blob: b4f3930266b11329117e2ea318a36ef1681af3b6 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Software multibuffer async crypto daemon.
3 *
4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
5 *
6 * Adapted from crypto daemon.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 */
14
15#include <crypto/algapi.h>
16#include <crypto/internal/hash.h>
17#include <crypto/internal/aead.h>
18#include <crypto/mcryptd.h>
19#include <crypto/crypto_wq.h>
20#include <linux/err.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/list.h>
24#include <linux/module.h>
25#include <linux/scatterlist.h>
26#include <linux/sched.h>
27#include <linux/slab.h>
28#include <linux/hardirq.h>
29
30#define MCRYPTD_MAX_CPU_QLEN 100
31#define MCRYPTD_BATCH 9
32
33static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
34 unsigned int tail);
35
36struct mcryptd_flush_list {
37 struct list_head list;
38 struct mutex lock;
39};
40
41static struct mcryptd_flush_list __percpu *mcryptd_flist;
42
43struct hashd_instance_ctx {
44 struct crypto_shash_spawn spawn;
45 struct mcryptd_queue *queue;
46};
47
48static void mcryptd_queue_worker(struct work_struct *work);
49
50void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
51{
52 struct mcryptd_flush_list *flist;
53
54 if (!cstate->flusher_engaged) {
55 /* put the flusher on the flush list */
56 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
57 mutex_lock(&flist->lock);
58 list_add_tail(&cstate->flush_list, &flist->list);
59 cstate->flusher_engaged = true;
60 cstate->next_flush = jiffies + delay;
61 queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
62 &cstate->flush, delay);
63 mutex_unlock(&flist->lock);
64 }
65}
66EXPORT_SYMBOL(mcryptd_arm_flusher);
67
68static int mcryptd_init_queue(struct mcryptd_queue *queue,
69 unsigned int max_cpu_qlen)
70{
71 int cpu;
72 struct mcryptd_cpu_queue *cpu_queue;
73
74 queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
75 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
76 if (!queue->cpu_queue)
77 return -ENOMEM;
78 for_each_possible_cpu(cpu) {
79 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
80 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
81 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
82 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
83 }
84 return 0;
85}
86
87static void mcryptd_fini_queue(struct mcryptd_queue *queue)
88{
89 int cpu;
90 struct mcryptd_cpu_queue *cpu_queue;
91
92 for_each_possible_cpu(cpu) {
93 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
94 BUG_ON(cpu_queue->queue.qlen);
95 }
96 free_percpu(queue->cpu_queue);
97}
98
99static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
100 struct crypto_async_request *request,
101 struct mcryptd_hash_request_ctx *rctx)
102{
103 int cpu, err;
104 struct mcryptd_cpu_queue *cpu_queue;
105
106 cpu = get_cpu();
107 cpu_queue = this_cpu_ptr(queue->cpu_queue);
108 rctx->tag.cpu = cpu;
109
110 err = crypto_enqueue_request(&cpu_queue->queue, request);
111 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
112 cpu, cpu_queue, request);
113 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
114 put_cpu();
115
116 return err;
117}
118
119/*
120 * Try to opportunisticlly flush the partially completed jobs if
121 * crypto daemon is the only task running.
122 */
123static void mcryptd_opportunistic_flush(void)
124{
125 struct mcryptd_flush_list *flist;
126 struct mcryptd_alg_cstate *cstate;
127
128 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
129 while (single_task_running()) {
130 mutex_lock(&flist->lock);
131 if (list_empty(&flist->list)) {
132 mutex_unlock(&flist->lock);
133 return;
134 }
135 cstate = list_entry(flist->list.next,
136 struct mcryptd_alg_cstate, flush_list);
137 if (!cstate->flusher_engaged) {
138 mutex_unlock(&flist->lock);
139 return;
140 }
141 list_del(&cstate->flush_list);
142 cstate->flusher_engaged = false;
143 mutex_unlock(&flist->lock);
144 cstate->alg_state->flusher(cstate);
145 }
146}
147
148/*
149 * Called in workqueue context, do one real cryption work (via
150 * req->complete) and reschedule itself if there are more work to
151 * do.
152 */
153static void mcryptd_queue_worker(struct work_struct *work)
154{
155 struct mcryptd_cpu_queue *cpu_queue;
156 struct crypto_async_request *req, *backlog;
157 int i;
158
159 /*
160 * Need to loop through more than once for multi-buffer to
161 * be effective.
162 */
163
164 cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
165 i = 0;
166 while (i < MCRYPTD_BATCH || single_task_running()) {
167 /*
168 * preempt_disable/enable is used to prevent
169 * being preempted by mcryptd_enqueue_request()
170 */
171 local_bh_disable();
172 preempt_disable();
173 backlog = crypto_get_backlog(&cpu_queue->queue);
174 req = crypto_dequeue_request(&cpu_queue->queue);
175 preempt_enable();
176 local_bh_enable();
177
178 if (!req) {
179 mcryptd_opportunistic_flush();
180 return;
181 }
182
183 if (backlog)
184 backlog->complete(backlog, -EINPROGRESS);
185 req->complete(req, 0);
186 if (!cpu_queue->queue.qlen)
187 return;
188 ++i;
189 }
190 if (cpu_queue->queue.qlen)
191 queue_work(kcrypto_wq, &cpu_queue->work);
192}
193
194void mcryptd_flusher(struct work_struct *__work)
195{
196 struct mcryptd_alg_cstate *alg_cpu_state;
197 struct mcryptd_alg_state *alg_state;
198 struct mcryptd_flush_list *flist;
199 int cpu;
200
201 cpu = smp_processor_id();
202 alg_cpu_state = container_of(to_delayed_work(__work),
203 struct mcryptd_alg_cstate, flush);
204 alg_state = alg_cpu_state->alg_state;
205 if (alg_cpu_state->cpu != cpu)
206 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
207 cpu, alg_cpu_state->cpu);
208
209 if (alg_cpu_state->flusher_engaged) {
210 flist = per_cpu_ptr(mcryptd_flist, cpu);
211 mutex_lock(&flist->lock);
212 list_del(&alg_cpu_state->flush_list);
213 alg_cpu_state->flusher_engaged = false;
214 mutex_unlock(&flist->lock);
215 alg_state->flusher(alg_cpu_state);
216 }
217}
218EXPORT_SYMBOL_GPL(mcryptd_flusher);
219
220static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
221{
222 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
223 struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
224
225 return ictx->queue;
226}
227
228static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
229 unsigned int tail)
230{
231 char *p;
232 struct crypto_instance *inst;
233 int err;
234
235 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
236 if (!p)
237 return ERR_PTR(-ENOMEM);
238
239 inst = (void *)(p + head);
240
241 err = -ENAMETOOLONG;
242 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
243 "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
244 goto out_free_inst;
245
246 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
247
248 inst->alg.cra_priority = alg->cra_priority + 50;
249 inst->alg.cra_blocksize = alg->cra_blocksize;
250 inst->alg.cra_alignmask = alg->cra_alignmask;
251
252out:
253 return p;
254
255out_free_inst:
256 kfree(p);
257 p = ERR_PTR(err);
258 goto out;
259}
260
261static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
262 u32 *mask)
263{
264 struct crypto_attr_type *algt;
265
266 algt = crypto_get_attr_type(tb);
267 if (IS_ERR(algt))
268 return false;
269
270 *type |= algt->type & CRYPTO_ALG_INTERNAL;
271 *mask |= algt->mask & CRYPTO_ALG_INTERNAL;
272
273 if (*type & *mask & CRYPTO_ALG_INTERNAL)
274 return true;
275 else
276 return false;
277}
278
279static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
280{
281 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
282 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
283 struct crypto_shash_spawn *spawn = &ictx->spawn;
284 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
285 struct crypto_shash *hash;
286
287 hash = crypto_spawn_shash(spawn);
288 if (IS_ERR(hash))
289 return PTR_ERR(hash);
290
291 ctx->child = hash;
292 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
293 sizeof(struct mcryptd_hash_request_ctx) +
294 crypto_shash_descsize(hash));
295 return 0;
296}
297
298static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
299{
300 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
301
302 crypto_free_shash(ctx->child);
303}
304
305static int mcryptd_hash_setkey(struct crypto_ahash *parent,
306 const u8 *key, unsigned int keylen)
307{
308 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
309 struct crypto_shash *child = ctx->child;
310 int err;
311
312 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
313 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
314 CRYPTO_TFM_REQ_MASK);
315 err = crypto_shash_setkey(child, key, keylen);
316 crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
317 CRYPTO_TFM_RES_MASK);
318 return err;
319}
320
321static int mcryptd_hash_enqueue(struct ahash_request *req,
322 crypto_completion_t complete)
323{
324 int ret;
325
326 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
327 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
328 struct mcryptd_queue *queue =
329 mcryptd_get_queue(crypto_ahash_tfm(tfm));
330
331 rctx->complete = req->base.complete;
332 req->base.complete = complete;
333
334 ret = mcryptd_enqueue_request(queue, &req->base, rctx);
335
336 return ret;
337}
338
339static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
340{
341 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
342 struct crypto_shash *child = ctx->child;
343 struct ahash_request *req = ahash_request_cast(req_async);
344 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
345 struct shash_desc *desc = &rctx->desc;
346
347 if (unlikely(err == -EINPROGRESS))
348 goto out;
349
350 desc->tfm = child;
351 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
352
353 err = crypto_shash_init(desc);
354
355 req->base.complete = rctx->complete;
356
357out:
358 local_bh_disable();
359 rctx->complete(&req->base, err);
360 local_bh_enable();
361}
362
363static int mcryptd_hash_init_enqueue(struct ahash_request *req)
364{
365 return mcryptd_hash_enqueue(req, mcryptd_hash_init);
366}
367
368static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
369{
370 struct ahash_request *req = ahash_request_cast(req_async);
371 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
372
373 if (unlikely(err == -EINPROGRESS))
374 goto out;
375
376 err = shash_ahash_mcryptd_update(req, &rctx->desc);
377 if (err) {
378 req->base.complete = rctx->complete;
379 goto out;
380 }
381
382 return;
383out:
384 local_bh_disable();
385 rctx->complete(&req->base, err);
386 local_bh_enable();
387}
388
389static int mcryptd_hash_update_enqueue(struct ahash_request *req)
390{
391 return mcryptd_hash_enqueue(req, mcryptd_hash_update);
392}
393
394static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
395{
396 struct ahash_request *req = ahash_request_cast(req_async);
397 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
398
399 if (unlikely(err == -EINPROGRESS))
400 goto out;
401
402 err = shash_ahash_mcryptd_final(req, &rctx->desc);
403 if (err) {
404 req->base.complete = rctx->complete;
405 goto out;
406 }
407
408 return;
409out:
410 local_bh_disable();
411 rctx->complete(&req->base, err);
412 local_bh_enable();
413}
414
415static int mcryptd_hash_final_enqueue(struct ahash_request *req)
416{
417 return mcryptd_hash_enqueue(req, mcryptd_hash_final);
418}
419
420static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
421{
422 struct ahash_request *req = ahash_request_cast(req_async);
423 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
424
425 if (unlikely(err == -EINPROGRESS))
426 goto out;
427
428 err = shash_ahash_mcryptd_finup(req, &rctx->desc);
429
430 if (err) {
431 req->base.complete = rctx->complete;
432 goto out;
433 }
434
435 return;
436out:
437 local_bh_disable();
438 rctx->complete(&req->base, err);
439 local_bh_enable();
440}
441
442static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
443{
444 return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
445}
446
447static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
448{
449 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
450 struct crypto_shash *child = ctx->child;
451 struct ahash_request *req = ahash_request_cast(req_async);
452 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
453 struct shash_desc *desc = &rctx->desc;
454
455 if (unlikely(err == -EINPROGRESS))
456 goto out;
457
458 desc->tfm = child;
459 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; /* check this again */
460
461 err = shash_ahash_mcryptd_digest(req, desc);
462
463 if (err) {
464 req->base.complete = rctx->complete;
465 goto out;
466 }
467
468 return;
469out:
470 local_bh_disable();
471 rctx->complete(&req->base, err);
472 local_bh_enable();
473}
474
475static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
476{
477 return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
478}
479
480static int mcryptd_hash_export(struct ahash_request *req, void *out)
481{
482 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
483
484 return crypto_shash_export(&rctx->desc, out);
485}
486
487static int mcryptd_hash_import(struct ahash_request *req, const void *in)
488{
489 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
490
491 return crypto_shash_import(&rctx->desc, in);
492}
493
494static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
495 struct mcryptd_queue *queue)
496{
497 struct hashd_instance_ctx *ctx;
498 struct ahash_instance *inst;
499 struct shash_alg *salg;
500 struct crypto_alg *alg;
501 u32 type = 0;
502 u32 mask = 0;
503 int err;
504
505 if (!mcryptd_check_internal(tb, &type, &mask))
506 return -EINVAL;
507
508 salg = shash_attr_alg(tb[1], type, mask);
509 if (IS_ERR(salg))
510 return PTR_ERR(salg);
511
512 alg = &salg->base;
513 pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
514 inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
515 sizeof(*ctx));
516 err = PTR_ERR(inst);
517 if (IS_ERR(inst))
518 goto out_put_alg;
519
520 ctx = ahash_instance_ctx(inst);
521 ctx->queue = queue;
522
523 err = crypto_init_shash_spawn(&ctx->spawn, salg,
524 ahash_crypto_instance(inst));
525 if (err)
526 goto out_free_inst;
527
528 type = CRYPTO_ALG_ASYNC;
529 if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
530 type |= CRYPTO_ALG_INTERNAL;
531 inst->alg.halg.base.cra_flags = type;
532
533 inst->alg.halg.digestsize = salg->digestsize;
534 inst->alg.halg.statesize = salg->statesize;
535 inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
536
537 inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
538 inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
539
540 inst->alg.init = mcryptd_hash_init_enqueue;
541 inst->alg.update = mcryptd_hash_update_enqueue;
542 inst->alg.final = mcryptd_hash_final_enqueue;
543 inst->alg.finup = mcryptd_hash_finup_enqueue;
544 inst->alg.export = mcryptd_hash_export;
545 inst->alg.import = mcryptd_hash_import;
546 inst->alg.setkey = mcryptd_hash_setkey;
547 inst->alg.digest = mcryptd_hash_digest_enqueue;
548
549 err = ahash_register_instance(tmpl, inst);
550 if (err) {
551 crypto_drop_shash(&ctx->spawn);
552out_free_inst:
553 kfree(inst);
554 }
555
556out_put_alg:
557 crypto_mod_put(alg);
558 return err;
559}
560
561static struct mcryptd_queue mqueue;
562
563static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
564{
565 struct crypto_attr_type *algt;
566
567 algt = crypto_get_attr_type(tb);
568 if (IS_ERR(algt))
569 return PTR_ERR(algt);
570
571 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
572 case CRYPTO_ALG_TYPE_DIGEST:
573 return mcryptd_create_hash(tmpl, tb, &mqueue);
574 break;
575 }
576
577 return -EINVAL;
578}
579
580static void mcryptd_free(struct crypto_instance *inst)
581{
582 struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
583 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
584
585 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
586 case CRYPTO_ALG_TYPE_AHASH:
587 crypto_drop_shash(&hctx->spawn);
588 kfree(ahash_instance(inst));
589 return;
590 default:
591 crypto_drop_spawn(&ctx->spawn);
592 kfree(inst);
593 }
594}
595
596static struct crypto_template mcryptd_tmpl = {
597 .name = "mcryptd",
598 .create = mcryptd_create,
599 .free = mcryptd_free,
600 .module = THIS_MODULE,
601};
602
603struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
604 u32 type, u32 mask)
605{
606 char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
607 struct crypto_ahash *tfm;
608
609 if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
610 "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
611 return ERR_PTR(-EINVAL);
612 tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
613 if (IS_ERR(tfm))
614 return ERR_CAST(tfm);
615 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
616 crypto_free_ahash(tfm);
617 return ERR_PTR(-EINVAL);
618 }
619
620 return __mcryptd_ahash_cast(tfm);
621}
622EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
623
624int shash_ahash_mcryptd_digest(struct ahash_request *req,
625 struct shash_desc *desc)
626{
627 int err;
628
629 err = crypto_shash_init(desc) ?:
630 shash_ahash_mcryptd_finup(req, desc);
631
632 return err;
633}
634EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_digest);
635
636int shash_ahash_mcryptd_update(struct ahash_request *req,
637 struct shash_desc *desc)
638{
639 struct crypto_shash *tfm = desc->tfm;
640 struct shash_alg *shash = crypto_shash_alg(tfm);
641
642 /* alignment is to be done by multi-buffer crypto algorithm if needed */
643
644 return shash->update(desc, NULL, 0);
645}
646EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_update);
647
648int shash_ahash_mcryptd_finup(struct ahash_request *req,
649 struct shash_desc *desc)
650{
651 struct crypto_shash *tfm = desc->tfm;
652 struct shash_alg *shash = crypto_shash_alg(tfm);
653
654 /* alignment is to be done by multi-buffer crypto algorithm if needed */
655
656 return shash->finup(desc, NULL, 0, req->result);
657}
658EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_finup);
659
660int shash_ahash_mcryptd_final(struct ahash_request *req,
661 struct shash_desc *desc)
662{
663 struct crypto_shash *tfm = desc->tfm;
664 struct shash_alg *shash = crypto_shash_alg(tfm);
665
666 /* alignment is to be done by multi-buffer crypto algorithm if needed */
667
668 return shash->final(desc, req->result);
669}
670EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_final);
671
672struct crypto_shash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
673{
674 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
675
676 return ctx->child;
677}
678EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
679
680struct shash_desc *mcryptd_shash_desc(struct ahash_request *req)
681{
682 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
683 return &rctx->desc;
684}
685EXPORT_SYMBOL_GPL(mcryptd_shash_desc);
686
687void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
688{
689 crypto_free_ahash(&tfm->base);
690}
691EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
692
693
694static int __init mcryptd_init(void)
695{
696 int err, cpu;
697 struct mcryptd_flush_list *flist;
698
699 mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
700 for_each_possible_cpu(cpu) {
701 flist = per_cpu_ptr(mcryptd_flist, cpu);
702 INIT_LIST_HEAD(&flist->list);
703 mutex_init(&flist->lock);
704 }
705
706 err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
707 if (err) {
708 free_percpu(mcryptd_flist);
709 return err;
710 }
711
712 err = crypto_register_template(&mcryptd_tmpl);
713 if (err) {
714 mcryptd_fini_queue(&mqueue);
715 free_percpu(mcryptd_flist);
716 }
717
718 return err;
719}
720
721static void __exit mcryptd_exit(void)
722{
723 mcryptd_fini_queue(&mqueue);
724 crypto_unregister_template(&mcryptd_tmpl);
725 free_percpu(mcryptd_flist);
726}
727
728subsys_initcall(mcryptd_init);
729module_exit(mcryptd_exit);
730
731MODULE_LICENSE("GPL");
732MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
733MODULE_ALIAS_CRYPTO("mcryptd");