blob: ea960d6609177faa86780e6164f26e4d3ef51ac2 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * Support the cycle counter clocksource and tile timer clock event device.
15 */
16
17#include <linux/time.h>
18#include <linux/timex.h>
19#include <linux/clocksource.h>
20#include <linux/clockchips.h>
21#include <linux/hardirq.h>
22#include <linux/sched.h>
23#include <linux/smp.h>
24#include <linux/delay.h>
25#include <linux/module.h>
26#include <linux/timekeeper_internal.h>
27#include <asm/irq_regs.h>
28#include <asm/traps.h>
29#include <asm/vdso.h>
30#include <hv/hypervisor.h>
31#include <arch/interrupts.h>
32#include <arch/spr_def.h>
33
34
35/*
36 * Define the cycle counter clock source.
37 */
38
39/* How many cycles per second we are running at. */
40static cycles_t cycles_per_sec __write_once;
41
42cycles_t get_clock_rate(void)
43{
44 return cycles_per_sec;
45}
46
47#if CHIP_HAS_SPLIT_CYCLE()
48cycles_t get_cycles(void)
49{
50 unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH);
51 unsigned int low = __insn_mfspr(SPR_CYCLE_LOW);
52 unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH);
53
54 while (unlikely(high != high2)) {
55 low = __insn_mfspr(SPR_CYCLE_LOW);
56 high = high2;
57 high2 = __insn_mfspr(SPR_CYCLE_HIGH);
58 }
59
60 return (((cycles_t)high) << 32) | low;
61}
62EXPORT_SYMBOL(get_cycles);
63#endif
64
65/*
66 * We use a relatively small shift value so that sched_clock()
67 * won't wrap around very often.
68 */
69#define SCHED_CLOCK_SHIFT 10
70
71static unsigned long sched_clock_mult __write_once;
72
73static cycles_t clocksource_get_cycles(struct clocksource *cs)
74{
75 return get_cycles();
76}
77
78static struct clocksource cycle_counter_cs = {
79 .name = "cycle counter",
80 .rating = 300,
81 .read = clocksource_get_cycles,
82 .mask = CLOCKSOURCE_MASK(64),
83 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
84};
85
86/*
87 * Called very early from setup_arch() to set cycles_per_sec.
88 * We initialize it early so we can use it to set up loops_per_jiffy.
89 */
90void __init setup_clock(void)
91{
92 cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED);
93 sched_clock_mult =
94 clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT);
95}
96
97void __init calibrate_delay(void)
98{
99 loops_per_jiffy = get_clock_rate() / HZ;
100 pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n",
101 loops_per_jiffy / (500000 / HZ),
102 (loops_per_jiffy / (5000 / HZ)) % 100, loops_per_jiffy);
103}
104
105/* Called fairly late in init/main.c, but before we go smp. */
106void __init time_init(void)
107{
108 /* Initialize and register the clock source. */
109 clocksource_register_hz(&cycle_counter_cs, cycles_per_sec);
110
111 /* Start up the tile-timer interrupt source on the boot cpu. */
112 setup_tile_timer();
113}
114
115/*
116 * Define the tile timer clock event device. The timer is driven by
117 * the TILE_TIMER_CONTROL register, which consists of a 31-bit down
118 * counter, plus bit 31, which signifies that the counter has wrapped
119 * from zero to (2**31) - 1. The INT_TILE_TIMER interrupt will be
120 * raised as long as bit 31 is set.
121 *
122 * The TILE_MINSEC value represents the largest range of real-time
123 * we can possibly cover with the timer, based on MAX_TICK combined
124 * with the slowest reasonable clock rate we might run at.
125 */
126
127#define MAX_TICK 0x7fffffff /* we have 31 bits of countdown timer */
128#define TILE_MINSEC 5 /* timer covers no more than 5 seconds */
129
130static int tile_timer_set_next_event(unsigned long ticks,
131 struct clock_event_device *evt)
132{
133 BUG_ON(ticks > MAX_TICK);
134 __insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks);
135 arch_local_irq_unmask_now(INT_TILE_TIMER);
136 return 0;
137}
138
139/*
140 * Whenever anyone tries to change modes, we just mask interrupts
141 * and wait for the next event to get set.
142 */
143static int tile_timer_shutdown(struct clock_event_device *evt)
144{
145 arch_local_irq_mask_now(INT_TILE_TIMER);
146 return 0;
147}
148
149/*
150 * Set min_delta_ns to 1 microsecond, since it takes about
151 * that long to fire the interrupt.
152 */
153static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = {
154 .name = "tile timer",
155 .features = CLOCK_EVT_FEAT_ONESHOT,
156 .min_delta_ns = 1000,
157 .rating = 100,
158 .irq = -1,
159 .set_next_event = tile_timer_set_next_event,
160 .set_state_shutdown = tile_timer_shutdown,
161 .set_state_oneshot = tile_timer_shutdown,
162 .tick_resume = tile_timer_shutdown,
163};
164
165void setup_tile_timer(void)
166{
167 struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
168
169 /* Fill in fields that are speed-specific. */
170 clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC);
171 evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt);
172
173 /* Mark as being for this cpu only. */
174 evt->cpumask = cpumask_of(smp_processor_id());
175
176 /* Start out with timer not firing. */
177 arch_local_irq_mask_now(INT_TILE_TIMER);
178
179 /* Register tile timer. */
180 clockevents_register_device(evt);
181}
182
183/* Called from the interrupt vector. */
184void do_timer_interrupt(struct pt_regs *regs, int fault_num)
185{
186 struct pt_regs *old_regs = set_irq_regs(regs);
187 struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
188
189 /*
190 * Mask the timer interrupt here, since we are a oneshot timer
191 * and there are now by definition no events pending.
192 */
193 arch_local_irq_mask(INT_TILE_TIMER);
194
195 /* Track time spent here in an interrupt context */
196 irq_enter();
197
198 /* Track interrupt count. */
199 __this_cpu_inc(irq_stat.irq_timer_count);
200
201 /* Call the generic timer handler */
202 evt->event_handler(evt);
203
204 /*
205 * Track time spent against the current process again and
206 * process any softirqs if they are waiting.
207 */
208 irq_exit();
209
210 set_irq_regs(old_regs);
211}
212
213/*
214 * Scheduler clock - returns current time in nanosec units.
215 * Note that with LOCKDEP, this is called during lockdep_init(), and
216 * we will claim that sched_clock() is zero for a little while, until
217 * we run setup_clock(), above.
218 */
219unsigned long long sched_clock(void)
220{
221 return mult_frac(get_cycles(),
222 sched_clock_mult, 1ULL << SCHED_CLOCK_SHIFT);
223}
224
225int setup_profiling_timer(unsigned int multiplier)
226{
227 return -EINVAL;
228}
229
230/*
231 * Use the tile timer to convert nsecs to core clock cycles, relying
232 * on it having the same frequency as SPR_CYCLE.
233 */
234cycles_t ns2cycles(unsigned long nsecs)
235{
236 /*
237 * We do not have to disable preemption here as each core has the same
238 * clock frequency.
239 */
240 struct clock_event_device *dev = raw_cpu_ptr(&tile_timer);
241
242 /*
243 * as in clocksource.h and x86's timer.h, we split the calculation
244 * into 2 parts to avoid unecessary overflow of the intermediate
245 * value. This will not lead to any loss of precision.
246 */
247 u64 quot = (u64)nsecs >> dev->shift;
248 u64 rem = (u64)nsecs & ((1ULL << dev->shift) - 1);
249 return quot * dev->mult + ((rem * dev->mult) >> dev->shift);
250}
251
252void update_vsyscall_tz(void)
253{
254 write_seqcount_begin(&vdso_data->tz_seq);
255 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
256 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
257 write_seqcount_end(&vdso_data->tz_seq);
258}
259
260void update_vsyscall(struct timekeeper *tk)
261{
262 if (tk->tkr_mono.clock != &cycle_counter_cs)
263 return;
264
265 write_seqcount_begin(&vdso_data->tb_seq);
266
267 vdso_data->cycle_last = tk->tkr_mono.cycle_last;
268 vdso_data->mask = tk->tkr_mono.mask;
269 vdso_data->mult = tk->tkr_mono.mult;
270 vdso_data->shift = tk->tkr_mono.shift;
271
272 vdso_data->wall_time_sec = tk->xtime_sec;
273 vdso_data->wall_time_snsec = tk->tkr_mono.xtime_nsec;
274
275 vdso_data->monotonic_time_sec = tk->xtime_sec
276 + tk->wall_to_monotonic.tv_sec;
277 vdso_data->monotonic_time_snsec = tk->tkr_mono.xtime_nsec
278 + ((u64)tk->wall_to_monotonic.tv_nsec
279 << tk->tkr_mono.shift);
280 while (vdso_data->monotonic_time_snsec >=
281 (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
282 vdso_data->monotonic_time_snsec -=
283 ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
284 vdso_data->monotonic_time_sec++;
285 }
286
287 vdso_data->wall_time_coarse_sec = tk->xtime_sec;
288 vdso_data->wall_time_coarse_nsec = (long)(tk->tkr_mono.xtime_nsec >>
289 tk->tkr_mono.shift);
290
291 vdso_data->monotonic_time_coarse_sec =
292 vdso_data->wall_time_coarse_sec + tk->wall_to_monotonic.tv_sec;
293 vdso_data->monotonic_time_coarse_nsec =
294 vdso_data->wall_time_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
295
296 while (vdso_data->monotonic_time_coarse_nsec >= NSEC_PER_SEC) {
297 vdso_data->monotonic_time_coarse_nsec -= NSEC_PER_SEC;
298 vdso_data->monotonic_time_coarse_sec++;
299 }
300
301 write_seqcount_end(&vdso_data->tb_seq);
302}