
| 848 | .dump = fq_dump, |
| 849 | .dump_stats = fq_dump_stats, |
| 850 | .owner = THIS_MODULE, |
| 851 | }; |
| 852 | |
| 853 | static int __init fq_module_init(void) |
| 854 | { |
| 855 | int ret; |
| 856 | |
| 857 | fq_flow_cachep = kmem_cache_create("fq_flow_cache", |
| 858 | sizeof(struct fq_flow), |
| 859 | 0, 0, NULL); |
| 860 | if (!fq_flow_cachep) |
| 861 | return -ENOMEM; |
| 862 | |
| 863 | ret = register_qdisc(&fq_qdisc_ops); |
| 864 | if (ret) |
| 865 | kmem_cache_destroy(fq_flow_cachep); |
| 866 | return ret; |
| 867 | } |
| 868 | |
| 869 | static void __exit fq_module_exit(void) |
| 870 | { |
| 871 | unregister_qdisc(&fq_qdisc_ops); |
| 872 | kmem_cache_destroy(fq_flow_cachep); |
| 873 | } |
| 874 | |
| 875 | module_init(fq_module_init) |
| 876 | module_exit(fq_module_exit) |
| 877 | MODULE_AUTHOR("Eric Dumazet"); |
| 878 | MODULE_LICENSE("GPL"); |