Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * net/sched/sch_tbf.c Token Bucket Filter queue. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation; either version |
| 7 | * 2 of the License, or (at your option) any later version. |
| 8 | * |
| 9 | * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> |
| 10 | * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs - |
| 11 | * original idea by Martin Devera |
| 12 | * |
| 13 | */ |
| 14 | |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/types.h> |
| 17 | #include <linux/kernel.h> |
| 18 | #include <linux/string.h> |
| 19 | #include <linux/errno.h> |
| 20 | #include <linux/skbuff.h> |
| 21 | #include <net/netlink.h> |
| 22 | #include <net/sch_generic.h> |
| 23 | #include <net/pkt_sched.h> |
| 24 | |
| 25 | |
| 26 | /* Simple Token Bucket Filter. |
| 27 | ======================================= |
| 28 | |
| 29 | SOURCE. |
| 30 | ------- |
| 31 | |
| 32 | None. |
| 33 | |
| 34 | Description. |
| 35 | ------------ |
| 36 | |
| 37 | A data flow obeys TBF with rate R and depth B, if for any |
| 38 | time interval t_i...t_f the number of transmitted bits |
| 39 | does not exceed B + R*(t_f-t_i). |
| 40 | |
| 41 | Packetized version of this definition: |
| 42 | The sequence of packets of sizes s_i served at moments t_i |
| 43 | obeys TBF, if for any i<=k: |
| 44 | |
| 45 | s_i+....+s_k <= B + R*(t_k - t_i) |
| 46 | |
| 47 | Algorithm. |
| 48 | ---------- |
| 49 | |
| 50 | Let N(t_i) be B/R initially and N(t) grow continuously with time as: |
| 51 | |
| 52 | N(t+delta) = min{B/R, N(t) + delta} |
| 53 | |
| 54 | If the first packet in queue has length S, it may be |
| 55 | transmitted only at the time t_* when S/R <= N(t_*), |
| 56 | and in this case N(t) jumps: |
| 57 | |
| 58 | N(t_* + 0) = N(t_* - 0) - S/R. |
| 59 | |
| 60 | |
| 61 | |
| 62 | Actually, QoS requires two TBF to be applied to a data stream. |
| 63 | One of them controls steady state burst size, another |
| 64 | one with rate P (peak rate) and depth M (equal to link MTU) |
| 65 | limits bursts at a smaller time scale. |
| 66 | |
| 67 | It is easy to see that P>R, and B>M. If P is infinity, this double |
| 68 | TBF is equivalent to a single one. |
| 69 | |
| 70 | When TBF works in reshaping mode, latency is estimated as: |
| 71 | |
| 72 | lat = max ((L-B)/R, (L-M)/P) |
| 73 | |
| 74 | |
| 75 | NOTES. |
| 76 | ------ |
| 77 | |
| 78 | If TBF throttles, it starts a watchdog timer, which will wake it up |
| 79 | when it is ready to transmit. |
| 80 | Note that the minimal timer resolution is 1/HZ. |
| 81 | If no new packets arrive during this period, |
| 82 | or if the device is not awaken by EOI for some previous packet, |
| 83 | TBF can stop its activity for 1/HZ. |
| 84 | |
| 85 | |
| 86 | This means, that with depth B, the maximal rate is |
| 87 | |
| 88 | R_crit = B*HZ |
| 89 | |
| 90 | F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes. |
| 91 | |
| 92 | Note that the peak rate TBF is much more tough: with MTU 1500 |
| 93 | P_crit = 150Kbytes/sec. So, if you need greater peak |
| 94 | rates, use alpha with HZ=1000 :-) |
| 95 | |
| 96 | With classful TBF, limit is just kept for backwards compatibility. |
| 97 | It is passed to the default bfifo qdisc - if the inner qdisc is |
| 98 | changed the limit is not effective anymore. |
| 99 | */ |
| 100 | |
| 101 | struct tbf_sched_data { |
| 102 | /* Parameters */ |
| 103 | u32 limit; /* Maximal length of backlog: bytes */ |
| 104 | u32 max_size; |
| 105 | s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */ |
| 106 | s64 mtu; |
| 107 | struct psched_ratecfg rate; |
| 108 | struct psched_ratecfg peak; |
| 109 | |
| 110 | /* Variables */ |
| 111 | s64 tokens; /* Current number of B tokens */ |
| 112 | s64 ptokens; /* Current number of P tokens */ |
| 113 | s64 t_c; /* Time check-point */ |
| 114 | struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */ |
| 115 | struct qdisc_watchdog watchdog; /* Watchdog timer */ |
| 116 | }; |
| 117 | |
| 118 | |
| 119 | /* Time to Length, convert time in ns to length in bytes |
| 120 | * to determinate how many bytes can be sent in given time. |
| 121 | */ |
| 122 | static u64 psched_ns_t2l(const struct psched_ratecfg *r, |
| 123 | u64 time_in_ns) |
| 124 | { |
| 125 | /* The formula is : |
| 126 | * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC |
| 127 | */ |
| 128 | u64 len = time_in_ns * r->rate_bytes_ps; |
| 129 | |
| 130 | do_div(len, NSEC_PER_SEC); |
| 131 | |
| 132 | if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) { |
| 133 | do_div(len, 53); |
| 134 | len = len * 48; |
| 135 | } |
| 136 | |
| 137 | if (len > r->overhead) |
| 138 | len -= r->overhead; |
| 139 | else |
| 140 | len = 0; |
| 141 | |
| 142 | return len; |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * Return length of individual segments of a gso packet, |
| 147 | * including all headers (MAC, IP, TCP/UDP) |
| 148 | */ |
| 149 | static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) |
| 150 | { |
| 151 | unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); |
| 152 | return hdr_len + skb_gso_transport_seglen(skb); |
| 153 | } |
| 154 | |
| 155 | /* GSO packet is too big, segment it so that tbf can transmit |
| 156 | * each segment in time |
| 157 | */ |
| 158 | static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch) |
| 159 | { |
| 160 | struct tbf_sched_data *q = qdisc_priv(sch); |
| 161 | struct sk_buff *segs, *nskb; |
| 162 | netdev_features_t features = netif_skb_features(skb); |
| 163 | unsigned int len = 0, prev_len = qdisc_pkt_len(skb); |
| 164 | int ret, nb; |
| 165 | |
| 166 | segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); |
| 167 | |
| 168 | if (IS_ERR_OR_NULL(segs)) |
| 169 | return qdisc_reshape_fail(skb, sch); |
| 170 | |
| 171 | nb = 0; |
| 172 | while (segs) { |
| 173 | nskb = segs->next; |
| 174 | segs->next = NULL; |
| 175 | qdisc_skb_cb(segs)->pkt_len = segs->len; |
| 176 | len += segs->len; |
| 177 | ret = qdisc_enqueue(segs, q->qdisc); |
| 178 | if (ret != NET_XMIT_SUCCESS) { |
| 179 | if (net_xmit_drop_count(ret)) |
| 180 | qdisc_qstats_drop(sch); |
| 181 | } else { |
| 182 | nb++; |
| 183 | } |
| 184 | segs = nskb; |
| 185 | } |
| 186 | sch->q.qlen += nb; |
| 187 | if (nb > 1) |
| 188 | qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len); |
| 189 | consume_skb(skb); |
| 190 | return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; |
| 191 | } |
| 192 | |
| 193 | static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch) |
| 194 | { |
| 195 | struct tbf_sched_data *q = qdisc_priv(sch); |
| 196 | int ret; |
| 197 | |
| 198 | if (qdisc_pkt_len(skb) > q->max_size) { |
| 199 | if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size) |
| 200 | return tbf_segment(skb, sch); |
| 201 | return qdisc_reshape_fail(skb, sch); |
| 202 | } |
| 203 | ret = qdisc_enqueue(skb, q->qdisc); |
| 204 | if (ret != NET_XMIT_SUCCESS) { |
| 205 | if (net_xmit_drop_count(ret)) |
| 206 | qdisc_qstats_drop(sch); |
| 207 | return ret; |
| 208 | } |
| 209 | |
| 210 | sch->q.qlen++; |
| 211 | return NET_XMIT_SUCCESS; |
| 212 | } |
| 213 | |
| 214 | static unsigned int tbf_drop(struct Qdisc *sch) |
| 215 | { |
| 216 | struct tbf_sched_data *q = qdisc_priv(sch); |
| 217 | unsigned int len = 0; |
| 218 | |
| 219 | if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) { |
| 220 | sch->q.qlen--; |
| 221 | qdisc_qstats_drop(sch); |
| 222 | } |
| 223 | return len; |
| 224 | } |
| 225 | |
| 226 | static bool tbf_peak_present(const struct tbf_sched_data *q) |
| 227 | { |
| 228 | return q->peak.rate_bytes_ps; |
| 229 | } |
| 230 | |
| 231 | static struct sk_buff *tbf_dequeue(struct Qdisc *sch) |
| 232 | { |
| 233 | struct tbf_sched_data *q = qdisc_priv(sch); |
| 234 | struct sk_buff *skb; |
| 235 | |
| 236 | skb = q->qdisc->ops->peek(q->qdisc); |
| 237 | |
| 238 | if (skb) { |
| 239 | s64 now; |
| 240 | s64 toks; |
| 241 | s64 ptoks = 0; |
| 242 | unsigned int len = qdisc_pkt_len(skb); |
| 243 | |
| 244 | now = ktime_get_ns(); |
| 245 | toks = min_t(s64, now - q->t_c, q->buffer); |
| 246 | |
| 247 | if (tbf_peak_present(q)) { |
| 248 | ptoks = toks + q->ptokens; |
| 249 | if (ptoks > q->mtu) |
| 250 | ptoks = q->mtu; |
| 251 | ptoks -= (s64) psched_l2t_ns(&q->peak, len); |
| 252 | } |
| 253 | toks += q->tokens; |
| 254 | if (toks > q->buffer) |
| 255 | toks = q->buffer; |
| 256 | toks -= (s64) psched_l2t_ns(&q->rate, len); |
| 257 | |
| 258 | if ((toks|ptoks) >= 0) { |
| 259 | skb = qdisc_dequeue_peeked(q->qdisc); |
| 260 | if (unlikely(!skb)) |
| 261 | return NULL; |
| 262 | |
| 263 | q->t_c = now; |
| 264 | q->tokens = toks; |
| 265 | q->ptokens = ptoks; |
| 266 | sch->q.qlen--; |
| 267 | qdisc_unthrottled(sch); |
| 268 | qdisc_bstats_update(sch, skb); |
| 269 | return skb; |
| 270 | } |
| 271 | |
| 272 | qdisc_watchdog_schedule_ns(&q->watchdog, |
| 273 | now + max_t(long, -toks, -ptoks), |
| 274 | true); |
| 275 | |
| 276 | /* Maybe we have a shorter packet in the queue, |
| 277 | which can be sent now. It sounds cool, |
| 278 | but, however, this is wrong in principle. |
| 279 | We MUST NOT reorder packets under these circumstances. |
| 280 | |
| 281 | Really, if we split the flow into independent |
| 282 | subflows, it would be a very good solution. |
| 283 | This is the main idea of all FQ algorithms |
| 284 | (cf. CSZ, HPFQ, HFSC) |
| 285 | */ |
| 286 | |
| 287 | qdisc_qstats_overlimit(sch); |
| 288 | } |
| 289 | return NULL; |
| 290 | } |
| 291 | |
| 292 | static void tbf_reset(struct Qdisc *sch) |
| 293 | { |
| 294 | struct tbf_sched_data *q = qdisc_priv(sch); |
| 295 | |
| 296 | qdisc_reset(q->qdisc); |
| 297 | sch->q.qlen = 0; |
| 298 | q->t_c = ktime_get_ns(); |
| 299 | q->tokens = q->buffer; |
| 300 | q->ptokens = q->mtu; |
| 301 | qdisc_watchdog_cancel(&q->watchdog); |
| 302 | } |
| 303 | |
| 304 | static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = { |
| 305 | [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) }, |
| 306 | [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, |
| 307 | [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, |
| 308 | [TCA_TBF_RATE64] = { .type = NLA_U64 }, |
| 309 | [TCA_TBF_PRATE64] = { .type = NLA_U64 }, |
| 310 | [TCA_TBF_BURST] = { .type = NLA_U32 }, |
| 311 | [TCA_TBF_PBURST] = { .type = NLA_U32 }, |
| 312 | }; |
| 313 | |
| 314 | static int tbf_change(struct Qdisc *sch, struct nlattr *opt) |
| 315 | { |
| 316 | int err; |
| 317 | struct tbf_sched_data *q = qdisc_priv(sch); |
| 318 | struct nlattr *tb[TCA_TBF_MAX + 1]; |
| 319 | struct tc_tbf_qopt *qopt; |
| 320 | struct Qdisc *child = NULL; |
| 321 | struct psched_ratecfg rate; |
| 322 | struct psched_ratecfg peak; |
| 323 | u64 max_size; |
| 324 | s64 buffer, mtu; |
| 325 | u64 rate64 = 0, prate64 = 0; |
| 326 | |
| 327 | err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy); |
| 328 | if (err < 0) |
| 329 | return err; |
| 330 | |
| 331 | err = -EINVAL; |
| 332 | if (tb[TCA_TBF_PARMS] == NULL) |
| 333 | goto done; |
| 334 | |
| 335 | qopt = nla_data(tb[TCA_TBF_PARMS]); |
| 336 | if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE) |
| 337 | qdisc_put_rtab(qdisc_get_rtab(&qopt->rate, |
| 338 | tb[TCA_TBF_RTAB])); |
| 339 | |
| 340 | if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE) |
| 341 | qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate, |
| 342 | tb[TCA_TBF_PTAB])); |
| 343 | |
| 344 | buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U); |
| 345 | mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U); |
| 346 | |
| 347 | if (tb[TCA_TBF_RATE64]) |
| 348 | rate64 = nla_get_u64(tb[TCA_TBF_RATE64]); |
| 349 | psched_ratecfg_precompute(&rate, &qopt->rate, rate64); |
| 350 | |
| 351 | if (tb[TCA_TBF_BURST]) { |
| 352 | max_size = nla_get_u32(tb[TCA_TBF_BURST]); |
| 353 | buffer = psched_l2t_ns(&rate, max_size); |
| 354 | } else { |
| 355 | max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U); |
| 356 | } |
| 357 | |
| 358 | if (qopt->peakrate.rate) { |
| 359 | if (tb[TCA_TBF_PRATE64]) |
| 360 | prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]); |
| 361 | psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64); |
| 362 | if (peak.rate_bytes_ps <= rate.rate_bytes_ps) { |
| 363 | pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n", |
| 364 | peak.rate_bytes_ps, rate.rate_bytes_ps); |
| 365 | err = -EINVAL; |
| 366 | goto done; |
| 367 | } |
| 368 | |
| 369 | if (tb[TCA_TBF_PBURST]) { |
| 370 | u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]); |
| 371 | max_size = min_t(u32, max_size, pburst); |
| 372 | mtu = psched_l2t_ns(&peak, pburst); |
| 373 | } else { |
| 374 | max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu)); |
| 375 | } |
| 376 | } else { |
| 377 | memset(&peak, 0, sizeof(peak)); |
| 378 | } |
| 379 | |
| 380 | if (max_size < psched_mtu(qdisc_dev(sch))) |
| 381 | pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n", |
| 382 | max_size, qdisc_dev(sch)->name, |
| 383 | psched_mtu(qdisc_dev(sch))); |
| 384 | |
| 385 | if (!max_size) { |
| 386 | err = -EINVAL; |
| 387 | goto done; |
| 388 | } |
| 389 | |
| 390 | if (q->qdisc != &noop_qdisc) { |
| 391 | err = fifo_set_limit(q->qdisc, qopt->limit); |
| 392 | if (err) |
| 393 | goto done; |
| 394 | } else if (qopt->limit > 0) { |
| 395 | child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit); |
| 396 | if (IS_ERR(child)) { |
| 397 | err = PTR_ERR(child); |
| 398 | goto done; |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | sch_tree_lock(sch); |
| 403 | if (child) { |
| 404 | qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen, |
| 405 | q->qdisc->qstats.backlog); |
| 406 | qdisc_destroy(q->qdisc); |
| 407 | q->qdisc = child; |
| 408 | } |
| 409 | q->limit = qopt->limit; |
| 410 | if (tb[TCA_TBF_PBURST]) |
| 411 | q->mtu = mtu; |
| 412 | else |
| 413 | q->mtu = PSCHED_TICKS2NS(qopt->mtu); |
| 414 | q->max_size = max_size; |
| 415 | if (tb[TCA_TBF_BURST]) |
| 416 | q->buffer = buffer; |
| 417 | else |
| 418 | q->buffer = PSCHED_TICKS2NS(qopt->buffer); |
| 419 | q->tokens = q->buffer; |
| 420 | q->ptokens = q->mtu; |
| 421 | |
| 422 | memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg)); |
| 423 | memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg)); |
| 424 | |
| 425 | sch_tree_unlock(sch); |
| 426 | err = 0; |
| 427 | done: |
| 428 | return err; |
| 429 | } |
| 430 | |
| 431 | static int tbf_init(struct Qdisc *sch, struct nlattr *opt) |
| 432 | { |
| 433 | struct tbf_sched_data *q = qdisc_priv(sch); |
| 434 | |
| 435 | if (opt == NULL) |
| 436 | return -EINVAL; |
| 437 | |
| 438 | q->t_c = ktime_get_ns(); |
| 439 | qdisc_watchdog_init(&q->watchdog, sch); |
| 440 | q->qdisc = &noop_qdisc; |
| 441 | |
| 442 | return tbf_change(sch, opt); |
| 443 | } |
| 444 | |
| 445 | static void tbf_destroy(struct Qdisc *sch) |
| 446 | { |
| 447 | struct tbf_sched_data *q = qdisc_priv(sch); |
| 448 | |
| 449 | qdisc_watchdog_cancel(&q->watchdog); |
| 450 | qdisc_destroy(q->qdisc); |
| 451 | } |
| 452 | |
| 453 | static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb) |
| 454 | { |
| 455 | struct tbf_sched_data *q = qdisc_priv(sch); |
| 456 | struct nlattr *nest; |
| 457 | struct tc_tbf_qopt opt; |
| 458 | |
| 459 | sch->qstats.backlog = q->qdisc->qstats.backlog; |
| 460 | nest = nla_nest_start(skb, TCA_OPTIONS); |
| 461 | if (nest == NULL) |
| 462 | goto nla_put_failure; |
| 463 | |
| 464 | opt.limit = q->limit; |
| 465 | psched_ratecfg_getrate(&opt.rate, &q->rate); |
| 466 | if (tbf_peak_present(q)) |
| 467 | psched_ratecfg_getrate(&opt.peakrate, &q->peak); |
| 468 | else |
| 469 | memset(&opt.peakrate, 0, sizeof(opt.peakrate)); |
| 470 | opt.mtu = PSCHED_NS2TICKS(q->mtu); |
| 471 | opt.buffer = PSCHED_NS2TICKS(q->buffer); |
| 472 | if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt)) |
| 473 | goto nla_put_failure; |
| 474 | if (q->rate.rate_bytes_ps >= (1ULL << 32) && |
| 475 | nla_put_u64(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps)) |
| 476 | goto nla_put_failure; |
| 477 | if (tbf_peak_present(q) && |
| 478 | q->peak.rate_bytes_ps >= (1ULL << 32) && |
| 479 | nla_put_u64(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps)) |
| 480 | goto nla_put_failure; |
| 481 | |
| 482 | return nla_nest_end(skb, nest); |
| 483 | |
| 484 | nla_put_failure: |
| 485 | nla_nest_cancel(skb, nest); |
| 486 | return -1; |
| 487 | } |
| 488 | |
| 489 | static int tbf_dump_class(struct Qdisc *sch, unsigned long cl, |
| 490 | struct sk_buff *skb, struct tcmsg *tcm) |
| 491 | { |
| 492 | struct tbf_sched_data *q = qdisc_priv(sch); |
| 493 | |
| 494 | tcm->tcm_handle |= TC_H_MIN(1); |
| 495 | tcm->tcm_info = q->qdisc->handle; |
| 496 | |
| 497 | return 0; |
| 498 | } |
| 499 | |
| 500 | static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, |
| 501 | struct Qdisc **old) |
| 502 | { |
| 503 | struct tbf_sched_data *q = qdisc_priv(sch); |
| 504 | |
| 505 | if (new == NULL) |
| 506 | new = &noop_qdisc; |
| 507 | |
| 508 | *old = qdisc_replace(sch, new, &q->qdisc); |
| 509 | return 0; |
| 510 | } |
| 511 | |
| 512 | static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg) |
| 513 | { |
| 514 | struct tbf_sched_data *q = qdisc_priv(sch); |
| 515 | return q->qdisc; |
| 516 | } |
| 517 | |
| 518 | static unsigned long tbf_get(struct Qdisc *sch, u32 classid) |
| 519 | { |
| 520 | return 1; |
| 521 | } |
| 522 | |
| 523 | static void tbf_put(struct Qdisc *sch, unsigned long arg) |
| 524 | { |
| 525 | } |
| 526 | |
| 527 | static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker) |
| 528 | { |
| 529 | if (!walker->stop) { |
| 530 | if (walker->count >= walker->skip) |
| 531 | if (walker->fn(sch, 1, walker) < 0) { |
| 532 | walker->stop = 1; |
| 533 | return; |
| 534 | } |
| 535 | walker->count++; |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | static const struct Qdisc_class_ops tbf_class_ops = { |
| 540 | .graft = tbf_graft, |
| 541 | .leaf = tbf_leaf, |
| 542 | .get = tbf_get, |
| 543 | .put = tbf_put, |
| 544 | .walk = tbf_walk, |
| 545 | .dump = tbf_dump_class, |
| 546 | }; |
| 547 | |
| 548 | static struct Qdisc_ops tbf_qdisc_ops __read_mostly = { |
| 549 | .next = NULL, |
| 550 | .cl_ops = &tbf_class_ops, |
| 551 | .id = "tbf", |
| 552 | .priv_size = sizeof(struct tbf_sched_data), |
| 553 | .enqueue = tbf_enqueue, |
| 554 | .dequeue = tbf_dequeue, |
| 555 | .peek = qdisc_peek_dequeued, |
| 556 | .drop = tbf_drop, |
| 557 | .init = tbf_init, |
| 558 | .reset = tbf_reset, |
| 559 | .destroy = tbf_destroy, |
| 560 | .change = tbf_change, |
| 561 | .dump = tbf_dump, |
| 562 | .owner = THIS_MODULE, |
| 563 | }; |
| 564 | |
| 565 | static int __init tbf_module_init(void) |
| 566 | { |
| 567 | return register_qdisc(&tbf_qdisc_ops); |
| 568 | } |
| 569 | |
| 570 | static void __exit tbf_module_exit(void) |
| 571 | { |
| 572 | unregister_qdisc(&tbf_qdisc_ops); |
| 573 | } |
| 574 | module_init(tbf_module_init) |
| 575 | module_exit(tbf_module_exit) |
| 576 | MODULE_LICENSE("GPL"); |