blob: 4603fdb74465c7ef6dee2f35e544241157290fb7 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Copyright (C) 2012 CERN (www.cern.ch)
3 * Author: Alessandro Rubini <rubini@gnudd.com>
4 *
5 * Released according to the GNU GPL, version 2 or any later version.
6 *
7 * This work is part of the White Rabbit project, a research effort led
8 * by CERN, the European Institute for Nuclear Research.
9 */
10#include <linux/module.h>
11#include <linux/slab.h>
12#include <linux/fmc.h>
13#include <linux/sdb.h>
14#include <linux/err.h>
15#include <linux/fmc-sdb.h>
16#include <asm/byteorder.h>
17
18static uint32_t __sdb_rd(struct fmc_device *fmc, unsigned long address,
19 int convert)
20{
21 uint32_t res = fmc_readl(fmc, address);
22 if (convert)
23 return __be32_to_cpu(res);
24 return res;
25}
26
27static struct sdb_array *__fmc_scan_sdb_tree(struct fmc_device *fmc,
28 unsigned long sdb_addr,
29 unsigned long reg_base, int level)
30{
31 uint32_t onew;
32 int i, j, n, convert = 0;
33 struct sdb_array *arr, *sub;
34
35 onew = fmc_readl(fmc, sdb_addr);
36 if (onew == SDB_MAGIC) {
37 /* Uh! If we are little-endian, we must convert */
38 if (SDB_MAGIC != __be32_to_cpu(SDB_MAGIC))
39 convert = 1;
40 } else if (onew == __be32_to_cpu(SDB_MAGIC)) {
41 /* ok, don't convert */
42 } else {
43 return ERR_PTR(-ENOENT);
44 }
45 /* So, the magic was there: get the count from offset 4*/
46 onew = __sdb_rd(fmc, sdb_addr + 4, convert);
47 n = __be16_to_cpu(*(uint16_t *)&onew);
48 arr = kzalloc(sizeof(*arr), GFP_KERNEL);
49 if (!arr)
50 return ERR_PTR(-ENOMEM);
51 arr->record = kzalloc(sizeof(arr->record[0]) * n, GFP_KERNEL);
52 arr->subtree = kzalloc(sizeof(arr->subtree[0]) * n, GFP_KERNEL);
53 if (!arr->record || !arr->subtree) {
54 kfree(arr->record);
55 kfree(arr->subtree);
56 kfree(arr);
57 return ERR_PTR(-ENOMEM);
58 }
59
60 arr->len = n;
61 arr->level = level;
62 arr->fmc = fmc;
63 for (i = 0; i < n; i++) {
64 union sdb_record *r;
65
66 for (j = 0; j < sizeof(arr->record[0]); j += 4) {
67 *(uint32_t *)((void *)(arr->record + i) + j) =
68 __sdb_rd(fmc, sdb_addr + (i * 64) + j, convert);
69 }
70 r = &arr->record[i];
71 arr->subtree[i] = ERR_PTR(-ENODEV);
72 if (r->empty.record_type == sdb_type_bridge) {
73 struct sdb_component *c = &r->bridge.sdb_component;
74 uint64_t subaddr = __be64_to_cpu(r->bridge.sdb_child);
75 uint64_t newbase = __be64_to_cpu(c->addr_first);
76
77 subaddr += reg_base;
78 newbase += reg_base;
79 sub = __fmc_scan_sdb_tree(fmc, subaddr, newbase,
80 level + 1);
81 arr->subtree[i] = sub; /* may be error */
82 if (IS_ERR(sub))
83 continue;
84 sub->parent = arr;
85 sub->baseaddr = newbase;
86 }
87 }
88 return arr;
89}
90
91int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address)
92{
93 struct sdb_array *ret;
94 if (fmc->sdb)
95 return -EBUSY;
96 ret = __fmc_scan_sdb_tree(fmc, address, 0 /* regs */, 0);
97 if (IS_ERR(ret))
98 return PTR_ERR(ret);
99 fmc->sdb = ret;
100 return 0;
101}
102EXPORT_SYMBOL(fmc_scan_sdb_tree);
103
104static void __fmc_sdb_free(struct sdb_array *arr)
105{
106 int i, n;
107
108 if (!arr)
109 return;
110 n = arr->len;
111 for (i = 0; i < n; i++) {
112 if (IS_ERR(arr->subtree[i]))
113 continue;
114 __fmc_sdb_free(arr->subtree[i]);
115 }
116 kfree(arr->record);
117 kfree(arr->subtree);
118 kfree(arr);
119}
120
121int fmc_free_sdb_tree(struct fmc_device *fmc)
122{
123 __fmc_sdb_free(fmc->sdb);
124 fmc->sdb = NULL;
125 return 0;
126}
127EXPORT_SYMBOL(fmc_free_sdb_tree);
128
129/* This helper calls reprogram and inizialized sdb as well */
130int fmc_reprogram(struct fmc_device *fmc, struct fmc_driver *d, char *gw,
131 int sdb_entry)
132{
133 int ret;
134
135 ret = fmc->op->reprogram(fmc, d, gw);
136 if (ret < 0)
137 return ret;
138 if (sdb_entry < 0)
139 return ret;
140
141 /* We are required to find SDB at a given offset */
142 ret = fmc_scan_sdb_tree(fmc, sdb_entry);
143 if (ret < 0) {
144 dev_err(&fmc->dev, "Can't find SDB at address 0x%x\n",
145 sdb_entry);
146 return -ENODEV;
147 }
148 fmc_dump_sdb(fmc);
149 return 0;
150}
151EXPORT_SYMBOL(fmc_reprogram);
152
153static char *__strip_trailing_space(char *buf, char *str, int len)
154{
155 int i = len - 1;
156
157 memcpy(buf, str, len);
158 while(i >= 0 && buf[i] == ' ')
159 buf[i--] = '\0';
160 return buf;
161}
162
163#define __sdb_string(buf, field) ({ \
164 BUILD_BUG_ON(sizeof(buf) < sizeof(field)); \
165 __strip_trailing_space(buf, (void *)(field), sizeof(field)); \
166 })
167
168static void __fmc_show_sdb_tree(const struct fmc_device *fmc,
169 const struct sdb_array *arr)
170{
171 unsigned long base = arr->baseaddr;
172 int i, j, n = arr->len, level = arr->level;
173 char buf[64];
174
175 for (i = 0; i < n; i++) {
176 union sdb_record *r;
177 struct sdb_product *p;
178 struct sdb_component *c;
179 r = &arr->record[i];
180 c = &r->dev.sdb_component;
181 p = &c->product;
182
183 dev_info(&fmc->dev, "SDB: ");
184
185 for (j = 0; j < level; j++)
186 printk(KERN_CONT " ");
187 switch (r->empty.record_type) {
188 case sdb_type_interconnect:
189 printk(KERN_CONT "%08llx:%08x %.19s\n",
190 __be64_to_cpu(p->vendor_id),
191 __be32_to_cpu(p->device_id),
192 p->name);
193 break;
194 case sdb_type_device:
195 printk(KERN_CONT "%08llx:%08x %.19s (%08llx-%08llx)\n",
196 __be64_to_cpu(p->vendor_id),
197 __be32_to_cpu(p->device_id),
198 p->name,
199 __be64_to_cpu(c->addr_first) + base,
200 __be64_to_cpu(c->addr_last) + base);
201 break;
202 case sdb_type_bridge:
203 printk(KERN_CONT "%08llx:%08x %.19s (bridge: %08llx)\n",
204 __be64_to_cpu(p->vendor_id),
205 __be32_to_cpu(p->device_id),
206 p->name,
207 __be64_to_cpu(c->addr_first) + base);
208 if (IS_ERR(arr->subtree[i])) {
209 dev_info(&fmc->dev, "SDB: (bridge error %li)\n",
210 PTR_ERR(arr->subtree[i]));
211 break;
212 }
213 __fmc_show_sdb_tree(fmc, arr->subtree[i]);
214 break;
215 case sdb_type_integration:
216 printk(KERN_CONT "integration\n");
217 break;
218 case sdb_type_repo_url:
219 printk(KERN_CONT "Synthesis repository: %s\n",
220 __sdb_string(buf, r->repo_url.repo_url));
221 break;
222 case sdb_type_synthesis:
223 printk(KERN_CONT "Bitstream '%s' ",
224 __sdb_string(buf, r->synthesis.syn_name));
225 printk(KERN_CONT "synthesized %08x by %s ",
226 __be32_to_cpu(r->synthesis.date),
227 __sdb_string(buf, r->synthesis.user_name));
228 printk(KERN_CONT "(%s version %x), ",
229 __sdb_string(buf, r->synthesis.tool_name),
230 __be32_to_cpu(r->synthesis.tool_version));
231 printk(KERN_CONT "commit %pm\n",
232 r->synthesis.commit_id);
233 break;
234 case sdb_type_empty:
235 printk(KERN_CONT "empty\n");
236 break;
237 default:
238 printk(KERN_CONT "UNKNOWN TYPE 0x%02x\n",
239 r->empty.record_type);
240 break;
241 }
242 }
243}
244
245void fmc_show_sdb_tree(const struct fmc_device *fmc)
246{
247 if (!fmc->sdb)
248 return;
249 __fmc_show_sdb_tree(fmc, fmc->sdb);
250}
251EXPORT_SYMBOL(fmc_show_sdb_tree);
252
253signed long fmc_find_sdb_device(struct sdb_array *tree,
254 uint64_t vid, uint32_t did, unsigned long *sz)
255{
256 signed long res = -ENODEV;
257 union sdb_record *r;
258 struct sdb_product *p;
259 struct sdb_component *c;
260 int i, n = tree->len;
261 uint64_t last, first;
262
263 /* FIXME: what if the first interconnect is not at zero? */
264 for (i = 0; i < n; i++) {
265 r = &tree->record[i];
266 c = &r->dev.sdb_component;
267 p = &c->product;
268
269 if (!IS_ERR(tree->subtree[i]))
270 res = fmc_find_sdb_device(tree->subtree[i],
271 vid, did, sz);
272 if (res >= 0)
273 return res + tree->baseaddr;
274 if (r->empty.record_type != sdb_type_device)
275 continue;
276 if (__be64_to_cpu(p->vendor_id) != vid)
277 continue;
278 if (__be32_to_cpu(p->device_id) != did)
279 continue;
280 /* found */
281 last = __be64_to_cpu(c->addr_last);
282 first = __be64_to_cpu(c->addr_first);
283 if (sz)
284 *sz = (typeof(*sz))(last + 1 - first);
285 return first + tree->baseaddr;
286 }
287 return res;
288}
289EXPORT_SYMBOL(fmc_find_sdb_device);