Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * PowerPC version |
| 3 | * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| 4 | * |
| 5 | * Derived from "arch/i386/mm/fault.c" |
| 6 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 7 | * |
| 8 | * Modified by Cort Dougan and Paul Mackerras. |
| 9 | * |
| 10 | * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) |
| 11 | * |
| 12 | * This program is free software; you can redistribute it and/or |
| 13 | * modify it under the terms of the GNU General Public License |
| 14 | * as published by the Free Software Foundation; either version |
| 15 | * 2 of the License, or (at your option) any later version. |
| 16 | */ |
| 17 | |
| 18 | #include <linux/signal.h> |
| 19 | #include <linux/sched.h> |
| 20 | #include <linux/kernel.h> |
| 21 | #include <linux/errno.h> |
| 22 | #include <linux/string.h> |
| 23 | #include <linux/types.h> |
| 24 | #include <linux/ptrace.h> |
| 25 | #include <linux/mman.h> |
| 26 | #include <linux/mm.h> |
| 27 | #include <linux/interrupt.h> |
| 28 | #include <linux/highmem.h> |
| 29 | #include <linux/module.h> |
| 30 | #include <linux/kprobes.h> |
| 31 | #include <linux/kdebug.h> |
| 32 | #include <linux/perf_event.h> |
| 33 | #include <linux/ratelimit.h> |
| 34 | #include <linux/context_tracking.h> |
| 35 | #include <linux/hugetlb.h> |
| 36 | #include <linux/uaccess.h> |
| 37 | |
| 38 | #include <asm/firmware.h> |
| 39 | #include <asm/page.h> |
| 40 | #include <asm/pgtable.h> |
| 41 | #include <asm/mmu.h> |
| 42 | #include <asm/mmu_context.h> |
| 43 | #include <asm/tlbflush.h> |
| 44 | #include <asm/siginfo.h> |
| 45 | #include <asm/debug.h> |
| 46 | |
| 47 | #include "icswx.h" |
| 48 | |
| 49 | #ifdef CONFIG_KPROBES |
| 50 | static inline int notify_page_fault(struct pt_regs *regs) |
| 51 | { |
| 52 | int ret = 0; |
| 53 | |
| 54 | /* kprobe_running() needs smp_processor_id() */ |
| 55 | if (!user_mode(regs)) { |
| 56 | preempt_disable(); |
| 57 | if (kprobe_running() && kprobe_fault_handler(regs, 11)) |
| 58 | ret = 1; |
| 59 | preempt_enable(); |
| 60 | } |
| 61 | |
| 62 | return ret; |
| 63 | } |
| 64 | #else |
| 65 | static inline int notify_page_fault(struct pt_regs *regs) |
| 66 | { |
| 67 | return 0; |
| 68 | } |
| 69 | #endif |
| 70 | |
| 71 | /* |
| 72 | * Check whether the instruction at regs->nip is a store using |
| 73 | * an update addressing form which will update r1. |
| 74 | */ |
| 75 | static int store_updates_sp(struct pt_regs *regs) |
| 76 | { |
| 77 | unsigned int inst; |
| 78 | |
| 79 | if (get_user(inst, (unsigned int __user *)regs->nip)) |
| 80 | return 0; |
| 81 | /* check for 1 in the rA field */ |
| 82 | if (((inst >> 16) & 0x1f) != 1) |
| 83 | return 0; |
| 84 | /* check major opcode */ |
| 85 | switch (inst >> 26) { |
| 86 | case 37: /* stwu */ |
| 87 | case 39: /* stbu */ |
| 88 | case 45: /* sthu */ |
| 89 | case 53: /* stfsu */ |
| 90 | case 55: /* stfdu */ |
| 91 | return 1; |
| 92 | case 62: /* std or stdu */ |
| 93 | return (inst & 3) == 1; |
| 94 | case 31: |
| 95 | /* check minor opcode */ |
| 96 | switch ((inst >> 1) & 0x3ff) { |
| 97 | case 181: /* stdux */ |
| 98 | case 183: /* stwux */ |
| 99 | case 247: /* stbux */ |
| 100 | case 439: /* sthux */ |
| 101 | case 695: /* stfsux */ |
| 102 | case 759: /* stfdux */ |
| 103 | return 1; |
| 104 | } |
| 105 | } |
| 106 | return 0; |
| 107 | } |
| 108 | /* |
| 109 | * do_page_fault error handling helpers |
| 110 | */ |
| 111 | |
| 112 | #define MM_FAULT_RETURN 0 |
| 113 | #define MM_FAULT_CONTINUE -1 |
| 114 | #define MM_FAULT_ERR(sig) (sig) |
| 115 | |
| 116 | static int do_sigbus(struct pt_regs *regs, unsigned long address, |
| 117 | unsigned int fault) |
| 118 | { |
| 119 | siginfo_t info; |
| 120 | unsigned int lsb = 0; |
| 121 | |
| 122 | up_read(¤t->mm->mmap_sem); |
| 123 | |
| 124 | if (!user_mode(regs)) |
| 125 | return MM_FAULT_ERR(SIGBUS); |
| 126 | |
| 127 | current->thread.trap_nr = BUS_ADRERR; |
| 128 | info.si_signo = SIGBUS; |
| 129 | info.si_errno = 0; |
| 130 | info.si_code = BUS_ADRERR; |
| 131 | info.si_addr = (void __user *)address; |
| 132 | #ifdef CONFIG_MEMORY_FAILURE |
| 133 | if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { |
| 134 | pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", |
| 135 | current->comm, current->pid, address); |
| 136 | info.si_code = BUS_MCEERR_AR; |
| 137 | } |
| 138 | |
| 139 | if (fault & VM_FAULT_HWPOISON_LARGE) |
| 140 | lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); |
| 141 | if (fault & VM_FAULT_HWPOISON) |
| 142 | lsb = PAGE_SHIFT; |
| 143 | #endif |
| 144 | info.si_addr_lsb = lsb; |
| 145 | force_sig_info(SIGBUS, &info, current); |
| 146 | return MM_FAULT_RETURN; |
| 147 | } |
| 148 | |
| 149 | static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault) |
| 150 | { |
| 151 | /* |
| 152 | * Pagefault was interrupted by SIGKILL. We have no reason to |
| 153 | * continue the pagefault. |
| 154 | */ |
| 155 | if (fatal_signal_pending(current)) { |
| 156 | /* |
| 157 | * If we have retry set, the mmap semaphore will have |
| 158 | * alrady been released in __lock_page_or_retry(). Else |
| 159 | * we release it now. |
| 160 | */ |
| 161 | if (!(fault & VM_FAULT_RETRY)) |
| 162 | up_read(¤t->mm->mmap_sem); |
| 163 | /* Coming from kernel, we need to deal with uaccess fixups */ |
| 164 | if (user_mode(regs)) |
| 165 | return MM_FAULT_RETURN; |
| 166 | return MM_FAULT_ERR(SIGKILL); |
| 167 | } |
| 168 | |
| 169 | /* No fault: be happy */ |
| 170 | if (!(fault & VM_FAULT_ERROR)) |
| 171 | return MM_FAULT_CONTINUE; |
| 172 | |
| 173 | /* Out of memory */ |
| 174 | if (fault & VM_FAULT_OOM) { |
| 175 | up_read(¤t->mm->mmap_sem); |
| 176 | |
| 177 | /* |
| 178 | * We ran out of memory, or some other thing happened to us that |
| 179 | * made us unable to handle the page fault gracefully. |
| 180 | */ |
| 181 | if (!user_mode(regs)) |
| 182 | return MM_FAULT_ERR(SIGKILL); |
| 183 | pagefault_out_of_memory(); |
| 184 | return MM_FAULT_RETURN; |
| 185 | } |
| 186 | |
| 187 | if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) |
| 188 | return do_sigbus(regs, addr, fault); |
| 189 | |
| 190 | /* We don't understand the fault code, this is fatal */ |
| 191 | BUG(); |
| 192 | return MM_FAULT_CONTINUE; |
| 193 | } |
| 194 | |
| 195 | /* |
| 196 | * For 600- and 800-family processors, the error_code parameter is DSISR |
| 197 | * for a data fault, SRR1 for an instruction fault. For 400-family processors |
| 198 | * the error_code parameter is ESR for a data fault, 0 for an instruction |
| 199 | * fault. |
| 200 | * For 64-bit processors, the error_code parameter is |
| 201 | * - DSISR for a non-SLB data access fault, |
| 202 | * - SRR1 & 0x08000000 for a non-SLB instruction access fault |
| 203 | * - 0 any SLB fault. |
| 204 | * |
| 205 | * The return value is 0 if the fault was handled, or the signal |
| 206 | * number if this is a kernel fault that can't be handled here. |
| 207 | */ |
| 208 | int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address, |
| 209 | unsigned long error_code) |
| 210 | { |
| 211 | enum ctx_state prev_state = exception_enter(); |
| 212 | struct vm_area_struct * vma; |
| 213 | struct mm_struct *mm = current->mm; |
| 214 | unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
| 215 | int code = SEGV_MAPERR; |
| 216 | int is_write = 0; |
| 217 | int trap = TRAP(regs); |
| 218 | int is_exec = trap == 0x400; |
| 219 | int fault; |
| 220 | int rc = 0, store_update_sp = 0; |
| 221 | |
| 222 | #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) |
| 223 | /* |
| 224 | * Fortunately the bit assignments in SRR1 for an instruction |
| 225 | * fault and DSISR for a data fault are mostly the same for the |
| 226 | * bits we are interested in. But there are some bits which |
| 227 | * indicate errors in DSISR but can validly be set in SRR1. |
| 228 | */ |
| 229 | if (trap == 0x400) |
| 230 | error_code &= 0x48200000; |
| 231 | else |
| 232 | is_write = error_code & DSISR_ISSTORE; |
| 233 | #else |
| 234 | is_write = error_code & ESR_DST; |
| 235 | #endif /* CONFIG_4xx || CONFIG_BOOKE */ |
| 236 | |
| 237 | #ifdef CONFIG_PPC_ICSWX |
| 238 | /* |
| 239 | * we need to do this early because this "data storage |
| 240 | * interrupt" does not update the DAR/DEAR so we don't want to |
| 241 | * look at it |
| 242 | */ |
| 243 | if (error_code & ICSWX_DSI_UCT) { |
| 244 | rc = acop_handle_fault(regs, address, error_code); |
| 245 | if (rc) |
| 246 | goto bail; |
| 247 | } |
| 248 | #endif /* CONFIG_PPC_ICSWX */ |
| 249 | |
| 250 | if (notify_page_fault(regs)) |
| 251 | goto bail; |
| 252 | |
| 253 | if (unlikely(debugger_fault_handler(regs))) |
| 254 | goto bail; |
| 255 | |
| 256 | /* On a kernel SLB miss we can only check for a valid exception entry */ |
| 257 | if (!user_mode(regs) && (address >= TASK_SIZE)) { |
| 258 | rc = SIGSEGV; |
| 259 | goto bail; |
| 260 | } |
| 261 | |
| 262 | #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \ |
| 263 | defined(CONFIG_PPC_BOOK3S_64)) |
| 264 | if (error_code & DSISR_DABRMATCH) { |
| 265 | /* breakpoint match */ |
| 266 | do_break(regs, address, error_code); |
| 267 | goto bail; |
| 268 | } |
| 269 | #endif |
| 270 | |
| 271 | /* We restore the interrupt state now */ |
| 272 | if (!arch_irq_disabled_regs(regs)) |
| 273 | local_irq_enable(); |
| 274 | |
| 275 | if (faulthandler_disabled() || mm == NULL) { |
| 276 | if (!user_mode(regs)) { |
| 277 | rc = SIGSEGV; |
| 278 | goto bail; |
| 279 | } |
| 280 | /* faulthandler_disabled() in user mode is really bad, |
| 281 | as is current->mm == NULL. */ |
| 282 | printk(KERN_EMERG "Page fault in user mode with " |
| 283 | "faulthandler_disabled() = %d mm = %p\n", |
| 284 | faulthandler_disabled(), mm); |
| 285 | printk(KERN_EMERG "NIP = %lx MSR = %lx\n", |
| 286 | regs->nip, regs->msr); |
| 287 | die("Weird page fault", regs, SIGSEGV); |
| 288 | } |
| 289 | |
| 290 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); |
| 291 | |
| 292 | /* |
| 293 | * We want to do this outside mmap_sem, because reading code around nip |
| 294 | * can result in fault, which will cause a deadlock when called with |
| 295 | * mmap_sem held |
| 296 | */ |
| 297 | if (user_mode(regs)) |
| 298 | store_update_sp = store_updates_sp(regs); |
| 299 | |
| 300 | if (user_mode(regs)) |
| 301 | flags |= FAULT_FLAG_USER; |
| 302 | |
| 303 | /* When running in the kernel we expect faults to occur only to |
| 304 | * addresses in user space. All other faults represent errors in the |
| 305 | * kernel and should generate an OOPS. Unfortunately, in the case of an |
| 306 | * erroneous fault occurring in a code path which already holds mmap_sem |
| 307 | * we will deadlock attempting to validate the fault against the |
| 308 | * address space. Luckily the kernel only validly references user |
| 309 | * space from well defined areas of code, which are listed in the |
| 310 | * exceptions table. |
| 311 | * |
| 312 | * As the vast majority of faults will be valid we will only perform |
| 313 | * the source reference check when there is a possibility of a deadlock. |
| 314 | * Attempt to lock the address space, if we cannot we then validate the |
| 315 | * source. If this is invalid we can skip the address space check, |
| 316 | * thus avoiding the deadlock. |
| 317 | */ |
| 318 | if (!down_read_trylock(&mm->mmap_sem)) { |
| 319 | if (!user_mode(regs) && !search_exception_tables(regs->nip)) |
| 320 | goto bad_area_nosemaphore; |
| 321 | |
| 322 | retry: |
| 323 | down_read(&mm->mmap_sem); |
| 324 | } else { |
| 325 | /* |
| 326 | * The above down_read_trylock() might have succeeded in |
| 327 | * which case we'll have missed the might_sleep() from |
| 328 | * down_read(): |
| 329 | */ |
| 330 | might_sleep(); |
| 331 | } |
| 332 | |
| 333 | vma = find_vma(mm, address); |
| 334 | if (!vma) |
| 335 | goto bad_area; |
| 336 | if (vma->vm_start <= address) |
| 337 | goto good_area; |
| 338 | if (!(vma->vm_flags & VM_GROWSDOWN)) |
| 339 | goto bad_area; |
| 340 | |
| 341 | /* |
| 342 | * N.B. The POWER/Open ABI allows programs to access up to |
| 343 | * 288 bytes below the stack pointer. |
| 344 | * The kernel signal delivery code writes up to about 1.5kB |
| 345 | * below the stack pointer (r1) before decrementing it. |
| 346 | * The exec code can write slightly over 640kB to the stack |
| 347 | * before setting the user r1. Thus we allow the stack to |
| 348 | * expand to 1MB without further checks. |
| 349 | */ |
| 350 | if (address + 0x100000 < vma->vm_end) { |
| 351 | /* get user regs even if this fault is in kernel mode */ |
| 352 | struct pt_regs *uregs = current->thread.regs; |
| 353 | if (uregs == NULL) |
| 354 | goto bad_area; |
| 355 | |
| 356 | /* |
| 357 | * A user-mode access to an address a long way below |
| 358 | * the stack pointer is only valid if the instruction |
| 359 | * is one which would update the stack pointer to the |
| 360 | * address accessed if the instruction completed, |
| 361 | * i.e. either stwu rs,n(r1) or stwux rs,r1,rb |
| 362 | * (or the byte, halfword, float or double forms). |
| 363 | * |
| 364 | * If we don't check this then any write to the area |
| 365 | * between the last mapped region and the stack will |
| 366 | * expand the stack rather than segfaulting. |
| 367 | */ |
| 368 | if (address + 2048 < uregs->gpr[1] && !store_update_sp) |
| 369 | goto bad_area; |
| 370 | } |
| 371 | if (expand_stack(vma, address)) |
| 372 | goto bad_area; |
| 373 | |
| 374 | good_area: |
| 375 | code = SEGV_ACCERR; |
| 376 | #if defined(CONFIG_6xx) |
| 377 | if (error_code & 0x95700000) |
| 378 | /* an error such as lwarx to I/O controller space, |
| 379 | address matching DABR, eciwx, etc. */ |
| 380 | goto bad_area; |
| 381 | #endif /* CONFIG_6xx */ |
| 382 | #if defined(CONFIG_8xx) |
| 383 | /* The MPC8xx seems to always set 0x80000000, which is |
| 384 | * "undefined". Of those that can be set, this is the only |
| 385 | * one which seems bad. |
| 386 | */ |
| 387 | if (error_code & 0x10000000) |
| 388 | /* Guarded storage error. */ |
| 389 | goto bad_area; |
| 390 | #endif /* CONFIG_8xx */ |
| 391 | |
| 392 | if (is_exec) { |
| 393 | /* |
| 394 | * Allow execution from readable areas if the MMU does not |
| 395 | * provide separate controls over reading and executing. |
| 396 | * |
| 397 | * Note: That code used to not be enabled for 4xx/BookE. |
| 398 | * It is now as I/D cache coherency for these is done at |
| 399 | * set_pte_at() time and I see no reason why the test |
| 400 | * below wouldn't be valid on those processors. This -may- |
| 401 | * break programs compiled with a really old ABI though. |
| 402 | */ |
| 403 | if (!(vma->vm_flags & VM_EXEC) && |
| 404 | (cpu_has_feature(CPU_FTR_NOEXECUTE) || |
| 405 | !(vma->vm_flags & (VM_READ | VM_WRITE)))) |
| 406 | goto bad_area; |
| 407 | #ifdef CONFIG_PPC_STD_MMU |
| 408 | /* |
| 409 | * protfault should only happen due to us |
| 410 | * mapping a region readonly temporarily. PROT_NONE |
| 411 | * is also covered by the VMA check above. |
| 412 | */ |
| 413 | WARN_ON_ONCE(error_code & DSISR_PROTFAULT); |
| 414 | #endif /* CONFIG_PPC_STD_MMU */ |
| 415 | /* a write */ |
| 416 | } else if (is_write) { |
| 417 | if (!(vma->vm_flags & VM_WRITE)) |
| 418 | goto bad_area; |
| 419 | flags |= FAULT_FLAG_WRITE; |
| 420 | /* a read */ |
| 421 | } else { |
| 422 | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) |
| 423 | goto bad_area; |
| 424 | WARN_ON_ONCE(error_code & DSISR_PROTFAULT); |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * If for any reason at all we couldn't handle the fault, |
| 429 | * make sure we exit gracefully rather than endlessly redo |
| 430 | * the fault. |
| 431 | */ |
| 432 | fault = handle_mm_fault(mm, vma, address, flags); |
| 433 | if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) { |
| 434 | if (fault & VM_FAULT_SIGSEGV) |
| 435 | goto bad_area; |
| 436 | rc = mm_fault_error(regs, address, fault); |
| 437 | if (rc >= MM_FAULT_RETURN) |
| 438 | goto bail; |
| 439 | else |
| 440 | rc = 0; |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * Major/minor page fault accounting is only done on the |
| 445 | * initial attempt. If we go through a retry, it is extremely |
| 446 | * likely that the page will be found in page cache at that point. |
| 447 | */ |
| 448 | if (flags & FAULT_FLAG_ALLOW_RETRY) { |
| 449 | if (fault & VM_FAULT_MAJOR) { |
| 450 | current->maj_flt++; |
| 451 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, |
| 452 | regs, address); |
| 453 | #ifdef CONFIG_PPC_SMLPAR |
| 454 | if (firmware_has_feature(FW_FEATURE_CMO)) { |
| 455 | u32 page_ins; |
| 456 | |
| 457 | preempt_disable(); |
| 458 | page_ins = be32_to_cpu(get_lppaca()->page_ins); |
| 459 | page_ins += 1 << PAGE_FACTOR; |
| 460 | get_lppaca()->page_ins = cpu_to_be32(page_ins); |
| 461 | preempt_enable(); |
| 462 | } |
| 463 | #endif /* CONFIG_PPC_SMLPAR */ |
| 464 | } else { |
| 465 | current->min_flt++; |
| 466 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, |
| 467 | regs, address); |
| 468 | } |
| 469 | if (fault & VM_FAULT_RETRY) { |
| 470 | /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk |
| 471 | * of starvation. */ |
| 472 | flags &= ~FAULT_FLAG_ALLOW_RETRY; |
| 473 | flags |= FAULT_FLAG_TRIED; |
| 474 | goto retry; |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | up_read(&mm->mmap_sem); |
| 479 | goto bail; |
| 480 | |
| 481 | bad_area: |
| 482 | up_read(&mm->mmap_sem); |
| 483 | |
| 484 | bad_area_nosemaphore: |
| 485 | /* User mode accesses cause a SIGSEGV */ |
| 486 | if (user_mode(regs)) { |
| 487 | _exception(SIGSEGV, regs, code, address); |
| 488 | goto bail; |
| 489 | } |
| 490 | |
| 491 | if (is_exec && (error_code & DSISR_PROTFAULT)) |
| 492 | printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected" |
| 493 | " page (%lx) - exploit attempt? (uid: %d)\n", |
| 494 | address, from_kuid(&init_user_ns, current_uid())); |
| 495 | |
| 496 | rc = SIGSEGV; |
| 497 | |
| 498 | bail: |
| 499 | exception_exit(prev_state); |
| 500 | return rc; |
| 501 | |
| 502 | } |
| 503 | |
| 504 | /* |
| 505 | * bad_page_fault is called when we have a bad access from the kernel. |
| 506 | * It is called from the DSI and ISI handlers in head.S and from some |
| 507 | * of the procedures in traps.c. |
| 508 | */ |
| 509 | void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) |
| 510 | { |
| 511 | const struct exception_table_entry *entry; |
| 512 | |
| 513 | /* Are we prepared to handle this fault? */ |
| 514 | if ((entry = search_exception_tables(regs->nip)) != NULL) { |
| 515 | regs->nip = entry->fixup; |
| 516 | return; |
| 517 | } |
| 518 | |
| 519 | /* kernel has accessed a bad area */ |
| 520 | |
| 521 | switch (regs->trap) { |
| 522 | case 0x300: |
| 523 | case 0x380: |
| 524 | printk(KERN_ALERT "Unable to handle kernel paging request for " |
| 525 | "data at address 0x%08lx\n", regs->dar); |
| 526 | break; |
| 527 | case 0x400: |
| 528 | case 0x480: |
| 529 | printk(KERN_ALERT "Unable to handle kernel paging request for " |
| 530 | "instruction fetch\n"); |
| 531 | break; |
| 532 | case 0x600: |
| 533 | printk(KERN_ALERT "Unable to handle kernel paging request for " |
| 534 | "unaligned access at address 0x%08lx\n", regs->dar); |
| 535 | break; |
| 536 | default: |
| 537 | printk(KERN_ALERT "Unable to handle kernel paging request for " |
| 538 | "unknown fault\n"); |
| 539 | break; |
| 540 | } |
| 541 | printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", |
| 542 | regs->nip); |
| 543 | |
| 544 | if (task_stack_end_corrupted(current)) |
| 545 | printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); |
| 546 | |
| 547 | die("Kernel access of bad area", regs, sig); |
| 548 | } |