Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2014 Samsung Electronics Co., Ltd. |
| 3 | * Author: Thomas Abraham <thomas.ab@samsung.com> |
| 4 | * |
| 5 | * Copyright (c) 2015 Samsung Electronics Co., Ltd. |
| 6 | * Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License version 2 as |
| 10 | * published by the Free Software Foundation. |
| 11 | * |
| 12 | * This file contains the utility function to register CPU clock for Samsung |
| 13 | * Exynos platforms. A CPU clock is defined as a clock supplied to a CPU or a |
| 14 | * group of CPUs. The CPU clock is typically derived from a hierarchy of clock |
| 15 | * blocks which includes mux and divider blocks. There are a number of other |
| 16 | * auxiliary clocks supplied to the CPU domain such as the debug blocks and AXI |
| 17 | * clock for CPU domain. The rates of these auxiliary clocks are related to the |
| 18 | * CPU clock rate and this relation is usually specified in the hardware manual |
| 19 | * of the SoC or supplied after the SoC characterization. |
| 20 | * |
| 21 | * The below implementation of the CPU clock allows the rate changes of the CPU |
| 22 | * clock and the corresponding rate changes of the auxillary clocks of the CPU |
| 23 | * domain. The platform clock driver provides a clock register configuration |
| 24 | * for each configurable rate which is then used to program the clock hardware |
| 25 | * registers to acheive a fast co-oridinated rate change for all the CPU domain |
| 26 | * clocks. |
| 27 | * |
| 28 | * On a rate change request for the CPU clock, the rate change is propagated |
| 29 | * upto the PLL supplying the clock to the CPU domain clock blocks. While the |
| 30 | * CPU domain PLL is reconfigured, the CPU domain clocks are driven using an |
| 31 | * alternate clock source. If required, the alternate clock source is divided |
| 32 | * down in order to keep the output clock rate within the previous OPP limits. |
| 33 | */ |
| 34 | |
| 35 | #include <linux/errno.h> |
| 36 | #include <linux/slab.h> |
| 37 | #include <linux/clk.h> |
| 38 | #include <linux/clk-provider.h> |
| 39 | #include "clk-cpu.h" |
| 40 | |
| 41 | #define E4210_SRC_CPU 0x0 |
| 42 | #define E4210_STAT_CPU 0x200 |
| 43 | #define E4210_DIV_CPU0 0x300 |
| 44 | #define E4210_DIV_CPU1 0x304 |
| 45 | #define E4210_DIV_STAT_CPU0 0x400 |
| 46 | #define E4210_DIV_STAT_CPU1 0x404 |
| 47 | |
| 48 | #define E4210_DIV0_RATIO0_MASK 0x7 |
| 49 | #define E4210_DIV1_HPM_MASK (0x7 << 4) |
| 50 | #define E4210_DIV1_COPY_MASK (0x7 << 0) |
| 51 | #define E4210_MUX_HPM_MASK (1 << 20) |
| 52 | #define E4210_DIV0_ATB_SHIFT 16 |
| 53 | #define E4210_DIV0_ATB_MASK (DIV_MASK << E4210_DIV0_ATB_SHIFT) |
| 54 | |
| 55 | #define MAX_DIV 8 |
| 56 | #define DIV_MASK 7 |
| 57 | #define DIV_MASK_ALL 0xffffffff |
| 58 | #define MUX_MASK 7 |
| 59 | |
| 60 | /* |
| 61 | * Helper function to wait until divider(s) have stabilized after the divider |
| 62 | * value has changed. |
| 63 | */ |
| 64 | static void wait_until_divider_stable(void __iomem *div_reg, unsigned long mask) |
| 65 | { |
| 66 | unsigned long timeout = jiffies + msecs_to_jiffies(10); |
| 67 | |
| 68 | do { |
| 69 | if (!(readl(div_reg) & mask)) |
| 70 | return; |
| 71 | } while (time_before(jiffies, timeout)); |
| 72 | |
| 73 | if (!(readl(div_reg) & mask)) |
| 74 | return; |
| 75 | |
| 76 | pr_err("%s: timeout in divider stablization\n", __func__); |
| 77 | } |
| 78 | |
| 79 | /* |
| 80 | * Helper function to wait until mux has stabilized after the mux selection |
| 81 | * value was changed. |
| 82 | */ |
| 83 | static void wait_until_mux_stable(void __iomem *mux_reg, u32 mux_pos, |
| 84 | unsigned long mux_value) |
| 85 | { |
| 86 | unsigned long timeout = jiffies + msecs_to_jiffies(10); |
| 87 | |
| 88 | do { |
| 89 | if (((readl(mux_reg) >> mux_pos) & MUX_MASK) == mux_value) |
| 90 | return; |
| 91 | } while (time_before(jiffies, timeout)); |
| 92 | |
| 93 | if (((readl(mux_reg) >> mux_pos) & MUX_MASK) == mux_value) |
| 94 | return; |
| 95 | |
| 96 | pr_err("%s: re-parenting mux timed-out\n", __func__); |
| 97 | } |
| 98 | |
| 99 | /* common round rate callback useable for all types of CPU clocks */ |
| 100 | static long exynos_cpuclk_round_rate(struct clk_hw *hw, |
| 101 | unsigned long drate, unsigned long *prate) |
| 102 | { |
| 103 | struct clk_hw *parent = clk_hw_get_parent(hw); |
| 104 | *prate = clk_hw_round_rate(parent, drate); |
| 105 | return *prate; |
| 106 | } |
| 107 | |
| 108 | /* common recalc rate callback useable for all types of CPU clocks */ |
| 109 | static unsigned long exynos_cpuclk_recalc_rate(struct clk_hw *hw, |
| 110 | unsigned long parent_rate) |
| 111 | { |
| 112 | /* |
| 113 | * The CPU clock output (armclk) rate is the same as its parent |
| 114 | * rate. Although there exist certain dividers inside the CPU |
| 115 | * clock block that could be used to divide the parent clock, |
| 116 | * the driver does not make use of them currently, except during |
| 117 | * frequency transitions. |
| 118 | */ |
| 119 | return parent_rate; |
| 120 | } |
| 121 | |
| 122 | static const struct clk_ops exynos_cpuclk_clk_ops = { |
| 123 | .recalc_rate = exynos_cpuclk_recalc_rate, |
| 124 | .round_rate = exynos_cpuclk_round_rate, |
| 125 | }; |
| 126 | |
| 127 | /* |
| 128 | * Helper function to set the 'safe' dividers for the CPU clock. The parameters |
| 129 | * div and mask contain the divider value and the register bit mask of the |
| 130 | * dividers to be programmed. |
| 131 | */ |
| 132 | static void exynos_set_safe_div(void __iomem *base, unsigned long div, |
| 133 | unsigned long mask) |
| 134 | { |
| 135 | unsigned long div0; |
| 136 | |
| 137 | div0 = readl(base + E4210_DIV_CPU0); |
| 138 | div0 = (div0 & ~mask) | (div & mask); |
| 139 | writel(div0, base + E4210_DIV_CPU0); |
| 140 | wait_until_divider_stable(base + E4210_DIV_STAT_CPU0, mask); |
| 141 | } |
| 142 | |
| 143 | /* handler for pre-rate change notification from parent clock */ |
| 144 | static int exynos_cpuclk_pre_rate_change(struct clk_notifier_data *ndata, |
| 145 | struct exynos_cpuclk *cpuclk, void __iomem *base) |
| 146 | { |
| 147 | const struct exynos_cpuclk_cfg_data *cfg_data = cpuclk->cfg; |
| 148 | unsigned long alt_prate = clk_get_rate(cpuclk->alt_parent); |
| 149 | unsigned long alt_div = 0, alt_div_mask = DIV_MASK; |
| 150 | unsigned long div0, div1 = 0, mux_reg; |
| 151 | unsigned long flags; |
| 152 | |
| 153 | /* find out the divider values to use for clock data */ |
| 154 | while ((cfg_data->prate * 1000) != ndata->new_rate) { |
| 155 | if (cfg_data->prate == 0) |
| 156 | return -EINVAL; |
| 157 | cfg_data++; |
| 158 | } |
| 159 | |
| 160 | spin_lock_irqsave(cpuclk->lock, flags); |
| 161 | |
| 162 | /* |
| 163 | * For the selected PLL clock frequency, get the pre-defined divider |
| 164 | * values. If the clock for sclk_hpm is not sourced from apll, then |
| 165 | * the values for DIV_COPY and DIV_HPM dividers need not be set. |
| 166 | */ |
| 167 | div0 = cfg_data->div0; |
| 168 | if (cpuclk->flags & CLK_CPU_HAS_DIV1) { |
| 169 | div1 = cfg_data->div1; |
| 170 | if (readl(base + E4210_SRC_CPU) & E4210_MUX_HPM_MASK) |
| 171 | div1 = readl(base + E4210_DIV_CPU1) & |
| 172 | (E4210_DIV1_HPM_MASK | E4210_DIV1_COPY_MASK); |
| 173 | } |
| 174 | |
| 175 | /* |
| 176 | * If the old parent clock speed is less than the clock speed of |
| 177 | * the alternate parent, then it should be ensured that at no point |
| 178 | * the armclk speed is more than the old_prate until the dividers are |
| 179 | * set. Also workaround the issue of the dividers being set to lower |
| 180 | * values before the parent clock speed is set to new lower speed |
| 181 | * (this can result in too high speed of armclk output clocks). |
| 182 | */ |
| 183 | if (alt_prate > ndata->old_rate || ndata->old_rate > ndata->new_rate) { |
| 184 | unsigned long tmp_rate = min(ndata->old_rate, ndata->new_rate); |
| 185 | |
| 186 | alt_div = DIV_ROUND_UP(alt_prate, tmp_rate) - 1; |
| 187 | WARN_ON(alt_div >= MAX_DIV); |
| 188 | |
| 189 | if (cpuclk->flags & CLK_CPU_NEEDS_DEBUG_ALT_DIV) { |
| 190 | /* |
| 191 | * In Exynos4210, ATB clock parent is also mout_core. So |
| 192 | * ATB clock also needs to be mantained at safe speed. |
| 193 | */ |
| 194 | alt_div |= E4210_DIV0_ATB_MASK; |
| 195 | alt_div_mask |= E4210_DIV0_ATB_MASK; |
| 196 | } |
| 197 | exynos_set_safe_div(base, alt_div, alt_div_mask); |
| 198 | div0 |= alt_div; |
| 199 | } |
| 200 | |
| 201 | /* select sclk_mpll as the alternate parent */ |
| 202 | mux_reg = readl(base + E4210_SRC_CPU); |
| 203 | writel(mux_reg | (1 << 16), base + E4210_SRC_CPU); |
| 204 | wait_until_mux_stable(base + E4210_STAT_CPU, 16, 2); |
| 205 | |
| 206 | /* alternate parent is active now. set the dividers */ |
| 207 | writel(div0, base + E4210_DIV_CPU0); |
| 208 | wait_until_divider_stable(base + E4210_DIV_STAT_CPU0, DIV_MASK_ALL); |
| 209 | |
| 210 | if (cpuclk->flags & CLK_CPU_HAS_DIV1) { |
| 211 | writel(div1, base + E4210_DIV_CPU1); |
| 212 | wait_until_divider_stable(base + E4210_DIV_STAT_CPU1, |
| 213 | DIV_MASK_ALL); |
| 214 | } |
| 215 | |
| 216 | spin_unlock_irqrestore(cpuclk->lock, flags); |
| 217 | return 0; |
| 218 | } |
| 219 | |
| 220 | /* handler for post-rate change notification from parent clock */ |
| 221 | static int exynos_cpuclk_post_rate_change(struct clk_notifier_data *ndata, |
| 222 | struct exynos_cpuclk *cpuclk, void __iomem *base) |
| 223 | { |
| 224 | const struct exynos_cpuclk_cfg_data *cfg_data = cpuclk->cfg; |
| 225 | unsigned long div = 0, div_mask = DIV_MASK; |
| 226 | unsigned long mux_reg; |
| 227 | unsigned long flags; |
| 228 | |
| 229 | /* find out the divider values to use for clock data */ |
| 230 | if (cpuclk->flags & CLK_CPU_NEEDS_DEBUG_ALT_DIV) { |
| 231 | while ((cfg_data->prate * 1000) != ndata->new_rate) { |
| 232 | if (cfg_data->prate == 0) |
| 233 | return -EINVAL; |
| 234 | cfg_data++; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | spin_lock_irqsave(cpuclk->lock, flags); |
| 239 | |
| 240 | /* select mout_apll as the alternate parent */ |
| 241 | mux_reg = readl(base + E4210_SRC_CPU); |
| 242 | writel(mux_reg & ~(1 << 16), base + E4210_SRC_CPU); |
| 243 | wait_until_mux_stable(base + E4210_STAT_CPU, 16, 1); |
| 244 | |
| 245 | if (cpuclk->flags & CLK_CPU_NEEDS_DEBUG_ALT_DIV) { |
| 246 | div |= (cfg_data->div0 & E4210_DIV0_ATB_MASK); |
| 247 | div_mask |= E4210_DIV0_ATB_MASK; |
| 248 | } |
| 249 | |
| 250 | exynos_set_safe_div(base, div, div_mask); |
| 251 | spin_unlock_irqrestore(cpuclk->lock, flags); |
| 252 | return 0; |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * This notifier function is called for the pre-rate and post-rate change |
| 257 | * notifications of the parent clock of cpuclk. |
| 258 | */ |
| 259 | static int exynos_cpuclk_notifier_cb(struct notifier_block *nb, |
| 260 | unsigned long event, void *data) |
| 261 | { |
| 262 | struct clk_notifier_data *ndata = data; |
| 263 | struct exynos_cpuclk *cpuclk; |
| 264 | void __iomem *base; |
| 265 | int err = 0; |
| 266 | |
| 267 | cpuclk = container_of(nb, struct exynos_cpuclk, clk_nb); |
| 268 | base = cpuclk->ctrl_base; |
| 269 | |
| 270 | if (event == PRE_RATE_CHANGE) |
| 271 | err = exynos_cpuclk_pre_rate_change(ndata, cpuclk, base); |
| 272 | else if (event == POST_RATE_CHANGE) |
| 273 | err = exynos_cpuclk_post_rate_change(ndata, cpuclk, base); |
| 274 | |
| 275 | return notifier_from_errno(err); |
| 276 | } |
| 277 | |
| 278 | /* helper function to register a CPU clock */ |
| 279 | int __init exynos_register_cpu_clock(struct samsung_clk_provider *ctx, |
| 280 | unsigned int lookup_id, const char *name, const char *parent, |
| 281 | const char *alt_parent, unsigned long offset, |
| 282 | const struct exynos_cpuclk_cfg_data *cfg, |
| 283 | unsigned long num_cfgs, unsigned long flags) |
| 284 | { |
| 285 | struct exynos_cpuclk *cpuclk; |
| 286 | struct clk_init_data init; |
| 287 | struct clk *clk; |
| 288 | int ret = 0; |
| 289 | |
| 290 | cpuclk = kzalloc(sizeof(*cpuclk), GFP_KERNEL); |
| 291 | if (!cpuclk) |
| 292 | return -ENOMEM; |
| 293 | |
| 294 | init.name = name; |
| 295 | init.flags = CLK_SET_RATE_PARENT; |
| 296 | init.parent_names = &parent; |
| 297 | init.num_parents = 1; |
| 298 | init.ops = &exynos_cpuclk_clk_ops; |
| 299 | |
| 300 | cpuclk->hw.init = &init; |
| 301 | cpuclk->ctrl_base = ctx->reg_base + offset; |
| 302 | cpuclk->lock = &ctx->lock; |
| 303 | cpuclk->flags = flags; |
| 304 | cpuclk->clk_nb.notifier_call = exynos_cpuclk_notifier_cb; |
| 305 | |
| 306 | cpuclk->alt_parent = __clk_lookup(alt_parent); |
| 307 | if (!cpuclk->alt_parent) { |
| 308 | pr_err("%s: could not lookup alternate parent %s\n", |
| 309 | __func__, alt_parent); |
| 310 | ret = -EINVAL; |
| 311 | goto free_cpuclk; |
| 312 | } |
| 313 | |
| 314 | clk = __clk_lookup(parent); |
| 315 | if (!clk) { |
| 316 | pr_err("%s: could not lookup parent clock %s\n", |
| 317 | __func__, parent); |
| 318 | ret = -EINVAL; |
| 319 | goto free_cpuclk; |
| 320 | } |
| 321 | |
| 322 | ret = clk_notifier_register(clk, &cpuclk->clk_nb); |
| 323 | if (ret) { |
| 324 | pr_err("%s: failed to register clock notifier for %s\n", |
| 325 | __func__, name); |
| 326 | goto free_cpuclk; |
| 327 | } |
| 328 | |
| 329 | cpuclk->cfg = kmemdup(cfg, sizeof(*cfg) * num_cfgs, GFP_KERNEL); |
| 330 | if (!cpuclk->cfg) { |
| 331 | pr_err("%s: could not allocate memory for cpuclk data\n", |
| 332 | __func__); |
| 333 | ret = -ENOMEM; |
| 334 | goto unregister_clk_nb; |
| 335 | } |
| 336 | |
| 337 | clk = clk_register(NULL, &cpuclk->hw); |
| 338 | if (IS_ERR(clk)) { |
| 339 | pr_err("%s: could not register cpuclk %s\n", __func__, name); |
| 340 | ret = PTR_ERR(clk); |
| 341 | goto free_cpuclk_data; |
| 342 | } |
| 343 | |
| 344 | samsung_clk_add_lookup(ctx, clk, lookup_id); |
| 345 | return 0; |
| 346 | |
| 347 | free_cpuclk_data: |
| 348 | kfree(cpuclk->cfg); |
| 349 | unregister_clk_nb: |
| 350 | clk_notifier_unregister(__clk_lookup(parent), &cpuclk->clk_nb); |
| 351 | free_cpuclk: |
| 352 | kfree(cpuclk); |
| 353 | return ret; |
| 354 | } |