blob: cf788d7d7e56fdf59abc796874ed3886eb821217 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/prctl.h>
29#include <linux/init_task.h>
30#include <linux/export.h>
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
34#include <linux/utsname.h>
35#include <linux/ftrace.h>
36#include <linux/kernel_stat.h>
37#include <linux/personality.h>
38#include <linux/random.h>
39#include <linux/hw_breakpoint.h>
40#include <linux/uaccess.h>
41
42#include <asm/pgtable.h>
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/prom.h>
47#include <asm/machdep.h>
48#include <asm/time.h>
49#include <asm/runlatch.h>
50#include <asm/syscalls.h>
51#include <asm/switch_to.h>
52#include <asm/tm.h>
53#include <asm/debug.h>
54#ifdef CONFIG_PPC64
55#include <asm/firmware.h>
56#endif
57#include <asm/code-patching.h>
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
60
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
68extern unsigned long _get_SP(void);
69
70#ifndef CONFIG_SMP
71struct task_struct *last_task_used_math = NULL;
72struct task_struct *last_task_used_altivec = NULL;
73struct task_struct *last_task_used_vsx = NULL;
74struct task_struct *last_task_used_spe = NULL;
75#endif
76
77#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79{
80 /*
81 * If we are saving the current thread's registers, and the
82 * thread is in a transactional state, set the TIF_RESTORE_TM
83 * bit so that we know to restore the registers before
84 * returning to userspace.
85 */
86 if (tsk == current && tsk->thread.regs &&
87 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 !test_thread_flag(TIF_RESTORE_TM)) {
89 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
90 set_thread_flag(TIF_RESTORE_TM);
91 }
92
93 giveup_fpu(tsk);
94}
95
96void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97{
98 /*
99 * If we are saving the current thread's registers, and the
100 * thread is in a transactional state, set the TIF_RESTORE_TM
101 * bit so that we know to restore the registers before
102 * returning to userspace.
103 */
104 if (tsk == current && tsk->thread.regs &&
105 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 !test_thread_flag(TIF_RESTORE_TM)) {
107 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
108 set_thread_flag(TIF_RESTORE_TM);
109 }
110
111 giveup_altivec(tsk);
112}
113
114#else
115#define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
116#define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118
119#ifdef CONFIG_PPC_FPU
120/*
121 * Make sure the floating-point register state in the
122 * the thread_struct is up to date for task tsk.
123 */
124void flush_fp_to_thread(struct task_struct *tsk)
125{
126 if (tsk->thread.regs) {
127 /*
128 * We need to disable preemption here because if we didn't,
129 * another process could get scheduled after the regs->msr
130 * test but before we have finished saving the FP registers
131 * to the thread_struct. That process could take over the
132 * FPU, and then when we get scheduled again we would store
133 * bogus values for the remaining FP registers.
134 */
135 preempt_disable();
136 if (tsk->thread.regs->msr & MSR_FP) {
137#ifdef CONFIG_SMP
138 /*
139 * This should only ever be called for current or
140 * for a stopped child process. Since we save away
141 * the FP register state on context switch on SMP,
142 * there is something wrong if a stopped child appears
143 * to still have its FP state in the CPU registers.
144 */
145 BUG_ON(tsk != current);
146#endif
147 giveup_fpu_maybe_transactional(tsk);
148 }
149 preempt_enable();
150 }
151}
152EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153#endif /* CONFIG_PPC_FPU */
154
155void enable_kernel_fp(void)
156{
157 WARN_ON(preemptible());
158
159#ifdef CONFIG_SMP
160 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161 giveup_fpu_maybe_transactional(current);
162 else
163 giveup_fpu(NULL); /* just enables FP for kernel */
164#else
165 giveup_fpu_maybe_transactional(last_task_used_math);
166#endif /* CONFIG_SMP */
167}
168EXPORT_SYMBOL(enable_kernel_fp);
169
170#ifdef CONFIG_ALTIVEC
171void enable_kernel_altivec(void)
172{
173 WARN_ON(preemptible());
174
175#ifdef CONFIG_SMP
176 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177 giveup_altivec_maybe_transactional(current);
178 else
179 giveup_altivec_notask();
180#else
181 giveup_altivec_maybe_transactional(last_task_used_altivec);
182#endif /* CONFIG_SMP */
183}
184EXPORT_SYMBOL(enable_kernel_altivec);
185
186/*
187 * Make sure the VMX/Altivec register state in the
188 * the thread_struct is up to date for task tsk.
189 */
190void flush_altivec_to_thread(struct task_struct *tsk)
191{
192 if (tsk->thread.regs) {
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_VEC) {
195#ifdef CONFIG_SMP
196 BUG_ON(tsk != current);
197#endif
198 giveup_altivec_maybe_transactional(tsk);
199 }
200 preempt_enable();
201 }
202}
203EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204#endif /* CONFIG_ALTIVEC */
205
206#ifdef CONFIG_VSX
207void enable_kernel_vsx(void)
208{
209 WARN_ON(preemptible());
210
211#ifdef CONFIG_SMP
212 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
213 giveup_vsx(current);
214 else
215 giveup_vsx(NULL); /* just enable vsx for kernel - force */
216#else
217 giveup_vsx(last_task_used_vsx);
218#endif /* CONFIG_SMP */
219}
220EXPORT_SYMBOL(enable_kernel_vsx);
221
222void giveup_vsx(struct task_struct *tsk)
223{
224 giveup_fpu_maybe_transactional(tsk);
225 giveup_altivec_maybe_transactional(tsk);
226 __giveup_vsx(tsk);
227}
228EXPORT_SYMBOL(giveup_vsx);
229
230void flush_vsx_to_thread(struct task_struct *tsk)
231{
232 if (tsk->thread.regs) {
233 preempt_disable();
234 if (tsk->thread.regs->msr & MSR_VSX) {
235#ifdef CONFIG_SMP
236 BUG_ON(tsk != current);
237#endif
238 giveup_vsx(tsk);
239 }
240 preempt_enable();
241 }
242}
243EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
244#endif /* CONFIG_VSX */
245
246#ifdef CONFIG_SPE
247
248void enable_kernel_spe(void)
249{
250 WARN_ON(preemptible());
251
252#ifdef CONFIG_SMP
253 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
254 giveup_spe(current);
255 else
256 giveup_spe(NULL); /* just enable SPE for kernel - force */
257#else
258 giveup_spe(last_task_used_spe);
259#endif /* __SMP __ */
260}
261EXPORT_SYMBOL(enable_kernel_spe);
262
263void flush_spe_to_thread(struct task_struct *tsk)
264{
265 if (tsk->thread.regs) {
266 preempt_disable();
267 if (tsk->thread.regs->msr & MSR_SPE) {
268#ifdef CONFIG_SMP
269 BUG_ON(tsk != current);
270#endif
271 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
272 giveup_spe(tsk);
273 }
274 preempt_enable();
275 }
276}
277#endif /* CONFIG_SPE */
278
279#ifndef CONFIG_SMP
280/*
281 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
282 * and the current task has some state, discard it.
283 */
284void discard_lazy_cpu_state(void)
285{
286 preempt_disable();
287 if (last_task_used_math == current)
288 last_task_used_math = NULL;
289#ifdef CONFIG_ALTIVEC
290 if (last_task_used_altivec == current)
291 last_task_used_altivec = NULL;
292#endif /* CONFIG_ALTIVEC */
293#ifdef CONFIG_VSX
294 if (last_task_used_vsx == current)
295 last_task_used_vsx = NULL;
296#endif /* CONFIG_VSX */
297#ifdef CONFIG_SPE
298 if (last_task_used_spe == current)
299 last_task_used_spe = NULL;
300#endif
301 preempt_enable();
302}
303#endif /* CONFIG_SMP */
304
305#ifdef CONFIG_PPC_ADV_DEBUG_REGS
306void do_send_trap(struct pt_regs *regs, unsigned long address,
307 unsigned long error_code, int signal_code, int breakpt)
308{
309 siginfo_t info;
310
311 current->thread.trap_nr = signal_code;
312 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
313 11, SIGSEGV) == NOTIFY_STOP)
314 return;
315
316 /* Deliver the signal to userspace */
317 info.si_signo = SIGTRAP;
318 info.si_errno = breakpt; /* breakpoint or watchpoint id */
319 info.si_code = signal_code;
320 info.si_addr = (void __user *)address;
321 force_sig_info(SIGTRAP, &info, current);
322}
323#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
324void do_break (struct pt_regs *regs, unsigned long address,
325 unsigned long error_code)
326{
327 siginfo_t info;
328
329 current->thread.trap_nr = TRAP_HWBKPT;
330 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
331 11, SIGSEGV) == NOTIFY_STOP)
332 return;
333
334 if (debugger_break_match(regs))
335 return;
336
337 /* Clear the breakpoint */
338 hw_breakpoint_disable();
339
340 /* Deliver the signal to userspace */
341 info.si_signo = SIGTRAP;
342 info.si_errno = 0;
343 info.si_code = TRAP_HWBKPT;
344 info.si_addr = (void __user *)address;
345 force_sig_info(SIGTRAP, &info, current);
346}
347#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
348
349static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
350
351#ifdef CONFIG_PPC_ADV_DEBUG_REGS
352/*
353 * Set the debug registers back to their default "safe" values.
354 */
355static void set_debug_reg_defaults(struct thread_struct *thread)
356{
357 thread->debug.iac1 = thread->debug.iac2 = 0;
358#if CONFIG_PPC_ADV_DEBUG_IACS > 2
359 thread->debug.iac3 = thread->debug.iac4 = 0;
360#endif
361 thread->debug.dac1 = thread->debug.dac2 = 0;
362#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
363 thread->debug.dvc1 = thread->debug.dvc2 = 0;
364#endif
365 thread->debug.dbcr0 = 0;
366#ifdef CONFIG_BOOKE
367 /*
368 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
369 */
370 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
371 DBCR1_IAC3US | DBCR1_IAC4US;
372 /*
373 * Force Data Address Compare User/Supervisor bits to be User-only
374 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
375 */
376 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
377#else
378 thread->debug.dbcr1 = 0;
379#endif
380}
381
382static void prime_debug_regs(struct debug_reg *debug)
383{
384 /*
385 * We could have inherited MSR_DE from userspace, since
386 * it doesn't get cleared on exception entry. Make sure
387 * MSR_DE is clear before we enable any debug events.
388 */
389 mtmsr(mfmsr() & ~MSR_DE);
390
391 mtspr(SPRN_IAC1, debug->iac1);
392 mtspr(SPRN_IAC2, debug->iac2);
393#if CONFIG_PPC_ADV_DEBUG_IACS > 2
394 mtspr(SPRN_IAC3, debug->iac3);
395 mtspr(SPRN_IAC4, debug->iac4);
396#endif
397 mtspr(SPRN_DAC1, debug->dac1);
398 mtspr(SPRN_DAC2, debug->dac2);
399#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
400 mtspr(SPRN_DVC1, debug->dvc1);
401 mtspr(SPRN_DVC2, debug->dvc2);
402#endif
403 mtspr(SPRN_DBCR0, debug->dbcr0);
404 mtspr(SPRN_DBCR1, debug->dbcr1);
405#ifdef CONFIG_BOOKE
406 mtspr(SPRN_DBCR2, debug->dbcr2);
407#endif
408}
409/*
410 * Unless neither the old or new thread are making use of the
411 * debug registers, set the debug registers from the values
412 * stored in the new thread.
413 */
414void switch_booke_debug_regs(struct debug_reg *new_debug)
415{
416 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
417 || (new_debug->dbcr0 & DBCR0_IDM))
418 prime_debug_regs(new_debug);
419}
420EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
421#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
422#ifndef CONFIG_HAVE_HW_BREAKPOINT
423static void set_debug_reg_defaults(struct thread_struct *thread)
424{
425 thread->hw_brk.address = 0;
426 thread->hw_brk.type = 0;
427 set_breakpoint(&thread->hw_brk);
428}
429#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
430#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
431
432#ifdef CONFIG_PPC_ADV_DEBUG_REGS
433static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
434{
435 mtspr(SPRN_DAC1, dabr);
436#ifdef CONFIG_PPC_47x
437 isync();
438#endif
439 return 0;
440}
441#elif defined(CONFIG_PPC_BOOK3S)
442static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
443{
444 mtspr(SPRN_DABR, dabr);
445 if (cpu_has_feature(CPU_FTR_DABRX))
446 mtspr(SPRN_DABRX, dabrx);
447 return 0;
448}
449#else
450static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
451{
452 return -EINVAL;
453}
454#endif
455
456static inline int set_dabr(struct arch_hw_breakpoint *brk)
457{
458 unsigned long dabr, dabrx;
459
460 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
461 dabrx = ((brk->type >> 3) & 0x7);
462
463 if (ppc_md.set_dabr)
464 return ppc_md.set_dabr(dabr, dabrx);
465
466 return __set_dabr(dabr, dabrx);
467}
468
469static inline int set_dawr(struct arch_hw_breakpoint *brk)
470{
471 unsigned long dawr, dawrx, mrd;
472
473 dawr = brk->address;
474
475 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
476 << (63 - 58); //* read/write bits */
477 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
478 << (63 - 59); //* translate */
479 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
480 >> 3; //* PRIM bits */
481 /* dawr length is stored in field MDR bits 48:53. Matches range in
482 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
483 0b111111=64DW.
484 brk->len is in bytes.
485 This aligns up to double word size, shifts and does the bias.
486 */
487 mrd = ((brk->len + 7) >> 3) - 1;
488 dawrx |= (mrd & 0x3f) << (63 - 53);
489
490 if (ppc_md.set_dawr)
491 return ppc_md.set_dawr(dawr, dawrx);
492 mtspr(SPRN_DAWR, dawr);
493 mtspr(SPRN_DAWRX, dawrx);
494 return 0;
495}
496
497void __set_breakpoint(struct arch_hw_breakpoint *brk)
498{
499 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
500
501 if (cpu_has_feature(CPU_FTR_DAWR))
502 set_dawr(brk);
503 else
504 set_dabr(brk);
505}
506
507void set_breakpoint(struct arch_hw_breakpoint *brk)
508{
509 preempt_disable();
510 __set_breakpoint(brk);
511 preempt_enable();
512}
513
514#ifdef CONFIG_PPC64
515DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
516#endif
517
518static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
519 struct arch_hw_breakpoint *b)
520{
521 if (a->address != b->address)
522 return false;
523 if (a->type != b->type)
524 return false;
525 if (a->len != b->len)
526 return false;
527 return true;
528}
529
530#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
531static void tm_reclaim_thread(struct thread_struct *thr,
532 struct thread_info *ti, uint8_t cause)
533{
534 unsigned long msr_diff = 0;
535
536 /*
537 * If FP/VSX registers have been already saved to the
538 * thread_struct, move them to the transact_fp array.
539 * We clear the TIF_RESTORE_TM bit since after the reclaim
540 * the thread will no longer be transactional.
541 */
542 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
543 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
544 if (msr_diff & MSR_FP)
545 memcpy(&thr->transact_fp, &thr->fp_state,
546 sizeof(struct thread_fp_state));
547 if (msr_diff & MSR_VEC)
548 memcpy(&thr->transact_vr, &thr->vr_state,
549 sizeof(struct thread_vr_state));
550 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
551 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
552 }
553
554 /*
555 * Use the current MSR TM suspended bit to track if we have
556 * checkpointed state outstanding.
557 * On signal delivery, we'd normally reclaim the checkpointed
558 * state to obtain stack pointer (see:get_tm_stackpointer()).
559 * This will then directly return to userspace without going
560 * through __switch_to(). However, if the stack frame is bad,
561 * we need to exit this thread which calls __switch_to() which
562 * will again attempt to reclaim the already saved tm state.
563 * Hence we need to check that we've not already reclaimed
564 * this state.
565 * We do this using the current MSR, rather tracking it in
566 * some specific thread_struct bit, as it has the additional
567 * benifit of checking for a potential TM bad thing exception.
568 */
569 if (!MSR_TM_SUSPENDED(mfmsr()))
570 return;
571
572 tm_reclaim(thr, thr->regs->msr, cause);
573
574 /* Having done the reclaim, we now have the checkpointed
575 * FP/VSX values in the registers. These might be valid
576 * even if we have previously called enable_kernel_fp() or
577 * flush_fp_to_thread(), so update thr->regs->msr to
578 * indicate their current validity.
579 */
580 thr->regs->msr |= msr_diff;
581}
582
583void tm_reclaim_current(uint8_t cause)
584{
585 tm_enable();
586 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
587}
588
589static inline void tm_reclaim_task(struct task_struct *tsk)
590{
591 /* We have to work out if we're switching from/to a task that's in the
592 * middle of a transaction.
593 *
594 * In switching we need to maintain a 2nd register state as
595 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
596 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
597 * (current) FPRs into oldtask->thread.transact_fpr[].
598 *
599 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
600 */
601 struct thread_struct *thr = &tsk->thread;
602
603 if (!thr->regs)
604 return;
605
606 if (!MSR_TM_ACTIVE(thr->regs->msr))
607 goto out_and_saveregs;
608
609 /* Stash the original thread MSR, as giveup_fpu et al will
610 * modify it. We hold onto it to see whether the task used
611 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
612 * ckpt_regs.msr is already set.
613 */
614 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
615 thr->ckpt_regs.msr = thr->regs->msr;
616
617 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
618 "ccr=%lx, msr=%lx, trap=%lx)\n",
619 tsk->pid, thr->regs->nip,
620 thr->regs->ccr, thr->regs->msr,
621 thr->regs->trap);
622
623 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
624
625 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
626 tsk->pid);
627
628out_and_saveregs:
629 /* Always save the regs here, even if a transaction's not active.
630 * This context-switches a thread's TM info SPRs. We do it here to
631 * be consistent with the restore path (in recheckpoint) which
632 * cannot happen later in _switch().
633 */
634 tm_save_sprs(thr);
635}
636
637extern void __tm_recheckpoint(struct thread_struct *thread,
638 unsigned long orig_msr);
639
640void tm_recheckpoint(struct thread_struct *thread,
641 unsigned long orig_msr)
642{
643 unsigned long flags;
644
645 /* We really can't be interrupted here as the TEXASR registers can't
646 * change and later in the trecheckpoint code, we have a userspace R1.
647 * So let's hard disable over this region.
648 */
649 local_irq_save(flags);
650 hard_irq_disable();
651
652 /* The TM SPRs are restored here, so that TEXASR.FS can be set
653 * before the trecheckpoint and no explosion occurs.
654 */
655 tm_restore_sprs(thread);
656
657 __tm_recheckpoint(thread, orig_msr);
658
659 local_irq_restore(flags);
660}
661
662static inline void tm_recheckpoint_new_task(struct task_struct *new)
663{
664 unsigned long msr;
665
666 if (!cpu_has_feature(CPU_FTR_TM))
667 return;
668
669 /* Recheckpoint the registers of the thread we're about to switch to.
670 *
671 * If the task was using FP, we non-lazily reload both the original and
672 * the speculative FP register states. This is because the kernel
673 * doesn't see if/when a TM rollback occurs, so if we take an FP
674 * unavoidable later, we are unable to determine which set of FP regs
675 * need to be restored.
676 */
677 if (!new->thread.regs)
678 return;
679
680 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
681 tm_restore_sprs(&new->thread);
682 return;
683 }
684 msr = new->thread.ckpt_regs.msr;
685 /* Recheckpoint to restore original checkpointed register state. */
686 TM_DEBUG("*** tm_recheckpoint of pid %d "
687 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
688 new->pid, new->thread.regs->msr, msr);
689
690 /* This loads the checkpointed FP/VEC state, if used */
691 tm_recheckpoint(&new->thread, msr);
692
693 /* This loads the speculative FP/VEC state, if used */
694 if (msr & MSR_FP) {
695 do_load_up_transact_fpu(&new->thread);
696 new->thread.regs->msr |=
697 (MSR_FP | new->thread.fpexc_mode);
698 }
699#ifdef CONFIG_ALTIVEC
700 if (msr & MSR_VEC) {
701 do_load_up_transact_altivec(&new->thread);
702 new->thread.regs->msr |= MSR_VEC;
703 }
704#endif
705 /* We may as well turn on VSX too since all the state is restored now */
706 if (msr & MSR_VSX)
707 new->thread.regs->msr |= MSR_VSX;
708
709 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
710 "(kernel msr 0x%lx)\n",
711 new->pid, mfmsr());
712}
713
714static inline void __switch_to_tm(struct task_struct *prev)
715{
716 if (cpu_has_feature(CPU_FTR_TM)) {
717 tm_enable();
718 tm_reclaim_task(prev);
719 }
720}
721
722/*
723 * This is called if we are on the way out to userspace and the
724 * TIF_RESTORE_TM flag is set. It checks if we need to reload
725 * FP and/or vector state and does so if necessary.
726 * If userspace is inside a transaction (whether active or
727 * suspended) and FP/VMX/VSX instructions have ever been enabled
728 * inside that transaction, then we have to keep them enabled
729 * and keep the FP/VMX/VSX state loaded while ever the transaction
730 * continues. The reason is that if we didn't, and subsequently
731 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
732 * we don't know whether it's the same transaction, and thus we
733 * don't know which of the checkpointed state and the transactional
734 * state to use.
735 */
736void restore_tm_state(struct pt_regs *regs)
737{
738 unsigned long msr_diff;
739
740 clear_thread_flag(TIF_RESTORE_TM);
741 if (!MSR_TM_ACTIVE(regs->msr))
742 return;
743
744 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
745 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
746 if (msr_diff & MSR_FP) {
747 fp_enable();
748 load_fp_state(&current->thread.fp_state);
749 regs->msr |= current->thread.fpexc_mode;
750 }
751 if (msr_diff & MSR_VEC) {
752 vec_enable();
753 load_vr_state(&current->thread.vr_state);
754 }
755 regs->msr |= msr_diff;
756}
757
758#else
759#define tm_recheckpoint_new_task(new)
760#define __switch_to_tm(prev)
761#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
762
763struct task_struct *__switch_to(struct task_struct *prev,
764 struct task_struct *new)
765{
766 struct thread_struct *new_thread, *old_thread;
767 struct task_struct *last;
768#ifdef CONFIG_PPC_BOOK3S_64
769 struct ppc64_tlb_batch *batch;
770#endif
771
772 WARN_ON(!irqs_disabled());
773
774 /* Back up the TAR and DSCR across context switches.
775 * Note that the TAR is not available for use in the kernel. (To
776 * provide this, the TAR should be backed up/restored on exception
777 * entry/exit instead, and be in pt_regs. FIXME, this should be in
778 * pt_regs anyway (for debug).)
779 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
780 * these will change them.
781 */
782 save_early_sprs(&prev->thread);
783
784 __switch_to_tm(prev);
785
786#ifdef CONFIG_SMP
787 /* avoid complexity of lazy save/restore of fpu
788 * by just saving it every time we switch out if
789 * this task used the fpu during the last quantum.
790 *
791 * If it tries to use the fpu again, it'll trap and
792 * reload its fp regs. So we don't have to do a restore
793 * every switch, just a save.
794 * -- Cort
795 */
796 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
797 giveup_fpu(prev);
798#ifdef CONFIG_ALTIVEC
799 /*
800 * If the previous thread used altivec in the last quantum
801 * (thus changing altivec regs) then save them.
802 * We used to check the VRSAVE register but not all apps
803 * set it, so we don't rely on it now (and in fact we need
804 * to save & restore VSCR even if VRSAVE == 0). -- paulus
805 *
806 * On SMP we always save/restore altivec regs just to avoid the
807 * complexity of changing processors.
808 * -- Cort
809 */
810 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
811 giveup_altivec(prev);
812#endif /* CONFIG_ALTIVEC */
813#ifdef CONFIG_VSX
814 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
815 /* VMX and FPU registers are already save here */
816 __giveup_vsx(prev);
817#endif /* CONFIG_VSX */
818#ifdef CONFIG_SPE
819 /*
820 * If the previous thread used spe in the last quantum
821 * (thus changing spe regs) then save them.
822 *
823 * On SMP we always save/restore spe regs just to avoid the
824 * complexity of changing processors.
825 */
826 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
827 giveup_spe(prev);
828#endif /* CONFIG_SPE */
829
830#else /* CONFIG_SMP */
831#ifdef CONFIG_ALTIVEC
832 /* Avoid the trap. On smp this this never happens since
833 * we don't set last_task_used_altivec -- Cort
834 */
835 if (new->thread.regs && last_task_used_altivec == new)
836 new->thread.regs->msr |= MSR_VEC;
837#endif /* CONFIG_ALTIVEC */
838#ifdef CONFIG_VSX
839 if (new->thread.regs && last_task_used_vsx == new)
840 new->thread.regs->msr |= MSR_VSX;
841#endif /* CONFIG_VSX */
842#ifdef CONFIG_SPE
843 /* Avoid the trap. On smp this this never happens since
844 * we don't set last_task_used_spe
845 */
846 if (new->thread.regs && last_task_used_spe == new)
847 new->thread.regs->msr |= MSR_SPE;
848#endif /* CONFIG_SPE */
849
850#endif /* CONFIG_SMP */
851
852#ifdef CONFIG_PPC_ADV_DEBUG_REGS
853 switch_booke_debug_regs(&new->thread.debug);
854#else
855/*
856 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
857 * schedule DABR
858 */
859#ifndef CONFIG_HAVE_HW_BREAKPOINT
860 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
861 __set_breakpoint(&new->thread.hw_brk);
862#endif /* CONFIG_HAVE_HW_BREAKPOINT */
863#endif
864
865
866 new_thread = &new->thread;
867 old_thread = &current->thread;
868
869#ifdef CONFIG_PPC64
870 /*
871 * Collect processor utilization data per process
872 */
873 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
874 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
875 long unsigned start_tb, current_tb;
876 start_tb = old_thread->start_tb;
877 cu->current_tb = current_tb = mfspr(SPRN_PURR);
878 old_thread->accum_tb += (current_tb - start_tb);
879 new_thread->start_tb = current_tb;
880 }
881#endif /* CONFIG_PPC64 */
882
883#ifdef CONFIG_PPC_BOOK3S_64
884 batch = this_cpu_ptr(&ppc64_tlb_batch);
885 if (batch->active) {
886 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
887 if (batch->index)
888 __flush_tlb_pending(batch);
889 batch->active = 0;
890 }
891#endif /* CONFIG_PPC_BOOK3S_64 */
892
893 /*
894 * We can't take a PMU exception inside _switch() since there is a
895 * window where the kernel stack SLB and the kernel stack are out
896 * of sync. Hard disable here.
897 */
898 hard_irq_disable();
899
900 tm_recheckpoint_new_task(new);
901
902 last = _switch(old_thread, new_thread);
903
904#ifdef CONFIG_PPC_BOOK3S_64
905 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
906 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
907 batch = this_cpu_ptr(&ppc64_tlb_batch);
908 batch->active = 1;
909 }
910#endif /* CONFIG_PPC_BOOK3S_64 */
911
912 return last;
913}
914
915static int instructions_to_print = 16;
916
917static void show_instructions(struct pt_regs *regs)
918{
919 int i;
920 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
921 sizeof(int));
922
923 printk("Instruction dump:");
924
925 for (i = 0; i < instructions_to_print; i++) {
926 int instr;
927
928 if (!(i % 8))
929 printk("\n");
930
931#if !defined(CONFIG_BOOKE)
932 /* If executing with the IMMU off, adjust pc rather
933 * than print XXXXXXXX.
934 */
935 if (!(regs->msr & MSR_IR))
936 pc = (unsigned long)phys_to_virt(pc);
937#endif
938
939 if (!__kernel_text_address(pc) ||
940 probe_kernel_address((unsigned int __user *)pc, instr)) {
941 printk(KERN_CONT "XXXXXXXX ");
942 } else {
943 if (regs->nip == pc)
944 printk(KERN_CONT "<%08x> ", instr);
945 else
946 printk(KERN_CONT "%08x ", instr);
947 }
948
949 pc += sizeof(int);
950 }
951
952 printk("\n");
953}
954
955static struct regbit {
956 unsigned long bit;
957 const char *name;
958} msr_bits[] = {
959#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
960 {MSR_SF, "SF"},
961 {MSR_HV, "HV"},
962#endif
963 {MSR_VEC, "VEC"},
964 {MSR_VSX, "VSX"},
965#ifdef CONFIG_BOOKE
966 {MSR_CE, "CE"},
967#endif
968 {MSR_EE, "EE"},
969 {MSR_PR, "PR"},
970 {MSR_FP, "FP"},
971 {MSR_ME, "ME"},
972#ifdef CONFIG_BOOKE
973 {MSR_DE, "DE"},
974#else
975 {MSR_SE, "SE"},
976 {MSR_BE, "BE"},
977#endif
978 {MSR_IR, "IR"},
979 {MSR_DR, "DR"},
980 {MSR_PMM, "PMM"},
981#ifndef CONFIG_BOOKE
982 {MSR_RI, "RI"},
983 {MSR_LE, "LE"},
984#endif
985 {0, NULL}
986};
987
988static void printbits(unsigned long val, struct regbit *bits)
989{
990 const char *sep = "";
991
992 printk("<");
993 for (; bits->bit; ++bits)
994 if (val & bits->bit) {
995 printk("%s%s", sep, bits->name);
996 sep = ",";
997 }
998 printk(">");
999}
1000
1001#ifdef CONFIG_PPC64
1002#define REG "%016lx"
1003#define REGS_PER_LINE 4
1004#define LAST_VOLATILE 13
1005#else
1006#define REG "%08lx"
1007#define REGS_PER_LINE 8
1008#define LAST_VOLATILE 12
1009#endif
1010
1011void show_regs(struct pt_regs * regs)
1012{
1013 int i, trap;
1014
1015 show_regs_print_info(KERN_DEFAULT);
1016
1017 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1018 regs->nip, regs->link, regs->ctr);
1019 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1020 regs, regs->trap, print_tainted(), init_utsname()->release);
1021 printk("MSR: "REG" ", regs->msr);
1022 printbits(regs->msr, msr_bits);
1023 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1024 trap = TRAP(regs);
1025 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1026 printk("CFAR: "REG" ", regs->orig_gpr3);
1027 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1028#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1029 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1030#else
1031 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1032#endif
1033#ifdef CONFIG_PPC64
1034 printk("SOFTE: %ld ", regs->softe);
1035#endif
1036#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1037 if (MSR_TM_ACTIVE(regs->msr))
1038 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1039#endif
1040
1041 for (i = 0; i < 32; i++) {
1042 if ((i % REGS_PER_LINE) == 0)
1043 printk("\nGPR%02d: ", i);
1044 printk(REG " ", regs->gpr[i]);
1045 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1046 break;
1047 }
1048 printk("\n");
1049#ifdef CONFIG_KALLSYMS
1050 /*
1051 * Lookup NIP late so we have the best change of getting the
1052 * above info out without failing
1053 */
1054 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1055 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1056#endif
1057 show_stack(current, (unsigned long *) regs->gpr[1]);
1058 if (!user_mode(regs))
1059 show_instructions(regs);
1060}
1061
1062void exit_thread(void)
1063{
1064 discard_lazy_cpu_state();
1065}
1066
1067void flush_thread(void)
1068{
1069 discard_lazy_cpu_state();
1070
1071#ifdef CONFIG_HAVE_HW_BREAKPOINT
1072 flush_ptrace_hw_breakpoint(current);
1073#else /* CONFIG_HAVE_HW_BREAKPOINT */
1074 set_debug_reg_defaults(&current->thread);
1075#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1076}
1077
1078void
1079release_thread(struct task_struct *t)
1080{
1081}
1082
1083/*
1084 * this gets called so that we can store coprocessor state into memory and
1085 * copy the current task into the new thread.
1086 */
1087int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1088{
1089 flush_fp_to_thread(src);
1090 flush_altivec_to_thread(src);
1091 flush_vsx_to_thread(src);
1092 flush_spe_to_thread(src);
1093 /*
1094 * Flush TM state out so we can copy it. __switch_to_tm() does this
1095 * flush but it removes the checkpointed state from the current CPU and
1096 * transitions the CPU out of TM mode. Hence we need to call
1097 * tm_recheckpoint_new_task() (on the same task) to restore the
1098 * checkpointed state back and the TM mode.
1099 */
1100 __switch_to_tm(src);
1101 tm_recheckpoint_new_task(src);
1102
1103 *dst = *src;
1104
1105 clear_task_ebb(dst);
1106
1107 return 0;
1108}
1109
1110static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1111{
1112#ifdef CONFIG_PPC_STD_MMU_64
1113 unsigned long sp_vsid;
1114 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1115
1116 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1117 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1118 << SLB_VSID_SHIFT_1T;
1119 else
1120 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1121 << SLB_VSID_SHIFT;
1122 sp_vsid |= SLB_VSID_KERNEL | llp;
1123 p->thread.ksp_vsid = sp_vsid;
1124#endif
1125}
1126
1127/*
1128 * Copy a thread..
1129 */
1130
1131/*
1132 * Copy architecture-specific thread state
1133 */
1134int copy_thread(unsigned long clone_flags, unsigned long usp,
1135 unsigned long kthread_arg, struct task_struct *p)
1136{
1137 struct pt_regs *childregs, *kregs;
1138 extern void ret_from_fork(void);
1139 extern void ret_from_kernel_thread(void);
1140 void (*f)(void);
1141 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1142
1143 /* Copy registers */
1144 sp -= sizeof(struct pt_regs);
1145 childregs = (struct pt_regs *) sp;
1146 if (unlikely(p->flags & PF_KTHREAD)) {
1147 /* kernel thread */
1148 struct thread_info *ti = (void *)task_stack_page(p);
1149 memset(childregs, 0, sizeof(struct pt_regs));
1150 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1151 /* function */
1152 if (usp)
1153 childregs->gpr[14] = ppc_function_entry((void *)usp);
1154#ifdef CONFIG_PPC64
1155 clear_tsk_thread_flag(p, TIF_32BIT);
1156 childregs->softe = 1;
1157#endif
1158 childregs->gpr[15] = kthread_arg;
1159 p->thread.regs = NULL; /* no user register state */
1160 ti->flags |= _TIF_RESTOREALL;
1161 f = ret_from_kernel_thread;
1162 } else {
1163 /* user thread */
1164 struct pt_regs *regs = current_pt_regs();
1165 CHECK_FULL_REGS(regs);
1166 *childregs = *regs;
1167 if (usp)
1168 childregs->gpr[1] = usp;
1169 p->thread.regs = childregs;
1170 childregs->gpr[3] = 0; /* Result from fork() */
1171 if (clone_flags & CLONE_SETTLS) {
1172#ifdef CONFIG_PPC64
1173 if (!is_32bit_task())
1174 childregs->gpr[13] = childregs->gpr[6];
1175 else
1176#endif
1177 childregs->gpr[2] = childregs->gpr[6];
1178 }
1179
1180 f = ret_from_fork;
1181 }
1182 sp -= STACK_FRAME_OVERHEAD;
1183
1184 /*
1185 * The way this works is that at some point in the future
1186 * some task will call _switch to switch to the new task.
1187 * That will pop off the stack frame created below and start
1188 * the new task running at ret_from_fork. The new task will
1189 * do some house keeping and then return from the fork or clone
1190 * system call, using the stack frame created above.
1191 */
1192 ((unsigned long *)sp)[0] = 0;
1193 sp -= sizeof(struct pt_regs);
1194 kregs = (struct pt_regs *) sp;
1195 sp -= STACK_FRAME_OVERHEAD;
1196 p->thread.ksp = sp;
1197#ifdef CONFIG_PPC32
1198 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1199 _ALIGN_UP(sizeof(struct thread_info), 16);
1200#endif
1201#ifdef CONFIG_HAVE_HW_BREAKPOINT
1202 p->thread.ptrace_bps[0] = NULL;
1203#endif
1204
1205 p->thread.fp_save_area = NULL;
1206#ifdef CONFIG_ALTIVEC
1207 p->thread.vr_save_area = NULL;
1208#endif
1209
1210 setup_ksp_vsid(p, sp);
1211
1212#ifdef CONFIG_PPC64
1213 if (cpu_has_feature(CPU_FTR_DSCR)) {
1214 p->thread.dscr_inherit = current->thread.dscr_inherit;
1215 p->thread.dscr = current->thread.dscr;
1216 }
1217 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1218 p->thread.ppr = INIT_PPR;
1219#endif
1220 kregs->nip = ppc_function_entry(f);
1221 return 0;
1222}
1223
1224/*
1225 * Set up a thread for executing a new program
1226 */
1227void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1228{
1229#ifdef CONFIG_PPC64
1230 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1231#endif
1232
1233 /*
1234 * If we exec out of a kernel thread then thread.regs will not be
1235 * set. Do it now.
1236 */
1237 if (!current->thread.regs) {
1238 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1239 current->thread.regs = regs - 1;
1240 }
1241
1242#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1243 /*
1244 * Clear any transactional state, we're exec()ing. The cause is
1245 * not important as there will never be a recheckpoint so it's not
1246 * user visible.
1247 */
1248 if (MSR_TM_SUSPENDED(mfmsr()))
1249 tm_reclaim_current(0);
1250#endif
1251
1252 memset(regs->gpr, 0, sizeof(regs->gpr));
1253 regs->ctr = 0;
1254 regs->link = 0;
1255 regs->xer = 0;
1256 regs->ccr = 0;
1257 regs->gpr[1] = sp;
1258
1259 /*
1260 * We have just cleared all the nonvolatile GPRs, so make
1261 * FULL_REGS(regs) return true. This is necessary to allow
1262 * ptrace to examine the thread immediately after exec.
1263 */
1264 regs->trap &= ~1UL;
1265
1266#ifdef CONFIG_PPC32
1267 regs->mq = 0;
1268 regs->nip = start;
1269 regs->msr = MSR_USER;
1270#else
1271 if (!is_32bit_task()) {
1272 unsigned long entry;
1273
1274 if (is_elf2_task()) {
1275 /* Look ma, no function descriptors! */
1276 entry = start;
1277
1278 /*
1279 * Ulrich says:
1280 * The latest iteration of the ABI requires that when
1281 * calling a function (at its global entry point),
1282 * the caller must ensure r12 holds the entry point
1283 * address (so that the function can quickly
1284 * establish addressability).
1285 */
1286 regs->gpr[12] = start;
1287 /* Make sure that's restored on entry to userspace. */
1288 set_thread_flag(TIF_RESTOREALL);
1289 } else {
1290 unsigned long toc;
1291
1292 /* start is a relocated pointer to the function
1293 * descriptor for the elf _start routine. The first
1294 * entry in the function descriptor is the entry
1295 * address of _start and the second entry is the TOC
1296 * value we need to use.
1297 */
1298 __get_user(entry, (unsigned long __user *)start);
1299 __get_user(toc, (unsigned long __user *)start+1);
1300
1301 /* Check whether the e_entry function descriptor entries
1302 * need to be relocated before we can use them.
1303 */
1304 if (load_addr != 0) {
1305 entry += load_addr;
1306 toc += load_addr;
1307 }
1308 regs->gpr[2] = toc;
1309 }
1310 regs->nip = entry;
1311 regs->msr = MSR_USER64;
1312 } else {
1313 regs->nip = start;
1314 regs->gpr[2] = 0;
1315 regs->msr = MSR_USER32;
1316 }
1317#endif
1318 discard_lazy_cpu_state();
1319#ifdef CONFIG_VSX
1320 current->thread.used_vsr = 0;
1321#endif
1322 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1323 current->thread.fp_save_area = NULL;
1324#ifdef CONFIG_ALTIVEC
1325 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1326 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1327 current->thread.vr_save_area = NULL;
1328 current->thread.vrsave = 0;
1329 current->thread.used_vr = 0;
1330#endif /* CONFIG_ALTIVEC */
1331#ifdef CONFIG_SPE
1332 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1333 current->thread.acc = 0;
1334 current->thread.spefscr = 0;
1335 current->thread.used_spe = 0;
1336#endif /* CONFIG_SPE */
1337#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1338 if (cpu_has_feature(CPU_FTR_TM))
1339 regs->msr |= MSR_TM;
1340 current->thread.tm_tfhar = 0;
1341 current->thread.tm_texasr = 0;
1342 current->thread.tm_tfiar = 0;
1343#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1344}
1345EXPORT_SYMBOL(start_thread);
1346
1347#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1348 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1349
1350int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1351{
1352 struct pt_regs *regs = tsk->thread.regs;
1353
1354 /* This is a bit hairy. If we are an SPE enabled processor
1355 * (have embedded fp) we store the IEEE exception enable flags in
1356 * fpexc_mode. fpexc_mode is also used for setting FP exception
1357 * mode (asyn, precise, disabled) for 'Classic' FP. */
1358 if (val & PR_FP_EXC_SW_ENABLE) {
1359#ifdef CONFIG_SPE
1360 if (cpu_has_feature(CPU_FTR_SPE)) {
1361 /*
1362 * When the sticky exception bits are set
1363 * directly by userspace, it must call prctl
1364 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1365 * in the existing prctl settings) or
1366 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1367 * the bits being set). <fenv.h> functions
1368 * saving and restoring the whole
1369 * floating-point environment need to do so
1370 * anyway to restore the prctl settings from
1371 * the saved environment.
1372 */
1373 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1374 tsk->thread.fpexc_mode = val &
1375 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1376 return 0;
1377 } else {
1378 return -EINVAL;
1379 }
1380#else
1381 return -EINVAL;
1382#endif
1383 }
1384
1385 /* on a CONFIG_SPE this does not hurt us. The bits that
1386 * __pack_fe01 use do not overlap with bits used for
1387 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1388 * on CONFIG_SPE implementations are reserved so writing to
1389 * them does not change anything */
1390 if (val > PR_FP_EXC_PRECISE)
1391 return -EINVAL;
1392 tsk->thread.fpexc_mode = __pack_fe01(val);
1393 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1394 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1395 | tsk->thread.fpexc_mode;
1396 return 0;
1397}
1398
1399int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1400{
1401 unsigned int val;
1402
1403 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1404#ifdef CONFIG_SPE
1405 if (cpu_has_feature(CPU_FTR_SPE)) {
1406 /*
1407 * When the sticky exception bits are set
1408 * directly by userspace, it must call prctl
1409 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1410 * in the existing prctl settings) or
1411 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1412 * the bits being set). <fenv.h> functions
1413 * saving and restoring the whole
1414 * floating-point environment need to do so
1415 * anyway to restore the prctl settings from
1416 * the saved environment.
1417 */
1418 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1419 val = tsk->thread.fpexc_mode;
1420 } else
1421 return -EINVAL;
1422#else
1423 return -EINVAL;
1424#endif
1425 else
1426 val = __unpack_fe01(tsk->thread.fpexc_mode);
1427 return put_user(val, (unsigned int __user *) adr);
1428}
1429
1430int set_endian(struct task_struct *tsk, unsigned int val)
1431{
1432 struct pt_regs *regs = tsk->thread.regs;
1433
1434 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1435 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1436 return -EINVAL;
1437
1438 if (regs == NULL)
1439 return -EINVAL;
1440
1441 if (val == PR_ENDIAN_BIG)
1442 regs->msr &= ~MSR_LE;
1443 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1444 regs->msr |= MSR_LE;
1445 else
1446 return -EINVAL;
1447
1448 return 0;
1449}
1450
1451int get_endian(struct task_struct *tsk, unsigned long adr)
1452{
1453 struct pt_regs *regs = tsk->thread.regs;
1454 unsigned int val;
1455
1456 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1457 !cpu_has_feature(CPU_FTR_REAL_LE))
1458 return -EINVAL;
1459
1460 if (regs == NULL)
1461 return -EINVAL;
1462
1463 if (regs->msr & MSR_LE) {
1464 if (cpu_has_feature(CPU_FTR_REAL_LE))
1465 val = PR_ENDIAN_LITTLE;
1466 else
1467 val = PR_ENDIAN_PPC_LITTLE;
1468 } else
1469 val = PR_ENDIAN_BIG;
1470
1471 return put_user(val, (unsigned int __user *)adr);
1472}
1473
1474int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1475{
1476 tsk->thread.align_ctl = val;
1477 return 0;
1478}
1479
1480int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1481{
1482 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1483}
1484
1485static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1486 unsigned long nbytes)
1487{
1488 unsigned long stack_page;
1489 unsigned long cpu = task_cpu(p);
1490
1491 /*
1492 * Avoid crashing if the stack has overflowed and corrupted
1493 * task_cpu(p), which is in the thread_info struct.
1494 */
1495 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1496 stack_page = (unsigned long) hardirq_ctx[cpu];
1497 if (sp >= stack_page + sizeof(struct thread_struct)
1498 && sp <= stack_page + THREAD_SIZE - nbytes)
1499 return 1;
1500
1501 stack_page = (unsigned long) softirq_ctx[cpu];
1502 if (sp >= stack_page + sizeof(struct thread_struct)
1503 && sp <= stack_page + THREAD_SIZE - nbytes)
1504 return 1;
1505 }
1506 return 0;
1507}
1508
1509int validate_sp(unsigned long sp, struct task_struct *p,
1510 unsigned long nbytes)
1511{
1512 unsigned long stack_page = (unsigned long)task_stack_page(p);
1513
1514 if (sp >= stack_page + sizeof(struct thread_struct)
1515 && sp <= stack_page + THREAD_SIZE - nbytes)
1516 return 1;
1517
1518 return valid_irq_stack(sp, p, nbytes);
1519}
1520
1521EXPORT_SYMBOL(validate_sp);
1522
1523unsigned long get_wchan(struct task_struct *p)
1524{
1525 unsigned long ip, sp;
1526 int count = 0;
1527
1528 if (!p || p == current || p->state == TASK_RUNNING)
1529 return 0;
1530
1531 sp = p->thread.ksp;
1532 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1533 return 0;
1534
1535 do {
1536 sp = *(unsigned long *)sp;
1537 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1538 return 0;
1539 if (count > 0) {
1540 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1541 if (!in_sched_functions(ip))
1542 return ip;
1543 }
1544 } while (count++ < 16);
1545 return 0;
1546}
1547
1548static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1549
1550void show_stack(struct task_struct *tsk, unsigned long *stack)
1551{
1552 unsigned long sp, ip, lr, newsp;
1553 int count = 0;
1554 int firstframe = 1;
1555#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1556 int curr_frame = current->curr_ret_stack;
1557 extern void return_to_handler(void);
1558 unsigned long rth = (unsigned long)return_to_handler;
1559#endif
1560
1561 sp = (unsigned long) stack;
1562 if (tsk == NULL)
1563 tsk = current;
1564 if (sp == 0) {
1565 if (tsk == current)
1566 sp = current_stack_pointer();
1567 else
1568 sp = tsk->thread.ksp;
1569 }
1570
1571 lr = 0;
1572 printk("Call Trace:\n");
1573 do {
1574 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1575 return;
1576
1577 stack = (unsigned long *) sp;
1578 newsp = stack[0];
1579 ip = stack[STACK_FRAME_LR_SAVE];
1580 if (!firstframe || ip != lr) {
1581 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1582#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1583 if ((ip == rth) && curr_frame >= 0) {
1584 printk(" (%pS)",
1585 (void *)current->ret_stack[curr_frame].ret);
1586 curr_frame--;
1587 }
1588#endif
1589 if (firstframe)
1590 printk(" (unreliable)");
1591 printk("\n");
1592 }
1593 firstframe = 0;
1594
1595 /*
1596 * See if this is an exception frame.
1597 * We look for the "regshere" marker in the current frame.
1598 */
1599 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1600 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1601 struct pt_regs *regs = (struct pt_regs *)
1602 (sp + STACK_FRAME_OVERHEAD);
1603 lr = regs->link;
1604 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1605 regs->trap, (void *)regs->nip, (void *)lr);
1606 firstframe = 1;
1607 }
1608
1609 sp = newsp;
1610 } while (count++ < kstack_depth_to_print);
1611}
1612
1613#ifdef CONFIG_PPC64
1614/* Called with hard IRQs off */
1615void notrace __ppc64_runlatch_on(void)
1616{
1617 struct thread_info *ti = current_thread_info();
1618 unsigned long ctrl;
1619
1620 ctrl = mfspr(SPRN_CTRLF);
1621 ctrl |= CTRL_RUNLATCH;
1622 mtspr(SPRN_CTRLT, ctrl);
1623
1624 ti->local_flags |= _TLF_RUNLATCH;
1625}
1626
1627/* Called with hard IRQs off */
1628void notrace __ppc64_runlatch_off(void)
1629{
1630 struct thread_info *ti = current_thread_info();
1631 unsigned long ctrl;
1632
1633 ti->local_flags &= ~_TLF_RUNLATCH;
1634
1635 ctrl = mfspr(SPRN_CTRLF);
1636 ctrl &= ~CTRL_RUNLATCH;
1637 mtspr(SPRN_CTRLT, ctrl);
1638}
1639#endif /* CONFIG_PPC64 */
1640
1641unsigned long arch_align_stack(unsigned long sp)
1642{
1643 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1644 sp -= get_random_int() & ~PAGE_MASK;
1645 return sp & ~0xf;
1646}
1647
1648static inline unsigned long brk_rnd(void)
1649{
1650 unsigned long rnd = 0;
1651
1652 /* 8MB for 32bit, 1GB for 64bit */
1653 if (is_32bit_task())
1654 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1655 else
1656 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1657
1658 return rnd << PAGE_SHIFT;
1659}
1660
1661unsigned long arch_randomize_brk(struct mm_struct *mm)
1662{
1663 unsigned long base = mm->brk;
1664 unsigned long ret;
1665
1666#ifdef CONFIG_PPC_STD_MMU_64
1667 /*
1668 * If we are using 1TB segments and we are allowed to randomise
1669 * the heap, we can put it above 1TB so it is backed by a 1TB
1670 * segment. Otherwise the heap will be in the bottom 1TB
1671 * which always uses 256MB segments and this may result in a
1672 * performance penalty.
1673 */
1674 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1675 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1676#endif
1677
1678 ret = PAGE_ALIGN(base + brk_rnd());
1679
1680 if (ret < mm->brk)
1681 return mm->brk;
1682
1683 return ret;
1684}
1685