Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * intel_pstate.c: Native P state management for Intel processors |
| 3 | * |
| 4 | * (C) Copyright 2012 Intel Corporation |
| 5 | * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU General Public License |
| 9 | * as published by the Free Software Foundation; version 2 |
| 10 | * of the License. |
| 11 | */ |
| 12 | |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/kernel_stat.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/ktime.h> |
| 17 | #include <linux/hrtimer.h> |
| 18 | #include <linux/tick.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/sched.h> |
| 21 | #include <linux/list.h> |
| 22 | #include <linux/cpu.h> |
| 23 | #include <linux/cpufreq.h> |
| 24 | #include <linux/sysfs.h> |
| 25 | #include <linux/types.h> |
| 26 | #include <linux/fs.h> |
| 27 | #include <linux/debugfs.h> |
| 28 | #include <linux/acpi.h> |
| 29 | #include <linux/vmalloc.h> |
| 30 | #include <trace/events/power.h> |
| 31 | |
| 32 | #include <asm/div64.h> |
| 33 | #include <asm/msr.h> |
| 34 | #include <asm/cpu_device_id.h> |
| 35 | #include <asm/cpufeature.h> |
| 36 | |
| 37 | #define ATOM_RATIOS 0x66a |
| 38 | #define ATOM_VIDS 0x66b |
| 39 | #define ATOM_TURBO_RATIOS 0x66c |
| 40 | #define ATOM_TURBO_VIDS 0x66d |
| 41 | |
| 42 | #define FRAC_BITS 8 |
| 43 | #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) |
| 44 | #define fp_toint(X) ((X) >> FRAC_BITS) |
| 45 | |
| 46 | static inline int32_t mul_fp(int32_t x, int32_t y) |
| 47 | { |
| 48 | return ((int64_t)x * (int64_t)y) >> FRAC_BITS; |
| 49 | } |
| 50 | |
| 51 | static inline int32_t div_fp(s64 x, s64 y) |
| 52 | { |
| 53 | return div64_s64((int64_t)x << FRAC_BITS, y); |
| 54 | } |
| 55 | |
| 56 | static inline int ceiling_fp(int32_t x) |
| 57 | { |
| 58 | int mask, ret; |
| 59 | |
| 60 | ret = fp_toint(x); |
| 61 | mask = (1 << FRAC_BITS) - 1; |
| 62 | if (x & mask) |
| 63 | ret += 1; |
| 64 | return ret; |
| 65 | } |
| 66 | |
| 67 | struct sample { |
| 68 | int32_t core_pct_busy; |
| 69 | u64 aperf; |
| 70 | u64 mperf; |
| 71 | u64 tsc; |
| 72 | int freq; |
| 73 | ktime_t time; |
| 74 | }; |
| 75 | |
| 76 | struct pstate_data { |
| 77 | int current_pstate; |
| 78 | int min_pstate; |
| 79 | int max_pstate; |
| 80 | int max_pstate_physical; |
| 81 | int scaling; |
| 82 | int turbo_pstate; |
| 83 | }; |
| 84 | |
| 85 | struct vid_data { |
| 86 | int min; |
| 87 | int max; |
| 88 | int turbo; |
| 89 | int32_t ratio; |
| 90 | }; |
| 91 | |
| 92 | struct _pid { |
| 93 | int setpoint; |
| 94 | int32_t integral; |
| 95 | int32_t p_gain; |
| 96 | int32_t i_gain; |
| 97 | int32_t d_gain; |
| 98 | int deadband; |
| 99 | int32_t last_err; |
| 100 | }; |
| 101 | |
| 102 | struct cpudata { |
| 103 | int cpu; |
| 104 | |
| 105 | struct timer_list timer; |
| 106 | |
| 107 | struct pstate_data pstate; |
| 108 | struct vid_data vid; |
| 109 | struct _pid pid; |
| 110 | |
| 111 | ktime_t last_sample_time; |
| 112 | u64 prev_aperf; |
| 113 | u64 prev_mperf; |
| 114 | u64 prev_tsc; |
| 115 | struct sample sample; |
| 116 | }; |
| 117 | |
| 118 | static struct cpudata **all_cpu_data; |
| 119 | struct pstate_adjust_policy { |
| 120 | int sample_rate_ms; |
| 121 | int deadband; |
| 122 | int setpoint; |
| 123 | int p_gain_pct; |
| 124 | int d_gain_pct; |
| 125 | int i_gain_pct; |
| 126 | }; |
| 127 | |
| 128 | struct pstate_funcs { |
| 129 | int (*get_max)(void); |
| 130 | int (*get_max_physical)(void); |
| 131 | int (*get_min)(void); |
| 132 | int (*get_turbo)(void); |
| 133 | int (*get_scaling)(void); |
| 134 | void (*set)(struct cpudata*, int pstate); |
| 135 | void (*get_vid)(struct cpudata *); |
| 136 | }; |
| 137 | |
| 138 | struct cpu_defaults { |
| 139 | struct pstate_adjust_policy pid_policy; |
| 140 | struct pstate_funcs funcs; |
| 141 | }; |
| 142 | |
| 143 | static struct pstate_adjust_policy pid_params; |
| 144 | static struct pstate_funcs pstate_funcs; |
| 145 | static int hwp_active; |
| 146 | |
| 147 | struct perf_limits { |
| 148 | int no_turbo; |
| 149 | int turbo_disabled; |
| 150 | int max_perf_pct; |
| 151 | int min_perf_pct; |
| 152 | int32_t max_perf; |
| 153 | int32_t min_perf; |
| 154 | int max_policy_pct; |
| 155 | int max_sysfs_pct; |
| 156 | int min_policy_pct; |
| 157 | int min_sysfs_pct; |
| 158 | }; |
| 159 | |
| 160 | static struct perf_limits performance_limits = { |
| 161 | .no_turbo = 0, |
| 162 | .turbo_disabled = 0, |
| 163 | .max_perf_pct = 100, |
| 164 | .max_perf = int_tofp(1), |
| 165 | .min_perf_pct = 100, |
| 166 | .min_perf = int_tofp(1), |
| 167 | .max_policy_pct = 100, |
| 168 | .max_sysfs_pct = 100, |
| 169 | .min_policy_pct = 0, |
| 170 | .min_sysfs_pct = 0, |
| 171 | }; |
| 172 | |
| 173 | static struct perf_limits powersave_limits = { |
| 174 | .no_turbo = 0, |
| 175 | .turbo_disabled = 0, |
| 176 | .max_perf_pct = 100, |
| 177 | .max_perf = int_tofp(1), |
| 178 | .min_perf_pct = 0, |
| 179 | .min_perf = 0, |
| 180 | .max_policy_pct = 100, |
| 181 | .max_sysfs_pct = 100, |
| 182 | .min_policy_pct = 0, |
| 183 | .min_sysfs_pct = 0, |
| 184 | }; |
| 185 | |
| 186 | #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE |
| 187 | static struct perf_limits *limits = &performance_limits; |
| 188 | #else |
| 189 | static struct perf_limits *limits = &powersave_limits; |
| 190 | #endif |
| 191 | |
| 192 | static inline void pid_reset(struct _pid *pid, int setpoint, int busy, |
| 193 | int deadband, int integral) { |
| 194 | pid->setpoint = setpoint; |
| 195 | pid->deadband = deadband; |
| 196 | pid->integral = int_tofp(integral); |
| 197 | pid->last_err = int_tofp(setpoint) - int_tofp(busy); |
| 198 | } |
| 199 | |
| 200 | static inline void pid_p_gain_set(struct _pid *pid, int percent) |
| 201 | { |
| 202 | pid->p_gain = div_fp(int_tofp(percent), int_tofp(100)); |
| 203 | } |
| 204 | |
| 205 | static inline void pid_i_gain_set(struct _pid *pid, int percent) |
| 206 | { |
| 207 | pid->i_gain = div_fp(int_tofp(percent), int_tofp(100)); |
| 208 | } |
| 209 | |
| 210 | static inline void pid_d_gain_set(struct _pid *pid, int percent) |
| 211 | { |
| 212 | pid->d_gain = div_fp(int_tofp(percent), int_tofp(100)); |
| 213 | } |
| 214 | |
| 215 | static signed int pid_calc(struct _pid *pid, int32_t busy) |
| 216 | { |
| 217 | signed int result; |
| 218 | int32_t pterm, dterm, fp_error; |
| 219 | int32_t integral_limit; |
| 220 | |
| 221 | fp_error = int_tofp(pid->setpoint) - busy; |
| 222 | |
| 223 | if (abs(fp_error) <= int_tofp(pid->deadband)) |
| 224 | return 0; |
| 225 | |
| 226 | pterm = mul_fp(pid->p_gain, fp_error); |
| 227 | |
| 228 | pid->integral += fp_error; |
| 229 | |
| 230 | /* |
| 231 | * We limit the integral here so that it will never |
| 232 | * get higher than 30. This prevents it from becoming |
| 233 | * too large an input over long periods of time and allows |
| 234 | * it to get factored out sooner. |
| 235 | * |
| 236 | * The value of 30 was chosen through experimentation. |
| 237 | */ |
| 238 | integral_limit = int_tofp(30); |
| 239 | if (pid->integral > integral_limit) |
| 240 | pid->integral = integral_limit; |
| 241 | if (pid->integral < -integral_limit) |
| 242 | pid->integral = -integral_limit; |
| 243 | |
| 244 | dterm = mul_fp(pid->d_gain, fp_error - pid->last_err); |
| 245 | pid->last_err = fp_error; |
| 246 | |
| 247 | result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm; |
| 248 | result = result + (1 << (FRAC_BITS-1)); |
| 249 | return (signed int)fp_toint(result); |
| 250 | } |
| 251 | |
| 252 | static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu) |
| 253 | { |
| 254 | pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct); |
| 255 | pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct); |
| 256 | pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct); |
| 257 | |
| 258 | pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0); |
| 259 | } |
| 260 | |
| 261 | static inline void intel_pstate_reset_all_pid(void) |
| 262 | { |
| 263 | unsigned int cpu; |
| 264 | |
| 265 | for_each_online_cpu(cpu) { |
| 266 | if (all_cpu_data[cpu]) |
| 267 | intel_pstate_busy_pid_reset(all_cpu_data[cpu]); |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | static inline void update_turbo_state(void) |
| 272 | { |
| 273 | u64 misc_en; |
| 274 | struct cpudata *cpu; |
| 275 | |
| 276 | cpu = all_cpu_data[0]; |
| 277 | rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); |
| 278 | limits->turbo_disabled = |
| 279 | (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || |
| 280 | cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); |
| 281 | } |
| 282 | |
| 283 | static void intel_pstate_hwp_set(void) |
| 284 | { |
| 285 | int min, hw_min, max, hw_max, cpu, range, adj_range; |
| 286 | u64 value, cap; |
| 287 | |
| 288 | get_online_cpus(); |
| 289 | |
| 290 | for_each_online_cpu(cpu) { |
| 291 | rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap); |
| 292 | hw_min = HWP_LOWEST_PERF(cap); |
| 293 | hw_max = HWP_HIGHEST_PERF(cap); |
| 294 | range = hw_max - hw_min; |
| 295 | |
| 296 | rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); |
| 297 | adj_range = limits->min_perf_pct * range / 100; |
| 298 | min = hw_min + adj_range; |
| 299 | value &= ~HWP_MIN_PERF(~0L); |
| 300 | value |= HWP_MIN_PERF(min); |
| 301 | |
| 302 | adj_range = limits->max_perf_pct * range / 100; |
| 303 | max = hw_min + adj_range; |
| 304 | if (limits->no_turbo) { |
| 305 | hw_max = HWP_GUARANTEED_PERF(cap); |
| 306 | if (hw_max < max) |
| 307 | max = hw_max; |
| 308 | } |
| 309 | |
| 310 | value &= ~HWP_MAX_PERF(~0L); |
| 311 | value |= HWP_MAX_PERF(max); |
| 312 | wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); |
| 313 | } |
| 314 | |
| 315 | put_online_cpus(); |
| 316 | } |
| 317 | |
| 318 | /************************** debugfs begin ************************/ |
| 319 | static int pid_param_set(void *data, u64 val) |
| 320 | { |
| 321 | *(u32 *)data = val; |
| 322 | intel_pstate_reset_all_pid(); |
| 323 | return 0; |
| 324 | } |
| 325 | |
| 326 | static int pid_param_get(void *data, u64 *val) |
| 327 | { |
| 328 | *val = *(u32 *)data; |
| 329 | return 0; |
| 330 | } |
| 331 | DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n"); |
| 332 | |
| 333 | struct pid_param { |
| 334 | char *name; |
| 335 | void *value; |
| 336 | }; |
| 337 | |
| 338 | static struct pid_param pid_files[] = { |
| 339 | {"sample_rate_ms", &pid_params.sample_rate_ms}, |
| 340 | {"d_gain_pct", &pid_params.d_gain_pct}, |
| 341 | {"i_gain_pct", &pid_params.i_gain_pct}, |
| 342 | {"deadband", &pid_params.deadband}, |
| 343 | {"setpoint", &pid_params.setpoint}, |
| 344 | {"p_gain_pct", &pid_params.p_gain_pct}, |
| 345 | {NULL, NULL} |
| 346 | }; |
| 347 | |
| 348 | static void __init intel_pstate_debug_expose_params(void) |
| 349 | { |
| 350 | struct dentry *debugfs_parent; |
| 351 | int i = 0; |
| 352 | |
| 353 | if (hwp_active) |
| 354 | return; |
| 355 | debugfs_parent = debugfs_create_dir("pstate_snb", NULL); |
| 356 | if (IS_ERR_OR_NULL(debugfs_parent)) |
| 357 | return; |
| 358 | while (pid_files[i].name) { |
| 359 | debugfs_create_file(pid_files[i].name, 0660, |
| 360 | debugfs_parent, pid_files[i].value, |
| 361 | &fops_pid_param); |
| 362 | i++; |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | /************************** debugfs end ************************/ |
| 367 | |
| 368 | /************************** sysfs begin ************************/ |
| 369 | #define show_one(file_name, object) \ |
| 370 | static ssize_t show_##file_name \ |
| 371 | (struct kobject *kobj, struct attribute *attr, char *buf) \ |
| 372 | { \ |
| 373 | return sprintf(buf, "%u\n", limits->object); \ |
| 374 | } |
| 375 | |
| 376 | static ssize_t show_turbo_pct(struct kobject *kobj, |
| 377 | struct attribute *attr, char *buf) |
| 378 | { |
| 379 | struct cpudata *cpu; |
| 380 | int total, no_turbo, turbo_pct; |
| 381 | uint32_t turbo_fp; |
| 382 | |
| 383 | cpu = all_cpu_data[0]; |
| 384 | |
| 385 | total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; |
| 386 | no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; |
| 387 | turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total)); |
| 388 | turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); |
| 389 | return sprintf(buf, "%u\n", turbo_pct); |
| 390 | } |
| 391 | |
| 392 | static ssize_t show_num_pstates(struct kobject *kobj, |
| 393 | struct attribute *attr, char *buf) |
| 394 | { |
| 395 | struct cpudata *cpu; |
| 396 | int total; |
| 397 | |
| 398 | cpu = all_cpu_data[0]; |
| 399 | total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; |
| 400 | return sprintf(buf, "%u\n", total); |
| 401 | } |
| 402 | |
| 403 | static ssize_t show_no_turbo(struct kobject *kobj, |
| 404 | struct attribute *attr, char *buf) |
| 405 | { |
| 406 | ssize_t ret; |
| 407 | |
| 408 | update_turbo_state(); |
| 409 | if (limits->turbo_disabled) |
| 410 | ret = sprintf(buf, "%u\n", limits->turbo_disabled); |
| 411 | else |
| 412 | ret = sprintf(buf, "%u\n", limits->no_turbo); |
| 413 | |
| 414 | return ret; |
| 415 | } |
| 416 | |
| 417 | static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, |
| 418 | const char *buf, size_t count) |
| 419 | { |
| 420 | unsigned int input; |
| 421 | int ret; |
| 422 | |
| 423 | ret = sscanf(buf, "%u", &input); |
| 424 | if (ret != 1) |
| 425 | return -EINVAL; |
| 426 | |
| 427 | update_turbo_state(); |
| 428 | if (limits->turbo_disabled) { |
| 429 | pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n"); |
| 430 | return -EPERM; |
| 431 | } |
| 432 | |
| 433 | limits->no_turbo = clamp_t(int, input, 0, 1); |
| 434 | |
| 435 | if (hwp_active) |
| 436 | intel_pstate_hwp_set(); |
| 437 | |
| 438 | return count; |
| 439 | } |
| 440 | |
| 441 | static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, |
| 442 | const char *buf, size_t count) |
| 443 | { |
| 444 | unsigned int input; |
| 445 | int ret; |
| 446 | |
| 447 | ret = sscanf(buf, "%u", &input); |
| 448 | if (ret != 1) |
| 449 | return -EINVAL; |
| 450 | |
| 451 | limits->max_sysfs_pct = clamp_t(int, input, 0 , 100); |
| 452 | limits->max_perf_pct = min(limits->max_policy_pct, |
| 453 | limits->max_sysfs_pct); |
| 454 | limits->max_perf_pct = max(limits->min_policy_pct, |
| 455 | limits->max_perf_pct); |
| 456 | limits->max_perf_pct = max(limits->min_perf_pct, |
| 457 | limits->max_perf_pct); |
| 458 | limits->max_perf = div_fp(int_tofp(limits->max_perf_pct), |
| 459 | int_tofp(100)); |
| 460 | |
| 461 | if (hwp_active) |
| 462 | intel_pstate_hwp_set(); |
| 463 | return count; |
| 464 | } |
| 465 | |
| 466 | static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, |
| 467 | const char *buf, size_t count) |
| 468 | { |
| 469 | unsigned int input; |
| 470 | int ret; |
| 471 | |
| 472 | ret = sscanf(buf, "%u", &input); |
| 473 | if (ret != 1) |
| 474 | return -EINVAL; |
| 475 | |
| 476 | limits->min_sysfs_pct = clamp_t(int, input, 0 , 100); |
| 477 | limits->min_perf_pct = max(limits->min_policy_pct, |
| 478 | limits->min_sysfs_pct); |
| 479 | limits->min_perf_pct = min(limits->max_policy_pct, |
| 480 | limits->min_perf_pct); |
| 481 | limits->min_perf_pct = min(limits->max_perf_pct, |
| 482 | limits->min_perf_pct); |
| 483 | limits->min_perf = div_fp(int_tofp(limits->min_perf_pct), |
| 484 | int_tofp(100)); |
| 485 | |
| 486 | if (hwp_active) |
| 487 | intel_pstate_hwp_set(); |
| 488 | return count; |
| 489 | } |
| 490 | |
| 491 | show_one(max_perf_pct, max_perf_pct); |
| 492 | show_one(min_perf_pct, min_perf_pct); |
| 493 | |
| 494 | define_one_global_rw(no_turbo); |
| 495 | define_one_global_rw(max_perf_pct); |
| 496 | define_one_global_rw(min_perf_pct); |
| 497 | define_one_global_ro(turbo_pct); |
| 498 | define_one_global_ro(num_pstates); |
| 499 | |
| 500 | static struct attribute *intel_pstate_attributes[] = { |
| 501 | &no_turbo.attr, |
| 502 | &max_perf_pct.attr, |
| 503 | &min_perf_pct.attr, |
| 504 | &turbo_pct.attr, |
| 505 | &num_pstates.attr, |
| 506 | NULL |
| 507 | }; |
| 508 | |
| 509 | static struct attribute_group intel_pstate_attr_group = { |
| 510 | .attrs = intel_pstate_attributes, |
| 511 | }; |
| 512 | |
| 513 | static void __init intel_pstate_sysfs_expose_params(void) |
| 514 | { |
| 515 | struct kobject *intel_pstate_kobject; |
| 516 | int rc; |
| 517 | |
| 518 | intel_pstate_kobject = kobject_create_and_add("intel_pstate", |
| 519 | &cpu_subsys.dev_root->kobj); |
| 520 | BUG_ON(!intel_pstate_kobject); |
| 521 | rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); |
| 522 | BUG_ON(rc); |
| 523 | } |
| 524 | /************************** sysfs end ************************/ |
| 525 | |
| 526 | static void intel_pstate_hwp_enable(struct cpudata *cpudata) |
| 527 | { |
| 528 | wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); |
| 529 | } |
| 530 | |
| 531 | static int atom_get_min_pstate(void) |
| 532 | { |
| 533 | u64 value; |
| 534 | |
| 535 | rdmsrl(ATOM_RATIOS, value); |
| 536 | return (value >> 8) & 0x7F; |
| 537 | } |
| 538 | |
| 539 | static int atom_get_max_pstate(void) |
| 540 | { |
| 541 | u64 value; |
| 542 | |
| 543 | rdmsrl(ATOM_RATIOS, value); |
| 544 | return (value >> 16) & 0x7F; |
| 545 | } |
| 546 | |
| 547 | static int atom_get_turbo_pstate(void) |
| 548 | { |
| 549 | u64 value; |
| 550 | |
| 551 | rdmsrl(ATOM_TURBO_RATIOS, value); |
| 552 | return value & 0x7F; |
| 553 | } |
| 554 | |
| 555 | static void atom_set_pstate(struct cpudata *cpudata, int pstate) |
| 556 | { |
| 557 | u64 val; |
| 558 | int32_t vid_fp; |
| 559 | u32 vid; |
| 560 | |
| 561 | val = (u64)pstate << 8; |
| 562 | if (limits->no_turbo && !limits->turbo_disabled) |
| 563 | val |= (u64)1 << 32; |
| 564 | |
| 565 | vid_fp = cpudata->vid.min + mul_fp( |
| 566 | int_tofp(pstate - cpudata->pstate.min_pstate), |
| 567 | cpudata->vid.ratio); |
| 568 | |
| 569 | vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); |
| 570 | vid = ceiling_fp(vid_fp); |
| 571 | |
| 572 | if (pstate > cpudata->pstate.max_pstate) |
| 573 | vid = cpudata->vid.turbo; |
| 574 | |
| 575 | val |= vid; |
| 576 | |
| 577 | wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val); |
| 578 | } |
| 579 | |
| 580 | static int silvermont_get_scaling(void) |
| 581 | { |
| 582 | u64 value; |
| 583 | int i; |
| 584 | /* Defined in Table 35-6 from SDM (Sept 2015) */ |
| 585 | static int silvermont_freq_table[] = { |
| 586 | 83300, 100000, 133300, 116700, 80000}; |
| 587 | |
| 588 | rdmsrl(MSR_FSB_FREQ, value); |
| 589 | i = value & 0x7; |
| 590 | WARN_ON(i > 4); |
| 591 | |
| 592 | return silvermont_freq_table[i]; |
| 593 | } |
| 594 | |
| 595 | static int airmont_get_scaling(void) |
| 596 | { |
| 597 | u64 value; |
| 598 | int i; |
| 599 | /* Defined in Table 35-10 from SDM (Sept 2015) */ |
| 600 | static int airmont_freq_table[] = { |
| 601 | 83300, 100000, 133300, 116700, 80000, |
| 602 | 93300, 90000, 88900, 87500}; |
| 603 | |
| 604 | rdmsrl(MSR_FSB_FREQ, value); |
| 605 | i = value & 0xF; |
| 606 | WARN_ON(i > 8); |
| 607 | |
| 608 | return airmont_freq_table[i]; |
| 609 | } |
| 610 | |
| 611 | static void atom_get_vid(struct cpudata *cpudata) |
| 612 | { |
| 613 | u64 value; |
| 614 | |
| 615 | rdmsrl(ATOM_VIDS, value); |
| 616 | cpudata->vid.min = int_tofp((value >> 8) & 0x7f); |
| 617 | cpudata->vid.max = int_tofp((value >> 16) & 0x7f); |
| 618 | cpudata->vid.ratio = div_fp( |
| 619 | cpudata->vid.max - cpudata->vid.min, |
| 620 | int_tofp(cpudata->pstate.max_pstate - |
| 621 | cpudata->pstate.min_pstate)); |
| 622 | |
| 623 | rdmsrl(ATOM_TURBO_VIDS, value); |
| 624 | cpudata->vid.turbo = value & 0x7f; |
| 625 | } |
| 626 | |
| 627 | static int core_get_min_pstate(void) |
| 628 | { |
| 629 | u64 value; |
| 630 | |
| 631 | rdmsrl(MSR_PLATFORM_INFO, value); |
| 632 | return (value >> 40) & 0xFF; |
| 633 | } |
| 634 | |
| 635 | static int core_get_max_pstate_physical(void) |
| 636 | { |
| 637 | u64 value; |
| 638 | |
| 639 | rdmsrl(MSR_PLATFORM_INFO, value); |
| 640 | return (value >> 8) & 0xFF; |
| 641 | } |
| 642 | |
| 643 | static int core_get_max_pstate(void) |
| 644 | { |
| 645 | u64 tar; |
| 646 | u64 plat_info; |
| 647 | int max_pstate; |
| 648 | int err; |
| 649 | |
| 650 | rdmsrl(MSR_PLATFORM_INFO, plat_info); |
| 651 | max_pstate = (plat_info >> 8) & 0xFF; |
| 652 | |
| 653 | err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); |
| 654 | if (!err) { |
| 655 | /* Do some sanity checking for safety */ |
| 656 | if (plat_info & 0x600000000) { |
| 657 | u64 tdp_ctrl; |
| 658 | u64 tdp_ratio; |
| 659 | int tdp_msr; |
| 660 | |
| 661 | err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); |
| 662 | if (err) |
| 663 | goto skip_tar; |
| 664 | |
| 665 | tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3); |
| 666 | err = rdmsrl_safe(tdp_msr, &tdp_ratio); |
| 667 | if (err) |
| 668 | goto skip_tar; |
| 669 | |
| 670 | /* For level 1 and 2, bits[23:16] contain the ratio */ |
| 671 | if (tdp_ctrl) |
| 672 | tdp_ratio >>= 16; |
| 673 | |
| 674 | tdp_ratio &= 0xff; /* ratios are only 8 bits long */ |
| 675 | if (tdp_ratio - 1 == tar) { |
| 676 | max_pstate = tar; |
| 677 | pr_debug("max_pstate=TAC %x\n", max_pstate); |
| 678 | } else { |
| 679 | goto skip_tar; |
| 680 | } |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | skip_tar: |
| 685 | return max_pstate; |
| 686 | } |
| 687 | |
| 688 | static int core_get_turbo_pstate(void) |
| 689 | { |
| 690 | u64 value; |
| 691 | int nont, ret; |
| 692 | |
| 693 | rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); |
| 694 | nont = core_get_max_pstate(); |
| 695 | ret = (value) & 255; |
| 696 | if (ret <= nont) |
| 697 | ret = nont; |
| 698 | return ret; |
| 699 | } |
| 700 | |
| 701 | static inline int core_get_scaling(void) |
| 702 | { |
| 703 | return 100000; |
| 704 | } |
| 705 | |
| 706 | static void core_set_pstate(struct cpudata *cpudata, int pstate) |
| 707 | { |
| 708 | u64 val; |
| 709 | |
| 710 | val = (u64)pstate << 8; |
| 711 | if (limits->no_turbo && !limits->turbo_disabled) |
| 712 | val |= (u64)1 << 32; |
| 713 | |
| 714 | wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val); |
| 715 | } |
| 716 | |
| 717 | static int knl_get_turbo_pstate(void) |
| 718 | { |
| 719 | u64 value; |
| 720 | int nont, ret; |
| 721 | |
| 722 | rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); |
| 723 | nont = core_get_max_pstate(); |
| 724 | ret = (((value) >> 8) & 0xFF); |
| 725 | if (ret <= nont) |
| 726 | ret = nont; |
| 727 | return ret; |
| 728 | } |
| 729 | |
| 730 | static struct cpu_defaults core_params = { |
| 731 | .pid_policy = { |
| 732 | .sample_rate_ms = 10, |
| 733 | .deadband = 0, |
| 734 | .setpoint = 97, |
| 735 | .p_gain_pct = 20, |
| 736 | .d_gain_pct = 0, |
| 737 | .i_gain_pct = 0, |
| 738 | }, |
| 739 | .funcs = { |
| 740 | .get_max = core_get_max_pstate, |
| 741 | .get_max_physical = core_get_max_pstate_physical, |
| 742 | .get_min = core_get_min_pstate, |
| 743 | .get_turbo = core_get_turbo_pstate, |
| 744 | .get_scaling = core_get_scaling, |
| 745 | .set = core_set_pstate, |
| 746 | }, |
| 747 | }; |
| 748 | |
| 749 | static struct cpu_defaults silvermont_params = { |
| 750 | .pid_policy = { |
| 751 | .sample_rate_ms = 10, |
| 752 | .deadband = 0, |
| 753 | .setpoint = 60, |
| 754 | .p_gain_pct = 14, |
| 755 | .d_gain_pct = 0, |
| 756 | .i_gain_pct = 4, |
| 757 | }, |
| 758 | .funcs = { |
| 759 | .get_max = atom_get_max_pstate, |
| 760 | .get_max_physical = atom_get_max_pstate, |
| 761 | .get_min = atom_get_min_pstate, |
| 762 | .get_turbo = atom_get_turbo_pstate, |
| 763 | .set = atom_set_pstate, |
| 764 | .get_scaling = silvermont_get_scaling, |
| 765 | .get_vid = atom_get_vid, |
| 766 | }, |
| 767 | }; |
| 768 | |
| 769 | static struct cpu_defaults airmont_params = { |
| 770 | .pid_policy = { |
| 771 | .sample_rate_ms = 10, |
| 772 | .deadband = 0, |
| 773 | .setpoint = 60, |
| 774 | .p_gain_pct = 14, |
| 775 | .d_gain_pct = 0, |
| 776 | .i_gain_pct = 4, |
| 777 | }, |
| 778 | .funcs = { |
| 779 | .get_max = atom_get_max_pstate, |
| 780 | .get_max_physical = atom_get_max_pstate, |
| 781 | .get_min = atom_get_min_pstate, |
| 782 | .get_turbo = atom_get_turbo_pstate, |
| 783 | .set = atom_set_pstate, |
| 784 | .get_scaling = airmont_get_scaling, |
| 785 | .get_vid = atom_get_vid, |
| 786 | }, |
| 787 | }; |
| 788 | |
| 789 | static struct cpu_defaults knl_params = { |
| 790 | .pid_policy = { |
| 791 | .sample_rate_ms = 10, |
| 792 | .deadband = 0, |
| 793 | .setpoint = 97, |
| 794 | .p_gain_pct = 20, |
| 795 | .d_gain_pct = 0, |
| 796 | .i_gain_pct = 0, |
| 797 | }, |
| 798 | .funcs = { |
| 799 | .get_max = core_get_max_pstate, |
| 800 | .get_max_physical = core_get_max_pstate_physical, |
| 801 | .get_min = core_get_min_pstate, |
| 802 | .get_turbo = knl_get_turbo_pstate, |
| 803 | .get_scaling = core_get_scaling, |
| 804 | .set = core_set_pstate, |
| 805 | }, |
| 806 | }; |
| 807 | |
| 808 | static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max) |
| 809 | { |
| 810 | int max_perf = cpu->pstate.turbo_pstate; |
| 811 | int max_perf_adj; |
| 812 | int min_perf; |
| 813 | |
| 814 | if (limits->no_turbo || limits->turbo_disabled) |
| 815 | max_perf = cpu->pstate.max_pstate; |
| 816 | |
| 817 | /* |
| 818 | * performance can be limited by user through sysfs, by cpufreq |
| 819 | * policy, or by cpu specific default values determined through |
| 820 | * experimentation. |
| 821 | */ |
| 822 | max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits->max_perf)); |
| 823 | *max = clamp_t(int, max_perf_adj, |
| 824 | cpu->pstate.min_pstate, cpu->pstate.turbo_pstate); |
| 825 | |
| 826 | min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits->min_perf)); |
| 827 | *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf); |
| 828 | } |
| 829 | |
| 830 | static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force) |
| 831 | { |
| 832 | int max_perf, min_perf; |
| 833 | |
| 834 | if (force) { |
| 835 | update_turbo_state(); |
| 836 | |
| 837 | intel_pstate_get_min_max(cpu, &min_perf, &max_perf); |
| 838 | |
| 839 | pstate = clamp_t(int, pstate, min_perf, max_perf); |
| 840 | |
| 841 | if (pstate == cpu->pstate.current_pstate) |
| 842 | return; |
| 843 | } |
| 844 | trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); |
| 845 | |
| 846 | cpu->pstate.current_pstate = pstate; |
| 847 | |
| 848 | pstate_funcs.set(cpu, pstate); |
| 849 | } |
| 850 | |
| 851 | static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) |
| 852 | { |
| 853 | cpu->pstate.min_pstate = pstate_funcs.get_min(); |
| 854 | cpu->pstate.max_pstate = pstate_funcs.get_max(); |
| 855 | cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical(); |
| 856 | cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); |
| 857 | cpu->pstate.scaling = pstate_funcs.get_scaling(); |
| 858 | |
| 859 | if (pstate_funcs.get_vid) |
| 860 | pstate_funcs.get_vid(cpu); |
| 861 | intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false); |
| 862 | } |
| 863 | |
| 864 | static inline void intel_pstate_calc_busy(struct cpudata *cpu) |
| 865 | { |
| 866 | struct sample *sample = &cpu->sample; |
| 867 | int64_t core_pct; |
| 868 | |
| 869 | core_pct = int_tofp(sample->aperf) * int_tofp(100); |
| 870 | core_pct = div64_u64(core_pct, int_tofp(sample->mperf)); |
| 871 | |
| 872 | sample->freq = fp_toint( |
| 873 | mul_fp(int_tofp( |
| 874 | cpu->pstate.max_pstate_physical * |
| 875 | cpu->pstate.scaling / 100), |
| 876 | core_pct)); |
| 877 | |
| 878 | sample->core_pct_busy = (int32_t)core_pct; |
| 879 | } |
| 880 | |
| 881 | static inline void intel_pstate_sample(struct cpudata *cpu) |
| 882 | { |
| 883 | u64 aperf, mperf; |
| 884 | unsigned long flags; |
| 885 | u64 tsc; |
| 886 | |
| 887 | local_irq_save(flags); |
| 888 | rdmsrl(MSR_IA32_APERF, aperf); |
| 889 | rdmsrl(MSR_IA32_MPERF, mperf); |
| 890 | if (cpu->prev_mperf == mperf) { |
| 891 | local_irq_restore(flags); |
| 892 | return; |
| 893 | } |
| 894 | |
| 895 | tsc = rdtsc(); |
| 896 | local_irq_restore(flags); |
| 897 | |
| 898 | cpu->last_sample_time = cpu->sample.time; |
| 899 | cpu->sample.time = ktime_get(); |
| 900 | cpu->sample.aperf = aperf; |
| 901 | cpu->sample.mperf = mperf; |
| 902 | cpu->sample.tsc = tsc; |
| 903 | cpu->sample.aperf -= cpu->prev_aperf; |
| 904 | cpu->sample.mperf -= cpu->prev_mperf; |
| 905 | cpu->sample.tsc -= cpu->prev_tsc; |
| 906 | |
| 907 | intel_pstate_calc_busy(cpu); |
| 908 | |
| 909 | cpu->prev_aperf = aperf; |
| 910 | cpu->prev_mperf = mperf; |
| 911 | cpu->prev_tsc = tsc; |
| 912 | } |
| 913 | |
| 914 | static inline void intel_hwp_set_sample_time(struct cpudata *cpu) |
| 915 | { |
| 916 | int delay; |
| 917 | |
| 918 | delay = msecs_to_jiffies(50); |
| 919 | mod_timer_pinned(&cpu->timer, jiffies + delay); |
| 920 | } |
| 921 | |
| 922 | static inline void intel_pstate_set_sample_time(struct cpudata *cpu) |
| 923 | { |
| 924 | int delay; |
| 925 | |
| 926 | delay = msecs_to_jiffies(pid_params.sample_rate_ms); |
| 927 | mod_timer_pinned(&cpu->timer, jiffies + delay); |
| 928 | } |
| 929 | |
| 930 | static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu) |
| 931 | { |
| 932 | int32_t core_busy, max_pstate, current_pstate, sample_ratio; |
| 933 | s64 duration_us; |
| 934 | u32 sample_time; |
| 935 | |
| 936 | /* |
| 937 | * core_busy is the ratio of actual performance to max |
| 938 | * max_pstate is the max non turbo pstate available |
| 939 | * current_pstate was the pstate that was requested during |
| 940 | * the last sample period. |
| 941 | * |
| 942 | * We normalize core_busy, which was our actual percent |
| 943 | * performance to what we requested during the last sample |
| 944 | * period. The result will be a percentage of busy at a |
| 945 | * specified pstate. |
| 946 | */ |
| 947 | core_busy = cpu->sample.core_pct_busy; |
| 948 | max_pstate = int_tofp(cpu->pstate.max_pstate_physical); |
| 949 | current_pstate = int_tofp(cpu->pstate.current_pstate); |
| 950 | core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate)); |
| 951 | |
| 952 | /* |
| 953 | * Since we have a deferred timer, it will not fire unless |
| 954 | * we are in C0. So, determine if the actual elapsed time |
| 955 | * is significantly greater (3x) than our sample interval. If it |
| 956 | * is, then we were idle for a long enough period of time |
| 957 | * to adjust our busyness. |
| 958 | */ |
| 959 | sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC; |
| 960 | duration_us = ktime_us_delta(cpu->sample.time, |
| 961 | cpu->last_sample_time); |
| 962 | if (duration_us > sample_time * 3) { |
| 963 | sample_ratio = div_fp(int_tofp(sample_time), |
| 964 | int_tofp(duration_us)); |
| 965 | core_busy = mul_fp(core_busy, sample_ratio); |
| 966 | } |
| 967 | |
| 968 | return core_busy; |
| 969 | } |
| 970 | |
| 971 | static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu) |
| 972 | { |
| 973 | int32_t busy_scaled; |
| 974 | struct _pid *pid; |
| 975 | signed int ctl; |
| 976 | int from; |
| 977 | struct sample *sample; |
| 978 | |
| 979 | from = cpu->pstate.current_pstate; |
| 980 | |
| 981 | pid = &cpu->pid; |
| 982 | busy_scaled = intel_pstate_get_scaled_busy(cpu); |
| 983 | |
| 984 | ctl = pid_calc(pid, busy_scaled); |
| 985 | |
| 986 | /* Negative values of ctl increase the pstate and vice versa */ |
| 987 | intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true); |
| 988 | |
| 989 | sample = &cpu->sample; |
| 990 | trace_pstate_sample(fp_toint(sample->core_pct_busy), |
| 991 | fp_toint(busy_scaled), |
| 992 | from, |
| 993 | cpu->pstate.current_pstate, |
| 994 | sample->mperf, |
| 995 | sample->aperf, |
| 996 | sample->tsc, |
| 997 | sample->freq); |
| 998 | } |
| 999 | |
| 1000 | static void intel_hwp_timer_func(unsigned long __data) |
| 1001 | { |
| 1002 | struct cpudata *cpu = (struct cpudata *) __data; |
| 1003 | |
| 1004 | intel_pstate_sample(cpu); |
| 1005 | intel_hwp_set_sample_time(cpu); |
| 1006 | } |
| 1007 | |
| 1008 | static void intel_pstate_timer_func(unsigned long __data) |
| 1009 | { |
| 1010 | struct cpudata *cpu = (struct cpudata *) __data; |
| 1011 | |
| 1012 | intel_pstate_sample(cpu); |
| 1013 | |
| 1014 | intel_pstate_adjust_busy_pstate(cpu); |
| 1015 | |
| 1016 | intel_pstate_set_sample_time(cpu); |
| 1017 | } |
| 1018 | |
| 1019 | #define ICPU(model, policy) \ |
| 1020 | { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\ |
| 1021 | (unsigned long)&policy } |
| 1022 | |
| 1023 | static const struct x86_cpu_id intel_pstate_cpu_ids[] = { |
| 1024 | ICPU(0x2a, core_params), |
| 1025 | ICPU(0x2d, core_params), |
| 1026 | ICPU(0x37, silvermont_params), |
| 1027 | ICPU(0x3a, core_params), |
| 1028 | ICPU(0x3c, core_params), |
| 1029 | ICPU(0x3d, core_params), |
| 1030 | ICPU(0x3e, core_params), |
| 1031 | ICPU(0x3f, core_params), |
| 1032 | ICPU(0x45, core_params), |
| 1033 | ICPU(0x46, core_params), |
| 1034 | ICPU(0x47, core_params), |
| 1035 | ICPU(0x4c, airmont_params), |
| 1036 | ICPU(0x4e, core_params), |
| 1037 | ICPU(0x4f, core_params), |
| 1038 | ICPU(0x5e, core_params), |
| 1039 | ICPU(0x56, core_params), |
| 1040 | ICPU(0x57, knl_params), |
| 1041 | {} |
| 1042 | }; |
| 1043 | MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); |
| 1044 | |
| 1045 | static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = { |
| 1046 | ICPU(0x56, core_params), |
| 1047 | {} |
| 1048 | }; |
| 1049 | |
| 1050 | static int intel_pstate_init_cpu(unsigned int cpunum) |
| 1051 | { |
| 1052 | struct cpudata *cpu; |
| 1053 | |
| 1054 | if (!all_cpu_data[cpunum]) |
| 1055 | all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), |
| 1056 | GFP_KERNEL); |
| 1057 | if (!all_cpu_data[cpunum]) |
| 1058 | return -ENOMEM; |
| 1059 | |
| 1060 | cpu = all_cpu_data[cpunum]; |
| 1061 | |
| 1062 | cpu->cpu = cpunum; |
| 1063 | |
| 1064 | if (hwp_active) |
| 1065 | intel_pstate_hwp_enable(cpu); |
| 1066 | |
| 1067 | intel_pstate_get_cpu_pstates(cpu); |
| 1068 | |
| 1069 | init_timer_deferrable(&cpu->timer); |
| 1070 | cpu->timer.data = (unsigned long)cpu; |
| 1071 | cpu->timer.expires = jiffies + HZ/100; |
| 1072 | |
| 1073 | if (!hwp_active) |
| 1074 | cpu->timer.function = intel_pstate_timer_func; |
| 1075 | else |
| 1076 | cpu->timer.function = intel_hwp_timer_func; |
| 1077 | |
| 1078 | intel_pstate_busy_pid_reset(cpu); |
| 1079 | intel_pstate_sample(cpu); |
| 1080 | |
| 1081 | add_timer_on(&cpu->timer, cpunum); |
| 1082 | |
| 1083 | pr_debug("intel_pstate: controlling: cpu %d\n", cpunum); |
| 1084 | |
| 1085 | return 0; |
| 1086 | } |
| 1087 | |
| 1088 | static unsigned int intel_pstate_get(unsigned int cpu_num) |
| 1089 | { |
| 1090 | struct sample *sample; |
| 1091 | struct cpudata *cpu; |
| 1092 | |
| 1093 | cpu = all_cpu_data[cpu_num]; |
| 1094 | if (!cpu) |
| 1095 | return 0; |
| 1096 | sample = &cpu->sample; |
| 1097 | return sample->freq; |
| 1098 | } |
| 1099 | |
| 1100 | static int intel_pstate_set_policy(struct cpufreq_policy *policy) |
| 1101 | { |
| 1102 | if (!policy->cpuinfo.max_freq) |
| 1103 | return -ENODEV; |
| 1104 | |
| 1105 | if (policy->policy == CPUFREQ_POLICY_PERFORMANCE && |
| 1106 | policy->max >= policy->cpuinfo.max_freq) { |
| 1107 | pr_debug("intel_pstate: set performance\n"); |
| 1108 | limits = &performance_limits; |
| 1109 | if (hwp_active) |
| 1110 | intel_pstate_hwp_set(); |
| 1111 | return 0; |
| 1112 | } |
| 1113 | |
| 1114 | pr_debug("intel_pstate: set powersave\n"); |
| 1115 | limits = &powersave_limits; |
| 1116 | limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq; |
| 1117 | limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100); |
| 1118 | limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100, |
| 1119 | policy->cpuinfo.max_freq); |
| 1120 | limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100); |
| 1121 | |
| 1122 | /* Normalize user input to [min_policy_pct, max_policy_pct] */ |
| 1123 | limits->min_perf_pct = max(limits->min_policy_pct, |
| 1124 | limits->min_sysfs_pct); |
| 1125 | limits->min_perf_pct = min(limits->max_policy_pct, |
| 1126 | limits->min_perf_pct); |
| 1127 | limits->max_perf_pct = min(limits->max_policy_pct, |
| 1128 | limits->max_sysfs_pct); |
| 1129 | limits->max_perf_pct = max(limits->min_policy_pct, |
| 1130 | limits->max_perf_pct); |
| 1131 | limits->max_perf = round_up(limits->max_perf, FRAC_BITS); |
| 1132 | |
| 1133 | /* Make sure min_perf_pct <= max_perf_pct */ |
| 1134 | limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct); |
| 1135 | |
| 1136 | limits->min_perf = div_fp(int_tofp(limits->min_perf_pct), |
| 1137 | int_tofp(100)); |
| 1138 | limits->max_perf = div_fp(int_tofp(limits->max_perf_pct), |
| 1139 | int_tofp(100)); |
| 1140 | |
| 1141 | if (hwp_active) |
| 1142 | intel_pstate_hwp_set(); |
| 1143 | |
| 1144 | return 0; |
| 1145 | } |
| 1146 | |
| 1147 | static int intel_pstate_verify_policy(struct cpufreq_policy *policy) |
| 1148 | { |
| 1149 | cpufreq_verify_within_cpu_limits(policy); |
| 1150 | |
| 1151 | if (policy->policy != CPUFREQ_POLICY_POWERSAVE && |
| 1152 | policy->policy != CPUFREQ_POLICY_PERFORMANCE) |
| 1153 | return -EINVAL; |
| 1154 | |
| 1155 | return 0; |
| 1156 | } |
| 1157 | |
| 1158 | static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) |
| 1159 | { |
| 1160 | int cpu_num = policy->cpu; |
| 1161 | struct cpudata *cpu = all_cpu_data[cpu_num]; |
| 1162 | |
| 1163 | pr_debug("intel_pstate: CPU %d exiting\n", cpu_num); |
| 1164 | |
| 1165 | del_timer_sync(&all_cpu_data[cpu_num]->timer); |
| 1166 | if (hwp_active) |
| 1167 | return; |
| 1168 | |
| 1169 | intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false); |
| 1170 | } |
| 1171 | |
| 1172 | static int intel_pstate_cpu_init(struct cpufreq_policy *policy) |
| 1173 | { |
| 1174 | struct cpudata *cpu; |
| 1175 | int rc; |
| 1176 | |
| 1177 | rc = intel_pstate_init_cpu(policy->cpu); |
| 1178 | if (rc) |
| 1179 | return rc; |
| 1180 | |
| 1181 | cpu = all_cpu_data[policy->cpu]; |
| 1182 | |
| 1183 | if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100) |
| 1184 | policy->policy = CPUFREQ_POLICY_PERFORMANCE; |
| 1185 | else |
| 1186 | policy->policy = CPUFREQ_POLICY_POWERSAVE; |
| 1187 | |
| 1188 | policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; |
| 1189 | policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; |
| 1190 | |
| 1191 | /* cpuinfo and default policy values */ |
| 1192 | policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; |
| 1193 | policy->cpuinfo.max_freq = |
| 1194 | cpu->pstate.turbo_pstate * cpu->pstate.scaling; |
| 1195 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; |
| 1196 | cpumask_set_cpu(policy->cpu, policy->cpus); |
| 1197 | |
| 1198 | return 0; |
| 1199 | } |
| 1200 | |
| 1201 | static struct cpufreq_driver intel_pstate_driver = { |
| 1202 | .flags = CPUFREQ_CONST_LOOPS, |
| 1203 | .verify = intel_pstate_verify_policy, |
| 1204 | .setpolicy = intel_pstate_set_policy, |
| 1205 | .get = intel_pstate_get, |
| 1206 | .init = intel_pstate_cpu_init, |
| 1207 | .stop_cpu = intel_pstate_stop_cpu, |
| 1208 | .name = "intel_pstate", |
| 1209 | }; |
| 1210 | |
| 1211 | static int __initdata no_load; |
| 1212 | static int __initdata no_hwp; |
| 1213 | static int __initdata hwp_only; |
| 1214 | static unsigned int force_load; |
| 1215 | |
| 1216 | static int intel_pstate_msrs_not_valid(void) |
| 1217 | { |
| 1218 | if (!pstate_funcs.get_max() || |
| 1219 | !pstate_funcs.get_min() || |
| 1220 | !pstate_funcs.get_turbo()) |
| 1221 | return -ENODEV; |
| 1222 | |
| 1223 | return 0; |
| 1224 | } |
| 1225 | |
| 1226 | static void copy_pid_params(struct pstate_adjust_policy *policy) |
| 1227 | { |
| 1228 | pid_params.sample_rate_ms = policy->sample_rate_ms; |
| 1229 | pid_params.p_gain_pct = policy->p_gain_pct; |
| 1230 | pid_params.i_gain_pct = policy->i_gain_pct; |
| 1231 | pid_params.d_gain_pct = policy->d_gain_pct; |
| 1232 | pid_params.deadband = policy->deadband; |
| 1233 | pid_params.setpoint = policy->setpoint; |
| 1234 | } |
| 1235 | |
| 1236 | static void copy_cpu_funcs(struct pstate_funcs *funcs) |
| 1237 | { |
| 1238 | pstate_funcs.get_max = funcs->get_max; |
| 1239 | pstate_funcs.get_max_physical = funcs->get_max_physical; |
| 1240 | pstate_funcs.get_min = funcs->get_min; |
| 1241 | pstate_funcs.get_turbo = funcs->get_turbo; |
| 1242 | pstate_funcs.get_scaling = funcs->get_scaling; |
| 1243 | pstate_funcs.set = funcs->set; |
| 1244 | pstate_funcs.get_vid = funcs->get_vid; |
| 1245 | } |
| 1246 | |
| 1247 | #if IS_ENABLED(CONFIG_ACPI) |
| 1248 | #include <acpi/processor.h> |
| 1249 | |
| 1250 | static bool intel_pstate_no_acpi_pss(void) |
| 1251 | { |
| 1252 | int i; |
| 1253 | |
| 1254 | for_each_possible_cpu(i) { |
| 1255 | acpi_status status; |
| 1256 | union acpi_object *pss; |
| 1257 | struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; |
| 1258 | struct acpi_processor *pr = per_cpu(processors, i); |
| 1259 | |
| 1260 | if (!pr) |
| 1261 | continue; |
| 1262 | |
| 1263 | status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); |
| 1264 | if (ACPI_FAILURE(status)) |
| 1265 | continue; |
| 1266 | |
| 1267 | pss = buffer.pointer; |
| 1268 | if (pss && pss->type == ACPI_TYPE_PACKAGE) { |
| 1269 | kfree(pss); |
| 1270 | return false; |
| 1271 | } |
| 1272 | |
| 1273 | kfree(pss); |
| 1274 | } |
| 1275 | |
| 1276 | return true; |
| 1277 | } |
| 1278 | |
| 1279 | static bool intel_pstate_has_acpi_ppc(void) |
| 1280 | { |
| 1281 | int i; |
| 1282 | |
| 1283 | for_each_possible_cpu(i) { |
| 1284 | struct acpi_processor *pr = per_cpu(processors, i); |
| 1285 | |
| 1286 | if (!pr) |
| 1287 | continue; |
| 1288 | if (acpi_has_method(pr->handle, "_PPC")) |
| 1289 | return true; |
| 1290 | } |
| 1291 | return false; |
| 1292 | } |
| 1293 | |
| 1294 | enum { |
| 1295 | PSS, |
| 1296 | PPC, |
| 1297 | }; |
| 1298 | |
| 1299 | struct hw_vendor_info { |
| 1300 | u16 valid; |
| 1301 | char oem_id[ACPI_OEM_ID_SIZE]; |
| 1302 | char oem_table_id[ACPI_OEM_TABLE_ID_SIZE]; |
| 1303 | int oem_pwr_table; |
| 1304 | }; |
| 1305 | |
| 1306 | /* Hardware vendor-specific info that has its own power management modes */ |
| 1307 | static struct hw_vendor_info vendor_info[] = { |
| 1308 | {1, "HP ", "ProLiant", PSS}, |
| 1309 | {1, "ORACLE", "X4-2 ", PPC}, |
| 1310 | {1, "ORACLE", "X4-2L ", PPC}, |
| 1311 | {1, "ORACLE", "X4-2B ", PPC}, |
| 1312 | {1, "ORACLE", "X3-2 ", PPC}, |
| 1313 | {1, "ORACLE", "X3-2L ", PPC}, |
| 1314 | {1, "ORACLE", "X3-2B ", PPC}, |
| 1315 | {1, "ORACLE", "X4470M2 ", PPC}, |
| 1316 | {1, "ORACLE", "X4270M3 ", PPC}, |
| 1317 | {1, "ORACLE", "X4270M2 ", PPC}, |
| 1318 | {1, "ORACLE", "X4170M2 ", PPC}, |
| 1319 | {1, "ORACLE", "X4170 M3", PPC}, |
| 1320 | {1, "ORACLE", "X4275 M3", PPC}, |
| 1321 | {1, "ORACLE", "X6-2 ", PPC}, |
| 1322 | {1, "ORACLE", "Sudbury ", PPC}, |
| 1323 | {0, "", ""}, |
| 1324 | }; |
| 1325 | |
| 1326 | static bool intel_pstate_platform_pwr_mgmt_exists(void) |
| 1327 | { |
| 1328 | struct acpi_table_header hdr; |
| 1329 | struct hw_vendor_info *v_info; |
| 1330 | const struct x86_cpu_id *id; |
| 1331 | u64 misc_pwr; |
| 1332 | |
| 1333 | id = x86_match_cpu(intel_pstate_cpu_oob_ids); |
| 1334 | if (id) { |
| 1335 | rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); |
| 1336 | if ( misc_pwr & (1 << 8)) |
| 1337 | return true; |
| 1338 | } |
| 1339 | |
| 1340 | if (acpi_disabled || |
| 1341 | ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr))) |
| 1342 | return false; |
| 1343 | |
| 1344 | for (v_info = vendor_info; v_info->valid; v_info++) { |
| 1345 | if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) && |
| 1346 | !strncmp(hdr.oem_table_id, v_info->oem_table_id, |
| 1347 | ACPI_OEM_TABLE_ID_SIZE)) |
| 1348 | switch (v_info->oem_pwr_table) { |
| 1349 | case PSS: |
| 1350 | return intel_pstate_no_acpi_pss(); |
| 1351 | case PPC: |
| 1352 | return intel_pstate_has_acpi_ppc() && |
| 1353 | (!force_load); |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | return false; |
| 1358 | } |
| 1359 | #else /* CONFIG_ACPI not enabled */ |
| 1360 | static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } |
| 1361 | static inline bool intel_pstate_has_acpi_ppc(void) { return false; } |
| 1362 | #endif /* CONFIG_ACPI */ |
| 1363 | |
| 1364 | static int __init intel_pstate_init(void) |
| 1365 | { |
| 1366 | int cpu, rc = 0; |
| 1367 | const struct x86_cpu_id *id; |
| 1368 | struct cpu_defaults *cpu_def; |
| 1369 | |
| 1370 | if (no_load) |
| 1371 | return -ENODEV; |
| 1372 | |
| 1373 | id = x86_match_cpu(intel_pstate_cpu_ids); |
| 1374 | if (!id) |
| 1375 | return -ENODEV; |
| 1376 | |
| 1377 | /* |
| 1378 | * The Intel pstate driver will be ignored if the platform |
| 1379 | * firmware has its own power management modes. |
| 1380 | */ |
| 1381 | if (intel_pstate_platform_pwr_mgmt_exists()) |
| 1382 | return -ENODEV; |
| 1383 | |
| 1384 | cpu_def = (struct cpu_defaults *)id->driver_data; |
| 1385 | |
| 1386 | copy_pid_params(&cpu_def->pid_policy); |
| 1387 | copy_cpu_funcs(&cpu_def->funcs); |
| 1388 | |
| 1389 | if (intel_pstate_msrs_not_valid()) |
| 1390 | return -ENODEV; |
| 1391 | |
| 1392 | pr_info("Intel P-state driver initializing.\n"); |
| 1393 | |
| 1394 | all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus()); |
| 1395 | if (!all_cpu_data) |
| 1396 | return -ENOMEM; |
| 1397 | |
| 1398 | if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp) { |
| 1399 | pr_info("intel_pstate: HWP enabled\n"); |
| 1400 | hwp_active++; |
| 1401 | } |
| 1402 | |
| 1403 | if (!hwp_active && hwp_only) |
| 1404 | goto out; |
| 1405 | |
| 1406 | rc = cpufreq_register_driver(&intel_pstate_driver); |
| 1407 | if (rc) |
| 1408 | goto out; |
| 1409 | |
| 1410 | intel_pstate_debug_expose_params(); |
| 1411 | intel_pstate_sysfs_expose_params(); |
| 1412 | |
| 1413 | return rc; |
| 1414 | out: |
| 1415 | get_online_cpus(); |
| 1416 | for_each_online_cpu(cpu) { |
| 1417 | if (all_cpu_data[cpu]) { |
| 1418 | del_timer_sync(&all_cpu_data[cpu]->timer); |
| 1419 | kfree(all_cpu_data[cpu]); |
| 1420 | } |
| 1421 | } |
| 1422 | |
| 1423 | put_online_cpus(); |
| 1424 | vfree(all_cpu_data); |
| 1425 | return -ENODEV; |
| 1426 | } |
| 1427 | device_initcall(intel_pstate_init); |
| 1428 | |
| 1429 | static int __init intel_pstate_setup(char *str) |
| 1430 | { |
| 1431 | if (!str) |
| 1432 | return -EINVAL; |
| 1433 | |
| 1434 | if (!strcmp(str, "disable")) |
| 1435 | no_load = 1; |
| 1436 | if (!strcmp(str, "no_hwp")) { |
| 1437 | pr_info("intel_pstate: HWP disabled\n"); |
| 1438 | no_hwp = 1; |
| 1439 | } |
| 1440 | if (!strcmp(str, "force")) |
| 1441 | force_load = 1; |
| 1442 | if (!strcmp(str, "hwp_only")) |
| 1443 | hwp_only = 1; |
| 1444 | return 0; |
| 1445 | } |
| 1446 | early_param("intel_pstate", intel_pstate_setup); |
| 1447 | |
| 1448 | MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); |
| 1449 | MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); |
| 1450 | MODULE_LICENSE("GPL"); |