Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * SuperH Timer Support - CMT |
| 3 | * |
| 4 | * Copyright (C) 2008 Magnus Damm |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License as published by |
| 8 | * the Free Software Foundation; either version 2 of the License |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | */ |
| 15 | |
| 16 | #include <linux/clk.h> |
| 17 | #include <linux/clockchips.h> |
| 18 | #include <linux/clocksource.h> |
| 19 | #include <linux/delay.h> |
| 20 | #include <linux/err.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/interrupt.h> |
| 23 | #include <linux/io.h> |
| 24 | #include <linux/ioport.h> |
| 25 | #include <linux/irq.h> |
| 26 | #include <linux/module.h> |
| 27 | #include <linux/of.h> |
| 28 | #include <linux/platform_device.h> |
| 29 | #include <linux/pm_domain.h> |
| 30 | #include <linux/pm_runtime.h> |
| 31 | #include <linux/sh_timer.h> |
| 32 | #include <linux/slab.h> |
| 33 | #include <linux/spinlock.h> |
| 34 | |
| 35 | struct sh_cmt_device; |
| 36 | |
| 37 | /* |
| 38 | * The CMT comes in 5 different identified flavours, depending not only on the |
| 39 | * SoC but also on the particular instance. The following table lists the main |
| 40 | * characteristics of those flavours. |
| 41 | * |
| 42 | * 16B 32B 32B-F 48B 48B-2 |
| 43 | * ----------------------------------------------------------------------------- |
| 44 | * Channels 2 1/4 1 6 2/8 |
| 45 | * Control Width 16 16 16 16 32 |
| 46 | * Counter Width 16 32 32 32/48 32/48 |
| 47 | * Shared Start/Stop Y Y Y Y N |
| 48 | * |
| 49 | * The 48-bit gen2 version has a per-channel start/stop register located in the |
| 50 | * channel registers block. All other versions have a shared start/stop register |
| 51 | * located in the global space. |
| 52 | * |
| 53 | * Channels are indexed from 0 to N-1 in the documentation. The channel index |
| 54 | * infers the start/stop bit position in the control register and the channel |
| 55 | * registers block address. Some CMT instances have a subset of channels |
| 56 | * available, in which case the index in the documentation doesn't match the |
| 57 | * "real" index as implemented in hardware. This is for instance the case with |
| 58 | * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0 |
| 59 | * in the documentation but using start/stop bit 5 and having its registers |
| 60 | * block at 0x60. |
| 61 | * |
| 62 | * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit |
| 63 | * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable. |
| 64 | */ |
| 65 | |
| 66 | enum sh_cmt_model { |
| 67 | SH_CMT_16BIT, |
| 68 | SH_CMT_32BIT, |
| 69 | SH_CMT_32BIT_FAST, |
| 70 | SH_CMT_48BIT, |
| 71 | SH_CMT_48BIT_GEN2, |
| 72 | }; |
| 73 | |
| 74 | struct sh_cmt_info { |
| 75 | enum sh_cmt_model model; |
| 76 | |
| 77 | unsigned long width; /* 16 or 32 bit version of hardware block */ |
| 78 | unsigned long overflow_bit; |
| 79 | unsigned long clear_bits; |
| 80 | |
| 81 | /* callbacks for CMSTR and CMCSR access */ |
| 82 | unsigned long (*read_control)(void __iomem *base, unsigned long offs); |
| 83 | void (*write_control)(void __iomem *base, unsigned long offs, |
| 84 | unsigned long value); |
| 85 | |
| 86 | /* callbacks for CMCNT and CMCOR access */ |
| 87 | unsigned long (*read_count)(void __iomem *base, unsigned long offs); |
| 88 | void (*write_count)(void __iomem *base, unsigned long offs, |
| 89 | unsigned long value); |
| 90 | }; |
| 91 | |
| 92 | struct sh_cmt_channel { |
| 93 | struct sh_cmt_device *cmt; |
| 94 | |
| 95 | unsigned int index; /* Index in the documentation */ |
| 96 | unsigned int hwidx; /* Real hardware index */ |
| 97 | |
| 98 | void __iomem *iostart; |
| 99 | void __iomem *ioctrl; |
| 100 | |
| 101 | unsigned int timer_bit; |
| 102 | unsigned long flags; |
| 103 | unsigned long match_value; |
| 104 | unsigned long next_match_value; |
| 105 | unsigned long max_match_value; |
| 106 | unsigned long rate; |
| 107 | raw_spinlock_t lock; |
| 108 | struct clock_event_device ced; |
| 109 | struct clocksource cs; |
| 110 | unsigned long total_cycles; |
| 111 | bool cs_enabled; |
| 112 | }; |
| 113 | |
| 114 | struct sh_cmt_device { |
| 115 | struct platform_device *pdev; |
| 116 | |
| 117 | const struct sh_cmt_info *info; |
| 118 | |
| 119 | void __iomem *mapbase; |
| 120 | struct clk *clk; |
| 121 | |
| 122 | raw_spinlock_t lock; /* Protect the shared start/stop register */ |
| 123 | |
| 124 | struct sh_cmt_channel *channels; |
| 125 | unsigned int num_channels; |
| 126 | unsigned int hw_channels; |
| 127 | |
| 128 | bool has_clockevent; |
| 129 | bool has_clocksource; |
| 130 | }; |
| 131 | |
| 132 | #define SH_CMT16_CMCSR_CMF (1 << 7) |
| 133 | #define SH_CMT16_CMCSR_CMIE (1 << 6) |
| 134 | #define SH_CMT16_CMCSR_CKS8 (0 << 0) |
| 135 | #define SH_CMT16_CMCSR_CKS32 (1 << 0) |
| 136 | #define SH_CMT16_CMCSR_CKS128 (2 << 0) |
| 137 | #define SH_CMT16_CMCSR_CKS512 (3 << 0) |
| 138 | #define SH_CMT16_CMCSR_CKS_MASK (3 << 0) |
| 139 | |
| 140 | #define SH_CMT32_CMCSR_CMF (1 << 15) |
| 141 | #define SH_CMT32_CMCSR_OVF (1 << 14) |
| 142 | #define SH_CMT32_CMCSR_WRFLG (1 << 13) |
| 143 | #define SH_CMT32_CMCSR_STTF (1 << 12) |
| 144 | #define SH_CMT32_CMCSR_STPF (1 << 11) |
| 145 | #define SH_CMT32_CMCSR_SSIE (1 << 10) |
| 146 | #define SH_CMT32_CMCSR_CMS (1 << 9) |
| 147 | #define SH_CMT32_CMCSR_CMM (1 << 8) |
| 148 | #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7) |
| 149 | #define SH_CMT32_CMCSR_CMR_NONE (0 << 4) |
| 150 | #define SH_CMT32_CMCSR_CMR_DMA (1 << 4) |
| 151 | #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4) |
| 152 | #define SH_CMT32_CMCSR_CMR_MASK (3 << 4) |
| 153 | #define SH_CMT32_CMCSR_DBGIVD (1 << 3) |
| 154 | #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0) |
| 155 | #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0) |
| 156 | #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0) |
| 157 | #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0) |
| 158 | #define SH_CMT32_CMCSR_CKS_MASK (7 << 0) |
| 159 | |
| 160 | static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs) |
| 161 | { |
| 162 | return ioread16(base + (offs << 1)); |
| 163 | } |
| 164 | |
| 165 | static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs) |
| 166 | { |
| 167 | return ioread32(base + (offs << 2)); |
| 168 | } |
| 169 | |
| 170 | static void sh_cmt_write16(void __iomem *base, unsigned long offs, |
| 171 | unsigned long value) |
| 172 | { |
| 173 | iowrite16(value, base + (offs << 1)); |
| 174 | } |
| 175 | |
| 176 | static void sh_cmt_write32(void __iomem *base, unsigned long offs, |
| 177 | unsigned long value) |
| 178 | { |
| 179 | iowrite32(value, base + (offs << 2)); |
| 180 | } |
| 181 | |
| 182 | static const struct sh_cmt_info sh_cmt_info[] = { |
| 183 | [SH_CMT_16BIT] = { |
| 184 | .model = SH_CMT_16BIT, |
| 185 | .width = 16, |
| 186 | .overflow_bit = SH_CMT16_CMCSR_CMF, |
| 187 | .clear_bits = ~SH_CMT16_CMCSR_CMF, |
| 188 | .read_control = sh_cmt_read16, |
| 189 | .write_control = sh_cmt_write16, |
| 190 | .read_count = sh_cmt_read16, |
| 191 | .write_count = sh_cmt_write16, |
| 192 | }, |
| 193 | [SH_CMT_32BIT] = { |
| 194 | .model = SH_CMT_32BIT, |
| 195 | .width = 32, |
| 196 | .overflow_bit = SH_CMT32_CMCSR_CMF, |
| 197 | .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), |
| 198 | .read_control = sh_cmt_read16, |
| 199 | .write_control = sh_cmt_write16, |
| 200 | .read_count = sh_cmt_read32, |
| 201 | .write_count = sh_cmt_write32, |
| 202 | }, |
| 203 | [SH_CMT_32BIT_FAST] = { |
| 204 | .model = SH_CMT_32BIT_FAST, |
| 205 | .width = 32, |
| 206 | .overflow_bit = SH_CMT32_CMCSR_CMF, |
| 207 | .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), |
| 208 | .read_control = sh_cmt_read16, |
| 209 | .write_control = sh_cmt_write16, |
| 210 | .read_count = sh_cmt_read32, |
| 211 | .write_count = sh_cmt_write32, |
| 212 | }, |
| 213 | [SH_CMT_48BIT] = { |
| 214 | .model = SH_CMT_48BIT, |
| 215 | .width = 32, |
| 216 | .overflow_bit = SH_CMT32_CMCSR_CMF, |
| 217 | .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), |
| 218 | .read_control = sh_cmt_read32, |
| 219 | .write_control = sh_cmt_write32, |
| 220 | .read_count = sh_cmt_read32, |
| 221 | .write_count = sh_cmt_write32, |
| 222 | }, |
| 223 | [SH_CMT_48BIT_GEN2] = { |
| 224 | .model = SH_CMT_48BIT_GEN2, |
| 225 | .width = 32, |
| 226 | .overflow_bit = SH_CMT32_CMCSR_CMF, |
| 227 | .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), |
| 228 | .read_control = sh_cmt_read32, |
| 229 | .write_control = sh_cmt_write32, |
| 230 | .read_count = sh_cmt_read32, |
| 231 | .write_count = sh_cmt_write32, |
| 232 | }, |
| 233 | }; |
| 234 | |
| 235 | #define CMCSR 0 /* channel register */ |
| 236 | #define CMCNT 1 /* channel register */ |
| 237 | #define CMCOR 2 /* channel register */ |
| 238 | |
| 239 | static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch) |
| 240 | { |
| 241 | if (ch->iostart) |
| 242 | return ch->cmt->info->read_control(ch->iostart, 0); |
| 243 | else |
| 244 | return ch->cmt->info->read_control(ch->cmt->mapbase, 0); |
| 245 | } |
| 246 | |
| 247 | static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, |
| 248 | unsigned long value) |
| 249 | { |
| 250 | if (ch->iostart) |
| 251 | ch->cmt->info->write_control(ch->iostart, 0, value); |
| 252 | else |
| 253 | ch->cmt->info->write_control(ch->cmt->mapbase, 0, value); |
| 254 | } |
| 255 | |
| 256 | static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch) |
| 257 | { |
| 258 | return ch->cmt->info->read_control(ch->ioctrl, CMCSR); |
| 259 | } |
| 260 | |
| 261 | static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, |
| 262 | unsigned long value) |
| 263 | { |
| 264 | ch->cmt->info->write_control(ch->ioctrl, CMCSR, value); |
| 265 | } |
| 266 | |
| 267 | static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch) |
| 268 | { |
| 269 | return ch->cmt->info->read_count(ch->ioctrl, CMCNT); |
| 270 | } |
| 271 | |
| 272 | static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, |
| 273 | unsigned long value) |
| 274 | { |
| 275 | ch->cmt->info->write_count(ch->ioctrl, CMCNT, value); |
| 276 | } |
| 277 | |
| 278 | static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, |
| 279 | unsigned long value) |
| 280 | { |
| 281 | ch->cmt->info->write_count(ch->ioctrl, CMCOR, value); |
| 282 | } |
| 283 | |
| 284 | static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch, |
| 285 | int *has_wrapped) |
| 286 | { |
| 287 | unsigned long v1, v2, v3; |
| 288 | int o1, o2; |
| 289 | |
| 290 | o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit; |
| 291 | |
| 292 | /* Make sure the timer value is stable. Stolen from acpi_pm.c */ |
| 293 | do { |
| 294 | o2 = o1; |
| 295 | v1 = sh_cmt_read_cmcnt(ch); |
| 296 | v2 = sh_cmt_read_cmcnt(ch); |
| 297 | v3 = sh_cmt_read_cmcnt(ch); |
| 298 | o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit; |
| 299 | } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3) |
| 300 | || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2))); |
| 301 | |
| 302 | *has_wrapped = o1; |
| 303 | return v2; |
| 304 | } |
| 305 | |
| 306 | static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start) |
| 307 | { |
| 308 | unsigned long flags, value; |
| 309 | |
| 310 | /* start stop register shared by multiple timer channels */ |
| 311 | raw_spin_lock_irqsave(&ch->cmt->lock, flags); |
| 312 | value = sh_cmt_read_cmstr(ch); |
| 313 | |
| 314 | if (start) |
| 315 | value |= 1 << ch->timer_bit; |
| 316 | else |
| 317 | value &= ~(1 << ch->timer_bit); |
| 318 | |
| 319 | sh_cmt_write_cmstr(ch, value); |
| 320 | raw_spin_unlock_irqrestore(&ch->cmt->lock, flags); |
| 321 | } |
| 322 | |
| 323 | static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate) |
| 324 | { |
| 325 | int k, ret; |
| 326 | |
| 327 | pm_runtime_get_sync(&ch->cmt->pdev->dev); |
| 328 | dev_pm_syscore_device(&ch->cmt->pdev->dev, true); |
| 329 | |
| 330 | /* enable clock */ |
| 331 | ret = clk_enable(ch->cmt->clk); |
| 332 | if (ret) { |
| 333 | dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n", |
| 334 | ch->index); |
| 335 | goto err0; |
| 336 | } |
| 337 | |
| 338 | /* make sure channel is disabled */ |
| 339 | sh_cmt_start_stop_ch(ch, 0); |
| 340 | |
| 341 | /* configure channel, periodic mode and maximum timeout */ |
| 342 | if (ch->cmt->info->width == 16) { |
| 343 | *rate = clk_get_rate(ch->cmt->clk) / 512; |
| 344 | sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE | |
| 345 | SH_CMT16_CMCSR_CKS512); |
| 346 | } else { |
| 347 | *rate = clk_get_rate(ch->cmt->clk) / 8; |
| 348 | sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM | |
| 349 | SH_CMT32_CMCSR_CMTOUT_IE | |
| 350 | SH_CMT32_CMCSR_CMR_IRQ | |
| 351 | SH_CMT32_CMCSR_CKS_RCLK8); |
| 352 | } |
| 353 | |
| 354 | sh_cmt_write_cmcor(ch, 0xffffffff); |
| 355 | sh_cmt_write_cmcnt(ch, 0); |
| 356 | |
| 357 | /* |
| 358 | * According to the sh73a0 user's manual, as CMCNT can be operated |
| 359 | * only by the RCLK (Pseudo 32 KHz), there's one restriction on |
| 360 | * modifying CMCNT register; two RCLK cycles are necessary before |
| 361 | * this register is either read or any modification of the value |
| 362 | * it holds is reflected in the LSI's actual operation. |
| 363 | * |
| 364 | * While at it, we're supposed to clear out the CMCNT as of this |
| 365 | * moment, so make sure it's processed properly here. This will |
| 366 | * take RCLKx2 at maximum. |
| 367 | */ |
| 368 | for (k = 0; k < 100; k++) { |
| 369 | if (!sh_cmt_read_cmcnt(ch)) |
| 370 | break; |
| 371 | udelay(1); |
| 372 | } |
| 373 | |
| 374 | if (sh_cmt_read_cmcnt(ch)) { |
| 375 | dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n", |
| 376 | ch->index); |
| 377 | ret = -ETIMEDOUT; |
| 378 | goto err1; |
| 379 | } |
| 380 | |
| 381 | /* enable channel */ |
| 382 | sh_cmt_start_stop_ch(ch, 1); |
| 383 | return 0; |
| 384 | err1: |
| 385 | /* stop clock */ |
| 386 | clk_disable(ch->cmt->clk); |
| 387 | |
| 388 | err0: |
| 389 | return ret; |
| 390 | } |
| 391 | |
| 392 | static void sh_cmt_disable(struct sh_cmt_channel *ch) |
| 393 | { |
| 394 | /* disable channel */ |
| 395 | sh_cmt_start_stop_ch(ch, 0); |
| 396 | |
| 397 | /* disable interrupts in CMT block */ |
| 398 | sh_cmt_write_cmcsr(ch, 0); |
| 399 | |
| 400 | /* stop clock */ |
| 401 | clk_disable(ch->cmt->clk); |
| 402 | |
| 403 | dev_pm_syscore_device(&ch->cmt->pdev->dev, false); |
| 404 | pm_runtime_put(&ch->cmt->pdev->dev); |
| 405 | } |
| 406 | |
| 407 | /* private flags */ |
| 408 | #define FLAG_CLOCKEVENT (1 << 0) |
| 409 | #define FLAG_CLOCKSOURCE (1 << 1) |
| 410 | #define FLAG_REPROGRAM (1 << 2) |
| 411 | #define FLAG_SKIPEVENT (1 << 3) |
| 412 | #define FLAG_IRQCONTEXT (1 << 4) |
| 413 | |
| 414 | static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch, |
| 415 | int absolute) |
| 416 | { |
| 417 | unsigned long new_match; |
| 418 | unsigned long value = ch->next_match_value; |
| 419 | unsigned long delay = 0; |
| 420 | unsigned long now = 0; |
| 421 | int has_wrapped; |
| 422 | |
| 423 | now = sh_cmt_get_counter(ch, &has_wrapped); |
| 424 | ch->flags |= FLAG_REPROGRAM; /* force reprogram */ |
| 425 | |
| 426 | if (has_wrapped) { |
| 427 | /* we're competing with the interrupt handler. |
| 428 | * -> let the interrupt handler reprogram the timer. |
| 429 | * -> interrupt number two handles the event. |
| 430 | */ |
| 431 | ch->flags |= FLAG_SKIPEVENT; |
| 432 | return; |
| 433 | } |
| 434 | |
| 435 | if (absolute) |
| 436 | now = 0; |
| 437 | |
| 438 | do { |
| 439 | /* reprogram the timer hardware, |
| 440 | * but don't save the new match value yet. |
| 441 | */ |
| 442 | new_match = now + value + delay; |
| 443 | if (new_match > ch->max_match_value) |
| 444 | new_match = ch->max_match_value; |
| 445 | |
| 446 | sh_cmt_write_cmcor(ch, new_match); |
| 447 | |
| 448 | now = sh_cmt_get_counter(ch, &has_wrapped); |
| 449 | if (has_wrapped && (new_match > ch->match_value)) { |
| 450 | /* we are changing to a greater match value, |
| 451 | * so this wrap must be caused by the counter |
| 452 | * matching the old value. |
| 453 | * -> first interrupt reprograms the timer. |
| 454 | * -> interrupt number two handles the event. |
| 455 | */ |
| 456 | ch->flags |= FLAG_SKIPEVENT; |
| 457 | break; |
| 458 | } |
| 459 | |
| 460 | if (has_wrapped) { |
| 461 | /* we are changing to a smaller match value, |
| 462 | * so the wrap must be caused by the counter |
| 463 | * matching the new value. |
| 464 | * -> save programmed match value. |
| 465 | * -> let isr handle the event. |
| 466 | */ |
| 467 | ch->match_value = new_match; |
| 468 | break; |
| 469 | } |
| 470 | |
| 471 | /* be safe: verify hardware settings */ |
| 472 | if (now < new_match) { |
| 473 | /* timer value is below match value, all good. |
| 474 | * this makes sure we won't miss any match events. |
| 475 | * -> save programmed match value. |
| 476 | * -> let isr handle the event. |
| 477 | */ |
| 478 | ch->match_value = new_match; |
| 479 | break; |
| 480 | } |
| 481 | |
| 482 | /* the counter has reached a value greater |
| 483 | * than our new match value. and since the |
| 484 | * has_wrapped flag isn't set we must have |
| 485 | * programmed a too close event. |
| 486 | * -> increase delay and retry. |
| 487 | */ |
| 488 | if (delay) |
| 489 | delay <<= 1; |
| 490 | else |
| 491 | delay = 1; |
| 492 | |
| 493 | if (!delay) |
| 494 | dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n", |
| 495 | ch->index); |
| 496 | |
| 497 | } while (delay); |
| 498 | } |
| 499 | |
| 500 | static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta) |
| 501 | { |
| 502 | if (delta > ch->max_match_value) |
| 503 | dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n", |
| 504 | ch->index); |
| 505 | |
| 506 | ch->next_match_value = delta; |
| 507 | sh_cmt_clock_event_program_verify(ch, 0); |
| 508 | } |
| 509 | |
| 510 | static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta) |
| 511 | { |
| 512 | unsigned long flags; |
| 513 | |
| 514 | raw_spin_lock_irqsave(&ch->lock, flags); |
| 515 | __sh_cmt_set_next(ch, delta); |
| 516 | raw_spin_unlock_irqrestore(&ch->lock, flags); |
| 517 | } |
| 518 | |
| 519 | static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id) |
| 520 | { |
| 521 | struct sh_cmt_channel *ch = dev_id; |
| 522 | |
| 523 | /* clear flags */ |
| 524 | sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) & |
| 525 | ch->cmt->info->clear_bits); |
| 526 | |
| 527 | /* update clock source counter to begin with if enabled |
| 528 | * the wrap flag should be cleared by the timer specific |
| 529 | * isr before we end up here. |
| 530 | */ |
| 531 | if (ch->flags & FLAG_CLOCKSOURCE) |
| 532 | ch->total_cycles += ch->match_value + 1; |
| 533 | |
| 534 | if (!(ch->flags & FLAG_REPROGRAM)) |
| 535 | ch->next_match_value = ch->max_match_value; |
| 536 | |
| 537 | ch->flags |= FLAG_IRQCONTEXT; |
| 538 | |
| 539 | if (ch->flags & FLAG_CLOCKEVENT) { |
| 540 | if (!(ch->flags & FLAG_SKIPEVENT)) { |
| 541 | if (clockevent_state_oneshot(&ch->ced)) { |
| 542 | ch->next_match_value = ch->max_match_value; |
| 543 | ch->flags |= FLAG_REPROGRAM; |
| 544 | } |
| 545 | |
| 546 | ch->ced.event_handler(&ch->ced); |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | ch->flags &= ~FLAG_SKIPEVENT; |
| 551 | |
| 552 | if (ch->flags & FLAG_REPROGRAM) { |
| 553 | ch->flags &= ~FLAG_REPROGRAM; |
| 554 | sh_cmt_clock_event_program_verify(ch, 1); |
| 555 | |
| 556 | if (ch->flags & FLAG_CLOCKEVENT) |
| 557 | if ((clockevent_state_shutdown(&ch->ced)) |
| 558 | || (ch->match_value == ch->next_match_value)) |
| 559 | ch->flags &= ~FLAG_REPROGRAM; |
| 560 | } |
| 561 | |
| 562 | ch->flags &= ~FLAG_IRQCONTEXT; |
| 563 | |
| 564 | return IRQ_HANDLED; |
| 565 | } |
| 566 | |
| 567 | static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag) |
| 568 | { |
| 569 | int ret = 0; |
| 570 | unsigned long flags; |
| 571 | |
| 572 | raw_spin_lock_irqsave(&ch->lock, flags); |
| 573 | |
| 574 | if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) |
| 575 | ret = sh_cmt_enable(ch, &ch->rate); |
| 576 | |
| 577 | if (ret) |
| 578 | goto out; |
| 579 | ch->flags |= flag; |
| 580 | |
| 581 | /* setup timeout if no clockevent */ |
| 582 | if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT))) |
| 583 | __sh_cmt_set_next(ch, ch->max_match_value); |
| 584 | out: |
| 585 | raw_spin_unlock_irqrestore(&ch->lock, flags); |
| 586 | |
| 587 | return ret; |
| 588 | } |
| 589 | |
| 590 | static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag) |
| 591 | { |
| 592 | unsigned long flags; |
| 593 | unsigned long f; |
| 594 | |
| 595 | raw_spin_lock_irqsave(&ch->lock, flags); |
| 596 | |
| 597 | f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE); |
| 598 | ch->flags &= ~flag; |
| 599 | |
| 600 | if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) |
| 601 | sh_cmt_disable(ch); |
| 602 | |
| 603 | /* adjust the timeout to maximum if only clocksource left */ |
| 604 | if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE)) |
| 605 | __sh_cmt_set_next(ch, ch->max_match_value); |
| 606 | |
| 607 | raw_spin_unlock_irqrestore(&ch->lock, flags); |
| 608 | } |
| 609 | |
| 610 | static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs) |
| 611 | { |
| 612 | return container_of(cs, struct sh_cmt_channel, cs); |
| 613 | } |
| 614 | |
| 615 | static cycle_t sh_cmt_clocksource_read(struct clocksource *cs) |
| 616 | { |
| 617 | struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); |
| 618 | unsigned long flags, raw; |
| 619 | unsigned long value; |
| 620 | int has_wrapped; |
| 621 | |
| 622 | raw_spin_lock_irqsave(&ch->lock, flags); |
| 623 | value = ch->total_cycles; |
| 624 | raw = sh_cmt_get_counter(ch, &has_wrapped); |
| 625 | |
| 626 | if (unlikely(has_wrapped)) |
| 627 | raw += ch->match_value + 1; |
| 628 | raw_spin_unlock_irqrestore(&ch->lock, flags); |
| 629 | |
| 630 | return value + raw; |
| 631 | } |
| 632 | |
| 633 | static int sh_cmt_clocksource_enable(struct clocksource *cs) |
| 634 | { |
| 635 | int ret; |
| 636 | struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); |
| 637 | |
| 638 | WARN_ON(ch->cs_enabled); |
| 639 | |
| 640 | ch->total_cycles = 0; |
| 641 | |
| 642 | ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE); |
| 643 | if (!ret) { |
| 644 | __clocksource_update_freq_hz(cs, ch->rate); |
| 645 | ch->cs_enabled = true; |
| 646 | } |
| 647 | return ret; |
| 648 | } |
| 649 | |
| 650 | static void sh_cmt_clocksource_disable(struct clocksource *cs) |
| 651 | { |
| 652 | struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); |
| 653 | |
| 654 | WARN_ON(!ch->cs_enabled); |
| 655 | |
| 656 | sh_cmt_stop(ch, FLAG_CLOCKSOURCE); |
| 657 | ch->cs_enabled = false; |
| 658 | } |
| 659 | |
| 660 | static void sh_cmt_clocksource_suspend(struct clocksource *cs) |
| 661 | { |
| 662 | struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); |
| 663 | |
| 664 | if (!ch->cs_enabled) |
| 665 | return; |
| 666 | |
| 667 | sh_cmt_stop(ch, FLAG_CLOCKSOURCE); |
| 668 | pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev); |
| 669 | } |
| 670 | |
| 671 | static void sh_cmt_clocksource_resume(struct clocksource *cs) |
| 672 | { |
| 673 | struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); |
| 674 | |
| 675 | if (!ch->cs_enabled) |
| 676 | return; |
| 677 | |
| 678 | pm_genpd_syscore_poweron(&ch->cmt->pdev->dev); |
| 679 | sh_cmt_start(ch, FLAG_CLOCKSOURCE); |
| 680 | } |
| 681 | |
| 682 | static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch, |
| 683 | const char *name) |
| 684 | { |
| 685 | struct clocksource *cs = &ch->cs; |
| 686 | |
| 687 | cs->name = name; |
| 688 | cs->rating = 125; |
| 689 | cs->read = sh_cmt_clocksource_read; |
| 690 | cs->enable = sh_cmt_clocksource_enable; |
| 691 | cs->disable = sh_cmt_clocksource_disable; |
| 692 | cs->suspend = sh_cmt_clocksource_suspend; |
| 693 | cs->resume = sh_cmt_clocksource_resume; |
| 694 | cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8); |
| 695 | cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; |
| 696 | |
| 697 | dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n", |
| 698 | ch->index); |
| 699 | |
| 700 | /* Register with dummy 1 Hz value, gets updated in ->enable() */ |
| 701 | clocksource_register_hz(cs, 1); |
| 702 | return 0; |
| 703 | } |
| 704 | |
| 705 | static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced) |
| 706 | { |
| 707 | return container_of(ced, struct sh_cmt_channel, ced); |
| 708 | } |
| 709 | |
| 710 | static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic) |
| 711 | { |
| 712 | struct clock_event_device *ced = &ch->ced; |
| 713 | |
| 714 | sh_cmt_start(ch, FLAG_CLOCKEVENT); |
| 715 | |
| 716 | /* TODO: calculate good shift from rate and counter bit width */ |
| 717 | |
| 718 | ced->shift = 32; |
| 719 | ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift); |
| 720 | ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced); |
| 721 | ced->min_delta_ns = clockevent_delta2ns(0x1f, ced); |
| 722 | |
| 723 | if (periodic) |
| 724 | sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1); |
| 725 | else |
| 726 | sh_cmt_set_next(ch, ch->max_match_value); |
| 727 | } |
| 728 | |
| 729 | static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced) |
| 730 | { |
| 731 | struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); |
| 732 | |
| 733 | sh_cmt_stop(ch, FLAG_CLOCKEVENT); |
| 734 | return 0; |
| 735 | } |
| 736 | |
| 737 | static int sh_cmt_clock_event_set_state(struct clock_event_device *ced, |
| 738 | int periodic) |
| 739 | { |
| 740 | struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); |
| 741 | |
| 742 | /* deal with old setting first */ |
| 743 | if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced)) |
| 744 | sh_cmt_stop(ch, FLAG_CLOCKEVENT); |
| 745 | |
| 746 | dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n", |
| 747 | ch->index, periodic ? "periodic" : "oneshot"); |
| 748 | sh_cmt_clock_event_start(ch, periodic); |
| 749 | return 0; |
| 750 | } |
| 751 | |
| 752 | static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced) |
| 753 | { |
| 754 | return sh_cmt_clock_event_set_state(ced, 0); |
| 755 | } |
| 756 | |
| 757 | static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced) |
| 758 | { |
| 759 | return sh_cmt_clock_event_set_state(ced, 1); |
| 760 | } |
| 761 | |
| 762 | static int sh_cmt_clock_event_next(unsigned long delta, |
| 763 | struct clock_event_device *ced) |
| 764 | { |
| 765 | struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); |
| 766 | |
| 767 | BUG_ON(!clockevent_state_oneshot(ced)); |
| 768 | if (likely(ch->flags & FLAG_IRQCONTEXT)) |
| 769 | ch->next_match_value = delta - 1; |
| 770 | else |
| 771 | sh_cmt_set_next(ch, delta - 1); |
| 772 | |
| 773 | return 0; |
| 774 | } |
| 775 | |
| 776 | static void sh_cmt_clock_event_suspend(struct clock_event_device *ced) |
| 777 | { |
| 778 | struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); |
| 779 | |
| 780 | pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev); |
| 781 | clk_unprepare(ch->cmt->clk); |
| 782 | } |
| 783 | |
| 784 | static void sh_cmt_clock_event_resume(struct clock_event_device *ced) |
| 785 | { |
| 786 | struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); |
| 787 | |
| 788 | clk_prepare(ch->cmt->clk); |
| 789 | pm_genpd_syscore_poweron(&ch->cmt->pdev->dev); |
| 790 | } |
| 791 | |
| 792 | static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch, |
| 793 | const char *name) |
| 794 | { |
| 795 | struct clock_event_device *ced = &ch->ced; |
| 796 | int irq; |
| 797 | int ret; |
| 798 | |
| 799 | irq = platform_get_irq(ch->cmt->pdev, ch->index); |
| 800 | if (irq < 0) { |
| 801 | dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n", |
| 802 | ch->index); |
| 803 | return irq; |
| 804 | } |
| 805 | |
| 806 | ret = request_irq(irq, sh_cmt_interrupt, |
| 807 | IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, |
| 808 | dev_name(&ch->cmt->pdev->dev), ch); |
| 809 | if (ret) { |
| 810 | dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n", |
| 811 | ch->index, irq); |
| 812 | return ret; |
| 813 | } |
| 814 | |
| 815 | ced->name = name; |
| 816 | ced->features = CLOCK_EVT_FEAT_PERIODIC; |
| 817 | ced->features |= CLOCK_EVT_FEAT_ONESHOT; |
| 818 | ced->rating = 125; |
| 819 | ced->cpumask = cpu_possible_mask; |
| 820 | ced->set_next_event = sh_cmt_clock_event_next; |
| 821 | ced->set_state_shutdown = sh_cmt_clock_event_shutdown; |
| 822 | ced->set_state_periodic = sh_cmt_clock_event_set_periodic; |
| 823 | ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot; |
| 824 | ced->suspend = sh_cmt_clock_event_suspend; |
| 825 | ced->resume = sh_cmt_clock_event_resume; |
| 826 | |
| 827 | dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n", |
| 828 | ch->index); |
| 829 | clockevents_register_device(ced); |
| 830 | |
| 831 | return 0; |
| 832 | } |
| 833 | |
| 834 | static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name, |
| 835 | bool clockevent, bool clocksource) |
| 836 | { |
| 837 | int ret; |
| 838 | |
| 839 | if (clockevent) { |
| 840 | ch->cmt->has_clockevent = true; |
| 841 | ret = sh_cmt_register_clockevent(ch, name); |
| 842 | if (ret < 0) |
| 843 | return ret; |
| 844 | } |
| 845 | |
| 846 | if (clocksource) { |
| 847 | ch->cmt->has_clocksource = true; |
| 848 | sh_cmt_register_clocksource(ch, name); |
| 849 | } |
| 850 | |
| 851 | return 0; |
| 852 | } |
| 853 | |
| 854 | static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index, |
| 855 | unsigned int hwidx, bool clockevent, |
| 856 | bool clocksource, struct sh_cmt_device *cmt) |
| 857 | { |
| 858 | int ret; |
| 859 | |
| 860 | /* Skip unused channels. */ |
| 861 | if (!clockevent && !clocksource) |
| 862 | return 0; |
| 863 | |
| 864 | ch->cmt = cmt; |
| 865 | ch->index = index; |
| 866 | ch->hwidx = hwidx; |
| 867 | |
| 868 | /* |
| 869 | * Compute the address of the channel control register block. For the |
| 870 | * timers with a per-channel start/stop register, compute its address |
| 871 | * as well. |
| 872 | */ |
| 873 | switch (cmt->info->model) { |
| 874 | case SH_CMT_16BIT: |
| 875 | ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6; |
| 876 | break; |
| 877 | case SH_CMT_32BIT: |
| 878 | case SH_CMT_48BIT: |
| 879 | ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10; |
| 880 | break; |
| 881 | case SH_CMT_32BIT_FAST: |
| 882 | /* |
| 883 | * The 32-bit "fast" timer has a single channel at hwidx 5 but |
| 884 | * is located at offset 0x40 instead of 0x60 for some reason. |
| 885 | */ |
| 886 | ch->ioctrl = cmt->mapbase + 0x40; |
| 887 | break; |
| 888 | case SH_CMT_48BIT_GEN2: |
| 889 | ch->iostart = cmt->mapbase + ch->hwidx * 0x100; |
| 890 | ch->ioctrl = ch->iostart + 0x10; |
| 891 | break; |
| 892 | } |
| 893 | |
| 894 | if (cmt->info->width == (sizeof(ch->max_match_value) * 8)) |
| 895 | ch->max_match_value = ~0; |
| 896 | else |
| 897 | ch->max_match_value = (1 << cmt->info->width) - 1; |
| 898 | |
| 899 | ch->match_value = ch->max_match_value; |
| 900 | raw_spin_lock_init(&ch->lock); |
| 901 | |
| 902 | ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx; |
| 903 | |
| 904 | ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev), |
| 905 | clockevent, clocksource); |
| 906 | if (ret) { |
| 907 | dev_err(&cmt->pdev->dev, "ch%u: registration failed\n", |
| 908 | ch->index); |
| 909 | return ret; |
| 910 | } |
| 911 | ch->cs_enabled = false; |
| 912 | |
| 913 | return 0; |
| 914 | } |
| 915 | |
| 916 | static int sh_cmt_map_memory(struct sh_cmt_device *cmt) |
| 917 | { |
| 918 | struct resource *mem; |
| 919 | |
| 920 | mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0); |
| 921 | if (!mem) { |
| 922 | dev_err(&cmt->pdev->dev, "failed to get I/O memory\n"); |
| 923 | return -ENXIO; |
| 924 | } |
| 925 | |
| 926 | cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem)); |
| 927 | if (cmt->mapbase == NULL) { |
| 928 | dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n"); |
| 929 | return -ENXIO; |
| 930 | } |
| 931 | |
| 932 | return 0; |
| 933 | } |
| 934 | |
| 935 | static const struct platform_device_id sh_cmt_id_table[] = { |
| 936 | { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] }, |
| 937 | { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] }, |
| 938 | { } |
| 939 | }; |
| 940 | MODULE_DEVICE_TABLE(platform, sh_cmt_id_table); |
| 941 | |
| 942 | static const struct of_device_id sh_cmt_of_table[] __maybe_unused = { |
| 943 | { .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] }, |
| 944 | { .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] }, |
| 945 | { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] }, |
| 946 | { .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] }, |
| 947 | { } |
| 948 | }; |
| 949 | MODULE_DEVICE_TABLE(of, sh_cmt_of_table); |
| 950 | |
| 951 | static int sh_cmt_parse_dt(struct sh_cmt_device *cmt) |
| 952 | { |
| 953 | struct device_node *np = cmt->pdev->dev.of_node; |
| 954 | |
| 955 | return of_property_read_u32(np, "renesas,channels-mask", |
| 956 | &cmt->hw_channels); |
| 957 | } |
| 958 | |
| 959 | static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev) |
| 960 | { |
| 961 | unsigned int mask; |
| 962 | unsigned int i; |
| 963 | int ret; |
| 964 | |
| 965 | cmt->pdev = pdev; |
| 966 | raw_spin_lock_init(&cmt->lock); |
| 967 | |
| 968 | if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { |
| 969 | const struct of_device_id *id; |
| 970 | |
| 971 | id = of_match_node(sh_cmt_of_table, pdev->dev.of_node); |
| 972 | cmt->info = id->data; |
| 973 | |
| 974 | ret = sh_cmt_parse_dt(cmt); |
| 975 | if (ret < 0) |
| 976 | return ret; |
| 977 | } else if (pdev->dev.platform_data) { |
| 978 | struct sh_timer_config *cfg = pdev->dev.platform_data; |
| 979 | const struct platform_device_id *id = pdev->id_entry; |
| 980 | |
| 981 | cmt->info = (const struct sh_cmt_info *)id->driver_data; |
| 982 | cmt->hw_channels = cfg->channels_mask; |
| 983 | } else { |
| 984 | dev_err(&cmt->pdev->dev, "missing platform data\n"); |
| 985 | return -ENXIO; |
| 986 | } |
| 987 | |
| 988 | /* Get hold of clock. */ |
| 989 | cmt->clk = clk_get(&cmt->pdev->dev, "fck"); |
| 990 | if (IS_ERR(cmt->clk)) { |
| 991 | dev_err(&cmt->pdev->dev, "cannot get clock\n"); |
| 992 | return PTR_ERR(cmt->clk); |
| 993 | } |
| 994 | |
| 995 | ret = clk_prepare(cmt->clk); |
| 996 | if (ret < 0) |
| 997 | goto err_clk_put; |
| 998 | |
| 999 | /* Map the memory resource(s). */ |
| 1000 | ret = sh_cmt_map_memory(cmt); |
| 1001 | if (ret < 0) |
| 1002 | goto err_clk_unprepare; |
| 1003 | |
| 1004 | /* Allocate and setup the channels. */ |
| 1005 | cmt->num_channels = hweight8(cmt->hw_channels); |
| 1006 | cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels), |
| 1007 | GFP_KERNEL); |
| 1008 | if (cmt->channels == NULL) { |
| 1009 | ret = -ENOMEM; |
| 1010 | goto err_unmap; |
| 1011 | } |
| 1012 | |
| 1013 | /* |
| 1014 | * Use the first channel as a clock event device and the second channel |
| 1015 | * as a clock source. If only one channel is available use it for both. |
| 1016 | */ |
| 1017 | for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) { |
| 1018 | unsigned int hwidx = ffs(mask) - 1; |
| 1019 | bool clocksource = i == 1 || cmt->num_channels == 1; |
| 1020 | bool clockevent = i == 0; |
| 1021 | |
| 1022 | ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx, |
| 1023 | clockevent, clocksource, cmt); |
| 1024 | if (ret < 0) |
| 1025 | goto err_unmap; |
| 1026 | |
| 1027 | mask &= ~(1 << hwidx); |
| 1028 | } |
| 1029 | |
| 1030 | platform_set_drvdata(pdev, cmt); |
| 1031 | |
| 1032 | return 0; |
| 1033 | |
| 1034 | err_unmap: |
| 1035 | kfree(cmt->channels); |
| 1036 | iounmap(cmt->mapbase); |
| 1037 | err_clk_unprepare: |
| 1038 | clk_unprepare(cmt->clk); |
| 1039 | err_clk_put: |
| 1040 | clk_put(cmt->clk); |
| 1041 | return ret; |
| 1042 | } |
| 1043 | |
| 1044 | static int sh_cmt_probe(struct platform_device *pdev) |
| 1045 | { |
| 1046 | struct sh_cmt_device *cmt = platform_get_drvdata(pdev); |
| 1047 | int ret; |
| 1048 | |
| 1049 | if (!is_early_platform_device(pdev)) { |
| 1050 | pm_runtime_set_active(&pdev->dev); |
| 1051 | pm_runtime_enable(&pdev->dev); |
| 1052 | } |
| 1053 | |
| 1054 | if (cmt) { |
| 1055 | dev_info(&pdev->dev, "kept as earlytimer\n"); |
| 1056 | goto out; |
| 1057 | } |
| 1058 | |
| 1059 | cmt = kzalloc(sizeof(*cmt), GFP_KERNEL); |
| 1060 | if (cmt == NULL) |
| 1061 | return -ENOMEM; |
| 1062 | |
| 1063 | ret = sh_cmt_setup(cmt, pdev); |
| 1064 | if (ret) { |
| 1065 | kfree(cmt); |
| 1066 | pm_runtime_idle(&pdev->dev); |
| 1067 | return ret; |
| 1068 | } |
| 1069 | if (is_early_platform_device(pdev)) |
| 1070 | return 0; |
| 1071 | |
| 1072 | out: |
| 1073 | if (cmt->has_clockevent || cmt->has_clocksource) |
| 1074 | pm_runtime_irq_safe(&pdev->dev); |
| 1075 | else |
| 1076 | pm_runtime_idle(&pdev->dev); |
| 1077 | |
| 1078 | return 0; |
| 1079 | } |
| 1080 | |
| 1081 | static int sh_cmt_remove(struct platform_device *pdev) |
| 1082 | { |
| 1083 | return -EBUSY; /* cannot unregister clockevent and clocksource */ |
| 1084 | } |
| 1085 | |
| 1086 | static struct platform_driver sh_cmt_device_driver = { |
| 1087 | .probe = sh_cmt_probe, |
| 1088 | .remove = sh_cmt_remove, |
| 1089 | .driver = { |
| 1090 | .name = "sh_cmt", |
| 1091 | .of_match_table = of_match_ptr(sh_cmt_of_table), |
| 1092 | }, |
| 1093 | .id_table = sh_cmt_id_table, |
| 1094 | }; |
| 1095 | |
| 1096 | static int __init sh_cmt_init(void) |
| 1097 | { |
| 1098 | return platform_driver_register(&sh_cmt_device_driver); |
| 1099 | } |
| 1100 | |
| 1101 | static void __exit sh_cmt_exit(void) |
| 1102 | { |
| 1103 | platform_driver_unregister(&sh_cmt_device_driver); |
| 1104 | } |
| 1105 | |
| 1106 | early_platform_init("earlytimer", &sh_cmt_device_driver); |
| 1107 | subsys_initcall(sh_cmt_init); |
| 1108 | module_exit(sh_cmt_exit); |
| 1109 | |
| 1110 | MODULE_AUTHOR("Magnus Damm"); |
| 1111 | MODULE_DESCRIPTION("SuperH CMT Timer Driver"); |
| 1112 | MODULE_LICENSE("GPL v2"); |