blob: d52aa10cfe911c88b47927c25cfd8ef596c65986 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001Virtual Routing and Forwarding (VRF)
2====================================
3The VRF device combined with ip rules provides the ability to create virtual
4routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
5Linux network stack. One use case is the multi-tenancy problem where each
6tenant has their own unique routing tables and in the very least need
7different default gateways.
8
9Processes can be "VRF aware" by binding a socket to the VRF device. Packets
10through the socket then use the routing table associated with the VRF
11device. An important feature of the VRF device implementation is that it
12impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
13(ie., they do not need to be run in each VRF). The design also allows
14the use of higher priority ip rules (Policy Based Routing, PBR) to take
15precedence over the VRF device rules directing specific traffic as desired.
16
17In addition, VRF devices allow VRFs to be nested within namespaces. For
18example network namespaces provide separation of network interfaces at L1
19(Layer 1 separation), VLANs on the interfaces within a namespace provide
20L2 separation and then VRF devices provide L3 separation.
21
22Design
23------
24A VRF device is created with an associated route table. Network interfaces
25are then enslaved to a VRF device:
26
27 +-----------------------------+
28 | vrf-blue | ===> route table 10
29 +-----------------------------+
30 | | |
31 +------+ +------+ +-------------+
32 | eth1 | | eth2 | ... | bond1 |
33 +------+ +------+ +-------------+
34 | |
35 +------+ +------+
36 | eth8 | | eth9 |
37 +------+ +------+
38
39Packets received on an enslaved device and are switched to the VRF device
40using an rx_handler which gives the impression that packets flow through
41the VRF device. Similarly on egress routing rules are used to send packets
42to the VRF device driver before getting sent out the actual interface. This
43allows tcpdump on a VRF device to capture all packets into and out of the
44VRF as a whole.[1] Similiarly, netfilter [2] and tc rules can be applied
45using the VRF device to specify rules that apply to the VRF domain as a whole.
46
47[1] Packets in the forwarded state do not flow through the device, so those
48 packets are not seen by tcpdump. Will revisit this limitation in a
49 future release.
50
51[2] Iptables on ingress is limited to NF_INET_PRE_ROUTING only with skb->dev
52 set to real ingress device and egress is limited to NF_INET_POST_ROUTING.
53 Will revisit this limitation in a future release.
54
55
56Setup
57-----
581. VRF device is created with an association to a FIB table.
59 e.g, ip link add vrf-blue type vrf table 10
60 ip link set dev vrf-blue up
61
622. Rules are added that send lookups to the associated FIB table when the
63 iif or oif is the VRF device. e.g.,
64 ip ru add oif vrf-blue table 10
65 ip ru add iif vrf-blue table 10
66
67 Set the default route for the table (and hence default route for the VRF).
68 e.g, ip route add table 10 prohibit default
69
703. Enslave L3 interfaces to a VRF device.
71 e.g, ip link set dev eth1 master vrf-blue
72
73 Local and connected routes for enslaved devices are automatically moved to
74 the table associated with VRF device. Any additional routes depending on
75 the enslaved device will need to be reinserted following the enslavement.
76
774. Additional VRF routes are added to associated table.
78 e.g., ip route add table 10 ...
79
80
81Applications
82------------
83Applications that are to work within a VRF need to bind their socket to the
84VRF device:
85
86 setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
87
88or to specify the output device using cmsg and IP_PKTINFO.
89
90
91Limitations
92-----------
93Index of original ingress interface is not available via cmsg. Will address
94soon.
95
96################################################################################
97
98Using iproute2 for VRFs
99=======================
100VRF devices do *not* have to start with 'vrf-'. That is a convention used here
101for emphasis of the device type, similar to use of 'br' in bridge names.
102
1031. Create a VRF
104
105 To instantiate a VRF device and associate it with a table:
106 $ ip link add dev NAME type vrf table ID
107
108 Remember to add the ip rules as well:
109 $ ip ru add oif NAME table 10
110 $ ip ru add iif NAME table 10
111 $ ip -6 ru add oif NAME table 10
112 $ ip -6 ru add iif NAME table 10
113
114 Without the rules route lookups are not directed to the table.
115
116 For example:
117 $ ip link add dev vrf-blue type vrf table 10
118 $ ip ru add pref 200 oif vrf-blue table 10
119 $ ip ru add pref 200 iif vrf-blue table 10
120 $ ip -6 ru add pref 200 oif vrf-blue table 10
121 $ ip -6 ru add pref 200 iif vrf-blue table 10
122
123
1242. List VRFs
125
126 To list VRFs that have been created:
127 $ ip [-d] link show type vrf
128 NOTE: The -d option is needed to show the table id
129
130 For example:
131 $ ip -d link show type vrf
132 11: vrf-mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
133 link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
134 vrf table 1 addrgenmode eui64
135 12: vrf-red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
136 link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
137 vrf table 10 addrgenmode eui64
138 13: vrf-blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
139 link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
140 vrf table 66 addrgenmode eui64
141 14: vrf-green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
142 link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
143 vrf table 81 addrgenmode eui64
144
145
146 Or in brief output:
147
148 $ ip -br link show type vrf
149 vrf-mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
150 vrf-red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
151 vrf-blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
152 vrf-green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
153
154
1553. Assign a Network Interface to a VRF
156
157 Network interfaces are assigned to a VRF by enslaving the netdevice to a
158 VRF device:
159 $ ip link set dev NAME master VRF-NAME
160
161 On enslavement connected and local routes are automatically moved to the
162 table associated with the VRF device.
163
164 For example:
165 $ ip link set dev eth0 master vrf-mgmt
166
167
1684. Show Devices Assigned to a VRF
169
170 To show devices that have been assigned to a specific VRF add the master
171 option to the ip command:
172 $ ip link show master VRF-NAME
173
174 For example:
175 $ ip link show master vrf-red
176 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP mode DEFAULT group default qlen 1000
177 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
178 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP mode DEFAULT group default qlen 1000
179 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
180 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master vrf-red state DOWN mode DEFAULT group default qlen 1000
181 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
182
183
184 Or using the brief output:
185 $ ip -br link show master vrf-red
186 eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
187 eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
188 eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST>
189
190
1915. Show Neighbor Entries for a VRF
192
193 To list neighbor entries associated with devices enslaved to a VRF device
194 add the master option to the ip command:
195 $ ip [-6] neigh show master VRF-NAME
196
197 For example:
198 $ ip neigh show master vrf-red
199 10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
200 10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
201
202 $ ip -6 neigh show master vrf-red
203 2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
204
205
2066. Show Addresses for a VRF
207
208 To show addresses for interfaces associated with a VRF add the master
209 option to the ip command:
210 $ ip addr show master VRF-NAME
211
212 For example:
213 $ ip addr show master vrf-red
214 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP group default qlen 1000
215 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
216 inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
217 valid_lft forever preferred_lft forever
218 inet6 2002:1::2/120 scope global
219 valid_lft forever preferred_lft forever
220 inet6 fe80::ff:fe00:202/64 scope link
221 valid_lft forever preferred_lft forever
222 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP group default qlen 1000
223 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
224 inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
225 valid_lft forever preferred_lft forever
226 inet6 2002:2::2/120 scope global
227 valid_lft forever preferred_lft forever
228 inet6 fe80::ff:fe00:203/64 scope link
229 valid_lft forever preferred_lft forever
230 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master vrf-red state DOWN group default qlen 1000
231 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
232
233 Or in brief format:
234 $ ip -br addr show master vrf-red
235 eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
236 eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
237 eth5 DOWN
238
239
2407. Show Routes for a VRF
241
242 To show routes for a VRF use the ip command to display the table associated
243 with the VRF device:
244 $ ip [-6] route show table ID
245
246 For example:
247 $ ip route show table vrf-red
248 prohibit default
249 broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2
250 10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2
251 local 10.2.1.2 dev eth1 proto kernel scope host src 10.2.1.2
252 broadcast 10.2.1.255 dev eth1 proto kernel scope link src 10.2.1.2
253 broadcast 10.2.2.0 dev eth2 proto kernel scope link src 10.2.2.2
254 10.2.2.0/24 dev eth2 proto kernel scope link src 10.2.2.2
255 local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2
256 broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2
257
258 $ ip -6 route show table vrf-red
259 local 2002:1:: dev lo proto none metric 0 pref medium
260 local 2002:1::2 dev lo proto none metric 0 pref medium
261 2002:1::/120 dev eth1 proto kernel metric 256 pref medium
262 local 2002:2:: dev lo proto none metric 0 pref medium
263 local 2002:2::2 dev lo proto none metric 0 pref medium
264 2002:2::/120 dev eth2 proto kernel metric 256 pref medium
265 local fe80:: dev lo proto none metric 0 pref medium
266 local fe80:: dev lo proto none metric 0 pref medium
267 local fe80::ff:fe00:202 dev lo proto none metric 0 pref medium
268 local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium
269 fe80::/64 dev eth1 proto kernel metric 256 pref medium
270 fe80::/64 dev eth2 proto kernel metric 256 pref medium
271 ff00::/8 dev vrf-red metric 256 pref medium
272 ff00::/8 dev eth1 metric 256 pref medium
273 ff00::/8 dev eth2 metric 256 pref medium
274
275
2768. Route Lookup for a VRF
277
278 A test route lookup can be done for a VRF by adding the oif option to ip:
279 $ ip [-6] route get oif VRF-NAME ADDRESS
280
281 For example:
282 $ ip route get 10.2.1.40 oif vrf-red
283 10.2.1.40 dev eth1 table vrf-red src 10.2.1.2
284 cache
285
286 $ ip -6 route get 2002:1::32 oif vrf-red
287 2002:1::32 from :: dev eth1 table vrf-red proto kernel src 2002:1::2 metric 256 pref medium
288
289
2909. Removing Network Interface from a VRF
291
292 Network interfaces are removed from a VRF by breaking the enslavement to
293 the VRF device:
294 $ ip link set dev NAME nomaster
295
296 Connected routes are moved back to the default table and local entries are
297 moved to the local table.
298
299 For example:
300 $ ip link set dev eth0 nomaster
301
302--------------------------------------------------------------------------------
303
304Commands used in this example:
305
306cat >> /etc/iproute2/rt_tables <<EOF
3071 vrf-mgmt
30810 vrf-red
30966 vrf-blue
31081 vrf-green
311EOF
312
313function vrf_create
314{
315 VRF=$1
316 TBID=$2
317 # create VRF device
318 ip link add vrf-${VRF} type vrf table ${TBID}
319
320 # add rules that direct lookups to vrf table
321 ip ru add pref 200 oif vrf-${VRF} table ${TBID}
322 ip ru add pref 200 iif vrf-${VRF} table ${TBID}
323 ip -6 ru add pref 200 oif vrf-${VRF} table ${TBID}
324 ip -6 ru add pref 200 iif vrf-${VRF} table ${TBID}
325
326 if [ "${VRF}" != "mgmt" ]; then
327 ip route add table ${TBID} prohibit default
328 fi
329 ip link set dev vrf-${VRF} up
330 ip link set dev vrf-${VRF} state up
331}
332
333vrf_create mgmt 1
334ip link set dev eth0 master vrf-mgmt
335
336vrf_create red 10
337ip link set dev eth1 master vrf-red
338ip link set dev eth2 master vrf-red
339ip link set dev eth5 master vrf-red
340
341vrf_create blue 66
342ip link set dev eth3 master vrf-blue
343
344vrf_create green 81
345ip link set dev eth4 master vrf-green
346
347
348Interface addresses from /etc/network/interfaces:
349auto eth0
350iface eth0 inet static
351 address 10.0.0.2
352 netmask 255.255.255.0
353 gateway 10.0.0.254
354
355iface eth0 inet6 static
356 address 2000:1::2
357 netmask 120
358
359auto eth1
360iface eth1 inet static
361 address 10.2.1.2
362 netmask 255.255.255.0
363
364iface eth1 inet6 static
365 address 2002:1::2
366 netmask 120
367
368auto eth2
369iface eth2 inet static
370 address 10.2.2.2
371 netmask 255.255.255.0
372
373iface eth2 inet6 static
374 address 2002:2::2
375 netmask 120
376
377auto eth3
378iface eth3 inet static
379 address 10.2.3.2
380 netmask 255.255.255.0
381
382iface eth3 inet6 static
383 address 2002:3::2
384 netmask 120
385
386auto eth4
387iface eth4 inet static
388 address 10.2.4.2
389 netmask 255.255.255.0
390
391iface eth4 inet6 static
392 address 2002:4::2
393 netmask 120