Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Derived from "arch/i386/kernel/process.c" |
| 3 | * Copyright (C) 1995 Linus Torvalds |
| 4 | * |
| 5 | * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and |
| 6 | * Paul Mackerras (paulus@cs.anu.edu.au) |
| 7 | * |
| 8 | * PowerPC version |
| 9 | * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or |
| 12 | * modify it under the terms of the GNU General Public License |
| 13 | * as published by the Free Software Foundation; either version |
| 14 | * 2 of the License, or (at your option) any later version. |
| 15 | */ |
| 16 | |
| 17 | #include <linux/errno.h> |
| 18 | #include <linux/sched.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/mm.h> |
| 21 | #include <linux/smp.h> |
| 22 | #include <linux/stddef.h> |
| 23 | #include <linux/unistd.h> |
| 24 | #include <linux/ptrace.h> |
| 25 | #include <linux/slab.h> |
| 26 | #include <linux/user.h> |
| 27 | #include <linux/elf.h> |
| 28 | #include <linux/prctl.h> |
| 29 | #include <linux/init_task.h> |
| 30 | #include <linux/export.h> |
| 31 | #include <linux/kallsyms.h> |
| 32 | #include <linux/mqueue.h> |
| 33 | #include <linux/hardirq.h> |
| 34 | #include <linux/utsname.h> |
| 35 | #include <linux/ftrace.h> |
| 36 | #include <linux/kernel_stat.h> |
| 37 | #include <linux/personality.h> |
| 38 | #include <linux/random.h> |
| 39 | #include <linux/hw_breakpoint.h> |
| 40 | #include <linux/uaccess.h> |
| 41 | |
| 42 | #include <asm/pgtable.h> |
| 43 | #include <asm/io.h> |
| 44 | #include <asm/processor.h> |
| 45 | #include <asm/mmu.h> |
| 46 | #include <asm/prom.h> |
| 47 | #include <asm/machdep.h> |
| 48 | #include <asm/time.h> |
| 49 | #include <asm/runlatch.h> |
| 50 | #include <asm/syscalls.h> |
| 51 | #include <asm/switch_to.h> |
| 52 | #include <asm/tm.h> |
| 53 | #include <asm/debug.h> |
| 54 | #ifdef CONFIG_PPC64 |
| 55 | #include <asm/firmware.h> |
| 56 | #endif |
| 57 | #include <asm/code-patching.h> |
| 58 | #include <linux/kprobes.h> |
| 59 | #include <linux/kdebug.h> |
| 60 | |
| 61 | /* Transactional Memory debug */ |
| 62 | #ifdef TM_DEBUG_SW |
| 63 | #define TM_DEBUG(x...) printk(KERN_INFO x) |
| 64 | #else |
| 65 | #define TM_DEBUG(x...) do { } while(0) |
| 66 | #endif |
| 67 | |
| 68 | extern unsigned long _get_SP(void); |
| 69 | |
| 70 | #ifndef CONFIG_SMP |
| 71 | struct task_struct *last_task_used_math = NULL; |
| 72 | struct task_struct *last_task_used_altivec = NULL; |
| 73 | struct task_struct *last_task_used_vsx = NULL; |
| 74 | struct task_struct *last_task_used_spe = NULL; |
| 75 | #endif |
| 76 | |
| 77 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 78 | void giveup_fpu_maybe_transactional(struct task_struct *tsk) |
| 79 | { |
| 80 | /* |
| 81 | * If we are saving the current thread's registers, and the |
| 82 | * thread is in a transactional state, set the TIF_RESTORE_TM |
| 83 | * bit so that we know to restore the registers before |
| 84 | * returning to userspace. |
| 85 | */ |
| 86 | if (tsk == current && tsk->thread.regs && |
| 87 | MSR_TM_ACTIVE(tsk->thread.regs->msr) && |
| 88 | !test_thread_flag(TIF_RESTORE_TM)) { |
| 89 | tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; |
| 90 | set_thread_flag(TIF_RESTORE_TM); |
| 91 | } |
| 92 | |
| 93 | giveup_fpu(tsk); |
| 94 | } |
| 95 | |
| 96 | void giveup_altivec_maybe_transactional(struct task_struct *tsk) |
| 97 | { |
| 98 | /* |
| 99 | * If we are saving the current thread's registers, and the |
| 100 | * thread is in a transactional state, set the TIF_RESTORE_TM |
| 101 | * bit so that we know to restore the registers before |
| 102 | * returning to userspace. |
| 103 | */ |
| 104 | if (tsk == current && tsk->thread.regs && |
| 105 | MSR_TM_ACTIVE(tsk->thread.regs->msr) && |
| 106 | !test_thread_flag(TIF_RESTORE_TM)) { |
| 107 | tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; |
| 108 | set_thread_flag(TIF_RESTORE_TM); |
| 109 | } |
| 110 | |
| 111 | giveup_altivec(tsk); |
| 112 | } |
| 113 | |
| 114 | #else |
| 115 | #define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk) |
| 116 | #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk) |
| 117 | #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| 118 | |
| 119 | #ifdef CONFIG_PPC_FPU |
| 120 | /* |
| 121 | * Make sure the floating-point register state in the |
| 122 | * the thread_struct is up to date for task tsk. |
| 123 | */ |
| 124 | void flush_fp_to_thread(struct task_struct *tsk) |
| 125 | { |
| 126 | if (tsk->thread.regs) { |
| 127 | /* |
| 128 | * We need to disable preemption here because if we didn't, |
| 129 | * another process could get scheduled after the regs->msr |
| 130 | * test but before we have finished saving the FP registers |
| 131 | * to the thread_struct. That process could take over the |
| 132 | * FPU, and then when we get scheduled again we would store |
| 133 | * bogus values for the remaining FP registers. |
| 134 | */ |
| 135 | preempt_disable(); |
| 136 | if (tsk->thread.regs->msr & MSR_FP) { |
| 137 | #ifdef CONFIG_SMP |
| 138 | /* |
| 139 | * This should only ever be called for current or |
| 140 | * for a stopped child process. Since we save away |
| 141 | * the FP register state on context switch on SMP, |
| 142 | * there is something wrong if a stopped child appears |
| 143 | * to still have its FP state in the CPU registers. |
| 144 | */ |
| 145 | BUG_ON(tsk != current); |
| 146 | #endif |
| 147 | giveup_fpu_maybe_transactional(tsk); |
| 148 | } |
| 149 | preempt_enable(); |
| 150 | } |
| 151 | } |
| 152 | EXPORT_SYMBOL_GPL(flush_fp_to_thread); |
| 153 | #endif /* CONFIG_PPC_FPU */ |
| 154 | |
| 155 | void enable_kernel_fp(void) |
| 156 | { |
| 157 | WARN_ON(preemptible()); |
| 158 | |
| 159 | #ifdef CONFIG_SMP |
| 160 | if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) |
| 161 | giveup_fpu_maybe_transactional(current); |
| 162 | else |
| 163 | giveup_fpu(NULL); /* just enables FP for kernel */ |
| 164 | #else |
| 165 | giveup_fpu_maybe_transactional(last_task_used_math); |
| 166 | #endif /* CONFIG_SMP */ |
| 167 | } |
| 168 | EXPORT_SYMBOL(enable_kernel_fp); |
| 169 | |
| 170 | #ifdef CONFIG_ALTIVEC |
| 171 | void enable_kernel_altivec(void) |
| 172 | { |
| 173 | WARN_ON(preemptible()); |
| 174 | |
| 175 | #ifdef CONFIG_SMP |
| 176 | if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) |
| 177 | giveup_altivec_maybe_transactional(current); |
| 178 | else |
| 179 | giveup_altivec_notask(); |
| 180 | #else |
| 181 | giveup_altivec_maybe_transactional(last_task_used_altivec); |
| 182 | #endif /* CONFIG_SMP */ |
| 183 | } |
| 184 | EXPORT_SYMBOL(enable_kernel_altivec); |
| 185 | |
| 186 | /* |
| 187 | * Make sure the VMX/Altivec register state in the |
| 188 | * the thread_struct is up to date for task tsk. |
| 189 | */ |
| 190 | void flush_altivec_to_thread(struct task_struct *tsk) |
| 191 | { |
| 192 | if (tsk->thread.regs) { |
| 193 | preempt_disable(); |
| 194 | if (tsk->thread.regs->msr & MSR_VEC) { |
| 195 | #ifdef CONFIG_SMP |
| 196 | BUG_ON(tsk != current); |
| 197 | #endif |
| 198 | giveup_altivec_maybe_transactional(tsk); |
| 199 | } |
| 200 | preempt_enable(); |
| 201 | } |
| 202 | } |
| 203 | EXPORT_SYMBOL_GPL(flush_altivec_to_thread); |
| 204 | #endif /* CONFIG_ALTIVEC */ |
| 205 | |
| 206 | #ifdef CONFIG_VSX |
| 207 | void enable_kernel_vsx(void) |
| 208 | { |
| 209 | WARN_ON(preemptible()); |
| 210 | |
| 211 | #ifdef CONFIG_SMP |
| 212 | if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) |
| 213 | giveup_vsx(current); |
| 214 | else |
| 215 | giveup_vsx(NULL); /* just enable vsx for kernel - force */ |
| 216 | #else |
| 217 | giveup_vsx(last_task_used_vsx); |
| 218 | #endif /* CONFIG_SMP */ |
| 219 | } |
| 220 | EXPORT_SYMBOL(enable_kernel_vsx); |
| 221 | |
| 222 | void giveup_vsx(struct task_struct *tsk) |
| 223 | { |
| 224 | giveup_fpu_maybe_transactional(tsk); |
| 225 | giveup_altivec_maybe_transactional(tsk); |
| 226 | __giveup_vsx(tsk); |
| 227 | } |
| 228 | EXPORT_SYMBOL(giveup_vsx); |
| 229 | |
| 230 | void flush_vsx_to_thread(struct task_struct *tsk) |
| 231 | { |
| 232 | if (tsk->thread.regs) { |
| 233 | preempt_disable(); |
| 234 | if (tsk->thread.regs->msr & MSR_VSX) { |
| 235 | #ifdef CONFIG_SMP |
| 236 | BUG_ON(tsk != current); |
| 237 | #endif |
| 238 | giveup_vsx(tsk); |
| 239 | } |
| 240 | preempt_enable(); |
| 241 | } |
| 242 | } |
| 243 | EXPORT_SYMBOL_GPL(flush_vsx_to_thread); |
| 244 | #endif /* CONFIG_VSX */ |
| 245 | |
| 246 | #ifdef CONFIG_SPE |
| 247 | |
| 248 | void enable_kernel_spe(void) |
| 249 | { |
| 250 | WARN_ON(preemptible()); |
| 251 | |
| 252 | #ifdef CONFIG_SMP |
| 253 | if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) |
| 254 | giveup_spe(current); |
| 255 | else |
| 256 | giveup_spe(NULL); /* just enable SPE for kernel - force */ |
| 257 | #else |
| 258 | giveup_spe(last_task_used_spe); |
| 259 | #endif /* __SMP __ */ |
| 260 | } |
| 261 | EXPORT_SYMBOL(enable_kernel_spe); |
| 262 | |
| 263 | void flush_spe_to_thread(struct task_struct *tsk) |
| 264 | { |
| 265 | if (tsk->thread.regs) { |
| 266 | preempt_disable(); |
| 267 | if (tsk->thread.regs->msr & MSR_SPE) { |
| 268 | #ifdef CONFIG_SMP |
| 269 | BUG_ON(tsk != current); |
| 270 | #endif |
| 271 | tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); |
| 272 | giveup_spe(tsk); |
| 273 | } |
| 274 | preempt_enable(); |
| 275 | } |
| 276 | } |
| 277 | #endif /* CONFIG_SPE */ |
| 278 | |
| 279 | #ifndef CONFIG_SMP |
| 280 | /* |
| 281 | * If we are doing lazy switching of CPU state (FP, altivec or SPE), |
| 282 | * and the current task has some state, discard it. |
| 283 | */ |
| 284 | void discard_lazy_cpu_state(void) |
| 285 | { |
| 286 | preempt_disable(); |
| 287 | if (last_task_used_math == current) |
| 288 | last_task_used_math = NULL; |
| 289 | #ifdef CONFIG_ALTIVEC |
| 290 | if (last_task_used_altivec == current) |
| 291 | last_task_used_altivec = NULL; |
| 292 | #endif /* CONFIG_ALTIVEC */ |
| 293 | #ifdef CONFIG_VSX |
| 294 | if (last_task_used_vsx == current) |
| 295 | last_task_used_vsx = NULL; |
| 296 | #endif /* CONFIG_VSX */ |
| 297 | #ifdef CONFIG_SPE |
| 298 | if (last_task_used_spe == current) |
| 299 | last_task_used_spe = NULL; |
| 300 | #endif |
| 301 | preempt_enable(); |
| 302 | } |
| 303 | #endif /* CONFIG_SMP */ |
| 304 | |
| 305 | #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| 306 | void do_send_trap(struct pt_regs *regs, unsigned long address, |
| 307 | unsigned long error_code, int signal_code, int breakpt) |
| 308 | { |
| 309 | siginfo_t info; |
| 310 | |
| 311 | current->thread.trap_nr = signal_code; |
| 312 | if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, |
| 313 | 11, SIGSEGV) == NOTIFY_STOP) |
| 314 | return; |
| 315 | |
| 316 | /* Deliver the signal to userspace */ |
| 317 | info.si_signo = SIGTRAP; |
| 318 | info.si_errno = breakpt; /* breakpoint or watchpoint id */ |
| 319 | info.si_code = signal_code; |
| 320 | info.si_addr = (void __user *)address; |
| 321 | force_sig_info(SIGTRAP, &info, current); |
| 322 | } |
| 323 | #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ |
| 324 | void do_break (struct pt_regs *regs, unsigned long address, |
| 325 | unsigned long error_code) |
| 326 | { |
| 327 | siginfo_t info; |
| 328 | |
| 329 | current->thread.trap_nr = TRAP_HWBKPT; |
| 330 | if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, |
| 331 | 11, SIGSEGV) == NOTIFY_STOP) |
| 332 | return; |
| 333 | |
| 334 | if (debugger_break_match(regs)) |
| 335 | return; |
| 336 | |
| 337 | /* Clear the breakpoint */ |
| 338 | hw_breakpoint_disable(); |
| 339 | |
| 340 | /* Deliver the signal to userspace */ |
| 341 | info.si_signo = SIGTRAP; |
| 342 | info.si_errno = 0; |
| 343 | info.si_code = TRAP_HWBKPT; |
| 344 | info.si_addr = (void __user *)address; |
| 345 | force_sig_info(SIGTRAP, &info, current); |
| 346 | } |
| 347 | #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ |
| 348 | |
| 349 | static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); |
| 350 | |
| 351 | #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| 352 | /* |
| 353 | * Set the debug registers back to their default "safe" values. |
| 354 | */ |
| 355 | static void set_debug_reg_defaults(struct thread_struct *thread) |
| 356 | { |
| 357 | thread->debug.iac1 = thread->debug.iac2 = 0; |
| 358 | #if CONFIG_PPC_ADV_DEBUG_IACS > 2 |
| 359 | thread->debug.iac3 = thread->debug.iac4 = 0; |
| 360 | #endif |
| 361 | thread->debug.dac1 = thread->debug.dac2 = 0; |
| 362 | #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 |
| 363 | thread->debug.dvc1 = thread->debug.dvc2 = 0; |
| 364 | #endif |
| 365 | thread->debug.dbcr0 = 0; |
| 366 | #ifdef CONFIG_BOOKE |
| 367 | /* |
| 368 | * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) |
| 369 | */ |
| 370 | thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | |
| 371 | DBCR1_IAC3US | DBCR1_IAC4US; |
| 372 | /* |
| 373 | * Force Data Address Compare User/Supervisor bits to be User-only |
| 374 | * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. |
| 375 | */ |
| 376 | thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; |
| 377 | #else |
| 378 | thread->debug.dbcr1 = 0; |
| 379 | #endif |
| 380 | } |
| 381 | |
| 382 | static void prime_debug_regs(struct debug_reg *debug) |
| 383 | { |
| 384 | /* |
| 385 | * We could have inherited MSR_DE from userspace, since |
| 386 | * it doesn't get cleared on exception entry. Make sure |
| 387 | * MSR_DE is clear before we enable any debug events. |
| 388 | */ |
| 389 | mtmsr(mfmsr() & ~MSR_DE); |
| 390 | |
| 391 | mtspr(SPRN_IAC1, debug->iac1); |
| 392 | mtspr(SPRN_IAC2, debug->iac2); |
| 393 | #if CONFIG_PPC_ADV_DEBUG_IACS > 2 |
| 394 | mtspr(SPRN_IAC3, debug->iac3); |
| 395 | mtspr(SPRN_IAC4, debug->iac4); |
| 396 | #endif |
| 397 | mtspr(SPRN_DAC1, debug->dac1); |
| 398 | mtspr(SPRN_DAC2, debug->dac2); |
| 399 | #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 |
| 400 | mtspr(SPRN_DVC1, debug->dvc1); |
| 401 | mtspr(SPRN_DVC2, debug->dvc2); |
| 402 | #endif |
| 403 | mtspr(SPRN_DBCR0, debug->dbcr0); |
| 404 | mtspr(SPRN_DBCR1, debug->dbcr1); |
| 405 | #ifdef CONFIG_BOOKE |
| 406 | mtspr(SPRN_DBCR2, debug->dbcr2); |
| 407 | #endif |
| 408 | } |
| 409 | /* |
| 410 | * Unless neither the old or new thread are making use of the |
| 411 | * debug registers, set the debug registers from the values |
| 412 | * stored in the new thread. |
| 413 | */ |
| 414 | void switch_booke_debug_regs(struct debug_reg *new_debug) |
| 415 | { |
| 416 | if ((current->thread.debug.dbcr0 & DBCR0_IDM) |
| 417 | || (new_debug->dbcr0 & DBCR0_IDM)) |
| 418 | prime_debug_regs(new_debug); |
| 419 | } |
| 420 | EXPORT_SYMBOL_GPL(switch_booke_debug_regs); |
| 421 | #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ |
| 422 | #ifndef CONFIG_HAVE_HW_BREAKPOINT |
| 423 | static void set_debug_reg_defaults(struct thread_struct *thread) |
| 424 | { |
| 425 | thread->hw_brk.address = 0; |
| 426 | thread->hw_brk.type = 0; |
| 427 | set_breakpoint(&thread->hw_brk); |
| 428 | } |
| 429 | #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ |
| 430 | #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ |
| 431 | |
| 432 | #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| 433 | static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) |
| 434 | { |
| 435 | mtspr(SPRN_DAC1, dabr); |
| 436 | #ifdef CONFIG_PPC_47x |
| 437 | isync(); |
| 438 | #endif |
| 439 | return 0; |
| 440 | } |
| 441 | #elif defined(CONFIG_PPC_BOOK3S) |
| 442 | static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) |
| 443 | { |
| 444 | mtspr(SPRN_DABR, dabr); |
| 445 | if (cpu_has_feature(CPU_FTR_DABRX)) |
| 446 | mtspr(SPRN_DABRX, dabrx); |
| 447 | return 0; |
| 448 | } |
| 449 | #else |
| 450 | static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) |
| 451 | { |
| 452 | return -EINVAL; |
| 453 | } |
| 454 | #endif |
| 455 | |
| 456 | static inline int set_dabr(struct arch_hw_breakpoint *brk) |
| 457 | { |
| 458 | unsigned long dabr, dabrx; |
| 459 | |
| 460 | dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); |
| 461 | dabrx = ((brk->type >> 3) & 0x7); |
| 462 | |
| 463 | if (ppc_md.set_dabr) |
| 464 | return ppc_md.set_dabr(dabr, dabrx); |
| 465 | |
| 466 | return __set_dabr(dabr, dabrx); |
| 467 | } |
| 468 | |
| 469 | static inline int set_dawr(struct arch_hw_breakpoint *brk) |
| 470 | { |
| 471 | unsigned long dawr, dawrx, mrd; |
| 472 | |
| 473 | dawr = brk->address; |
| 474 | |
| 475 | dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ |
| 476 | << (63 - 58); //* read/write bits */ |
| 477 | dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ |
| 478 | << (63 - 59); //* translate */ |
| 479 | dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ |
| 480 | >> 3; //* PRIM bits */ |
| 481 | /* dawr length is stored in field MDR bits 48:53. Matches range in |
| 482 | doublewords (64 bits) baised by -1 eg. 0b000000=1DW and |
| 483 | 0b111111=64DW. |
| 484 | brk->len is in bytes. |
| 485 | This aligns up to double word size, shifts and does the bias. |
| 486 | */ |
| 487 | mrd = ((brk->len + 7) >> 3) - 1; |
| 488 | dawrx |= (mrd & 0x3f) << (63 - 53); |
| 489 | |
| 490 | if (ppc_md.set_dawr) |
| 491 | return ppc_md.set_dawr(dawr, dawrx); |
| 492 | mtspr(SPRN_DAWR, dawr); |
| 493 | mtspr(SPRN_DAWRX, dawrx); |
| 494 | return 0; |
| 495 | } |
| 496 | |
| 497 | void __set_breakpoint(struct arch_hw_breakpoint *brk) |
| 498 | { |
| 499 | memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); |
| 500 | |
| 501 | if (cpu_has_feature(CPU_FTR_DAWR)) |
| 502 | set_dawr(brk); |
| 503 | else |
| 504 | set_dabr(brk); |
| 505 | } |
| 506 | |
| 507 | void set_breakpoint(struct arch_hw_breakpoint *brk) |
| 508 | { |
| 509 | preempt_disable(); |
| 510 | __set_breakpoint(brk); |
| 511 | preempt_enable(); |
| 512 | } |
| 513 | |
| 514 | #ifdef CONFIG_PPC64 |
| 515 | DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); |
| 516 | #endif |
| 517 | |
| 518 | static inline bool hw_brk_match(struct arch_hw_breakpoint *a, |
| 519 | struct arch_hw_breakpoint *b) |
| 520 | { |
| 521 | if (a->address != b->address) |
| 522 | return false; |
| 523 | if (a->type != b->type) |
| 524 | return false; |
| 525 | if (a->len != b->len) |
| 526 | return false; |
| 527 | return true; |
| 528 | } |
| 529 | |
| 530 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 531 | static void tm_reclaim_thread(struct thread_struct *thr, |
| 532 | struct thread_info *ti, uint8_t cause) |
| 533 | { |
| 534 | unsigned long msr_diff = 0; |
| 535 | |
| 536 | /* |
| 537 | * If FP/VSX registers have been already saved to the |
| 538 | * thread_struct, move them to the transact_fp array. |
| 539 | * We clear the TIF_RESTORE_TM bit since after the reclaim |
| 540 | * the thread will no longer be transactional. |
| 541 | */ |
| 542 | if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) { |
| 543 | msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr; |
| 544 | if (msr_diff & MSR_FP) |
| 545 | memcpy(&thr->transact_fp, &thr->fp_state, |
| 546 | sizeof(struct thread_fp_state)); |
| 547 | if (msr_diff & MSR_VEC) |
| 548 | memcpy(&thr->transact_vr, &thr->vr_state, |
| 549 | sizeof(struct thread_vr_state)); |
| 550 | clear_ti_thread_flag(ti, TIF_RESTORE_TM); |
| 551 | msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1; |
| 552 | } |
| 553 | |
| 554 | /* |
| 555 | * Use the current MSR TM suspended bit to track if we have |
| 556 | * checkpointed state outstanding. |
| 557 | * On signal delivery, we'd normally reclaim the checkpointed |
| 558 | * state to obtain stack pointer (see:get_tm_stackpointer()). |
| 559 | * This will then directly return to userspace without going |
| 560 | * through __switch_to(). However, if the stack frame is bad, |
| 561 | * we need to exit this thread which calls __switch_to() which |
| 562 | * will again attempt to reclaim the already saved tm state. |
| 563 | * Hence we need to check that we've not already reclaimed |
| 564 | * this state. |
| 565 | * We do this using the current MSR, rather tracking it in |
| 566 | * some specific thread_struct bit, as it has the additional |
| 567 | * benifit of checking for a potential TM bad thing exception. |
| 568 | */ |
| 569 | if (!MSR_TM_SUSPENDED(mfmsr())) |
| 570 | return; |
| 571 | |
| 572 | tm_reclaim(thr, thr->regs->msr, cause); |
| 573 | |
| 574 | /* Having done the reclaim, we now have the checkpointed |
| 575 | * FP/VSX values in the registers. These might be valid |
| 576 | * even if we have previously called enable_kernel_fp() or |
| 577 | * flush_fp_to_thread(), so update thr->regs->msr to |
| 578 | * indicate their current validity. |
| 579 | */ |
| 580 | thr->regs->msr |= msr_diff; |
| 581 | } |
| 582 | |
| 583 | void tm_reclaim_current(uint8_t cause) |
| 584 | { |
| 585 | tm_enable(); |
| 586 | tm_reclaim_thread(¤t->thread, current_thread_info(), cause); |
| 587 | } |
| 588 | |
| 589 | static inline void tm_reclaim_task(struct task_struct *tsk) |
| 590 | { |
| 591 | /* We have to work out if we're switching from/to a task that's in the |
| 592 | * middle of a transaction. |
| 593 | * |
| 594 | * In switching we need to maintain a 2nd register state as |
| 595 | * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the |
| 596 | * checkpointed (tbegin) state in ckpt_regs and saves the transactional |
| 597 | * (current) FPRs into oldtask->thread.transact_fpr[]. |
| 598 | * |
| 599 | * We also context switch (save) TFHAR/TEXASR/TFIAR in here. |
| 600 | */ |
| 601 | struct thread_struct *thr = &tsk->thread; |
| 602 | |
| 603 | if (!thr->regs) |
| 604 | return; |
| 605 | |
| 606 | if (!MSR_TM_ACTIVE(thr->regs->msr)) |
| 607 | goto out_and_saveregs; |
| 608 | |
| 609 | /* Stash the original thread MSR, as giveup_fpu et al will |
| 610 | * modify it. We hold onto it to see whether the task used |
| 611 | * FP & vector regs. If the TIF_RESTORE_TM flag is set, |
| 612 | * ckpt_regs.msr is already set. |
| 613 | */ |
| 614 | if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM)) |
| 615 | thr->ckpt_regs.msr = thr->regs->msr; |
| 616 | |
| 617 | TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " |
| 618 | "ccr=%lx, msr=%lx, trap=%lx)\n", |
| 619 | tsk->pid, thr->regs->nip, |
| 620 | thr->regs->ccr, thr->regs->msr, |
| 621 | thr->regs->trap); |
| 622 | |
| 623 | tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); |
| 624 | |
| 625 | TM_DEBUG("--- tm_reclaim on pid %d complete\n", |
| 626 | tsk->pid); |
| 627 | |
| 628 | out_and_saveregs: |
| 629 | /* Always save the regs here, even if a transaction's not active. |
| 630 | * This context-switches a thread's TM info SPRs. We do it here to |
| 631 | * be consistent with the restore path (in recheckpoint) which |
| 632 | * cannot happen later in _switch(). |
| 633 | */ |
| 634 | tm_save_sprs(thr); |
| 635 | } |
| 636 | |
| 637 | extern void __tm_recheckpoint(struct thread_struct *thread, |
| 638 | unsigned long orig_msr); |
| 639 | |
| 640 | void tm_recheckpoint(struct thread_struct *thread, |
| 641 | unsigned long orig_msr) |
| 642 | { |
| 643 | unsigned long flags; |
| 644 | |
| 645 | /* We really can't be interrupted here as the TEXASR registers can't |
| 646 | * change and later in the trecheckpoint code, we have a userspace R1. |
| 647 | * So let's hard disable over this region. |
| 648 | */ |
| 649 | local_irq_save(flags); |
| 650 | hard_irq_disable(); |
| 651 | |
| 652 | /* The TM SPRs are restored here, so that TEXASR.FS can be set |
| 653 | * before the trecheckpoint and no explosion occurs. |
| 654 | */ |
| 655 | tm_restore_sprs(thread); |
| 656 | |
| 657 | __tm_recheckpoint(thread, orig_msr); |
| 658 | |
| 659 | local_irq_restore(flags); |
| 660 | } |
| 661 | |
| 662 | static inline void tm_recheckpoint_new_task(struct task_struct *new) |
| 663 | { |
| 664 | unsigned long msr; |
| 665 | |
| 666 | if (!cpu_has_feature(CPU_FTR_TM)) |
| 667 | return; |
| 668 | |
| 669 | /* Recheckpoint the registers of the thread we're about to switch to. |
| 670 | * |
| 671 | * If the task was using FP, we non-lazily reload both the original and |
| 672 | * the speculative FP register states. This is because the kernel |
| 673 | * doesn't see if/when a TM rollback occurs, so if we take an FP |
| 674 | * unavoidable later, we are unable to determine which set of FP regs |
| 675 | * need to be restored. |
| 676 | */ |
| 677 | if (!new->thread.regs) |
| 678 | return; |
| 679 | |
| 680 | if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ |
| 681 | tm_restore_sprs(&new->thread); |
| 682 | return; |
| 683 | } |
| 684 | msr = new->thread.ckpt_regs.msr; |
| 685 | /* Recheckpoint to restore original checkpointed register state. */ |
| 686 | TM_DEBUG("*** tm_recheckpoint of pid %d " |
| 687 | "(new->msr 0x%lx, new->origmsr 0x%lx)\n", |
| 688 | new->pid, new->thread.regs->msr, msr); |
| 689 | |
| 690 | /* This loads the checkpointed FP/VEC state, if used */ |
| 691 | tm_recheckpoint(&new->thread, msr); |
| 692 | |
| 693 | /* This loads the speculative FP/VEC state, if used */ |
| 694 | if (msr & MSR_FP) { |
| 695 | do_load_up_transact_fpu(&new->thread); |
| 696 | new->thread.regs->msr |= |
| 697 | (MSR_FP | new->thread.fpexc_mode); |
| 698 | } |
| 699 | #ifdef CONFIG_ALTIVEC |
| 700 | if (msr & MSR_VEC) { |
| 701 | do_load_up_transact_altivec(&new->thread); |
| 702 | new->thread.regs->msr |= MSR_VEC; |
| 703 | } |
| 704 | #endif |
| 705 | /* We may as well turn on VSX too since all the state is restored now */ |
| 706 | if (msr & MSR_VSX) |
| 707 | new->thread.regs->msr |= MSR_VSX; |
| 708 | |
| 709 | TM_DEBUG("*** tm_recheckpoint of pid %d complete " |
| 710 | "(kernel msr 0x%lx)\n", |
| 711 | new->pid, mfmsr()); |
| 712 | } |
| 713 | |
| 714 | static inline void __switch_to_tm(struct task_struct *prev) |
| 715 | { |
| 716 | if (cpu_has_feature(CPU_FTR_TM)) { |
| 717 | tm_enable(); |
| 718 | tm_reclaim_task(prev); |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | /* |
| 723 | * This is called if we are on the way out to userspace and the |
| 724 | * TIF_RESTORE_TM flag is set. It checks if we need to reload |
| 725 | * FP and/or vector state and does so if necessary. |
| 726 | * If userspace is inside a transaction (whether active or |
| 727 | * suspended) and FP/VMX/VSX instructions have ever been enabled |
| 728 | * inside that transaction, then we have to keep them enabled |
| 729 | * and keep the FP/VMX/VSX state loaded while ever the transaction |
| 730 | * continues. The reason is that if we didn't, and subsequently |
| 731 | * got a FP/VMX/VSX unavailable interrupt inside a transaction, |
| 732 | * we don't know whether it's the same transaction, and thus we |
| 733 | * don't know which of the checkpointed state and the transactional |
| 734 | * state to use. |
| 735 | */ |
| 736 | void restore_tm_state(struct pt_regs *regs) |
| 737 | { |
| 738 | unsigned long msr_diff; |
| 739 | |
| 740 | clear_thread_flag(TIF_RESTORE_TM); |
| 741 | if (!MSR_TM_ACTIVE(regs->msr)) |
| 742 | return; |
| 743 | |
| 744 | msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; |
| 745 | msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; |
| 746 | if (msr_diff & MSR_FP) { |
| 747 | fp_enable(); |
| 748 | load_fp_state(¤t->thread.fp_state); |
| 749 | regs->msr |= current->thread.fpexc_mode; |
| 750 | } |
| 751 | if (msr_diff & MSR_VEC) { |
| 752 | vec_enable(); |
| 753 | load_vr_state(¤t->thread.vr_state); |
| 754 | } |
| 755 | regs->msr |= msr_diff; |
| 756 | } |
| 757 | |
| 758 | #else |
| 759 | #define tm_recheckpoint_new_task(new) |
| 760 | #define __switch_to_tm(prev) |
| 761 | #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| 762 | |
| 763 | struct task_struct *__switch_to(struct task_struct *prev, |
| 764 | struct task_struct *new) |
| 765 | { |
| 766 | struct thread_struct *new_thread, *old_thread; |
| 767 | struct task_struct *last; |
| 768 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 769 | struct ppc64_tlb_batch *batch; |
| 770 | #endif |
| 771 | |
| 772 | WARN_ON(!irqs_disabled()); |
| 773 | |
| 774 | /* Back up the TAR and DSCR across context switches. |
| 775 | * Note that the TAR is not available for use in the kernel. (To |
| 776 | * provide this, the TAR should be backed up/restored on exception |
| 777 | * entry/exit instead, and be in pt_regs. FIXME, this should be in |
| 778 | * pt_regs anyway (for debug).) |
| 779 | * Save the TAR and DSCR here before we do treclaim/trecheckpoint as |
| 780 | * these will change them. |
| 781 | */ |
| 782 | save_early_sprs(&prev->thread); |
| 783 | |
| 784 | __switch_to_tm(prev); |
| 785 | |
| 786 | #ifdef CONFIG_SMP |
| 787 | /* avoid complexity of lazy save/restore of fpu |
| 788 | * by just saving it every time we switch out if |
| 789 | * this task used the fpu during the last quantum. |
| 790 | * |
| 791 | * If it tries to use the fpu again, it'll trap and |
| 792 | * reload its fp regs. So we don't have to do a restore |
| 793 | * every switch, just a save. |
| 794 | * -- Cort |
| 795 | */ |
| 796 | if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) |
| 797 | giveup_fpu(prev); |
| 798 | #ifdef CONFIG_ALTIVEC |
| 799 | /* |
| 800 | * If the previous thread used altivec in the last quantum |
| 801 | * (thus changing altivec regs) then save them. |
| 802 | * We used to check the VRSAVE register but not all apps |
| 803 | * set it, so we don't rely on it now (and in fact we need |
| 804 | * to save & restore VSCR even if VRSAVE == 0). -- paulus |
| 805 | * |
| 806 | * On SMP we always save/restore altivec regs just to avoid the |
| 807 | * complexity of changing processors. |
| 808 | * -- Cort |
| 809 | */ |
| 810 | if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) |
| 811 | giveup_altivec(prev); |
| 812 | #endif /* CONFIG_ALTIVEC */ |
| 813 | #ifdef CONFIG_VSX |
| 814 | if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX)) |
| 815 | /* VMX and FPU registers are already save here */ |
| 816 | __giveup_vsx(prev); |
| 817 | #endif /* CONFIG_VSX */ |
| 818 | #ifdef CONFIG_SPE |
| 819 | /* |
| 820 | * If the previous thread used spe in the last quantum |
| 821 | * (thus changing spe regs) then save them. |
| 822 | * |
| 823 | * On SMP we always save/restore spe regs just to avoid the |
| 824 | * complexity of changing processors. |
| 825 | */ |
| 826 | if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) |
| 827 | giveup_spe(prev); |
| 828 | #endif /* CONFIG_SPE */ |
| 829 | |
| 830 | #else /* CONFIG_SMP */ |
| 831 | #ifdef CONFIG_ALTIVEC |
| 832 | /* Avoid the trap. On smp this this never happens since |
| 833 | * we don't set last_task_used_altivec -- Cort |
| 834 | */ |
| 835 | if (new->thread.regs && last_task_used_altivec == new) |
| 836 | new->thread.regs->msr |= MSR_VEC; |
| 837 | #endif /* CONFIG_ALTIVEC */ |
| 838 | #ifdef CONFIG_VSX |
| 839 | if (new->thread.regs && last_task_used_vsx == new) |
| 840 | new->thread.regs->msr |= MSR_VSX; |
| 841 | #endif /* CONFIG_VSX */ |
| 842 | #ifdef CONFIG_SPE |
| 843 | /* Avoid the trap. On smp this this never happens since |
| 844 | * we don't set last_task_used_spe |
| 845 | */ |
| 846 | if (new->thread.regs && last_task_used_spe == new) |
| 847 | new->thread.regs->msr |= MSR_SPE; |
| 848 | #endif /* CONFIG_SPE */ |
| 849 | |
| 850 | #endif /* CONFIG_SMP */ |
| 851 | |
| 852 | #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| 853 | switch_booke_debug_regs(&new->thread.debug); |
| 854 | #else |
| 855 | /* |
| 856 | * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would |
| 857 | * schedule DABR |
| 858 | */ |
| 859 | #ifndef CONFIG_HAVE_HW_BREAKPOINT |
| 860 | if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) |
| 861 | __set_breakpoint(&new->thread.hw_brk); |
| 862 | #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| 863 | #endif |
| 864 | |
| 865 | |
| 866 | new_thread = &new->thread; |
| 867 | old_thread = ¤t->thread; |
| 868 | |
| 869 | #ifdef CONFIG_PPC64 |
| 870 | /* |
| 871 | * Collect processor utilization data per process |
| 872 | */ |
| 873 | if (firmware_has_feature(FW_FEATURE_SPLPAR)) { |
| 874 | struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); |
| 875 | long unsigned start_tb, current_tb; |
| 876 | start_tb = old_thread->start_tb; |
| 877 | cu->current_tb = current_tb = mfspr(SPRN_PURR); |
| 878 | old_thread->accum_tb += (current_tb - start_tb); |
| 879 | new_thread->start_tb = current_tb; |
| 880 | } |
| 881 | #endif /* CONFIG_PPC64 */ |
| 882 | |
| 883 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 884 | batch = this_cpu_ptr(&ppc64_tlb_batch); |
| 885 | if (batch->active) { |
| 886 | current_thread_info()->local_flags |= _TLF_LAZY_MMU; |
| 887 | if (batch->index) |
| 888 | __flush_tlb_pending(batch); |
| 889 | batch->active = 0; |
| 890 | } |
| 891 | #endif /* CONFIG_PPC_BOOK3S_64 */ |
| 892 | |
| 893 | /* |
| 894 | * We can't take a PMU exception inside _switch() since there is a |
| 895 | * window where the kernel stack SLB and the kernel stack are out |
| 896 | * of sync. Hard disable here. |
| 897 | */ |
| 898 | hard_irq_disable(); |
| 899 | |
| 900 | tm_recheckpoint_new_task(new); |
| 901 | |
| 902 | last = _switch(old_thread, new_thread); |
| 903 | |
| 904 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 905 | if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { |
| 906 | current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; |
| 907 | batch = this_cpu_ptr(&ppc64_tlb_batch); |
| 908 | batch->active = 1; |
| 909 | } |
| 910 | #endif /* CONFIG_PPC_BOOK3S_64 */ |
| 911 | |
| 912 | return last; |
| 913 | } |
| 914 | |
| 915 | static int instructions_to_print = 16; |
| 916 | |
| 917 | static void show_instructions(struct pt_regs *regs) |
| 918 | { |
| 919 | int i; |
| 920 | unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * |
| 921 | sizeof(int)); |
| 922 | |
| 923 | printk("Instruction dump:"); |
| 924 | |
| 925 | for (i = 0; i < instructions_to_print; i++) { |
| 926 | int instr; |
| 927 | |
| 928 | if (!(i % 8)) |
| 929 | printk("\n"); |
| 930 | |
| 931 | #if !defined(CONFIG_BOOKE) |
| 932 | /* If executing with the IMMU off, adjust pc rather |
| 933 | * than print XXXXXXXX. |
| 934 | */ |
| 935 | if (!(regs->msr & MSR_IR)) |
| 936 | pc = (unsigned long)phys_to_virt(pc); |
| 937 | #endif |
| 938 | |
| 939 | if (!__kernel_text_address(pc) || |
| 940 | probe_kernel_address((unsigned int __user *)pc, instr)) { |
| 941 | printk(KERN_CONT "XXXXXXXX "); |
| 942 | } else { |
| 943 | if (regs->nip == pc) |
| 944 | printk(KERN_CONT "<%08x> ", instr); |
| 945 | else |
| 946 | printk(KERN_CONT "%08x ", instr); |
| 947 | } |
| 948 | |
| 949 | pc += sizeof(int); |
| 950 | } |
| 951 | |
| 952 | printk("\n"); |
| 953 | } |
| 954 | |
| 955 | static struct regbit { |
| 956 | unsigned long bit; |
| 957 | const char *name; |
| 958 | } msr_bits[] = { |
| 959 | #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) |
| 960 | {MSR_SF, "SF"}, |
| 961 | {MSR_HV, "HV"}, |
| 962 | #endif |
| 963 | {MSR_VEC, "VEC"}, |
| 964 | {MSR_VSX, "VSX"}, |
| 965 | #ifdef CONFIG_BOOKE |
| 966 | {MSR_CE, "CE"}, |
| 967 | #endif |
| 968 | {MSR_EE, "EE"}, |
| 969 | {MSR_PR, "PR"}, |
| 970 | {MSR_FP, "FP"}, |
| 971 | {MSR_ME, "ME"}, |
| 972 | #ifdef CONFIG_BOOKE |
| 973 | {MSR_DE, "DE"}, |
| 974 | #else |
| 975 | {MSR_SE, "SE"}, |
| 976 | {MSR_BE, "BE"}, |
| 977 | #endif |
| 978 | {MSR_IR, "IR"}, |
| 979 | {MSR_DR, "DR"}, |
| 980 | {MSR_PMM, "PMM"}, |
| 981 | #ifndef CONFIG_BOOKE |
| 982 | {MSR_RI, "RI"}, |
| 983 | {MSR_LE, "LE"}, |
| 984 | #endif |
| 985 | {0, NULL} |
| 986 | }; |
| 987 | |
| 988 | static void printbits(unsigned long val, struct regbit *bits) |
| 989 | { |
| 990 | const char *sep = ""; |
| 991 | |
| 992 | printk("<"); |
| 993 | for (; bits->bit; ++bits) |
| 994 | if (val & bits->bit) { |
| 995 | printk("%s%s", sep, bits->name); |
| 996 | sep = ","; |
| 997 | } |
| 998 | printk(">"); |
| 999 | } |
| 1000 | |
| 1001 | #ifdef CONFIG_PPC64 |
| 1002 | #define REG "%016lx" |
| 1003 | #define REGS_PER_LINE 4 |
| 1004 | #define LAST_VOLATILE 13 |
| 1005 | #else |
| 1006 | #define REG "%08lx" |
| 1007 | #define REGS_PER_LINE 8 |
| 1008 | #define LAST_VOLATILE 12 |
| 1009 | #endif |
| 1010 | |
| 1011 | void show_regs(struct pt_regs * regs) |
| 1012 | { |
| 1013 | int i, trap; |
| 1014 | |
| 1015 | show_regs_print_info(KERN_DEFAULT); |
| 1016 | |
| 1017 | printk("NIP: "REG" LR: "REG" CTR: "REG"\n", |
| 1018 | regs->nip, regs->link, regs->ctr); |
| 1019 | printk("REGS: %p TRAP: %04lx %s (%s)\n", |
| 1020 | regs, regs->trap, print_tainted(), init_utsname()->release); |
| 1021 | printk("MSR: "REG" ", regs->msr); |
| 1022 | printbits(regs->msr, msr_bits); |
| 1023 | printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); |
| 1024 | trap = TRAP(regs); |
| 1025 | if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) |
| 1026 | printk("CFAR: "REG" ", regs->orig_gpr3); |
| 1027 | if (trap == 0x200 || trap == 0x300 || trap == 0x600) |
| 1028 | #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) |
| 1029 | printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); |
| 1030 | #else |
| 1031 | printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); |
| 1032 | #endif |
| 1033 | #ifdef CONFIG_PPC64 |
| 1034 | printk("SOFTE: %ld ", regs->softe); |
| 1035 | #endif |
| 1036 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 1037 | if (MSR_TM_ACTIVE(regs->msr)) |
| 1038 | printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); |
| 1039 | #endif |
| 1040 | |
| 1041 | for (i = 0; i < 32; i++) { |
| 1042 | if ((i % REGS_PER_LINE) == 0) |
| 1043 | printk("\nGPR%02d: ", i); |
| 1044 | printk(REG " ", regs->gpr[i]); |
| 1045 | if (i == LAST_VOLATILE && !FULL_REGS(regs)) |
| 1046 | break; |
| 1047 | } |
| 1048 | printk("\n"); |
| 1049 | #ifdef CONFIG_KALLSYMS |
| 1050 | /* |
| 1051 | * Lookup NIP late so we have the best change of getting the |
| 1052 | * above info out without failing |
| 1053 | */ |
| 1054 | printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); |
| 1055 | printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); |
| 1056 | #endif |
| 1057 | show_stack(current, (unsigned long *) regs->gpr[1]); |
| 1058 | if (!user_mode(regs)) |
| 1059 | show_instructions(regs); |
| 1060 | } |
| 1061 | |
| 1062 | void exit_thread(void) |
| 1063 | { |
| 1064 | discard_lazy_cpu_state(); |
| 1065 | } |
| 1066 | |
| 1067 | void flush_thread(void) |
| 1068 | { |
| 1069 | discard_lazy_cpu_state(); |
| 1070 | |
| 1071 | #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| 1072 | flush_ptrace_hw_breakpoint(current); |
| 1073 | #else /* CONFIG_HAVE_HW_BREAKPOINT */ |
| 1074 | set_debug_reg_defaults(¤t->thread); |
| 1075 | #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| 1076 | } |
| 1077 | |
| 1078 | void |
| 1079 | release_thread(struct task_struct *t) |
| 1080 | { |
| 1081 | } |
| 1082 | |
| 1083 | /* |
| 1084 | * this gets called so that we can store coprocessor state into memory and |
| 1085 | * copy the current task into the new thread. |
| 1086 | */ |
| 1087 | int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) |
| 1088 | { |
| 1089 | flush_fp_to_thread(src); |
| 1090 | flush_altivec_to_thread(src); |
| 1091 | flush_vsx_to_thread(src); |
| 1092 | flush_spe_to_thread(src); |
| 1093 | /* |
| 1094 | * Flush TM state out so we can copy it. __switch_to_tm() does this |
| 1095 | * flush but it removes the checkpointed state from the current CPU and |
| 1096 | * transitions the CPU out of TM mode. Hence we need to call |
| 1097 | * tm_recheckpoint_new_task() (on the same task) to restore the |
| 1098 | * checkpointed state back and the TM mode. |
| 1099 | */ |
| 1100 | __switch_to_tm(src); |
| 1101 | tm_recheckpoint_new_task(src); |
| 1102 | |
| 1103 | *dst = *src; |
| 1104 | |
| 1105 | clear_task_ebb(dst); |
| 1106 | |
| 1107 | return 0; |
| 1108 | } |
| 1109 | |
| 1110 | static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) |
| 1111 | { |
| 1112 | #ifdef CONFIG_PPC_STD_MMU_64 |
| 1113 | unsigned long sp_vsid; |
| 1114 | unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; |
| 1115 | |
| 1116 | if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) |
| 1117 | sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) |
| 1118 | << SLB_VSID_SHIFT_1T; |
| 1119 | else |
| 1120 | sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) |
| 1121 | << SLB_VSID_SHIFT; |
| 1122 | sp_vsid |= SLB_VSID_KERNEL | llp; |
| 1123 | p->thread.ksp_vsid = sp_vsid; |
| 1124 | #endif |
| 1125 | } |
| 1126 | |
| 1127 | /* |
| 1128 | * Copy a thread.. |
| 1129 | */ |
| 1130 | |
| 1131 | /* |
| 1132 | * Copy architecture-specific thread state |
| 1133 | */ |
| 1134 | int copy_thread(unsigned long clone_flags, unsigned long usp, |
| 1135 | unsigned long kthread_arg, struct task_struct *p) |
| 1136 | { |
| 1137 | struct pt_regs *childregs, *kregs; |
| 1138 | extern void ret_from_fork(void); |
| 1139 | extern void ret_from_kernel_thread(void); |
| 1140 | void (*f)(void); |
| 1141 | unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; |
| 1142 | |
| 1143 | /* Copy registers */ |
| 1144 | sp -= sizeof(struct pt_regs); |
| 1145 | childregs = (struct pt_regs *) sp; |
| 1146 | if (unlikely(p->flags & PF_KTHREAD)) { |
| 1147 | /* kernel thread */ |
| 1148 | struct thread_info *ti = (void *)task_stack_page(p); |
| 1149 | memset(childregs, 0, sizeof(struct pt_regs)); |
| 1150 | childregs->gpr[1] = sp + sizeof(struct pt_regs); |
| 1151 | /* function */ |
| 1152 | if (usp) |
| 1153 | childregs->gpr[14] = ppc_function_entry((void *)usp); |
| 1154 | #ifdef CONFIG_PPC64 |
| 1155 | clear_tsk_thread_flag(p, TIF_32BIT); |
| 1156 | childregs->softe = 1; |
| 1157 | #endif |
| 1158 | childregs->gpr[15] = kthread_arg; |
| 1159 | p->thread.regs = NULL; /* no user register state */ |
| 1160 | ti->flags |= _TIF_RESTOREALL; |
| 1161 | f = ret_from_kernel_thread; |
| 1162 | } else { |
| 1163 | /* user thread */ |
| 1164 | struct pt_regs *regs = current_pt_regs(); |
| 1165 | CHECK_FULL_REGS(regs); |
| 1166 | *childregs = *regs; |
| 1167 | if (usp) |
| 1168 | childregs->gpr[1] = usp; |
| 1169 | p->thread.regs = childregs; |
| 1170 | childregs->gpr[3] = 0; /* Result from fork() */ |
| 1171 | if (clone_flags & CLONE_SETTLS) { |
| 1172 | #ifdef CONFIG_PPC64 |
| 1173 | if (!is_32bit_task()) |
| 1174 | childregs->gpr[13] = childregs->gpr[6]; |
| 1175 | else |
| 1176 | #endif |
| 1177 | childregs->gpr[2] = childregs->gpr[6]; |
| 1178 | } |
| 1179 | |
| 1180 | f = ret_from_fork; |
| 1181 | } |
| 1182 | sp -= STACK_FRAME_OVERHEAD; |
| 1183 | |
| 1184 | /* |
| 1185 | * The way this works is that at some point in the future |
| 1186 | * some task will call _switch to switch to the new task. |
| 1187 | * That will pop off the stack frame created below and start |
| 1188 | * the new task running at ret_from_fork. The new task will |
| 1189 | * do some house keeping and then return from the fork or clone |
| 1190 | * system call, using the stack frame created above. |
| 1191 | */ |
| 1192 | ((unsigned long *)sp)[0] = 0; |
| 1193 | sp -= sizeof(struct pt_regs); |
| 1194 | kregs = (struct pt_regs *) sp; |
| 1195 | sp -= STACK_FRAME_OVERHEAD; |
| 1196 | p->thread.ksp = sp; |
| 1197 | #ifdef CONFIG_PPC32 |
| 1198 | p->thread.ksp_limit = (unsigned long)task_stack_page(p) + |
| 1199 | _ALIGN_UP(sizeof(struct thread_info), 16); |
| 1200 | #endif |
| 1201 | #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| 1202 | p->thread.ptrace_bps[0] = NULL; |
| 1203 | #endif |
| 1204 | |
| 1205 | p->thread.fp_save_area = NULL; |
| 1206 | #ifdef CONFIG_ALTIVEC |
| 1207 | p->thread.vr_save_area = NULL; |
| 1208 | #endif |
| 1209 | |
| 1210 | setup_ksp_vsid(p, sp); |
| 1211 | |
| 1212 | #ifdef CONFIG_PPC64 |
| 1213 | if (cpu_has_feature(CPU_FTR_DSCR)) { |
| 1214 | p->thread.dscr_inherit = current->thread.dscr_inherit; |
| 1215 | p->thread.dscr = current->thread.dscr; |
| 1216 | } |
| 1217 | if (cpu_has_feature(CPU_FTR_HAS_PPR)) |
| 1218 | p->thread.ppr = INIT_PPR; |
| 1219 | #endif |
| 1220 | kregs->nip = ppc_function_entry(f); |
| 1221 | return 0; |
| 1222 | } |
| 1223 | |
| 1224 | /* |
| 1225 | * Set up a thread for executing a new program |
| 1226 | */ |
| 1227 | void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) |
| 1228 | { |
| 1229 | #ifdef CONFIG_PPC64 |
| 1230 | unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ |
| 1231 | #endif |
| 1232 | |
| 1233 | /* |
| 1234 | * If we exec out of a kernel thread then thread.regs will not be |
| 1235 | * set. Do it now. |
| 1236 | */ |
| 1237 | if (!current->thread.regs) { |
| 1238 | struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; |
| 1239 | current->thread.regs = regs - 1; |
| 1240 | } |
| 1241 | |
| 1242 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 1243 | /* |
| 1244 | * Clear any transactional state, we're exec()ing. The cause is |
| 1245 | * not important as there will never be a recheckpoint so it's not |
| 1246 | * user visible. |
| 1247 | */ |
| 1248 | if (MSR_TM_SUSPENDED(mfmsr())) |
| 1249 | tm_reclaim_current(0); |
| 1250 | #endif |
| 1251 | |
| 1252 | memset(regs->gpr, 0, sizeof(regs->gpr)); |
| 1253 | regs->ctr = 0; |
| 1254 | regs->link = 0; |
| 1255 | regs->xer = 0; |
| 1256 | regs->ccr = 0; |
| 1257 | regs->gpr[1] = sp; |
| 1258 | |
| 1259 | /* |
| 1260 | * We have just cleared all the nonvolatile GPRs, so make |
| 1261 | * FULL_REGS(regs) return true. This is necessary to allow |
| 1262 | * ptrace to examine the thread immediately after exec. |
| 1263 | */ |
| 1264 | regs->trap &= ~1UL; |
| 1265 | |
| 1266 | #ifdef CONFIG_PPC32 |
| 1267 | regs->mq = 0; |
| 1268 | regs->nip = start; |
| 1269 | regs->msr = MSR_USER; |
| 1270 | #else |
| 1271 | if (!is_32bit_task()) { |
| 1272 | unsigned long entry; |
| 1273 | |
| 1274 | if (is_elf2_task()) { |
| 1275 | /* Look ma, no function descriptors! */ |
| 1276 | entry = start; |
| 1277 | |
| 1278 | /* |
| 1279 | * Ulrich says: |
| 1280 | * The latest iteration of the ABI requires that when |
| 1281 | * calling a function (at its global entry point), |
| 1282 | * the caller must ensure r12 holds the entry point |
| 1283 | * address (so that the function can quickly |
| 1284 | * establish addressability). |
| 1285 | */ |
| 1286 | regs->gpr[12] = start; |
| 1287 | /* Make sure that's restored on entry to userspace. */ |
| 1288 | set_thread_flag(TIF_RESTOREALL); |
| 1289 | } else { |
| 1290 | unsigned long toc; |
| 1291 | |
| 1292 | /* start is a relocated pointer to the function |
| 1293 | * descriptor for the elf _start routine. The first |
| 1294 | * entry in the function descriptor is the entry |
| 1295 | * address of _start and the second entry is the TOC |
| 1296 | * value we need to use. |
| 1297 | */ |
| 1298 | __get_user(entry, (unsigned long __user *)start); |
| 1299 | __get_user(toc, (unsigned long __user *)start+1); |
| 1300 | |
| 1301 | /* Check whether the e_entry function descriptor entries |
| 1302 | * need to be relocated before we can use them. |
| 1303 | */ |
| 1304 | if (load_addr != 0) { |
| 1305 | entry += load_addr; |
| 1306 | toc += load_addr; |
| 1307 | } |
| 1308 | regs->gpr[2] = toc; |
| 1309 | } |
| 1310 | regs->nip = entry; |
| 1311 | regs->msr = MSR_USER64; |
| 1312 | } else { |
| 1313 | regs->nip = start; |
| 1314 | regs->gpr[2] = 0; |
| 1315 | regs->msr = MSR_USER32; |
| 1316 | } |
| 1317 | #endif |
| 1318 | discard_lazy_cpu_state(); |
| 1319 | #ifdef CONFIG_VSX |
| 1320 | current->thread.used_vsr = 0; |
| 1321 | #endif |
| 1322 | memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); |
| 1323 | current->thread.fp_save_area = NULL; |
| 1324 | #ifdef CONFIG_ALTIVEC |
| 1325 | memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); |
| 1326 | current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ |
| 1327 | current->thread.vr_save_area = NULL; |
| 1328 | current->thread.vrsave = 0; |
| 1329 | current->thread.used_vr = 0; |
| 1330 | #endif /* CONFIG_ALTIVEC */ |
| 1331 | #ifdef CONFIG_SPE |
| 1332 | memset(current->thread.evr, 0, sizeof(current->thread.evr)); |
| 1333 | current->thread.acc = 0; |
| 1334 | current->thread.spefscr = 0; |
| 1335 | current->thread.used_spe = 0; |
| 1336 | #endif /* CONFIG_SPE */ |
| 1337 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 1338 | if (cpu_has_feature(CPU_FTR_TM)) |
| 1339 | regs->msr |= MSR_TM; |
| 1340 | current->thread.tm_tfhar = 0; |
| 1341 | current->thread.tm_texasr = 0; |
| 1342 | current->thread.tm_tfiar = 0; |
| 1343 | #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| 1344 | } |
| 1345 | EXPORT_SYMBOL(start_thread); |
| 1346 | |
| 1347 | #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ |
| 1348 | | PR_FP_EXC_RES | PR_FP_EXC_INV) |
| 1349 | |
| 1350 | int set_fpexc_mode(struct task_struct *tsk, unsigned int val) |
| 1351 | { |
| 1352 | struct pt_regs *regs = tsk->thread.regs; |
| 1353 | |
| 1354 | /* This is a bit hairy. If we are an SPE enabled processor |
| 1355 | * (have embedded fp) we store the IEEE exception enable flags in |
| 1356 | * fpexc_mode. fpexc_mode is also used for setting FP exception |
| 1357 | * mode (asyn, precise, disabled) for 'Classic' FP. */ |
| 1358 | if (val & PR_FP_EXC_SW_ENABLE) { |
| 1359 | #ifdef CONFIG_SPE |
| 1360 | if (cpu_has_feature(CPU_FTR_SPE)) { |
| 1361 | /* |
| 1362 | * When the sticky exception bits are set |
| 1363 | * directly by userspace, it must call prctl |
| 1364 | * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE |
| 1365 | * in the existing prctl settings) or |
| 1366 | * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in |
| 1367 | * the bits being set). <fenv.h> functions |
| 1368 | * saving and restoring the whole |
| 1369 | * floating-point environment need to do so |
| 1370 | * anyway to restore the prctl settings from |
| 1371 | * the saved environment. |
| 1372 | */ |
| 1373 | tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); |
| 1374 | tsk->thread.fpexc_mode = val & |
| 1375 | (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); |
| 1376 | return 0; |
| 1377 | } else { |
| 1378 | return -EINVAL; |
| 1379 | } |
| 1380 | #else |
| 1381 | return -EINVAL; |
| 1382 | #endif |
| 1383 | } |
| 1384 | |
| 1385 | /* on a CONFIG_SPE this does not hurt us. The bits that |
| 1386 | * __pack_fe01 use do not overlap with bits used for |
| 1387 | * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits |
| 1388 | * on CONFIG_SPE implementations are reserved so writing to |
| 1389 | * them does not change anything */ |
| 1390 | if (val > PR_FP_EXC_PRECISE) |
| 1391 | return -EINVAL; |
| 1392 | tsk->thread.fpexc_mode = __pack_fe01(val); |
| 1393 | if (regs != NULL && (regs->msr & MSR_FP) != 0) |
| 1394 | regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) |
| 1395 | | tsk->thread.fpexc_mode; |
| 1396 | return 0; |
| 1397 | } |
| 1398 | |
| 1399 | int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) |
| 1400 | { |
| 1401 | unsigned int val; |
| 1402 | |
| 1403 | if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) |
| 1404 | #ifdef CONFIG_SPE |
| 1405 | if (cpu_has_feature(CPU_FTR_SPE)) { |
| 1406 | /* |
| 1407 | * When the sticky exception bits are set |
| 1408 | * directly by userspace, it must call prctl |
| 1409 | * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE |
| 1410 | * in the existing prctl settings) or |
| 1411 | * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in |
| 1412 | * the bits being set). <fenv.h> functions |
| 1413 | * saving and restoring the whole |
| 1414 | * floating-point environment need to do so |
| 1415 | * anyway to restore the prctl settings from |
| 1416 | * the saved environment. |
| 1417 | */ |
| 1418 | tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); |
| 1419 | val = tsk->thread.fpexc_mode; |
| 1420 | } else |
| 1421 | return -EINVAL; |
| 1422 | #else |
| 1423 | return -EINVAL; |
| 1424 | #endif |
| 1425 | else |
| 1426 | val = __unpack_fe01(tsk->thread.fpexc_mode); |
| 1427 | return put_user(val, (unsigned int __user *) adr); |
| 1428 | } |
| 1429 | |
| 1430 | int set_endian(struct task_struct *tsk, unsigned int val) |
| 1431 | { |
| 1432 | struct pt_regs *regs = tsk->thread.regs; |
| 1433 | |
| 1434 | if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || |
| 1435 | (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) |
| 1436 | return -EINVAL; |
| 1437 | |
| 1438 | if (regs == NULL) |
| 1439 | return -EINVAL; |
| 1440 | |
| 1441 | if (val == PR_ENDIAN_BIG) |
| 1442 | regs->msr &= ~MSR_LE; |
| 1443 | else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) |
| 1444 | regs->msr |= MSR_LE; |
| 1445 | else |
| 1446 | return -EINVAL; |
| 1447 | |
| 1448 | return 0; |
| 1449 | } |
| 1450 | |
| 1451 | int get_endian(struct task_struct *tsk, unsigned long adr) |
| 1452 | { |
| 1453 | struct pt_regs *regs = tsk->thread.regs; |
| 1454 | unsigned int val; |
| 1455 | |
| 1456 | if (!cpu_has_feature(CPU_FTR_PPC_LE) && |
| 1457 | !cpu_has_feature(CPU_FTR_REAL_LE)) |
| 1458 | return -EINVAL; |
| 1459 | |
| 1460 | if (regs == NULL) |
| 1461 | return -EINVAL; |
| 1462 | |
| 1463 | if (regs->msr & MSR_LE) { |
| 1464 | if (cpu_has_feature(CPU_FTR_REAL_LE)) |
| 1465 | val = PR_ENDIAN_LITTLE; |
| 1466 | else |
| 1467 | val = PR_ENDIAN_PPC_LITTLE; |
| 1468 | } else |
| 1469 | val = PR_ENDIAN_BIG; |
| 1470 | |
| 1471 | return put_user(val, (unsigned int __user *)adr); |
| 1472 | } |
| 1473 | |
| 1474 | int set_unalign_ctl(struct task_struct *tsk, unsigned int val) |
| 1475 | { |
| 1476 | tsk->thread.align_ctl = val; |
| 1477 | return 0; |
| 1478 | } |
| 1479 | |
| 1480 | int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) |
| 1481 | { |
| 1482 | return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); |
| 1483 | } |
| 1484 | |
| 1485 | static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, |
| 1486 | unsigned long nbytes) |
| 1487 | { |
| 1488 | unsigned long stack_page; |
| 1489 | unsigned long cpu = task_cpu(p); |
| 1490 | |
| 1491 | /* |
| 1492 | * Avoid crashing if the stack has overflowed and corrupted |
| 1493 | * task_cpu(p), which is in the thread_info struct. |
| 1494 | */ |
| 1495 | if (cpu < NR_CPUS && cpu_possible(cpu)) { |
| 1496 | stack_page = (unsigned long) hardirq_ctx[cpu]; |
| 1497 | if (sp >= stack_page + sizeof(struct thread_struct) |
| 1498 | && sp <= stack_page + THREAD_SIZE - nbytes) |
| 1499 | return 1; |
| 1500 | |
| 1501 | stack_page = (unsigned long) softirq_ctx[cpu]; |
| 1502 | if (sp >= stack_page + sizeof(struct thread_struct) |
| 1503 | && sp <= stack_page + THREAD_SIZE - nbytes) |
| 1504 | return 1; |
| 1505 | } |
| 1506 | return 0; |
| 1507 | } |
| 1508 | |
| 1509 | int validate_sp(unsigned long sp, struct task_struct *p, |
| 1510 | unsigned long nbytes) |
| 1511 | { |
| 1512 | unsigned long stack_page = (unsigned long)task_stack_page(p); |
| 1513 | |
| 1514 | if (sp >= stack_page + sizeof(struct thread_struct) |
| 1515 | && sp <= stack_page + THREAD_SIZE - nbytes) |
| 1516 | return 1; |
| 1517 | |
| 1518 | return valid_irq_stack(sp, p, nbytes); |
| 1519 | } |
| 1520 | |
| 1521 | EXPORT_SYMBOL(validate_sp); |
| 1522 | |
| 1523 | unsigned long get_wchan(struct task_struct *p) |
| 1524 | { |
| 1525 | unsigned long ip, sp; |
| 1526 | int count = 0; |
| 1527 | |
| 1528 | if (!p || p == current || p->state == TASK_RUNNING) |
| 1529 | return 0; |
| 1530 | |
| 1531 | sp = p->thread.ksp; |
| 1532 | if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) |
| 1533 | return 0; |
| 1534 | |
| 1535 | do { |
| 1536 | sp = *(unsigned long *)sp; |
| 1537 | if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) |
| 1538 | return 0; |
| 1539 | if (count > 0) { |
| 1540 | ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; |
| 1541 | if (!in_sched_functions(ip)) |
| 1542 | return ip; |
| 1543 | } |
| 1544 | } while (count++ < 16); |
| 1545 | return 0; |
| 1546 | } |
| 1547 | |
| 1548 | static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; |
| 1549 | |
| 1550 | void show_stack(struct task_struct *tsk, unsigned long *stack) |
| 1551 | { |
| 1552 | unsigned long sp, ip, lr, newsp; |
| 1553 | int count = 0; |
| 1554 | int firstframe = 1; |
| 1555 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| 1556 | int curr_frame = current->curr_ret_stack; |
| 1557 | extern void return_to_handler(void); |
| 1558 | unsigned long rth = (unsigned long)return_to_handler; |
| 1559 | #endif |
| 1560 | |
| 1561 | sp = (unsigned long) stack; |
| 1562 | if (tsk == NULL) |
| 1563 | tsk = current; |
| 1564 | if (sp == 0) { |
| 1565 | if (tsk == current) |
| 1566 | sp = current_stack_pointer(); |
| 1567 | else |
| 1568 | sp = tsk->thread.ksp; |
| 1569 | } |
| 1570 | |
| 1571 | lr = 0; |
| 1572 | printk("Call Trace:\n"); |
| 1573 | do { |
| 1574 | if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) |
| 1575 | return; |
| 1576 | |
| 1577 | stack = (unsigned long *) sp; |
| 1578 | newsp = stack[0]; |
| 1579 | ip = stack[STACK_FRAME_LR_SAVE]; |
| 1580 | if (!firstframe || ip != lr) { |
| 1581 | printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); |
| 1582 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| 1583 | if ((ip == rth) && curr_frame >= 0) { |
| 1584 | printk(" (%pS)", |
| 1585 | (void *)current->ret_stack[curr_frame].ret); |
| 1586 | curr_frame--; |
| 1587 | } |
| 1588 | #endif |
| 1589 | if (firstframe) |
| 1590 | printk(" (unreliable)"); |
| 1591 | printk("\n"); |
| 1592 | } |
| 1593 | firstframe = 0; |
| 1594 | |
| 1595 | /* |
| 1596 | * See if this is an exception frame. |
| 1597 | * We look for the "regshere" marker in the current frame. |
| 1598 | */ |
| 1599 | if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) |
| 1600 | && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { |
| 1601 | struct pt_regs *regs = (struct pt_regs *) |
| 1602 | (sp + STACK_FRAME_OVERHEAD); |
| 1603 | lr = regs->link; |
| 1604 | printk("--- interrupt: %lx at %pS\n LR = %pS\n", |
| 1605 | regs->trap, (void *)regs->nip, (void *)lr); |
| 1606 | firstframe = 1; |
| 1607 | } |
| 1608 | |
| 1609 | sp = newsp; |
| 1610 | } while (count++ < kstack_depth_to_print); |
| 1611 | } |
| 1612 | |
| 1613 | #ifdef CONFIG_PPC64 |
| 1614 | /* Called with hard IRQs off */ |
| 1615 | void notrace __ppc64_runlatch_on(void) |
| 1616 | { |
| 1617 | struct thread_info *ti = current_thread_info(); |
| 1618 | unsigned long ctrl; |
| 1619 | |
| 1620 | ctrl = mfspr(SPRN_CTRLF); |
| 1621 | ctrl |= CTRL_RUNLATCH; |
| 1622 | mtspr(SPRN_CTRLT, ctrl); |
| 1623 | |
| 1624 | ti->local_flags |= _TLF_RUNLATCH; |
| 1625 | } |
| 1626 | |
| 1627 | /* Called with hard IRQs off */ |
| 1628 | void notrace __ppc64_runlatch_off(void) |
| 1629 | { |
| 1630 | struct thread_info *ti = current_thread_info(); |
| 1631 | unsigned long ctrl; |
| 1632 | |
| 1633 | ti->local_flags &= ~_TLF_RUNLATCH; |
| 1634 | |
| 1635 | ctrl = mfspr(SPRN_CTRLF); |
| 1636 | ctrl &= ~CTRL_RUNLATCH; |
| 1637 | mtspr(SPRN_CTRLT, ctrl); |
| 1638 | } |
| 1639 | #endif /* CONFIG_PPC64 */ |
| 1640 | |
| 1641 | unsigned long arch_align_stack(unsigned long sp) |
| 1642 | { |
| 1643 | if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
| 1644 | sp -= get_random_int() & ~PAGE_MASK; |
| 1645 | return sp & ~0xf; |
| 1646 | } |
| 1647 | |
| 1648 | static inline unsigned long brk_rnd(void) |
| 1649 | { |
| 1650 | unsigned long rnd = 0; |
| 1651 | |
| 1652 | /* 8MB for 32bit, 1GB for 64bit */ |
| 1653 | if (is_32bit_task()) |
| 1654 | rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT))); |
| 1655 | else |
| 1656 | rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT))); |
| 1657 | |
| 1658 | return rnd << PAGE_SHIFT; |
| 1659 | } |
| 1660 | |
| 1661 | unsigned long arch_randomize_brk(struct mm_struct *mm) |
| 1662 | { |
| 1663 | unsigned long base = mm->brk; |
| 1664 | unsigned long ret; |
| 1665 | |
| 1666 | #ifdef CONFIG_PPC_STD_MMU_64 |
| 1667 | /* |
| 1668 | * If we are using 1TB segments and we are allowed to randomise |
| 1669 | * the heap, we can put it above 1TB so it is backed by a 1TB |
| 1670 | * segment. Otherwise the heap will be in the bottom 1TB |
| 1671 | * which always uses 256MB segments and this may result in a |
| 1672 | * performance penalty. |
| 1673 | */ |
| 1674 | if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) |
| 1675 | base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); |
| 1676 | #endif |
| 1677 | |
| 1678 | ret = PAGE_ALIGN(base + brk_rnd()); |
| 1679 | |
| 1680 | if (ret < mm->brk) |
| 1681 | return mm->brk; |
| 1682 | |
| 1683 | return ret; |
| 1684 | } |
| 1685 | |