blob: 63b7d6f82d24378ff88c5739fee157a502382c50 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/smp.h>
28#include <linux/string.h>
29#include <linux/cache.h>
30
31#include <asm/cacheflush.h>
32#include <asm/cpu-type.h>
33#include <asm/pgtable.h>
34#include <asm/war.h>
35#include <asm/uasm.h>
36#include <asm/setup.h>
37
38static int mips_xpa_disabled;
39
40static int __init xpa_disable(char *s)
41{
42 mips_xpa_disabled = 1;
43
44 return 1;
45}
46
47__setup("noxpa", xpa_disable);
48
49/*
50 * TLB load/store/modify handlers.
51 *
52 * Only the fastpath gets synthesized at runtime, the slowpath for
53 * do_page_fault remains normal asm.
54 */
55extern void tlb_do_page_fault_0(void);
56extern void tlb_do_page_fault_1(void);
57
58struct work_registers {
59 int r1;
60 int r2;
61 int r3;
62};
63
64struct tlb_reg_save {
65 unsigned long a;
66 unsigned long b;
67} ____cacheline_aligned_in_smp;
68
69static struct tlb_reg_save handler_reg_save[NR_CPUS];
70
71static inline int r45k_bvahwbug(void)
72{
73 /* XXX: We should probe for the presence of this bug, but we don't. */
74 return 0;
75}
76
77static inline int r4k_250MHZhwbug(void)
78{
79 /* XXX: We should probe for the presence of this bug, but we don't. */
80 return 0;
81}
82
83static inline int __maybe_unused bcm1250_m3_war(void)
84{
85 return BCM1250_M3_WAR;
86}
87
88static inline int __maybe_unused r10000_llsc_war(void)
89{
90 return R10000_LLSC_WAR;
91}
92
93static int use_bbit_insns(void)
94{
95 switch (current_cpu_type()) {
96 case CPU_CAVIUM_OCTEON:
97 case CPU_CAVIUM_OCTEON_PLUS:
98 case CPU_CAVIUM_OCTEON2:
99 case CPU_CAVIUM_OCTEON3:
100 return 1;
101 default:
102 return 0;
103 }
104}
105
106static int use_lwx_insns(void)
107{
108 switch (current_cpu_type()) {
109 case CPU_CAVIUM_OCTEON2:
110 case CPU_CAVIUM_OCTEON3:
111 return 1;
112 default:
113 return 0;
114 }
115}
116#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
117 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
118static bool scratchpad_available(void)
119{
120 return true;
121}
122static int scratchpad_offset(int i)
123{
124 /*
125 * CVMSEG starts at address -32768 and extends for
126 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
127 */
128 i += 1; /* Kernel use starts at the top and works down. */
129 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
130}
131#else
132static bool scratchpad_available(void)
133{
134 return false;
135}
136static int scratchpad_offset(int i)
137{
138 BUG();
139 /* Really unreachable, but evidently some GCC want this. */
140 return 0;
141}
142#endif
143/*
144 * Found by experiment: At least some revisions of the 4kc throw under
145 * some circumstances a machine check exception, triggered by invalid
146 * values in the index register. Delaying the tlbp instruction until
147 * after the next branch, plus adding an additional nop in front of
148 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
149 * why; it's not an issue caused by the core RTL.
150 *
151 */
152static int m4kc_tlbp_war(void)
153{
154 return (current_cpu_data.processor_id & 0xffff00) ==
155 (PRID_COMP_MIPS | PRID_IMP_4KC);
156}
157
158/* Handle labels (which must be positive integers). */
159enum label_id {
160 label_second_part = 1,
161 label_leave,
162 label_vmalloc,
163 label_vmalloc_done,
164 label_tlbw_hazard_0,
165 label_split = label_tlbw_hazard_0 + 8,
166 label_tlbl_goaround1,
167 label_tlbl_goaround2,
168 label_nopage_tlbl,
169 label_nopage_tlbs,
170 label_nopage_tlbm,
171 label_smp_pgtable_change,
172 label_r3000_write_probe_fail,
173 label_large_segbits_fault,
174#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
175 label_tlb_huge_update,
176#endif
177};
178
179UASM_L_LA(_second_part)
180UASM_L_LA(_leave)
181UASM_L_LA(_vmalloc)
182UASM_L_LA(_vmalloc_done)
183/* _tlbw_hazard_x is handled differently. */
184UASM_L_LA(_split)
185UASM_L_LA(_tlbl_goaround1)
186UASM_L_LA(_tlbl_goaround2)
187UASM_L_LA(_nopage_tlbl)
188UASM_L_LA(_nopage_tlbs)
189UASM_L_LA(_nopage_tlbm)
190UASM_L_LA(_smp_pgtable_change)
191UASM_L_LA(_r3000_write_probe_fail)
192UASM_L_LA(_large_segbits_fault)
193#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
194UASM_L_LA(_tlb_huge_update)
195#endif
196
197static int hazard_instance;
198
199static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
200{
201 switch (instance) {
202 case 0 ... 7:
203 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
204 return;
205 default:
206 BUG();
207 }
208}
209
210static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
211{
212 switch (instance) {
213 case 0 ... 7:
214 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
215 break;
216 default:
217 BUG();
218 }
219}
220
221/*
222 * pgtable bits are assigned dynamically depending on processor feature
223 * and statically based on kernel configuration. This spits out the actual
224 * values the kernel is using. Required to make sense from disassembled
225 * TLB exception handlers.
226 */
227static void output_pgtable_bits_defines(void)
228{
229#define pr_define(fmt, ...) \
230 pr_debug("#define " fmt, ##__VA_ARGS__)
231
232 pr_debug("#include <asm/asm.h>\n");
233 pr_debug("#include <asm/regdef.h>\n");
234 pr_debug("\n");
235
236 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
237 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
238 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
239 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
240 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
241#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
242 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
243 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
244#endif
245#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
246 if (cpu_has_rixi) {
247#ifdef _PAGE_NO_EXEC_SHIFT
248 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
249 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
250#endif
251 }
252#endif
253 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
254 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
255 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
256 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
257 pr_debug("\n");
258}
259
260static inline void dump_handler(const char *symbol, const u32 *handler, int count)
261{
262 int i;
263
264 pr_debug("LEAF(%s)\n", symbol);
265
266 pr_debug("\t.set push\n");
267 pr_debug("\t.set noreorder\n");
268
269 for (i = 0; i < count; i++)
270 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
271
272 pr_debug("\t.set\tpop\n");
273
274 pr_debug("\tEND(%s)\n", symbol);
275}
276
277/* The only general purpose registers allowed in TLB handlers. */
278#define K0 26
279#define K1 27
280
281/* Some CP0 registers */
282#define C0_INDEX 0, 0
283#define C0_ENTRYLO0 2, 0
284#define C0_TCBIND 2, 2
285#define C0_ENTRYLO1 3, 0
286#define C0_CONTEXT 4, 0
287#define C0_PAGEMASK 5, 0
288#define C0_BADVADDR 8, 0
289#define C0_ENTRYHI 10, 0
290#define C0_EPC 14, 0
291#define C0_XCONTEXT 20, 0
292
293#ifdef CONFIG_64BIT
294# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
295#else
296# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
297#endif
298
299/* The worst case length of the handler is around 18 instructions for
300 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
301 * Maximum space available is 32 instructions for R3000 and 64
302 * instructions for R4000.
303 *
304 * We deliberately chose a buffer size of 128, so we won't scribble
305 * over anything important on overflow before we panic.
306 */
307static u32 tlb_handler[128];
308
309/* simply assume worst case size for labels and relocs */
310static struct uasm_label labels[128];
311static struct uasm_reloc relocs[128];
312
313static int check_for_high_segbits;
314static bool fill_includes_sw_bits;
315
316static unsigned int kscratch_used_mask;
317
318static inline int __maybe_unused c0_kscratch(void)
319{
320 switch (current_cpu_type()) {
321 case CPU_XLP:
322 case CPU_XLR:
323 return 22;
324 default:
325 return 31;
326 }
327}
328
329static int allocate_kscratch(void)
330{
331 int r;
332 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
333
334 r = ffs(a);
335
336 if (r == 0)
337 return -1;
338
339 r--; /* make it zero based */
340
341 kscratch_used_mask |= (1 << r);
342
343 return r;
344}
345
346static int scratch_reg;
347static int pgd_reg;
348enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
349
350static struct work_registers build_get_work_registers(u32 **p)
351{
352 struct work_registers r;
353
354 if (scratch_reg >= 0) {
355 /* Save in CPU local C0_KScratch? */
356 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
357 r.r1 = K0;
358 r.r2 = K1;
359 r.r3 = 1;
360 return r;
361 }
362
363 if (num_possible_cpus() > 1) {
364 /* Get smp_processor_id */
365 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
366 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
367
368 /* handler_reg_save index in K0 */
369 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
370
371 UASM_i_LA(p, K1, (long)&handler_reg_save);
372 UASM_i_ADDU(p, K0, K0, K1);
373 } else {
374 UASM_i_LA(p, K0, (long)&handler_reg_save);
375 }
376 /* K0 now points to save area, save $1 and $2 */
377 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
378 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
379
380 r.r1 = K1;
381 r.r2 = 1;
382 r.r3 = 2;
383 return r;
384}
385
386static void build_restore_work_registers(u32 **p)
387{
388 if (scratch_reg >= 0) {
389 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
390 return;
391 }
392 /* K0 already points to save area, restore $1 and $2 */
393 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
394 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
395}
396
397#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
398
399/*
400 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
401 * we cannot do r3000 under these circumstances.
402 *
403 * Declare pgd_current here instead of including mmu_context.h to avoid type
404 * conflicts for tlbmiss_handler_setup_pgd
405 */
406extern unsigned long pgd_current[];
407
408/*
409 * The R3000 TLB handler is simple.
410 */
411static void build_r3000_tlb_refill_handler(void)
412{
413 long pgdc = (long)pgd_current;
414 u32 *p;
415
416 memset(tlb_handler, 0, sizeof(tlb_handler));
417 p = tlb_handler;
418
419 uasm_i_mfc0(&p, K0, C0_BADVADDR);
420 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
421 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
422 uasm_i_srl(&p, K0, K0, 22); /* load delay */
423 uasm_i_sll(&p, K0, K0, 2);
424 uasm_i_addu(&p, K1, K1, K0);
425 uasm_i_mfc0(&p, K0, C0_CONTEXT);
426 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
427 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
428 uasm_i_addu(&p, K1, K1, K0);
429 uasm_i_lw(&p, K0, 0, K1);
430 uasm_i_nop(&p); /* load delay */
431 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
432 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
433 uasm_i_tlbwr(&p); /* cp0 delay */
434 uasm_i_jr(&p, K1);
435 uasm_i_rfe(&p); /* branch delay */
436
437 if (p > tlb_handler + 32)
438 panic("TLB refill handler space exceeded");
439
440 pr_debug("Wrote TLB refill handler (%u instructions).\n",
441 (unsigned int)(p - tlb_handler));
442
443 memcpy((void *)ebase, tlb_handler, 0x80);
444 local_flush_icache_range(ebase, ebase + 0x80);
445
446 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
447}
448#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
449
450/*
451 * The R4000 TLB handler is much more complicated. We have two
452 * consecutive handler areas with 32 instructions space each.
453 * Since they aren't used at the same time, we can overflow in the
454 * other one.To keep things simple, we first assume linear space,
455 * then we relocate it to the final handler layout as needed.
456 */
457static u32 final_handler[64];
458
459/*
460 * Hazards
461 *
462 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
463 * 2. A timing hazard exists for the TLBP instruction.
464 *
465 * stalling_instruction
466 * TLBP
467 *
468 * The JTLB is being read for the TLBP throughout the stall generated by the
469 * previous instruction. This is not really correct as the stalling instruction
470 * can modify the address used to access the JTLB. The failure symptom is that
471 * the TLBP instruction will use an address created for the stalling instruction
472 * and not the address held in C0_ENHI and thus report the wrong results.
473 *
474 * The software work-around is to not allow the instruction preceding the TLBP
475 * to stall - make it an NOP or some other instruction guaranteed not to stall.
476 *
477 * Errata 2 will not be fixed. This errata is also on the R5000.
478 *
479 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
480 */
481static void __maybe_unused build_tlb_probe_entry(u32 **p)
482{
483 switch (current_cpu_type()) {
484 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
485 case CPU_R4600:
486 case CPU_R4700:
487 case CPU_R5000:
488 case CPU_NEVADA:
489 uasm_i_nop(p);
490 uasm_i_tlbp(p);
491 break;
492
493 default:
494 uasm_i_tlbp(p);
495 break;
496 }
497}
498
499/*
500 * Write random or indexed TLB entry, and care about the hazards from
501 * the preceding mtc0 and for the following eret.
502 */
503enum tlb_write_entry { tlb_random, tlb_indexed };
504
505static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
506 struct uasm_reloc **r,
507 enum tlb_write_entry wmode)
508{
509 void(*tlbw)(u32 **) = NULL;
510
511 switch (wmode) {
512 case tlb_random: tlbw = uasm_i_tlbwr; break;
513 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
514 }
515
516 if (cpu_has_mips_r2_r6) {
517 if (cpu_has_mips_r2_exec_hazard)
518 uasm_i_ehb(p);
519 tlbw(p);
520 return;
521 }
522
523 switch (current_cpu_type()) {
524 case CPU_R4000PC:
525 case CPU_R4000SC:
526 case CPU_R4000MC:
527 case CPU_R4400PC:
528 case CPU_R4400SC:
529 case CPU_R4400MC:
530 /*
531 * This branch uses up a mtc0 hazard nop slot and saves
532 * two nops after the tlbw instruction.
533 */
534 uasm_bgezl_hazard(p, r, hazard_instance);
535 tlbw(p);
536 uasm_bgezl_label(l, p, hazard_instance);
537 hazard_instance++;
538 uasm_i_nop(p);
539 break;
540
541 case CPU_R4600:
542 case CPU_R4700:
543 uasm_i_nop(p);
544 tlbw(p);
545 uasm_i_nop(p);
546 break;
547
548 case CPU_R5000:
549 case CPU_NEVADA:
550 uasm_i_nop(p); /* QED specifies 2 nops hazard */
551 uasm_i_nop(p); /* QED specifies 2 nops hazard */
552 tlbw(p);
553 break;
554
555 case CPU_R4300:
556 case CPU_5KC:
557 case CPU_TX49XX:
558 case CPU_PR4450:
559 case CPU_XLR:
560 uasm_i_nop(p);
561 tlbw(p);
562 break;
563
564 case CPU_R10000:
565 case CPU_R12000:
566 case CPU_R14000:
567 case CPU_R16000:
568 case CPU_4KC:
569 case CPU_4KEC:
570 case CPU_M14KC:
571 case CPU_M14KEC:
572 case CPU_SB1:
573 case CPU_SB1A:
574 case CPU_4KSC:
575 case CPU_20KC:
576 case CPU_25KF:
577 case CPU_BMIPS32:
578 case CPU_BMIPS3300:
579 case CPU_BMIPS4350:
580 case CPU_BMIPS4380:
581 case CPU_BMIPS5000:
582 case CPU_LOONGSON2:
583 case CPU_LOONGSON3:
584 case CPU_R5500:
585 if (m4kc_tlbp_war())
586 uasm_i_nop(p);
587 case CPU_ALCHEMY:
588 tlbw(p);
589 break;
590
591 case CPU_RM7000:
592 uasm_i_nop(p);
593 uasm_i_nop(p);
594 uasm_i_nop(p);
595 uasm_i_nop(p);
596 tlbw(p);
597 break;
598
599 case CPU_VR4111:
600 case CPU_VR4121:
601 case CPU_VR4122:
602 case CPU_VR4181:
603 case CPU_VR4181A:
604 uasm_i_nop(p);
605 uasm_i_nop(p);
606 tlbw(p);
607 uasm_i_nop(p);
608 uasm_i_nop(p);
609 break;
610
611 case CPU_VR4131:
612 case CPU_VR4133:
613 case CPU_R5432:
614 uasm_i_nop(p);
615 uasm_i_nop(p);
616 tlbw(p);
617 break;
618
619 case CPU_JZRISC:
620 tlbw(p);
621 uasm_i_nop(p);
622 break;
623
624 default:
625 panic("No TLB refill handler yet (CPU type: %d)",
626 current_cpu_type());
627 break;
628 }
629}
630
631static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
632 unsigned int reg)
633{
634 if (cpu_has_rixi && _PAGE_NO_EXEC) {
635 if (fill_includes_sw_bits) {
636 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
637 } else {
638 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
639 UASM_i_ROTR(p, reg, reg,
640 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
641 }
642 } else {
643#ifdef CONFIG_PHYS_ADDR_T_64BIT
644 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
645#else
646 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
647#endif
648 }
649}
650
651#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
652
653static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
654 unsigned int tmp, enum label_id lid,
655 int restore_scratch)
656{
657 if (restore_scratch) {
658 /* Reset default page size */
659 if (PM_DEFAULT_MASK >> 16) {
660 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
661 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
662 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
663 uasm_il_b(p, r, lid);
664 } else if (PM_DEFAULT_MASK) {
665 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
666 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
667 uasm_il_b(p, r, lid);
668 } else {
669 uasm_i_mtc0(p, 0, C0_PAGEMASK);
670 uasm_il_b(p, r, lid);
671 }
672 if (scratch_reg >= 0)
673 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
674 else
675 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
676 } else {
677 /* Reset default page size */
678 if (PM_DEFAULT_MASK >> 16) {
679 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
680 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
681 uasm_il_b(p, r, lid);
682 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
683 } else if (PM_DEFAULT_MASK) {
684 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
685 uasm_il_b(p, r, lid);
686 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
687 } else {
688 uasm_il_b(p, r, lid);
689 uasm_i_mtc0(p, 0, C0_PAGEMASK);
690 }
691 }
692}
693
694static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
695 struct uasm_reloc **r,
696 unsigned int tmp,
697 enum tlb_write_entry wmode,
698 int restore_scratch)
699{
700 /* Set huge page tlb entry size */
701 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
702 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
703 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
704
705 build_tlb_write_entry(p, l, r, wmode);
706
707 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
708}
709
710/*
711 * Check if Huge PTE is present, if so then jump to LABEL.
712 */
713static void
714build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
715 unsigned int pmd, int lid)
716{
717 UASM_i_LW(p, tmp, 0, pmd);
718 if (use_bbit_insns()) {
719 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
720 } else {
721 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
722 uasm_il_bnez(p, r, tmp, lid);
723 }
724}
725
726static void build_huge_update_entries(u32 **p, unsigned int pte,
727 unsigned int tmp)
728{
729 int small_sequence;
730
731 /*
732 * A huge PTE describes an area the size of the
733 * configured huge page size. This is twice the
734 * of the large TLB entry size we intend to use.
735 * A TLB entry half the size of the configured
736 * huge page size is configured into entrylo0
737 * and entrylo1 to cover the contiguous huge PTE
738 * address space.
739 */
740 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
741
742 /* We can clobber tmp. It isn't used after this.*/
743 if (!small_sequence)
744 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
745
746 build_convert_pte_to_entrylo(p, pte);
747 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
748 /* convert to entrylo1 */
749 if (small_sequence)
750 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
751 else
752 UASM_i_ADDU(p, pte, pte, tmp);
753
754 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
755}
756
757static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
758 struct uasm_label **l,
759 unsigned int pte,
760 unsigned int ptr,
761 unsigned int flush)
762{
763#ifdef CONFIG_SMP
764 UASM_i_SC(p, pte, 0, ptr);
765 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
766 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
767#else
768 UASM_i_SW(p, pte, 0, ptr);
769#endif
770 if (cpu_has_ftlb && flush) {
771 BUG_ON(!cpu_has_tlbinv);
772
773 UASM_i_MFC0(p, ptr, C0_ENTRYHI);
774 uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
775 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
776 build_tlb_write_entry(p, l, r, tlb_indexed);
777
778 uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
779 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
780 build_huge_update_entries(p, pte, ptr);
781 build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
782
783 return;
784 }
785
786 build_huge_update_entries(p, pte, ptr);
787 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
788}
789#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
790
791#ifdef CONFIG_64BIT
792/*
793 * TMP and PTR are scratch.
794 * TMP will be clobbered, PTR will hold the pmd entry.
795 */
796static void
797build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
798 unsigned int tmp, unsigned int ptr)
799{
800#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
801 long pgdc = (long)pgd_current;
802#endif
803 /*
804 * The vmalloc handling is not in the hotpath.
805 */
806 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
807
808 if (check_for_high_segbits) {
809 /*
810 * The kernel currently implicitely assumes that the
811 * MIPS SEGBITS parameter for the processor is
812 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
813 * allocate virtual addresses outside the maximum
814 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
815 * that doesn't prevent user code from accessing the
816 * higher xuseg addresses. Here, we make sure that
817 * everything but the lower xuseg addresses goes down
818 * the module_alloc/vmalloc path.
819 */
820 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
821 uasm_il_bnez(p, r, ptr, label_vmalloc);
822 } else {
823 uasm_il_bltz(p, r, tmp, label_vmalloc);
824 }
825 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
826
827 if (pgd_reg != -1) {
828 /* pgd is in pgd_reg */
829 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
830 } else {
831#if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
832 /*
833 * &pgd << 11 stored in CONTEXT [23..63].
834 */
835 UASM_i_MFC0(p, ptr, C0_CONTEXT);
836
837 /* Clear lower 23 bits of context. */
838 uasm_i_dins(p, ptr, 0, 0, 23);
839
840 /* 1 0 1 0 1 << 6 xkphys cached */
841 uasm_i_ori(p, ptr, ptr, 0x540);
842 uasm_i_drotr(p, ptr, ptr, 11);
843#elif defined(CONFIG_SMP)
844 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
845 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
846 UASM_i_LA_mostly(p, tmp, pgdc);
847 uasm_i_daddu(p, ptr, ptr, tmp);
848 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
849 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
850#else
851 UASM_i_LA_mostly(p, ptr, pgdc);
852 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
853#endif
854 }
855
856 uasm_l_vmalloc_done(l, *p);
857
858 /* get pgd offset in bytes */
859 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
860
861 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
862 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
863#ifndef __PAGETABLE_PMD_FOLDED
864 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
865 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
866 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
867 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
868 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
869#endif
870}
871
872/*
873 * BVADDR is the faulting address, PTR is scratch.
874 * PTR will hold the pgd for vmalloc.
875 */
876static void
877build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
878 unsigned int bvaddr, unsigned int ptr,
879 enum vmalloc64_mode mode)
880{
881 long swpd = (long)swapper_pg_dir;
882 int single_insn_swpd;
883 int did_vmalloc_branch = 0;
884
885 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
886
887 uasm_l_vmalloc(l, *p);
888
889 if (mode != not_refill && check_for_high_segbits) {
890 if (single_insn_swpd) {
891 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
892 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
893 did_vmalloc_branch = 1;
894 /* fall through */
895 } else {
896 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
897 }
898 }
899 if (!did_vmalloc_branch) {
900 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
901 uasm_il_b(p, r, label_vmalloc_done);
902 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
903 } else {
904 UASM_i_LA_mostly(p, ptr, swpd);
905 uasm_il_b(p, r, label_vmalloc_done);
906 if (uasm_in_compat_space_p(swpd))
907 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
908 else
909 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
910 }
911 }
912 if (mode != not_refill && check_for_high_segbits) {
913 uasm_l_large_segbits_fault(l, *p);
914 /*
915 * We get here if we are an xsseg address, or if we are
916 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
917 *
918 * Ignoring xsseg (assume disabled so would generate
919 * (address errors?), the only remaining possibility
920 * is the upper xuseg addresses. On processors with
921 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
922 * addresses would have taken an address error. We try
923 * to mimic that here by taking a load/istream page
924 * fault.
925 */
926 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
927 uasm_i_jr(p, ptr);
928
929 if (mode == refill_scratch) {
930 if (scratch_reg >= 0)
931 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
932 else
933 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
934 } else {
935 uasm_i_nop(p);
936 }
937 }
938}
939
940#else /* !CONFIG_64BIT */
941
942/*
943 * TMP and PTR are scratch.
944 * TMP will be clobbered, PTR will hold the pgd entry.
945 */
946static void __maybe_unused
947build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
948{
949 if (pgd_reg != -1) {
950 /* pgd is in pgd_reg */
951 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
952 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
953 } else {
954 long pgdc = (long)pgd_current;
955
956 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
957#ifdef CONFIG_SMP
958 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
959 UASM_i_LA_mostly(p, tmp, pgdc);
960 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
961 uasm_i_addu(p, ptr, tmp, ptr);
962#else
963 UASM_i_LA_mostly(p, ptr, pgdc);
964#endif
965 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
966 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
967 }
968 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
969 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
970 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
971}
972
973#endif /* !CONFIG_64BIT */
974
975static void build_adjust_context(u32 **p, unsigned int ctx)
976{
977 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
978 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
979
980 switch (current_cpu_type()) {
981 case CPU_VR41XX:
982 case CPU_VR4111:
983 case CPU_VR4121:
984 case CPU_VR4122:
985 case CPU_VR4131:
986 case CPU_VR4181:
987 case CPU_VR4181A:
988 case CPU_VR4133:
989 shift += 2;
990 break;
991
992 default:
993 break;
994 }
995
996 if (shift)
997 UASM_i_SRL(p, ctx, ctx, shift);
998 uasm_i_andi(p, ctx, ctx, mask);
999}
1000
1001static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1002{
1003 /*
1004 * Bug workaround for the Nevada. It seems as if under certain
1005 * circumstances the move from cp0_context might produce a
1006 * bogus result when the mfc0 instruction and its consumer are
1007 * in a different cacheline or a load instruction, probably any
1008 * memory reference, is between them.
1009 */
1010 switch (current_cpu_type()) {
1011 case CPU_NEVADA:
1012 UASM_i_LW(p, ptr, 0, ptr);
1013 GET_CONTEXT(p, tmp); /* get context reg */
1014 break;
1015
1016 default:
1017 GET_CONTEXT(p, tmp); /* get context reg */
1018 UASM_i_LW(p, ptr, 0, ptr);
1019 break;
1020 }
1021
1022 build_adjust_context(p, tmp);
1023 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1024}
1025
1026static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1027{
1028 /*
1029 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1030 * Kernel is a special case. Only a few CPUs use it.
1031 */
1032 if (config_enabled(CONFIG_PHYS_ADDR_T_64BIT) && !cpu_has_64bits) {
1033 int pte_off_even = sizeof(pte_t) / 2;
1034 int pte_off_odd = pte_off_even + sizeof(pte_t);
1035#ifdef CONFIG_XPA
1036 const int scratch = 1; /* Our extra working register */
1037
1038 uasm_i_addu(p, scratch, 0, ptep);
1039#endif
1040 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1041 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* odd pte */
1042 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1043 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1044 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1045 UASM_i_MTC0(p, ptep, C0_ENTRYLO1);
1046#ifdef CONFIG_XPA
1047 uasm_i_lw(p, tmp, 0, scratch);
1048 uasm_i_lw(p, ptep, sizeof(pte_t), scratch);
1049 uasm_i_lui(p, scratch, 0xff);
1050 uasm_i_ori(p, scratch, scratch, 0xffff);
1051 uasm_i_and(p, tmp, scratch, tmp);
1052 uasm_i_and(p, ptep, scratch, ptep);
1053 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1054 uasm_i_mthc0(p, ptep, C0_ENTRYLO1);
1055#endif
1056 return;
1057 }
1058
1059 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1060 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1061 if (r45k_bvahwbug())
1062 build_tlb_probe_entry(p);
1063 build_convert_pte_to_entrylo(p, tmp);
1064 if (r4k_250MHZhwbug())
1065 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1066 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1067 build_convert_pte_to_entrylo(p, ptep);
1068 if (r45k_bvahwbug())
1069 uasm_i_mfc0(p, tmp, C0_INDEX);
1070 if (r4k_250MHZhwbug())
1071 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1072 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1073}
1074
1075struct mips_huge_tlb_info {
1076 int huge_pte;
1077 int restore_scratch;
1078 bool need_reload_pte;
1079};
1080
1081static struct mips_huge_tlb_info
1082build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1083 struct uasm_reloc **r, unsigned int tmp,
1084 unsigned int ptr, int c0_scratch_reg)
1085{
1086 struct mips_huge_tlb_info rv;
1087 unsigned int even, odd;
1088 int vmalloc_branch_delay_filled = 0;
1089 const int scratch = 1; /* Our extra working register */
1090
1091 rv.huge_pte = scratch;
1092 rv.restore_scratch = 0;
1093 rv.need_reload_pte = false;
1094
1095 if (check_for_high_segbits) {
1096 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1097
1098 if (pgd_reg != -1)
1099 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1100 else
1101 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1102
1103 if (c0_scratch_reg >= 0)
1104 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1105 else
1106 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1107
1108 uasm_i_dsrl_safe(p, scratch, tmp,
1109 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1110 uasm_il_bnez(p, r, scratch, label_vmalloc);
1111
1112 if (pgd_reg == -1) {
1113 vmalloc_branch_delay_filled = 1;
1114 /* Clear lower 23 bits of context. */
1115 uasm_i_dins(p, ptr, 0, 0, 23);
1116 }
1117 } else {
1118 if (pgd_reg != -1)
1119 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1120 else
1121 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1122
1123 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1124
1125 if (c0_scratch_reg >= 0)
1126 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1127 else
1128 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1129
1130 if (pgd_reg == -1)
1131 /* Clear lower 23 bits of context. */
1132 uasm_i_dins(p, ptr, 0, 0, 23);
1133
1134 uasm_il_bltz(p, r, tmp, label_vmalloc);
1135 }
1136
1137 if (pgd_reg == -1) {
1138 vmalloc_branch_delay_filled = 1;
1139 /* 1 0 1 0 1 << 6 xkphys cached */
1140 uasm_i_ori(p, ptr, ptr, 0x540);
1141 uasm_i_drotr(p, ptr, ptr, 11);
1142 }
1143
1144#ifdef __PAGETABLE_PMD_FOLDED
1145#define LOC_PTEP scratch
1146#else
1147#define LOC_PTEP ptr
1148#endif
1149
1150 if (!vmalloc_branch_delay_filled)
1151 /* get pgd offset in bytes */
1152 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1153
1154 uasm_l_vmalloc_done(l, *p);
1155
1156 /*
1157 * tmp ptr
1158 * fall-through case = badvaddr *pgd_current
1159 * vmalloc case = badvaddr swapper_pg_dir
1160 */
1161
1162 if (vmalloc_branch_delay_filled)
1163 /* get pgd offset in bytes */
1164 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1165
1166#ifdef __PAGETABLE_PMD_FOLDED
1167 GET_CONTEXT(p, tmp); /* get context reg */
1168#endif
1169 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1170
1171 if (use_lwx_insns()) {
1172 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1173 } else {
1174 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1175 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1176 }
1177
1178#ifndef __PAGETABLE_PMD_FOLDED
1179 /* get pmd offset in bytes */
1180 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1181 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1182 GET_CONTEXT(p, tmp); /* get context reg */
1183
1184 if (use_lwx_insns()) {
1185 UASM_i_LWX(p, scratch, scratch, ptr);
1186 } else {
1187 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1188 UASM_i_LW(p, scratch, 0, ptr);
1189 }
1190#endif
1191 /* Adjust the context during the load latency. */
1192 build_adjust_context(p, tmp);
1193
1194#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1195 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1196 /*
1197 * The in the LWX case we don't want to do the load in the
1198 * delay slot. It cannot issue in the same cycle and may be
1199 * speculative and unneeded.
1200 */
1201 if (use_lwx_insns())
1202 uasm_i_nop(p);
1203#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1204
1205
1206 /* build_update_entries */
1207 if (use_lwx_insns()) {
1208 even = ptr;
1209 odd = tmp;
1210 UASM_i_LWX(p, even, scratch, tmp);
1211 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1212 UASM_i_LWX(p, odd, scratch, tmp);
1213 } else {
1214 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1215 even = tmp;
1216 odd = ptr;
1217 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1218 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1219 }
1220 if (cpu_has_rixi) {
1221 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1222 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1223 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1224 } else {
1225 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1226 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1227 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1228 }
1229 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1230
1231 if (c0_scratch_reg >= 0) {
1232 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1233 build_tlb_write_entry(p, l, r, tlb_random);
1234 uasm_l_leave(l, *p);
1235 rv.restore_scratch = 1;
1236 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1237 build_tlb_write_entry(p, l, r, tlb_random);
1238 uasm_l_leave(l, *p);
1239 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1240 } else {
1241 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1242 build_tlb_write_entry(p, l, r, tlb_random);
1243 uasm_l_leave(l, *p);
1244 rv.restore_scratch = 1;
1245 }
1246
1247 uasm_i_eret(p); /* return from trap */
1248
1249 return rv;
1250}
1251
1252/*
1253 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1254 * because EXL == 0. If we wrap, we can also use the 32 instruction
1255 * slots before the XTLB refill exception handler which belong to the
1256 * unused TLB refill exception.
1257 */
1258#define MIPS64_REFILL_INSNS 32
1259
1260static void build_r4000_tlb_refill_handler(void)
1261{
1262 u32 *p = tlb_handler;
1263 struct uasm_label *l = labels;
1264 struct uasm_reloc *r = relocs;
1265 u32 *f;
1266 unsigned int final_len;
1267 struct mips_huge_tlb_info htlb_info __maybe_unused;
1268 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1269
1270 memset(tlb_handler, 0, sizeof(tlb_handler));
1271 memset(labels, 0, sizeof(labels));
1272 memset(relocs, 0, sizeof(relocs));
1273 memset(final_handler, 0, sizeof(final_handler));
1274
1275 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1276 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1277 scratch_reg);
1278 vmalloc_mode = refill_scratch;
1279 } else {
1280 htlb_info.huge_pte = K0;
1281 htlb_info.restore_scratch = 0;
1282 htlb_info.need_reload_pte = true;
1283 vmalloc_mode = refill_noscratch;
1284 /*
1285 * create the plain linear handler
1286 */
1287 if (bcm1250_m3_war()) {
1288 unsigned int segbits = 44;
1289
1290 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1291 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1292 uasm_i_xor(&p, K0, K0, K1);
1293 uasm_i_dsrl_safe(&p, K1, K0, 62);
1294 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1295 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1296 uasm_i_or(&p, K0, K0, K1);
1297 uasm_il_bnez(&p, &r, K0, label_leave);
1298 /* No need for uasm_i_nop */
1299 }
1300
1301#ifdef CONFIG_64BIT
1302 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1303#else
1304 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1305#endif
1306
1307#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1308 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1309#endif
1310
1311 build_get_ptep(&p, K0, K1);
1312 build_update_entries(&p, K0, K1);
1313 build_tlb_write_entry(&p, &l, &r, tlb_random);
1314 uasm_l_leave(&l, p);
1315 uasm_i_eret(&p); /* return from trap */
1316 }
1317#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1318 uasm_l_tlb_huge_update(&l, p);
1319 if (htlb_info.need_reload_pte)
1320 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1321 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1322 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1323 htlb_info.restore_scratch);
1324#endif
1325
1326#ifdef CONFIG_64BIT
1327 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1328#endif
1329
1330 /*
1331 * Overflow check: For the 64bit handler, we need at least one
1332 * free instruction slot for the wrap-around branch. In worst
1333 * case, if the intended insertion point is a delay slot, we
1334 * need three, with the second nop'ed and the third being
1335 * unused.
1336 */
1337 switch (boot_cpu_type()) {
1338 default:
1339 if (sizeof(long) == 4) {
1340 case CPU_LOONGSON2:
1341 /* Loongson2 ebase is different than r4k, we have more space */
1342 if ((p - tlb_handler) > 64)
1343 panic("TLB refill handler space exceeded");
1344 /*
1345 * Now fold the handler in the TLB refill handler space.
1346 */
1347 f = final_handler;
1348 /* Simplest case, just copy the handler. */
1349 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1350 final_len = p - tlb_handler;
1351 break;
1352 } else {
1353 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1354 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1355 && uasm_insn_has_bdelay(relocs,
1356 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1357 panic("TLB refill handler space exceeded");
1358 /*
1359 * Now fold the handler in the TLB refill handler space.
1360 */
1361 f = final_handler + MIPS64_REFILL_INSNS;
1362 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1363 /* Just copy the handler. */
1364 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1365 final_len = p - tlb_handler;
1366 } else {
1367#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1368 const enum label_id ls = label_tlb_huge_update;
1369#else
1370 const enum label_id ls = label_vmalloc;
1371#endif
1372 u32 *split;
1373 int ov = 0;
1374 int i;
1375
1376 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1377 ;
1378 BUG_ON(i == ARRAY_SIZE(labels));
1379 split = labels[i].addr;
1380
1381 /*
1382 * See if we have overflown one way or the other.
1383 */
1384 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1385 split < p - MIPS64_REFILL_INSNS)
1386 ov = 1;
1387
1388 if (ov) {
1389 /*
1390 * Split two instructions before the end. One
1391 * for the branch and one for the instruction
1392 * in the delay slot.
1393 */
1394 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1395
1396 /*
1397 * If the branch would fall in a delay slot,
1398 * we must back up an additional instruction
1399 * so that it is no longer in a delay slot.
1400 */
1401 if (uasm_insn_has_bdelay(relocs, split - 1))
1402 split--;
1403 }
1404 /* Copy first part of the handler. */
1405 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1406 f += split - tlb_handler;
1407
1408 if (ov) {
1409 /* Insert branch. */
1410 uasm_l_split(&l, final_handler);
1411 uasm_il_b(&f, &r, label_split);
1412 if (uasm_insn_has_bdelay(relocs, split))
1413 uasm_i_nop(&f);
1414 else {
1415 uasm_copy_handler(relocs, labels,
1416 split, split + 1, f);
1417 uasm_move_labels(labels, f, f + 1, -1);
1418 f++;
1419 split++;
1420 }
1421 }
1422
1423 /* Copy the rest of the handler. */
1424 uasm_copy_handler(relocs, labels, split, p, final_handler);
1425 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1426 (p - split);
1427 }
1428 }
1429 break;
1430 }
1431
1432 uasm_resolve_relocs(relocs, labels);
1433 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1434 final_len);
1435
1436 memcpy((void *)ebase, final_handler, 0x100);
1437 local_flush_icache_range(ebase, ebase + 0x100);
1438
1439 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1440}
1441
1442extern u32 handle_tlbl[], handle_tlbl_end[];
1443extern u32 handle_tlbs[], handle_tlbs_end[];
1444extern u32 handle_tlbm[], handle_tlbm_end[];
1445extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1446extern u32 tlbmiss_handler_setup_pgd_end[];
1447
1448static void build_setup_pgd(void)
1449{
1450 const int a0 = 4;
1451 const int __maybe_unused a1 = 5;
1452 const int __maybe_unused a2 = 6;
1453 u32 *p = tlbmiss_handler_setup_pgd_start;
1454 const int tlbmiss_handler_setup_pgd_size =
1455 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1456#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1457 long pgdc = (long)pgd_current;
1458#endif
1459
1460 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1461 sizeof(tlbmiss_handler_setup_pgd[0]));
1462 memset(labels, 0, sizeof(labels));
1463 memset(relocs, 0, sizeof(relocs));
1464 pgd_reg = allocate_kscratch();
1465#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1466 if (pgd_reg == -1) {
1467 struct uasm_label *l = labels;
1468 struct uasm_reloc *r = relocs;
1469
1470 /* PGD << 11 in c0_Context */
1471 /*
1472 * If it is a ckseg0 address, convert to a physical
1473 * address. Shifting right by 29 and adding 4 will
1474 * result in zero for these addresses.
1475 *
1476 */
1477 UASM_i_SRA(&p, a1, a0, 29);
1478 UASM_i_ADDIU(&p, a1, a1, 4);
1479 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1480 uasm_i_nop(&p);
1481 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1482 uasm_l_tlbl_goaround1(&l, p);
1483 UASM_i_SLL(&p, a0, a0, 11);
1484 uasm_i_jr(&p, 31);
1485 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1486 } else {
1487 /* PGD in c0_KScratch */
1488 uasm_i_jr(&p, 31);
1489 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1490 }
1491#else
1492#ifdef CONFIG_SMP
1493 /* Save PGD to pgd_current[smp_processor_id()] */
1494 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1495 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1496 UASM_i_LA_mostly(&p, a2, pgdc);
1497 UASM_i_ADDU(&p, a2, a2, a1);
1498 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1499#else
1500 UASM_i_LA_mostly(&p, a2, pgdc);
1501 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1502#endif /* SMP */
1503 uasm_i_jr(&p, 31);
1504
1505 /* if pgd_reg is allocated, save PGD also to scratch register */
1506 if (pgd_reg != -1)
1507 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1508 else
1509 uasm_i_nop(&p);
1510#endif
1511 if (p >= tlbmiss_handler_setup_pgd_end)
1512 panic("tlbmiss_handler_setup_pgd space exceeded");
1513
1514 uasm_resolve_relocs(relocs, labels);
1515 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1516 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1517
1518 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1519 tlbmiss_handler_setup_pgd_size);
1520}
1521
1522static void
1523iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1524{
1525#ifdef CONFIG_SMP
1526# ifdef CONFIG_PHYS_ADDR_T_64BIT
1527 if (cpu_has_64bits)
1528 uasm_i_lld(p, pte, 0, ptr);
1529 else
1530# endif
1531 UASM_i_LL(p, pte, 0, ptr);
1532#else
1533# ifdef CONFIG_PHYS_ADDR_T_64BIT
1534 if (cpu_has_64bits)
1535 uasm_i_ld(p, pte, 0, ptr);
1536 else
1537# endif
1538 UASM_i_LW(p, pte, 0, ptr);
1539#endif
1540}
1541
1542static void
1543iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1544 unsigned int mode)
1545{
1546#ifdef CONFIG_PHYS_ADDR_T_64BIT
1547 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1548
1549 if (!cpu_has_64bits) {
1550 const int scratch = 1; /* Our extra working register */
1551
1552 uasm_i_lui(p, scratch, (mode >> 16));
1553 uasm_i_or(p, pte, pte, scratch);
1554 } else
1555#endif
1556 uasm_i_ori(p, pte, pte, mode);
1557#ifdef CONFIG_SMP
1558# ifdef CONFIG_PHYS_ADDR_T_64BIT
1559 if (cpu_has_64bits)
1560 uasm_i_scd(p, pte, 0, ptr);
1561 else
1562# endif
1563 UASM_i_SC(p, pte, 0, ptr);
1564
1565 if (r10000_llsc_war())
1566 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1567 else
1568 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1569
1570# ifdef CONFIG_PHYS_ADDR_T_64BIT
1571 if (!cpu_has_64bits) {
1572 /* no uasm_i_nop needed */
1573 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1574 uasm_i_ori(p, pte, pte, hwmode);
1575 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1576 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1577 /* no uasm_i_nop needed */
1578 uasm_i_lw(p, pte, 0, ptr);
1579 } else
1580 uasm_i_nop(p);
1581# else
1582 uasm_i_nop(p);
1583# endif
1584#else
1585# ifdef CONFIG_PHYS_ADDR_T_64BIT
1586 if (cpu_has_64bits)
1587 uasm_i_sd(p, pte, 0, ptr);
1588 else
1589# endif
1590 UASM_i_SW(p, pte, 0, ptr);
1591
1592# ifdef CONFIG_PHYS_ADDR_T_64BIT
1593 if (!cpu_has_64bits) {
1594 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1595 uasm_i_ori(p, pte, pte, hwmode);
1596 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1597 uasm_i_lw(p, pte, 0, ptr);
1598 }
1599# endif
1600#endif
1601}
1602
1603/*
1604 * Check if PTE is present, if not then jump to LABEL. PTR points to
1605 * the page table where this PTE is located, PTE will be re-loaded
1606 * with it's original value.
1607 */
1608static void
1609build_pte_present(u32 **p, struct uasm_reloc **r,
1610 int pte, int ptr, int scratch, enum label_id lid)
1611{
1612 int t = scratch >= 0 ? scratch : pte;
1613 int cur = pte;
1614
1615 if (cpu_has_rixi) {
1616 if (use_bbit_insns()) {
1617 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1618 uasm_i_nop(p);
1619 } else {
1620 if (_PAGE_PRESENT_SHIFT) {
1621 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1622 cur = t;
1623 }
1624 uasm_i_andi(p, t, cur, 1);
1625 uasm_il_beqz(p, r, t, lid);
1626 if (pte == t)
1627 /* You lose the SMP race :-(*/
1628 iPTE_LW(p, pte, ptr);
1629 }
1630 } else {
1631 if (_PAGE_PRESENT_SHIFT) {
1632 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1633 cur = t;
1634 }
1635 uasm_i_andi(p, t, cur,
1636 (_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
1637 uasm_i_xori(p, t, t,
1638 (_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
1639 uasm_il_bnez(p, r, t, lid);
1640 if (pte == t)
1641 /* You lose the SMP race :-(*/
1642 iPTE_LW(p, pte, ptr);
1643 }
1644}
1645
1646/* Make PTE valid, store result in PTR. */
1647static void
1648build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1649 unsigned int ptr)
1650{
1651 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1652
1653 iPTE_SW(p, r, pte, ptr, mode);
1654}
1655
1656/*
1657 * Check if PTE can be written to, if not branch to LABEL. Regardless
1658 * restore PTE with value from PTR when done.
1659 */
1660static void
1661build_pte_writable(u32 **p, struct uasm_reloc **r,
1662 unsigned int pte, unsigned int ptr, int scratch,
1663 enum label_id lid)
1664{
1665 int t = scratch >= 0 ? scratch : pte;
1666 int cur = pte;
1667
1668 if (_PAGE_PRESENT_SHIFT) {
1669 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1670 cur = t;
1671 }
1672 uasm_i_andi(p, t, cur,
1673 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1674 uasm_i_xori(p, t, t,
1675 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1676 uasm_il_bnez(p, r, t, lid);
1677 if (pte == t)
1678 /* You lose the SMP race :-(*/
1679 iPTE_LW(p, pte, ptr);
1680 else
1681 uasm_i_nop(p);
1682}
1683
1684/* Make PTE writable, update software status bits as well, then store
1685 * at PTR.
1686 */
1687static void
1688build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1689 unsigned int ptr)
1690{
1691 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1692 | _PAGE_DIRTY);
1693
1694 iPTE_SW(p, r, pte, ptr, mode);
1695}
1696
1697/*
1698 * Check if PTE can be modified, if not branch to LABEL. Regardless
1699 * restore PTE with value from PTR when done.
1700 */
1701static void
1702build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1703 unsigned int pte, unsigned int ptr, int scratch,
1704 enum label_id lid)
1705{
1706 if (use_bbit_insns()) {
1707 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1708 uasm_i_nop(p);
1709 } else {
1710 int t = scratch >= 0 ? scratch : pte;
1711 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1712 uasm_i_andi(p, t, t, 1);
1713 uasm_il_beqz(p, r, t, lid);
1714 if (pte == t)
1715 /* You lose the SMP race :-(*/
1716 iPTE_LW(p, pte, ptr);
1717 }
1718}
1719
1720#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1721
1722
1723/*
1724 * R3000 style TLB load/store/modify handlers.
1725 */
1726
1727/*
1728 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1729 * Then it returns.
1730 */
1731static void
1732build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1733{
1734 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1735 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1736 uasm_i_tlbwi(p);
1737 uasm_i_jr(p, tmp);
1738 uasm_i_rfe(p); /* branch delay */
1739}
1740
1741/*
1742 * This places the pte into ENTRYLO0 and writes it with tlbwi
1743 * or tlbwr as appropriate. This is because the index register
1744 * may have the probe fail bit set as a result of a trap on a
1745 * kseg2 access, i.e. without refill. Then it returns.
1746 */
1747static void
1748build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1749 struct uasm_reloc **r, unsigned int pte,
1750 unsigned int tmp)
1751{
1752 uasm_i_mfc0(p, tmp, C0_INDEX);
1753 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1754 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1755 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1756 uasm_i_tlbwi(p); /* cp0 delay */
1757 uasm_i_jr(p, tmp);
1758 uasm_i_rfe(p); /* branch delay */
1759 uasm_l_r3000_write_probe_fail(l, *p);
1760 uasm_i_tlbwr(p); /* cp0 delay */
1761 uasm_i_jr(p, tmp);
1762 uasm_i_rfe(p); /* branch delay */
1763}
1764
1765static void
1766build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1767 unsigned int ptr)
1768{
1769 long pgdc = (long)pgd_current;
1770
1771 uasm_i_mfc0(p, pte, C0_BADVADDR);
1772 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1773 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1774 uasm_i_srl(p, pte, pte, 22); /* load delay */
1775 uasm_i_sll(p, pte, pte, 2);
1776 uasm_i_addu(p, ptr, ptr, pte);
1777 uasm_i_mfc0(p, pte, C0_CONTEXT);
1778 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1779 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1780 uasm_i_addu(p, ptr, ptr, pte);
1781 uasm_i_lw(p, pte, 0, ptr);
1782 uasm_i_tlbp(p); /* load delay */
1783}
1784
1785static void build_r3000_tlb_load_handler(void)
1786{
1787 u32 *p = handle_tlbl;
1788 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1789 struct uasm_label *l = labels;
1790 struct uasm_reloc *r = relocs;
1791
1792 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1793 memset(labels, 0, sizeof(labels));
1794 memset(relocs, 0, sizeof(relocs));
1795
1796 build_r3000_tlbchange_handler_head(&p, K0, K1);
1797 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1798 uasm_i_nop(&p); /* load delay */
1799 build_make_valid(&p, &r, K0, K1);
1800 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1801
1802 uasm_l_nopage_tlbl(&l, p);
1803 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1804 uasm_i_nop(&p);
1805
1806 if (p >= handle_tlbl_end)
1807 panic("TLB load handler fastpath space exceeded");
1808
1809 uasm_resolve_relocs(relocs, labels);
1810 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1811 (unsigned int)(p - handle_tlbl));
1812
1813 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1814}
1815
1816static void build_r3000_tlb_store_handler(void)
1817{
1818 u32 *p = handle_tlbs;
1819 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1820 struct uasm_label *l = labels;
1821 struct uasm_reloc *r = relocs;
1822
1823 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1824 memset(labels, 0, sizeof(labels));
1825 memset(relocs, 0, sizeof(relocs));
1826
1827 build_r3000_tlbchange_handler_head(&p, K0, K1);
1828 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1829 uasm_i_nop(&p); /* load delay */
1830 build_make_write(&p, &r, K0, K1);
1831 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1832
1833 uasm_l_nopage_tlbs(&l, p);
1834 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1835 uasm_i_nop(&p);
1836
1837 if (p >= handle_tlbs_end)
1838 panic("TLB store handler fastpath space exceeded");
1839
1840 uasm_resolve_relocs(relocs, labels);
1841 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1842 (unsigned int)(p - handle_tlbs));
1843
1844 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1845}
1846
1847static void build_r3000_tlb_modify_handler(void)
1848{
1849 u32 *p = handle_tlbm;
1850 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1851 struct uasm_label *l = labels;
1852 struct uasm_reloc *r = relocs;
1853
1854 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1855 memset(labels, 0, sizeof(labels));
1856 memset(relocs, 0, sizeof(relocs));
1857
1858 build_r3000_tlbchange_handler_head(&p, K0, K1);
1859 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1860 uasm_i_nop(&p); /* load delay */
1861 build_make_write(&p, &r, K0, K1);
1862 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1863
1864 uasm_l_nopage_tlbm(&l, p);
1865 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1866 uasm_i_nop(&p);
1867
1868 if (p >= handle_tlbm_end)
1869 panic("TLB modify handler fastpath space exceeded");
1870
1871 uasm_resolve_relocs(relocs, labels);
1872 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1873 (unsigned int)(p - handle_tlbm));
1874
1875 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1876}
1877#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1878
1879/*
1880 * R4000 style TLB load/store/modify handlers.
1881 */
1882static struct work_registers
1883build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1884 struct uasm_reloc **r)
1885{
1886 struct work_registers wr = build_get_work_registers(p);
1887
1888#ifdef CONFIG_64BIT
1889 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1890#else
1891 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1892#endif
1893
1894#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1895 /*
1896 * For huge tlb entries, pmd doesn't contain an address but
1897 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1898 * see if we need to jump to huge tlb processing.
1899 */
1900 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1901#endif
1902
1903 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1904 UASM_i_LW(p, wr.r2, 0, wr.r2);
1905 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1906 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1907 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1908
1909#ifdef CONFIG_SMP
1910 uasm_l_smp_pgtable_change(l, *p);
1911#endif
1912 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1913 if (!m4kc_tlbp_war()) {
1914 build_tlb_probe_entry(p);
1915 if (cpu_has_htw) {
1916 /* race condition happens, leaving */
1917 uasm_i_ehb(p);
1918 uasm_i_mfc0(p, wr.r3, C0_INDEX);
1919 uasm_il_bltz(p, r, wr.r3, label_leave);
1920 uasm_i_nop(p);
1921 }
1922 }
1923 return wr;
1924}
1925
1926static void
1927build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1928 struct uasm_reloc **r, unsigned int tmp,
1929 unsigned int ptr)
1930{
1931 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1932 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1933 build_update_entries(p, tmp, ptr);
1934 build_tlb_write_entry(p, l, r, tlb_indexed);
1935 uasm_l_leave(l, *p);
1936 build_restore_work_registers(p);
1937 uasm_i_eret(p); /* return from trap */
1938
1939#ifdef CONFIG_64BIT
1940 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1941#endif
1942}
1943
1944static void build_r4000_tlb_load_handler(void)
1945{
1946 u32 *p = handle_tlbl;
1947 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1948 struct uasm_label *l = labels;
1949 struct uasm_reloc *r = relocs;
1950 struct work_registers wr;
1951
1952 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1953 memset(labels, 0, sizeof(labels));
1954 memset(relocs, 0, sizeof(relocs));
1955
1956 if (bcm1250_m3_war()) {
1957 unsigned int segbits = 44;
1958
1959 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1960 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1961 uasm_i_xor(&p, K0, K0, K1);
1962 uasm_i_dsrl_safe(&p, K1, K0, 62);
1963 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1964 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1965 uasm_i_or(&p, K0, K0, K1);
1966 uasm_il_bnez(&p, &r, K0, label_leave);
1967 /* No need for uasm_i_nop */
1968 }
1969
1970 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1971 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1972 if (m4kc_tlbp_war())
1973 build_tlb_probe_entry(&p);
1974
1975 if (cpu_has_rixi && !cpu_has_rixiex) {
1976 /*
1977 * If the page is not _PAGE_VALID, RI or XI could not
1978 * have triggered it. Skip the expensive test..
1979 */
1980 if (use_bbit_insns()) {
1981 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1982 label_tlbl_goaround1);
1983 } else {
1984 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1985 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1986 }
1987 uasm_i_nop(&p);
1988
1989 uasm_i_tlbr(&p);
1990
1991 switch (current_cpu_type()) {
1992 default:
1993 if (cpu_has_mips_r2_exec_hazard) {
1994 uasm_i_ehb(&p);
1995
1996 case CPU_CAVIUM_OCTEON:
1997 case CPU_CAVIUM_OCTEON_PLUS:
1998 case CPU_CAVIUM_OCTEON2:
1999 break;
2000 }
2001 }
2002
2003 /* Examine entrylo 0 or 1 based on ptr. */
2004 if (use_bbit_insns()) {
2005 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2006 } else {
2007 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2008 uasm_i_beqz(&p, wr.r3, 8);
2009 }
2010 /* load it in the delay slot*/
2011 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2012 /* load it if ptr is odd */
2013 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2014 /*
2015 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2016 * XI must have triggered it.
2017 */
2018 if (use_bbit_insns()) {
2019 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2020 uasm_i_nop(&p);
2021 uasm_l_tlbl_goaround1(&l, p);
2022 } else {
2023 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2024 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2025 uasm_i_nop(&p);
2026 }
2027 uasm_l_tlbl_goaround1(&l, p);
2028 }
2029 build_make_valid(&p, &r, wr.r1, wr.r2);
2030 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2031
2032#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2033 /*
2034 * This is the entry point when build_r4000_tlbchange_handler_head
2035 * spots a huge page.
2036 */
2037 uasm_l_tlb_huge_update(&l, p);
2038 iPTE_LW(&p, wr.r1, wr.r2);
2039 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2040 build_tlb_probe_entry(&p);
2041
2042 if (cpu_has_rixi && !cpu_has_rixiex) {
2043 /*
2044 * If the page is not _PAGE_VALID, RI or XI could not
2045 * have triggered it. Skip the expensive test..
2046 */
2047 if (use_bbit_insns()) {
2048 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2049 label_tlbl_goaround2);
2050 } else {
2051 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2052 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2053 }
2054 uasm_i_nop(&p);
2055
2056 uasm_i_tlbr(&p);
2057
2058 switch (current_cpu_type()) {
2059 default:
2060 if (cpu_has_mips_r2_exec_hazard) {
2061 uasm_i_ehb(&p);
2062
2063 case CPU_CAVIUM_OCTEON:
2064 case CPU_CAVIUM_OCTEON_PLUS:
2065 case CPU_CAVIUM_OCTEON2:
2066 break;
2067 }
2068 }
2069
2070 /* Examine entrylo 0 or 1 based on ptr. */
2071 if (use_bbit_insns()) {
2072 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2073 } else {
2074 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2075 uasm_i_beqz(&p, wr.r3, 8);
2076 }
2077 /* load it in the delay slot*/
2078 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2079 /* load it if ptr is odd */
2080 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2081 /*
2082 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2083 * XI must have triggered it.
2084 */
2085 if (use_bbit_insns()) {
2086 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2087 } else {
2088 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2089 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2090 }
2091 if (PM_DEFAULT_MASK == 0)
2092 uasm_i_nop(&p);
2093 /*
2094 * We clobbered C0_PAGEMASK, restore it. On the other branch
2095 * it is restored in build_huge_tlb_write_entry.
2096 */
2097 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2098
2099 uasm_l_tlbl_goaround2(&l, p);
2100 }
2101 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2102 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2103#endif
2104
2105 uasm_l_nopage_tlbl(&l, p);
2106 build_restore_work_registers(&p);
2107#ifdef CONFIG_CPU_MICROMIPS
2108 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2109 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2110 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2111 uasm_i_jr(&p, K0);
2112 } else
2113#endif
2114 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2115 uasm_i_nop(&p);
2116
2117 if (p >= handle_tlbl_end)
2118 panic("TLB load handler fastpath space exceeded");
2119
2120 uasm_resolve_relocs(relocs, labels);
2121 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2122 (unsigned int)(p - handle_tlbl));
2123
2124 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2125}
2126
2127static void build_r4000_tlb_store_handler(void)
2128{
2129 u32 *p = handle_tlbs;
2130 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2131 struct uasm_label *l = labels;
2132 struct uasm_reloc *r = relocs;
2133 struct work_registers wr;
2134
2135 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2136 memset(labels, 0, sizeof(labels));
2137 memset(relocs, 0, sizeof(relocs));
2138
2139 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2140 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2141 if (m4kc_tlbp_war())
2142 build_tlb_probe_entry(&p);
2143 build_make_write(&p, &r, wr.r1, wr.r2);
2144 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2145
2146#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2147 /*
2148 * This is the entry point when
2149 * build_r4000_tlbchange_handler_head spots a huge page.
2150 */
2151 uasm_l_tlb_huge_update(&l, p);
2152 iPTE_LW(&p, wr.r1, wr.r2);
2153 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2154 build_tlb_probe_entry(&p);
2155 uasm_i_ori(&p, wr.r1, wr.r1,
2156 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2157 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2158#endif
2159
2160 uasm_l_nopage_tlbs(&l, p);
2161 build_restore_work_registers(&p);
2162#ifdef CONFIG_CPU_MICROMIPS
2163 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2164 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2165 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2166 uasm_i_jr(&p, K0);
2167 } else
2168#endif
2169 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2170 uasm_i_nop(&p);
2171
2172 if (p >= handle_tlbs_end)
2173 panic("TLB store handler fastpath space exceeded");
2174
2175 uasm_resolve_relocs(relocs, labels);
2176 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2177 (unsigned int)(p - handle_tlbs));
2178
2179 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2180}
2181
2182static void build_r4000_tlb_modify_handler(void)
2183{
2184 u32 *p = handle_tlbm;
2185 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2186 struct uasm_label *l = labels;
2187 struct uasm_reloc *r = relocs;
2188 struct work_registers wr;
2189
2190 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2191 memset(labels, 0, sizeof(labels));
2192 memset(relocs, 0, sizeof(relocs));
2193
2194 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2195 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2196 if (m4kc_tlbp_war())
2197 build_tlb_probe_entry(&p);
2198 /* Present and writable bits set, set accessed and dirty bits. */
2199 build_make_write(&p, &r, wr.r1, wr.r2);
2200 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2201
2202#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2203 /*
2204 * This is the entry point when
2205 * build_r4000_tlbchange_handler_head spots a huge page.
2206 */
2207 uasm_l_tlb_huge_update(&l, p);
2208 iPTE_LW(&p, wr.r1, wr.r2);
2209 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2210 build_tlb_probe_entry(&p);
2211 uasm_i_ori(&p, wr.r1, wr.r1,
2212 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2213 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2214#endif
2215
2216 uasm_l_nopage_tlbm(&l, p);
2217 build_restore_work_registers(&p);
2218#ifdef CONFIG_CPU_MICROMIPS
2219 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2220 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2221 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2222 uasm_i_jr(&p, K0);
2223 } else
2224#endif
2225 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2226 uasm_i_nop(&p);
2227
2228 if (p >= handle_tlbm_end)
2229 panic("TLB modify handler fastpath space exceeded");
2230
2231 uasm_resolve_relocs(relocs, labels);
2232 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2233 (unsigned int)(p - handle_tlbm));
2234
2235 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2236}
2237
2238static void flush_tlb_handlers(void)
2239{
2240 local_flush_icache_range((unsigned long)handle_tlbl,
2241 (unsigned long)handle_tlbl_end);
2242 local_flush_icache_range((unsigned long)handle_tlbs,
2243 (unsigned long)handle_tlbs_end);
2244 local_flush_icache_range((unsigned long)handle_tlbm,
2245 (unsigned long)handle_tlbm_end);
2246 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2247 (unsigned long)tlbmiss_handler_setup_pgd_end);
2248}
2249
2250static void print_htw_config(void)
2251{
2252 unsigned long config;
2253 unsigned int pwctl;
2254 const int field = 2 * sizeof(unsigned long);
2255
2256 config = read_c0_pwfield();
2257 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2258 field, config,
2259 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2260 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2261 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2262 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2263 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2264
2265 config = read_c0_pwsize();
2266 pr_debug("PWSize (0x%0*lx): GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2267 field, config,
2268 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2269 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2270 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2271 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2272 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2273
2274 pwctl = read_c0_pwctl();
2275 pr_debug("PWCtl (0x%x): PWEn: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2276 pwctl,
2277 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2278 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2279 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2280 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2281}
2282
2283static void config_htw_params(void)
2284{
2285 unsigned long pwfield, pwsize, ptei;
2286 unsigned int config;
2287
2288 /*
2289 * We are using 2-level page tables, so we only need to
2290 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2291 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2292 * write values less than 0xc in these fields because the entire
2293 * write will be dropped. As a result of which, we must preserve
2294 * the original reset values and overwrite only what we really want.
2295 */
2296
2297 pwfield = read_c0_pwfield();
2298 /* re-initialize the GDI field */
2299 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2300 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2301 /* re-initialize the PTI field including the even/odd bit */
2302 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2303 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2304 if (CONFIG_PGTABLE_LEVELS >= 3) {
2305 pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2306 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2307 }
2308 /* Set the PTEI right shift */
2309 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2310 pwfield |= ptei;
2311 write_c0_pwfield(pwfield);
2312 /* Check whether the PTEI value is supported */
2313 back_to_back_c0_hazard();
2314 pwfield = read_c0_pwfield();
2315 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2316 != ptei) {
2317 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2318 ptei);
2319 /*
2320 * Drop option to avoid HTW being enabled via another path
2321 * (eg htw_reset())
2322 */
2323 current_cpu_data.options &= ~MIPS_CPU_HTW;
2324 return;
2325 }
2326
2327 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2328 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2329 if (CONFIG_PGTABLE_LEVELS >= 3)
2330 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2331
2332 /* If XPA has been enabled, PTEs are 64-bit in size. */
2333 if (config_enabled(CONFIG_64BITS) || (read_c0_pagegrain() & PG_ELPA))
2334 pwsize |= 1;
2335
2336 write_c0_pwsize(pwsize);
2337
2338 /* Make sure everything is set before we enable the HTW */
2339 back_to_back_c0_hazard();
2340
2341 /* Enable HTW and disable the rest of the pwctl fields */
2342 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2343 write_c0_pwctl(config);
2344 pr_info("Hardware Page Table Walker enabled\n");
2345
2346 print_htw_config();
2347}
2348
2349static void config_xpa_params(void)
2350{
2351#ifdef CONFIG_XPA
2352 unsigned int pagegrain;
2353
2354 if (mips_xpa_disabled) {
2355 pr_info("Extended Physical Addressing (XPA) disabled\n");
2356 return;
2357 }
2358
2359 pagegrain = read_c0_pagegrain();
2360 write_c0_pagegrain(pagegrain | PG_ELPA);
2361 back_to_back_c0_hazard();
2362 pagegrain = read_c0_pagegrain();
2363
2364 if (pagegrain & PG_ELPA)
2365 pr_info("Extended Physical Addressing (XPA) enabled\n");
2366 else
2367 panic("Extended Physical Addressing (XPA) disabled");
2368#endif
2369}
2370
2371static void check_pabits(void)
2372{
2373 unsigned long entry;
2374 unsigned pabits, fillbits;
2375
2376 if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2377 /*
2378 * We'll only be making use of the fact that we can rotate bits
2379 * into the fill if the CPU supports RIXI, so don't bother
2380 * probing this for CPUs which don't.
2381 */
2382 return;
2383 }
2384
2385 write_c0_entrylo0(~0ul);
2386 back_to_back_c0_hazard();
2387 entry = read_c0_entrylo0();
2388
2389 /* clear all non-PFN bits */
2390 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2391 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2392
2393 /* find a lower bound on PABITS, and upper bound on fill bits */
2394 pabits = fls_long(entry) + 6;
2395 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2396
2397 /* minus the RI & XI bits */
2398 fillbits -= min_t(unsigned, fillbits, 2);
2399
2400 if (fillbits >= ilog2(_PAGE_NO_EXEC))
2401 fill_includes_sw_bits = true;
2402
2403 pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2404}
2405
2406void build_tlb_refill_handler(void)
2407{
2408 /*
2409 * The refill handler is generated per-CPU, multi-node systems
2410 * may have local storage for it. The other handlers are only
2411 * needed once.
2412 */
2413 static int run_once = 0;
2414
2415 output_pgtable_bits_defines();
2416 check_pabits();
2417
2418#ifdef CONFIG_64BIT
2419 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2420#endif
2421
2422 switch (current_cpu_type()) {
2423 case CPU_R2000:
2424 case CPU_R3000:
2425 case CPU_R3000A:
2426 case CPU_R3081E:
2427 case CPU_TX3912:
2428 case CPU_TX3922:
2429 case CPU_TX3927:
2430#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2431 if (cpu_has_local_ebase)
2432 build_r3000_tlb_refill_handler();
2433 if (!run_once) {
2434 if (!cpu_has_local_ebase)
2435 build_r3000_tlb_refill_handler();
2436 build_setup_pgd();
2437 build_r3000_tlb_load_handler();
2438 build_r3000_tlb_store_handler();
2439 build_r3000_tlb_modify_handler();
2440 flush_tlb_handlers();
2441 run_once++;
2442 }
2443#else
2444 panic("No R3000 TLB refill handler");
2445#endif
2446 break;
2447
2448 case CPU_R6000:
2449 case CPU_R6000A:
2450 panic("No R6000 TLB refill handler yet");
2451 break;
2452
2453 case CPU_R8000:
2454 panic("No R8000 TLB refill handler yet");
2455 break;
2456
2457 default:
2458 if (!run_once) {
2459 scratch_reg = allocate_kscratch();
2460 build_setup_pgd();
2461 build_r4000_tlb_load_handler();
2462 build_r4000_tlb_store_handler();
2463 build_r4000_tlb_modify_handler();
2464 if (!cpu_has_local_ebase)
2465 build_r4000_tlb_refill_handler();
2466 flush_tlb_handlers();
2467 run_once++;
2468 }
2469 if (cpu_has_local_ebase)
2470 build_r4000_tlb_refill_handler();
2471 if (cpu_has_xpa)
2472 config_xpa_params();
2473 if (cpu_has_htw)
2474 config_htw_params();
2475 }
2476}