blob: 9be6018bd2b89cc8737e2a3c3e19a277c7eb67ed [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * This file contains driver for the Cadence Triple Timer Counter Rev 06
3 *
4 * Copyright (C) 2011-2013 Xilinx
5 *
6 * based on arch/mips/kernel/time.c timer driver
7 *
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18#include <linux/clk.h>
19#include <linux/interrupt.h>
20#include <linux/clockchips.h>
21#include <linux/of_address.h>
22#include <linux/of_irq.h>
23#include <linux/slab.h>
24#include <linux/sched_clock.h>
25
26/*
27 * This driver configures the 2 16/32-bit count-up timers as follows:
28 *
29 * T1: Timer 1, clocksource for generic timekeeping
30 * T2: Timer 2, clockevent source for hrtimers
31 * T3: Timer 3, <unused>
32 *
33 * The input frequency to the timer module for emulation is 2.5MHz which is
34 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
35 * the timers are clocked at 78.125KHz (12.8 us resolution).
36
37 * The input frequency to the timer module in silicon is configurable and
38 * obtained from device tree. The pre-scaler of 32 is used.
39 */
40
41/*
42 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
43 * and use same offsets for Timer 2
44 */
45#define TTC_CLK_CNTRL_OFFSET 0x00 /* Clock Control Reg, RW */
46#define TTC_CNT_CNTRL_OFFSET 0x0C /* Counter Control Reg, RW */
47#define TTC_COUNT_VAL_OFFSET 0x18 /* Counter Value Reg, RO */
48#define TTC_INTR_VAL_OFFSET 0x24 /* Interval Count Reg, RW */
49#define TTC_ISR_OFFSET 0x54 /* Interrupt Status Reg, RO */
50#define TTC_IER_OFFSET 0x60 /* Interrupt Enable Reg, RW */
51
52#define TTC_CNT_CNTRL_DISABLE_MASK 0x1
53
54#define TTC_CLK_CNTRL_CSRC_MASK (1 << 5) /* clock source */
55#define TTC_CLK_CNTRL_PSV_MASK 0x1e
56#define TTC_CLK_CNTRL_PSV_SHIFT 1
57
58/*
59 * Setup the timers to use pre-scaling, using a fixed value for now that will
60 * work across most input frequency, but it may need to be more dynamic
61 */
62#define PRESCALE_EXPONENT 11 /* 2 ^ PRESCALE_EXPONENT = PRESCALE */
63#define PRESCALE 2048 /* The exponent must match this */
64#define CLK_CNTRL_PRESCALE ((PRESCALE_EXPONENT - 1) << 1)
65#define CLK_CNTRL_PRESCALE_EN 1
66#define CNT_CNTRL_RESET (1 << 4)
67
68#define MAX_F_ERR 50
69
70/**
71 * struct ttc_timer - This definition defines local timer structure
72 *
73 * @base_addr: Base address of timer
74 * @freq: Timer input clock frequency
75 * @clk: Associated clock source
76 * @clk_rate_change_nb Notifier block for clock rate changes
77 */
78struct ttc_timer {
79 void __iomem *base_addr;
80 unsigned long freq;
81 struct clk *clk;
82 struct notifier_block clk_rate_change_nb;
83};
84
85#define to_ttc_timer(x) \
86 container_of(x, struct ttc_timer, clk_rate_change_nb)
87
88struct ttc_timer_clocksource {
89 u32 scale_clk_ctrl_reg_old;
90 u32 scale_clk_ctrl_reg_new;
91 struct ttc_timer ttc;
92 struct clocksource cs;
93};
94
95#define to_ttc_timer_clksrc(x) \
96 container_of(x, struct ttc_timer_clocksource, cs)
97
98struct ttc_timer_clockevent {
99 struct ttc_timer ttc;
100 struct clock_event_device ce;
101};
102
103#define to_ttc_timer_clkevent(x) \
104 container_of(x, struct ttc_timer_clockevent, ce)
105
106static void __iomem *ttc_sched_clock_val_reg;
107
108/**
109 * ttc_set_interval - Set the timer interval value
110 *
111 * @timer: Pointer to the timer instance
112 * @cycles: Timer interval ticks
113 **/
114static void ttc_set_interval(struct ttc_timer *timer,
115 unsigned long cycles)
116{
117 u32 ctrl_reg;
118
119 /* Disable the counter, set the counter value and re-enable counter */
120 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
121 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
122 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
123
124 writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
125
126 /*
127 * Reset the counter (0x10) so that it starts from 0, one-shot
128 * mode makes this needed for timing to be right.
129 */
130 ctrl_reg |= CNT_CNTRL_RESET;
131 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
132 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
133}
134
135/**
136 * ttc_clock_event_interrupt - Clock event timer interrupt handler
137 *
138 * @irq: IRQ number of the Timer
139 * @dev_id: void pointer to the ttc_timer instance
140 *
141 * returns: Always IRQ_HANDLED - success
142 **/
143static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
144{
145 struct ttc_timer_clockevent *ttce = dev_id;
146 struct ttc_timer *timer = &ttce->ttc;
147
148 /* Acknowledge the interrupt and call event handler */
149 readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
150
151 ttce->ce.event_handler(&ttce->ce);
152
153 return IRQ_HANDLED;
154}
155
156/**
157 * __ttc_clocksource_read - Reads the timer counter register
158 *
159 * returns: Current timer counter register value
160 **/
161static cycle_t __ttc_clocksource_read(struct clocksource *cs)
162{
163 struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
164
165 return (cycle_t)readl_relaxed(timer->base_addr +
166 TTC_COUNT_VAL_OFFSET);
167}
168
169static u64 notrace ttc_sched_clock_read(void)
170{
171 return readl_relaxed(ttc_sched_clock_val_reg);
172}
173
174/**
175 * ttc_set_next_event - Sets the time interval for next event
176 *
177 * @cycles: Timer interval ticks
178 * @evt: Address of clock event instance
179 *
180 * returns: Always 0 - success
181 **/
182static int ttc_set_next_event(unsigned long cycles,
183 struct clock_event_device *evt)
184{
185 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
186 struct ttc_timer *timer = &ttce->ttc;
187
188 ttc_set_interval(timer, cycles);
189 return 0;
190}
191
192/**
193 * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
194 *
195 * @evt: Address of clock event instance
196 **/
197static int ttc_shutdown(struct clock_event_device *evt)
198{
199 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
200 struct ttc_timer *timer = &ttce->ttc;
201 u32 ctrl_reg;
202
203 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
204 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
205 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
206 return 0;
207}
208
209static int ttc_set_periodic(struct clock_event_device *evt)
210{
211 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
212 struct ttc_timer *timer = &ttce->ttc;
213
214 ttc_set_interval(timer,
215 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
216 return 0;
217}
218
219static int ttc_resume(struct clock_event_device *evt)
220{
221 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
222 struct ttc_timer *timer = &ttce->ttc;
223 u32 ctrl_reg;
224
225 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
226 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
227 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
228 return 0;
229}
230
231static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
232 unsigned long event, void *data)
233{
234 struct clk_notifier_data *ndata = data;
235 struct ttc_timer *ttc = to_ttc_timer(nb);
236 struct ttc_timer_clocksource *ttccs = container_of(ttc,
237 struct ttc_timer_clocksource, ttc);
238
239 switch (event) {
240 case PRE_RATE_CHANGE:
241 {
242 u32 psv;
243 unsigned long factor, rate_low, rate_high;
244
245 if (ndata->new_rate > ndata->old_rate) {
246 factor = DIV_ROUND_CLOSEST(ndata->new_rate,
247 ndata->old_rate);
248 rate_low = ndata->old_rate;
249 rate_high = ndata->new_rate;
250 } else {
251 factor = DIV_ROUND_CLOSEST(ndata->old_rate,
252 ndata->new_rate);
253 rate_low = ndata->new_rate;
254 rate_high = ndata->old_rate;
255 }
256
257 if (!is_power_of_2(factor))
258 return NOTIFY_BAD;
259
260 if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
261 return NOTIFY_BAD;
262
263 factor = __ilog2_u32(factor);
264
265 /*
266 * store timer clock ctrl register so we can restore it in case
267 * of an abort.
268 */
269 ttccs->scale_clk_ctrl_reg_old =
270 readl_relaxed(ttccs->ttc.base_addr +
271 TTC_CLK_CNTRL_OFFSET);
272
273 psv = (ttccs->scale_clk_ctrl_reg_old &
274 TTC_CLK_CNTRL_PSV_MASK) >>
275 TTC_CLK_CNTRL_PSV_SHIFT;
276 if (ndata->new_rate < ndata->old_rate)
277 psv -= factor;
278 else
279 psv += factor;
280
281 /* prescaler within legal range? */
282 if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
283 return NOTIFY_BAD;
284
285 ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
286 ~TTC_CLK_CNTRL_PSV_MASK;
287 ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
288
289
290 /* scale down: adjust divider in post-change notification */
291 if (ndata->new_rate < ndata->old_rate)
292 return NOTIFY_DONE;
293
294 /* scale up: adjust divider now - before frequency change */
295 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
296 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
297 break;
298 }
299 case POST_RATE_CHANGE:
300 /* scale up: pre-change notification did the adjustment */
301 if (ndata->new_rate > ndata->old_rate)
302 return NOTIFY_OK;
303
304 /* scale down: adjust divider now - after frequency change */
305 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
306 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
307 break;
308
309 case ABORT_RATE_CHANGE:
310 /* we have to undo the adjustment in case we scale up */
311 if (ndata->new_rate < ndata->old_rate)
312 return NOTIFY_OK;
313
314 /* restore original register value */
315 writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
316 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
317 /* fall through */
318 default:
319 return NOTIFY_DONE;
320 }
321
322 return NOTIFY_DONE;
323}
324
325static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
326 u32 timer_width)
327{
328 struct ttc_timer_clocksource *ttccs;
329 int err;
330
331 ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
332 if (WARN_ON(!ttccs))
333 return;
334
335 ttccs->ttc.clk = clk;
336
337 err = clk_prepare_enable(ttccs->ttc.clk);
338 if (WARN_ON(err)) {
339 kfree(ttccs);
340 return;
341 }
342
343 ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
344
345 ttccs->ttc.clk_rate_change_nb.notifier_call =
346 ttc_rate_change_clocksource_cb;
347 ttccs->ttc.clk_rate_change_nb.next = NULL;
348 if (clk_notifier_register(ttccs->ttc.clk,
349 &ttccs->ttc.clk_rate_change_nb))
350 pr_warn("Unable to register clock notifier.\n");
351
352 ttccs->ttc.base_addr = base;
353 ttccs->cs.name = "ttc_clocksource";
354 ttccs->cs.rating = 200;
355 ttccs->cs.read = __ttc_clocksource_read;
356 ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
357 ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
358
359 /*
360 * Setup the clock source counter to be an incrementing counter
361 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
362 * it by 32 also. Let it start running now.
363 */
364 writel_relaxed(0x0, ttccs->ttc.base_addr + TTC_IER_OFFSET);
365 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
366 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
367 writel_relaxed(CNT_CNTRL_RESET,
368 ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
369
370 err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
371 if (WARN_ON(err)) {
372 kfree(ttccs);
373 return;
374 }
375
376 ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
377 sched_clock_register(ttc_sched_clock_read, timer_width,
378 ttccs->ttc.freq / PRESCALE);
379}
380
381static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
382 unsigned long event, void *data)
383{
384 struct clk_notifier_data *ndata = data;
385 struct ttc_timer *ttc = to_ttc_timer(nb);
386 struct ttc_timer_clockevent *ttcce = container_of(ttc,
387 struct ttc_timer_clockevent, ttc);
388
389 switch (event) {
390 case POST_RATE_CHANGE:
391 /* update cached frequency */
392 ttc->freq = ndata->new_rate;
393
394 clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
395
396 /* fall through */
397 case PRE_RATE_CHANGE:
398 case ABORT_RATE_CHANGE:
399 default:
400 return NOTIFY_DONE;
401 }
402}
403
404static void __init ttc_setup_clockevent(struct clk *clk,
405 void __iomem *base, u32 irq)
406{
407 struct ttc_timer_clockevent *ttcce;
408 int err;
409
410 ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
411 if (WARN_ON(!ttcce))
412 return;
413
414 ttcce->ttc.clk = clk;
415
416 err = clk_prepare_enable(ttcce->ttc.clk);
417 if (WARN_ON(err)) {
418 kfree(ttcce);
419 return;
420 }
421
422 ttcce->ttc.clk_rate_change_nb.notifier_call =
423 ttc_rate_change_clockevent_cb;
424 ttcce->ttc.clk_rate_change_nb.next = NULL;
425 if (clk_notifier_register(ttcce->ttc.clk,
426 &ttcce->ttc.clk_rate_change_nb))
427 pr_warn("Unable to register clock notifier.\n");
428 ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
429
430 ttcce->ttc.base_addr = base;
431 ttcce->ce.name = "ttc_clockevent";
432 ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
433 ttcce->ce.set_next_event = ttc_set_next_event;
434 ttcce->ce.set_state_shutdown = ttc_shutdown;
435 ttcce->ce.set_state_periodic = ttc_set_periodic;
436 ttcce->ce.set_state_oneshot = ttc_shutdown;
437 ttcce->ce.tick_resume = ttc_resume;
438 ttcce->ce.rating = 200;
439 ttcce->ce.irq = irq;
440 ttcce->ce.cpumask = cpu_possible_mask;
441
442 /*
443 * Setup the clock event timer to be an interval timer which
444 * is prescaled by 32 using the interval interrupt. Leave it
445 * disabled for now.
446 */
447 writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
448 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
449 ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
450 writel_relaxed(0x1, ttcce->ttc.base_addr + TTC_IER_OFFSET);
451
452 err = request_irq(irq, ttc_clock_event_interrupt,
453 IRQF_TIMER, ttcce->ce.name, ttcce);
454 if (WARN_ON(err)) {
455 kfree(ttcce);
456 return;
457 }
458
459 clockevents_config_and_register(&ttcce->ce,
460 ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
461}
462
463/**
464 * ttc_timer_init - Initialize the timer
465 *
466 * Initializes the timer hardware and register the clock source and clock event
467 * timers with Linux kernal timer framework
468 */
469static void __init ttc_timer_init(struct device_node *timer)
470{
471 unsigned int irq;
472 void __iomem *timer_baseaddr;
473 struct clk *clk_cs, *clk_ce;
474 static int initialized;
475 int clksel;
476 u32 timer_width = 16;
477
478 if (initialized)
479 return;
480
481 initialized = 1;
482
483 /*
484 * Get the 1st Triple Timer Counter (TTC) block from the device tree
485 * and use it. Note that the event timer uses the interrupt and it's the
486 * 2nd TTC hence the irq_of_parse_and_map(,1)
487 */
488 timer_baseaddr = of_iomap(timer, 0);
489 if (!timer_baseaddr) {
490 pr_err("ERROR: invalid timer base address\n");
491 BUG();
492 }
493
494 irq = irq_of_parse_and_map(timer, 1);
495 if (irq <= 0) {
496 pr_err("ERROR: invalid interrupt number\n");
497 BUG();
498 }
499
500 of_property_read_u32(timer, "timer-width", &timer_width);
501
502 clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
503 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
504 clk_cs = of_clk_get(timer, clksel);
505 if (IS_ERR(clk_cs)) {
506 pr_err("ERROR: timer input clock not found\n");
507 BUG();
508 }
509
510 clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
511 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
512 clk_ce = of_clk_get(timer, clksel);
513 if (IS_ERR(clk_ce)) {
514 pr_err("ERROR: timer input clock not found\n");
515 BUG();
516 }
517
518 ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
519 ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
520
521 pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
522}
523
524CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);