Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. |
| 3 | * Author: Joerg Roedel <jroedel@suse.de> |
| 4 | * Leo Duran <leo.duran@amd.com> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published |
| 8 | * by the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 18 | */ |
| 19 | |
| 20 | #include <linux/ratelimit.h> |
| 21 | #include <linux/pci.h> |
| 22 | #include <linux/pci-ats.h> |
| 23 | #include <linux/bitmap.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/debugfs.h> |
| 26 | #include <linux/scatterlist.h> |
| 27 | #include <linux/dma-mapping.h> |
| 28 | #include <linux/iommu-helper.h> |
| 29 | #include <linux/iommu.h> |
| 30 | #include <linux/delay.h> |
| 31 | #include <linux/amd-iommu.h> |
| 32 | #include <linux/notifier.h> |
| 33 | #include <linux/export.h> |
| 34 | #include <linux/irq.h> |
| 35 | #include <linux/msi.h> |
| 36 | #include <linux/dma-contiguous.h> |
| 37 | #include <linux/irqdomain.h> |
| 38 | #include <asm/irq_remapping.h> |
| 39 | #include <asm/io_apic.h> |
| 40 | #include <asm/apic.h> |
| 41 | #include <asm/hw_irq.h> |
| 42 | #include <asm/msidef.h> |
| 43 | #include <asm/proto.h> |
| 44 | #include <asm/iommu.h> |
| 45 | #include <asm/gart.h> |
| 46 | #include <asm/dma.h> |
| 47 | |
| 48 | #include "amd_iommu_proto.h" |
| 49 | #include "amd_iommu_types.h" |
| 50 | #include "irq_remapping.h" |
| 51 | |
| 52 | #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) |
| 53 | |
| 54 | #define LOOP_TIMEOUT 100000 |
| 55 | |
| 56 | /* |
| 57 | * This bitmap is used to advertise the page sizes our hardware support |
| 58 | * to the IOMMU core, which will then use this information to split |
| 59 | * physically contiguous memory regions it is mapping into page sizes |
| 60 | * that we support. |
| 61 | * |
| 62 | * 512GB Pages are not supported due to a hardware bug |
| 63 | */ |
| 64 | #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38)) |
| 65 | |
| 66 | static DEFINE_RWLOCK(amd_iommu_devtable_lock); |
| 67 | |
| 68 | /* List of all available dev_data structures */ |
| 69 | static LIST_HEAD(dev_data_list); |
| 70 | static DEFINE_SPINLOCK(dev_data_list_lock); |
| 71 | |
| 72 | LIST_HEAD(ioapic_map); |
| 73 | LIST_HEAD(hpet_map); |
| 74 | |
| 75 | /* |
| 76 | * Domain for untranslated devices - only allocated |
| 77 | * if iommu=pt passed on kernel cmd line. |
| 78 | */ |
| 79 | static const struct iommu_ops amd_iommu_ops; |
| 80 | |
| 81 | static ATOMIC_NOTIFIER_HEAD(ppr_notifier); |
| 82 | int amd_iommu_max_glx_val = -1; |
| 83 | |
| 84 | static struct dma_map_ops amd_iommu_dma_ops; |
| 85 | |
| 86 | /* |
| 87 | * This struct contains device specific data for the IOMMU |
| 88 | */ |
| 89 | struct iommu_dev_data { |
| 90 | struct list_head list; /* For domain->dev_list */ |
| 91 | struct list_head dev_data_list; /* For global dev_data_list */ |
| 92 | struct protection_domain *domain; /* Domain the device is bound to */ |
| 93 | u16 devid; /* PCI Device ID */ |
| 94 | u16 alias; /* Alias Device ID */ |
| 95 | bool iommu_v2; /* Device can make use of IOMMUv2 */ |
| 96 | bool passthrough; /* Device is identity mapped */ |
| 97 | struct { |
| 98 | bool enabled; |
| 99 | int qdep; |
| 100 | } ats; /* ATS state */ |
| 101 | bool pri_tlp; /* PASID TLB required for |
| 102 | PPR completions */ |
| 103 | u32 errata; /* Bitmap for errata to apply */ |
| 104 | }; |
| 105 | |
| 106 | /* |
| 107 | * general struct to manage commands send to an IOMMU |
| 108 | */ |
| 109 | struct iommu_cmd { |
| 110 | u32 data[4]; |
| 111 | }; |
| 112 | |
| 113 | struct kmem_cache *amd_iommu_irq_cache; |
| 114 | |
| 115 | static void update_domain(struct protection_domain *domain); |
| 116 | static int protection_domain_init(struct protection_domain *domain); |
| 117 | |
| 118 | /**************************************************************************** |
| 119 | * |
| 120 | * Helper functions |
| 121 | * |
| 122 | ****************************************************************************/ |
| 123 | |
| 124 | static struct protection_domain *to_pdomain(struct iommu_domain *dom) |
| 125 | { |
| 126 | return container_of(dom, struct protection_domain, domain); |
| 127 | } |
| 128 | |
| 129 | static inline u16 get_device_id(struct device *dev) |
| 130 | { |
| 131 | struct pci_dev *pdev = to_pci_dev(dev); |
| 132 | |
| 133 | return PCI_DEVID(pdev->bus->number, pdev->devfn); |
| 134 | } |
| 135 | |
| 136 | static struct iommu_dev_data *alloc_dev_data(u16 devid) |
| 137 | { |
| 138 | struct iommu_dev_data *dev_data; |
| 139 | unsigned long flags; |
| 140 | |
| 141 | dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); |
| 142 | if (!dev_data) |
| 143 | return NULL; |
| 144 | |
| 145 | dev_data->devid = devid; |
| 146 | |
| 147 | spin_lock_irqsave(&dev_data_list_lock, flags); |
| 148 | list_add_tail(&dev_data->dev_data_list, &dev_data_list); |
| 149 | spin_unlock_irqrestore(&dev_data_list_lock, flags); |
| 150 | |
| 151 | return dev_data; |
| 152 | } |
| 153 | |
| 154 | static struct iommu_dev_data *search_dev_data(u16 devid) |
| 155 | { |
| 156 | struct iommu_dev_data *dev_data; |
| 157 | unsigned long flags; |
| 158 | |
| 159 | spin_lock_irqsave(&dev_data_list_lock, flags); |
| 160 | list_for_each_entry(dev_data, &dev_data_list, dev_data_list) { |
| 161 | if (dev_data->devid == devid) |
| 162 | goto out_unlock; |
| 163 | } |
| 164 | |
| 165 | dev_data = NULL; |
| 166 | |
| 167 | out_unlock: |
| 168 | spin_unlock_irqrestore(&dev_data_list_lock, flags); |
| 169 | |
| 170 | return dev_data; |
| 171 | } |
| 172 | |
| 173 | static int __last_alias(struct pci_dev *pdev, u16 alias, void *data) |
| 174 | { |
| 175 | *(u16 *)data = alias; |
| 176 | return 0; |
| 177 | } |
| 178 | |
| 179 | static u16 get_alias(struct device *dev) |
| 180 | { |
| 181 | struct pci_dev *pdev = to_pci_dev(dev); |
| 182 | u16 devid, ivrs_alias, pci_alias; |
| 183 | |
| 184 | devid = get_device_id(dev); |
| 185 | ivrs_alias = amd_iommu_alias_table[devid]; |
| 186 | pci_for_each_dma_alias(pdev, __last_alias, &pci_alias); |
| 187 | |
| 188 | if (ivrs_alias == pci_alias) |
| 189 | return ivrs_alias; |
| 190 | |
| 191 | /* |
| 192 | * DMA alias showdown |
| 193 | * |
| 194 | * The IVRS is fairly reliable in telling us about aliases, but it |
| 195 | * can't know about every screwy device. If we don't have an IVRS |
| 196 | * reported alias, use the PCI reported alias. In that case we may |
| 197 | * still need to initialize the rlookup and dev_table entries if the |
| 198 | * alias is to a non-existent device. |
| 199 | */ |
| 200 | if (ivrs_alias == devid) { |
| 201 | if (!amd_iommu_rlookup_table[pci_alias]) { |
| 202 | amd_iommu_rlookup_table[pci_alias] = |
| 203 | amd_iommu_rlookup_table[devid]; |
| 204 | memcpy(amd_iommu_dev_table[pci_alias].data, |
| 205 | amd_iommu_dev_table[devid].data, |
| 206 | sizeof(amd_iommu_dev_table[pci_alias].data)); |
| 207 | } |
| 208 | |
| 209 | return pci_alias; |
| 210 | } |
| 211 | |
| 212 | pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d " |
| 213 | "for device %s[%04x:%04x], kernel reported alias " |
| 214 | "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias), |
| 215 | PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device, |
| 216 | PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias), |
| 217 | PCI_FUNC(pci_alias)); |
| 218 | |
| 219 | /* |
| 220 | * If we don't have a PCI DMA alias and the IVRS alias is on the same |
| 221 | * bus, then the IVRS table may know about a quirk that we don't. |
| 222 | */ |
| 223 | if (pci_alias == devid && |
| 224 | PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) { |
| 225 | pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN; |
| 226 | pdev->dma_alias_devfn = ivrs_alias & 0xff; |
| 227 | pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n", |
| 228 | PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias), |
| 229 | dev_name(dev)); |
| 230 | } |
| 231 | |
| 232 | return ivrs_alias; |
| 233 | } |
| 234 | |
| 235 | static struct iommu_dev_data *find_dev_data(u16 devid) |
| 236 | { |
| 237 | struct iommu_dev_data *dev_data; |
| 238 | |
| 239 | dev_data = search_dev_data(devid); |
| 240 | |
| 241 | if (dev_data == NULL) |
| 242 | dev_data = alloc_dev_data(devid); |
| 243 | |
| 244 | return dev_data; |
| 245 | } |
| 246 | |
| 247 | static struct iommu_dev_data *get_dev_data(struct device *dev) |
| 248 | { |
| 249 | return dev->archdata.iommu; |
| 250 | } |
| 251 | |
| 252 | static bool pci_iommuv2_capable(struct pci_dev *pdev) |
| 253 | { |
| 254 | static const int caps[] = { |
| 255 | PCI_EXT_CAP_ID_ATS, |
| 256 | PCI_EXT_CAP_ID_PRI, |
| 257 | PCI_EXT_CAP_ID_PASID, |
| 258 | }; |
| 259 | int i, pos; |
| 260 | |
| 261 | for (i = 0; i < 3; ++i) { |
| 262 | pos = pci_find_ext_capability(pdev, caps[i]); |
| 263 | if (pos == 0) |
| 264 | return false; |
| 265 | } |
| 266 | |
| 267 | return true; |
| 268 | } |
| 269 | |
| 270 | static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum) |
| 271 | { |
| 272 | struct iommu_dev_data *dev_data; |
| 273 | |
| 274 | dev_data = get_dev_data(&pdev->dev); |
| 275 | |
| 276 | return dev_data->errata & (1 << erratum) ? true : false; |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * This function actually applies the mapping to the page table of the |
| 281 | * dma_ops domain. |
| 282 | */ |
| 283 | static void alloc_unity_mapping(struct dma_ops_domain *dma_dom, |
| 284 | struct unity_map_entry *e) |
| 285 | { |
| 286 | u64 addr; |
| 287 | |
| 288 | for (addr = e->address_start; addr < e->address_end; |
| 289 | addr += PAGE_SIZE) { |
| 290 | if (addr < dma_dom->aperture_size) |
| 291 | __set_bit(addr >> PAGE_SHIFT, |
| 292 | dma_dom->aperture[0]->bitmap); |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * Inits the unity mappings required for a specific device |
| 298 | */ |
| 299 | static void init_unity_mappings_for_device(struct device *dev, |
| 300 | struct dma_ops_domain *dma_dom) |
| 301 | { |
| 302 | struct unity_map_entry *e; |
| 303 | u16 devid; |
| 304 | |
| 305 | devid = get_device_id(dev); |
| 306 | |
| 307 | list_for_each_entry(e, &amd_iommu_unity_map, list) { |
| 308 | if (!(devid >= e->devid_start && devid <= e->devid_end)) |
| 309 | continue; |
| 310 | alloc_unity_mapping(dma_dom, e); |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | * This function checks if the driver got a valid device from the caller to |
| 316 | * avoid dereferencing invalid pointers. |
| 317 | */ |
| 318 | static bool check_device(struct device *dev) |
| 319 | { |
| 320 | u16 devid; |
| 321 | |
| 322 | if (!dev || !dev->dma_mask) |
| 323 | return false; |
| 324 | |
| 325 | /* No PCI device */ |
| 326 | if (!dev_is_pci(dev)) |
| 327 | return false; |
| 328 | |
| 329 | devid = get_device_id(dev); |
| 330 | |
| 331 | /* Out of our scope? */ |
| 332 | if (devid > amd_iommu_last_bdf) |
| 333 | return false; |
| 334 | |
| 335 | if (amd_iommu_rlookup_table[devid] == NULL) |
| 336 | return false; |
| 337 | |
| 338 | return true; |
| 339 | } |
| 340 | |
| 341 | static void init_iommu_group(struct device *dev) |
| 342 | { |
| 343 | struct dma_ops_domain *dma_domain; |
| 344 | struct iommu_domain *domain; |
| 345 | struct iommu_group *group; |
| 346 | |
| 347 | group = iommu_group_get_for_dev(dev); |
| 348 | if (IS_ERR(group)) |
| 349 | return; |
| 350 | |
| 351 | domain = iommu_group_default_domain(group); |
| 352 | if (!domain) |
| 353 | goto out; |
| 354 | |
| 355 | if (to_pdomain(domain)->flags == PD_DMA_OPS_MASK) { |
| 356 | dma_domain = to_pdomain(domain)->priv; |
| 357 | init_unity_mappings_for_device(dev, dma_domain); |
| 358 | } |
| 359 | |
| 360 | out: |
| 361 | iommu_group_put(group); |
| 362 | } |
| 363 | |
| 364 | static int iommu_init_device(struct device *dev) |
| 365 | { |
| 366 | struct pci_dev *pdev = to_pci_dev(dev); |
| 367 | struct iommu_dev_data *dev_data; |
| 368 | |
| 369 | if (dev->archdata.iommu) |
| 370 | return 0; |
| 371 | |
| 372 | dev_data = find_dev_data(get_device_id(dev)); |
| 373 | if (!dev_data) |
| 374 | return -ENOMEM; |
| 375 | |
| 376 | dev_data->alias = get_alias(dev); |
| 377 | |
| 378 | if (pci_iommuv2_capable(pdev)) { |
| 379 | struct amd_iommu *iommu; |
| 380 | |
| 381 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 382 | dev_data->iommu_v2 = iommu->is_iommu_v2; |
| 383 | } |
| 384 | |
| 385 | dev->archdata.iommu = dev_data; |
| 386 | |
| 387 | iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev, |
| 388 | dev); |
| 389 | |
| 390 | return 0; |
| 391 | } |
| 392 | |
| 393 | static void iommu_ignore_device(struct device *dev) |
| 394 | { |
| 395 | u16 devid, alias; |
| 396 | |
| 397 | devid = get_device_id(dev); |
| 398 | alias = get_alias(dev); |
| 399 | |
| 400 | memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry)); |
| 401 | memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry)); |
| 402 | |
| 403 | amd_iommu_rlookup_table[devid] = NULL; |
| 404 | amd_iommu_rlookup_table[alias] = NULL; |
| 405 | } |
| 406 | |
| 407 | static void iommu_uninit_device(struct device *dev) |
| 408 | { |
| 409 | struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev)); |
| 410 | |
| 411 | if (!dev_data) |
| 412 | return; |
| 413 | |
| 414 | iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev, |
| 415 | dev); |
| 416 | |
| 417 | iommu_group_remove_device(dev); |
| 418 | |
| 419 | /* Remove dma-ops */ |
| 420 | dev->archdata.dma_ops = NULL; |
| 421 | |
| 422 | /* |
| 423 | * We keep dev_data around for unplugged devices and reuse it when the |
| 424 | * device is re-plugged - not doing so would introduce a ton of races. |
| 425 | */ |
| 426 | } |
| 427 | |
| 428 | #ifdef CONFIG_AMD_IOMMU_STATS |
| 429 | |
| 430 | /* |
| 431 | * Initialization code for statistics collection |
| 432 | */ |
| 433 | |
| 434 | DECLARE_STATS_COUNTER(compl_wait); |
| 435 | DECLARE_STATS_COUNTER(cnt_map_single); |
| 436 | DECLARE_STATS_COUNTER(cnt_unmap_single); |
| 437 | DECLARE_STATS_COUNTER(cnt_map_sg); |
| 438 | DECLARE_STATS_COUNTER(cnt_unmap_sg); |
| 439 | DECLARE_STATS_COUNTER(cnt_alloc_coherent); |
| 440 | DECLARE_STATS_COUNTER(cnt_free_coherent); |
| 441 | DECLARE_STATS_COUNTER(cross_page); |
| 442 | DECLARE_STATS_COUNTER(domain_flush_single); |
| 443 | DECLARE_STATS_COUNTER(domain_flush_all); |
| 444 | DECLARE_STATS_COUNTER(alloced_io_mem); |
| 445 | DECLARE_STATS_COUNTER(total_map_requests); |
| 446 | DECLARE_STATS_COUNTER(complete_ppr); |
| 447 | DECLARE_STATS_COUNTER(invalidate_iotlb); |
| 448 | DECLARE_STATS_COUNTER(invalidate_iotlb_all); |
| 449 | DECLARE_STATS_COUNTER(pri_requests); |
| 450 | |
| 451 | static struct dentry *stats_dir; |
| 452 | static struct dentry *de_fflush; |
| 453 | |
| 454 | static void amd_iommu_stats_add(struct __iommu_counter *cnt) |
| 455 | { |
| 456 | if (stats_dir == NULL) |
| 457 | return; |
| 458 | |
| 459 | cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir, |
| 460 | &cnt->value); |
| 461 | } |
| 462 | |
| 463 | static void amd_iommu_stats_init(void) |
| 464 | { |
| 465 | stats_dir = debugfs_create_dir("amd-iommu", NULL); |
| 466 | if (stats_dir == NULL) |
| 467 | return; |
| 468 | |
| 469 | de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir, |
| 470 | &amd_iommu_unmap_flush); |
| 471 | |
| 472 | amd_iommu_stats_add(&compl_wait); |
| 473 | amd_iommu_stats_add(&cnt_map_single); |
| 474 | amd_iommu_stats_add(&cnt_unmap_single); |
| 475 | amd_iommu_stats_add(&cnt_map_sg); |
| 476 | amd_iommu_stats_add(&cnt_unmap_sg); |
| 477 | amd_iommu_stats_add(&cnt_alloc_coherent); |
| 478 | amd_iommu_stats_add(&cnt_free_coherent); |
| 479 | amd_iommu_stats_add(&cross_page); |
| 480 | amd_iommu_stats_add(&domain_flush_single); |
| 481 | amd_iommu_stats_add(&domain_flush_all); |
| 482 | amd_iommu_stats_add(&alloced_io_mem); |
| 483 | amd_iommu_stats_add(&total_map_requests); |
| 484 | amd_iommu_stats_add(&complete_ppr); |
| 485 | amd_iommu_stats_add(&invalidate_iotlb); |
| 486 | amd_iommu_stats_add(&invalidate_iotlb_all); |
| 487 | amd_iommu_stats_add(&pri_requests); |
| 488 | } |
| 489 | |
| 490 | #endif |
| 491 | |
| 492 | /**************************************************************************** |
| 493 | * |
| 494 | * Interrupt handling functions |
| 495 | * |
| 496 | ****************************************************************************/ |
| 497 | |
| 498 | static void dump_dte_entry(u16 devid) |
| 499 | { |
| 500 | int i; |
| 501 | |
| 502 | for (i = 0; i < 4; ++i) |
| 503 | pr_err("AMD-Vi: DTE[%d]: %016llx\n", i, |
| 504 | amd_iommu_dev_table[devid].data[i]); |
| 505 | } |
| 506 | |
| 507 | static void dump_command(unsigned long phys_addr) |
| 508 | { |
| 509 | struct iommu_cmd *cmd = phys_to_virt(phys_addr); |
| 510 | int i; |
| 511 | |
| 512 | for (i = 0; i < 4; ++i) |
| 513 | pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]); |
| 514 | } |
| 515 | |
| 516 | static void iommu_print_event(struct amd_iommu *iommu, void *__evt) |
| 517 | { |
| 518 | int type, devid, domid, flags; |
| 519 | volatile u32 *event = __evt; |
| 520 | int count = 0; |
| 521 | u64 address; |
| 522 | |
| 523 | retry: |
| 524 | type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; |
| 525 | devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; |
| 526 | domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK; |
| 527 | flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; |
| 528 | address = (u64)(((u64)event[3]) << 32) | event[2]; |
| 529 | |
| 530 | if (type == 0) { |
| 531 | /* Did we hit the erratum? */ |
| 532 | if (++count == LOOP_TIMEOUT) { |
| 533 | pr_err("AMD-Vi: No event written to event log\n"); |
| 534 | return; |
| 535 | } |
| 536 | udelay(1); |
| 537 | goto retry; |
| 538 | } |
| 539 | |
| 540 | printk(KERN_ERR "AMD-Vi: Event logged ["); |
| 541 | |
| 542 | switch (type) { |
| 543 | case EVENT_TYPE_ILL_DEV: |
| 544 | printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x " |
| 545 | "address=0x%016llx flags=0x%04x]\n", |
| 546 | PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| 547 | address, flags); |
| 548 | dump_dte_entry(devid); |
| 549 | break; |
| 550 | case EVENT_TYPE_IO_FAULT: |
| 551 | printk("IO_PAGE_FAULT device=%02x:%02x.%x " |
| 552 | "domain=0x%04x address=0x%016llx flags=0x%04x]\n", |
| 553 | PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| 554 | domid, address, flags); |
| 555 | break; |
| 556 | case EVENT_TYPE_DEV_TAB_ERR: |
| 557 | printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " |
| 558 | "address=0x%016llx flags=0x%04x]\n", |
| 559 | PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| 560 | address, flags); |
| 561 | break; |
| 562 | case EVENT_TYPE_PAGE_TAB_ERR: |
| 563 | printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x " |
| 564 | "domain=0x%04x address=0x%016llx flags=0x%04x]\n", |
| 565 | PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| 566 | domid, address, flags); |
| 567 | break; |
| 568 | case EVENT_TYPE_ILL_CMD: |
| 569 | printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address); |
| 570 | dump_command(address); |
| 571 | break; |
| 572 | case EVENT_TYPE_CMD_HARD_ERR: |
| 573 | printk("COMMAND_HARDWARE_ERROR address=0x%016llx " |
| 574 | "flags=0x%04x]\n", address, flags); |
| 575 | break; |
| 576 | case EVENT_TYPE_IOTLB_INV_TO: |
| 577 | printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x " |
| 578 | "address=0x%016llx]\n", |
| 579 | PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| 580 | address); |
| 581 | break; |
| 582 | case EVENT_TYPE_INV_DEV_REQ: |
| 583 | printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x " |
| 584 | "address=0x%016llx flags=0x%04x]\n", |
| 585 | PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| 586 | address, flags); |
| 587 | break; |
| 588 | default: |
| 589 | printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type); |
| 590 | } |
| 591 | |
| 592 | memset(__evt, 0, 4 * sizeof(u32)); |
| 593 | } |
| 594 | |
| 595 | static void iommu_poll_events(struct amd_iommu *iommu) |
| 596 | { |
| 597 | u32 head, tail; |
| 598 | |
| 599 | head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); |
| 600 | tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); |
| 601 | |
| 602 | while (head != tail) { |
| 603 | iommu_print_event(iommu, iommu->evt_buf + head); |
| 604 | head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; |
| 605 | } |
| 606 | |
| 607 | writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); |
| 608 | } |
| 609 | |
| 610 | static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) |
| 611 | { |
| 612 | struct amd_iommu_fault fault; |
| 613 | |
| 614 | INC_STATS_COUNTER(pri_requests); |
| 615 | |
| 616 | if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { |
| 617 | pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n"); |
| 618 | return; |
| 619 | } |
| 620 | |
| 621 | fault.address = raw[1]; |
| 622 | fault.pasid = PPR_PASID(raw[0]); |
| 623 | fault.device_id = PPR_DEVID(raw[0]); |
| 624 | fault.tag = PPR_TAG(raw[0]); |
| 625 | fault.flags = PPR_FLAGS(raw[0]); |
| 626 | |
| 627 | atomic_notifier_call_chain(&ppr_notifier, 0, &fault); |
| 628 | } |
| 629 | |
| 630 | static void iommu_poll_ppr_log(struct amd_iommu *iommu) |
| 631 | { |
| 632 | u32 head, tail; |
| 633 | |
| 634 | if (iommu->ppr_log == NULL) |
| 635 | return; |
| 636 | |
| 637 | head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
| 638 | tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); |
| 639 | |
| 640 | while (head != tail) { |
| 641 | volatile u64 *raw; |
| 642 | u64 entry[2]; |
| 643 | int i; |
| 644 | |
| 645 | raw = (u64 *)(iommu->ppr_log + head); |
| 646 | |
| 647 | /* |
| 648 | * Hardware bug: Interrupt may arrive before the entry is |
| 649 | * written to memory. If this happens we need to wait for the |
| 650 | * entry to arrive. |
| 651 | */ |
| 652 | for (i = 0; i < LOOP_TIMEOUT; ++i) { |
| 653 | if (PPR_REQ_TYPE(raw[0]) != 0) |
| 654 | break; |
| 655 | udelay(1); |
| 656 | } |
| 657 | |
| 658 | /* Avoid memcpy function-call overhead */ |
| 659 | entry[0] = raw[0]; |
| 660 | entry[1] = raw[1]; |
| 661 | |
| 662 | /* |
| 663 | * To detect the hardware bug we need to clear the entry |
| 664 | * back to zero. |
| 665 | */ |
| 666 | raw[0] = raw[1] = 0UL; |
| 667 | |
| 668 | /* Update head pointer of hardware ring-buffer */ |
| 669 | head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; |
| 670 | writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
| 671 | |
| 672 | /* Handle PPR entry */ |
| 673 | iommu_handle_ppr_entry(iommu, entry); |
| 674 | |
| 675 | /* Refresh ring-buffer information */ |
| 676 | head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
| 677 | tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | irqreturn_t amd_iommu_int_thread(int irq, void *data) |
| 682 | { |
| 683 | struct amd_iommu *iommu = (struct amd_iommu *) data; |
| 684 | u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); |
| 685 | |
| 686 | while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) { |
| 687 | /* Enable EVT and PPR interrupts again */ |
| 688 | writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK), |
| 689 | iommu->mmio_base + MMIO_STATUS_OFFSET); |
| 690 | |
| 691 | if (status & MMIO_STATUS_EVT_INT_MASK) { |
| 692 | pr_devel("AMD-Vi: Processing IOMMU Event Log\n"); |
| 693 | iommu_poll_events(iommu); |
| 694 | } |
| 695 | |
| 696 | if (status & MMIO_STATUS_PPR_INT_MASK) { |
| 697 | pr_devel("AMD-Vi: Processing IOMMU PPR Log\n"); |
| 698 | iommu_poll_ppr_log(iommu); |
| 699 | } |
| 700 | |
| 701 | /* |
| 702 | * Hardware bug: ERBT1312 |
| 703 | * When re-enabling interrupt (by writing 1 |
| 704 | * to clear the bit), the hardware might also try to set |
| 705 | * the interrupt bit in the event status register. |
| 706 | * In this scenario, the bit will be set, and disable |
| 707 | * subsequent interrupts. |
| 708 | * |
| 709 | * Workaround: The IOMMU driver should read back the |
| 710 | * status register and check if the interrupt bits are cleared. |
| 711 | * If not, driver will need to go through the interrupt handler |
| 712 | * again and re-clear the bits |
| 713 | */ |
| 714 | status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); |
| 715 | } |
| 716 | return IRQ_HANDLED; |
| 717 | } |
| 718 | |
| 719 | irqreturn_t amd_iommu_int_handler(int irq, void *data) |
| 720 | { |
| 721 | return IRQ_WAKE_THREAD; |
| 722 | } |
| 723 | |
| 724 | /**************************************************************************** |
| 725 | * |
| 726 | * IOMMU command queuing functions |
| 727 | * |
| 728 | ****************************************************************************/ |
| 729 | |
| 730 | static int wait_on_sem(volatile u64 *sem) |
| 731 | { |
| 732 | int i = 0; |
| 733 | |
| 734 | while (*sem == 0 && i < LOOP_TIMEOUT) { |
| 735 | udelay(1); |
| 736 | i += 1; |
| 737 | } |
| 738 | |
| 739 | if (i == LOOP_TIMEOUT) { |
| 740 | pr_alert("AMD-Vi: Completion-Wait loop timed out\n"); |
| 741 | return -EIO; |
| 742 | } |
| 743 | |
| 744 | return 0; |
| 745 | } |
| 746 | |
| 747 | static void copy_cmd_to_buffer(struct amd_iommu *iommu, |
| 748 | struct iommu_cmd *cmd, |
| 749 | u32 tail) |
| 750 | { |
| 751 | u8 *target; |
| 752 | |
| 753 | target = iommu->cmd_buf + tail; |
| 754 | tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; |
| 755 | |
| 756 | /* Copy command to buffer */ |
| 757 | memcpy(target, cmd, sizeof(*cmd)); |
| 758 | |
| 759 | /* Tell the IOMMU about it */ |
| 760 | writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); |
| 761 | } |
| 762 | |
| 763 | static void build_completion_wait(struct iommu_cmd *cmd, u64 address) |
| 764 | { |
| 765 | WARN_ON(address & 0x7ULL); |
| 766 | |
| 767 | memset(cmd, 0, sizeof(*cmd)); |
| 768 | cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK; |
| 769 | cmd->data[1] = upper_32_bits(__pa(address)); |
| 770 | cmd->data[2] = 1; |
| 771 | CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); |
| 772 | } |
| 773 | |
| 774 | static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) |
| 775 | { |
| 776 | memset(cmd, 0, sizeof(*cmd)); |
| 777 | cmd->data[0] = devid; |
| 778 | CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); |
| 779 | } |
| 780 | |
| 781 | static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, |
| 782 | size_t size, u16 domid, int pde) |
| 783 | { |
| 784 | u64 pages; |
| 785 | bool s; |
| 786 | |
| 787 | pages = iommu_num_pages(address, size, PAGE_SIZE); |
| 788 | s = false; |
| 789 | |
| 790 | if (pages > 1) { |
| 791 | /* |
| 792 | * If we have to flush more than one page, flush all |
| 793 | * TLB entries for this domain |
| 794 | */ |
| 795 | address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; |
| 796 | s = true; |
| 797 | } |
| 798 | |
| 799 | address &= PAGE_MASK; |
| 800 | |
| 801 | memset(cmd, 0, sizeof(*cmd)); |
| 802 | cmd->data[1] |= domid; |
| 803 | cmd->data[2] = lower_32_bits(address); |
| 804 | cmd->data[3] = upper_32_bits(address); |
| 805 | CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); |
| 806 | if (s) /* size bit - we flush more than one 4kb page */ |
| 807 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| 808 | if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ |
| 809 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; |
| 810 | } |
| 811 | |
| 812 | static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, |
| 813 | u64 address, size_t size) |
| 814 | { |
| 815 | u64 pages; |
| 816 | bool s; |
| 817 | |
| 818 | pages = iommu_num_pages(address, size, PAGE_SIZE); |
| 819 | s = false; |
| 820 | |
| 821 | if (pages > 1) { |
| 822 | /* |
| 823 | * If we have to flush more than one page, flush all |
| 824 | * TLB entries for this domain |
| 825 | */ |
| 826 | address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; |
| 827 | s = true; |
| 828 | } |
| 829 | |
| 830 | address &= PAGE_MASK; |
| 831 | |
| 832 | memset(cmd, 0, sizeof(*cmd)); |
| 833 | cmd->data[0] = devid; |
| 834 | cmd->data[0] |= (qdep & 0xff) << 24; |
| 835 | cmd->data[1] = devid; |
| 836 | cmd->data[2] = lower_32_bits(address); |
| 837 | cmd->data[3] = upper_32_bits(address); |
| 838 | CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); |
| 839 | if (s) |
| 840 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| 841 | } |
| 842 | |
| 843 | static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid, |
| 844 | u64 address, bool size) |
| 845 | { |
| 846 | memset(cmd, 0, sizeof(*cmd)); |
| 847 | |
| 848 | address &= ~(0xfffULL); |
| 849 | |
| 850 | cmd->data[0] = pasid; |
| 851 | cmd->data[1] = domid; |
| 852 | cmd->data[2] = lower_32_bits(address); |
| 853 | cmd->data[3] = upper_32_bits(address); |
| 854 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; |
| 855 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; |
| 856 | if (size) |
| 857 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| 858 | CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); |
| 859 | } |
| 860 | |
| 861 | static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid, |
| 862 | int qdep, u64 address, bool size) |
| 863 | { |
| 864 | memset(cmd, 0, sizeof(*cmd)); |
| 865 | |
| 866 | address &= ~(0xfffULL); |
| 867 | |
| 868 | cmd->data[0] = devid; |
| 869 | cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; |
| 870 | cmd->data[0] |= (qdep & 0xff) << 24; |
| 871 | cmd->data[1] = devid; |
| 872 | cmd->data[1] |= (pasid & 0xff) << 16; |
| 873 | cmd->data[2] = lower_32_bits(address); |
| 874 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; |
| 875 | cmd->data[3] = upper_32_bits(address); |
| 876 | if (size) |
| 877 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| 878 | CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); |
| 879 | } |
| 880 | |
| 881 | static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid, |
| 882 | int status, int tag, bool gn) |
| 883 | { |
| 884 | memset(cmd, 0, sizeof(*cmd)); |
| 885 | |
| 886 | cmd->data[0] = devid; |
| 887 | if (gn) { |
| 888 | cmd->data[1] = pasid; |
| 889 | cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; |
| 890 | } |
| 891 | cmd->data[3] = tag & 0x1ff; |
| 892 | cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; |
| 893 | |
| 894 | CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); |
| 895 | } |
| 896 | |
| 897 | static void build_inv_all(struct iommu_cmd *cmd) |
| 898 | { |
| 899 | memset(cmd, 0, sizeof(*cmd)); |
| 900 | CMD_SET_TYPE(cmd, CMD_INV_ALL); |
| 901 | } |
| 902 | |
| 903 | static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) |
| 904 | { |
| 905 | memset(cmd, 0, sizeof(*cmd)); |
| 906 | cmd->data[0] = devid; |
| 907 | CMD_SET_TYPE(cmd, CMD_INV_IRT); |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | * Writes the command to the IOMMUs command buffer and informs the |
| 912 | * hardware about the new command. |
| 913 | */ |
| 914 | static int iommu_queue_command_sync(struct amd_iommu *iommu, |
| 915 | struct iommu_cmd *cmd, |
| 916 | bool sync) |
| 917 | { |
| 918 | u32 left, tail, head, next_tail; |
| 919 | unsigned long flags; |
| 920 | |
| 921 | again: |
| 922 | spin_lock_irqsave(&iommu->lock, flags); |
| 923 | |
| 924 | head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); |
| 925 | tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); |
| 926 | next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; |
| 927 | left = (head - next_tail) % CMD_BUFFER_SIZE; |
| 928 | |
| 929 | if (left <= 0x20) { |
| 930 | struct iommu_cmd sync_cmd; |
| 931 | volatile u64 sem = 0; |
| 932 | int ret; |
| 933 | |
| 934 | build_completion_wait(&sync_cmd, (u64)&sem); |
| 935 | copy_cmd_to_buffer(iommu, &sync_cmd, tail); |
| 936 | |
| 937 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 938 | |
| 939 | if ((ret = wait_on_sem(&sem)) != 0) |
| 940 | return ret; |
| 941 | |
| 942 | goto again; |
| 943 | } |
| 944 | |
| 945 | copy_cmd_to_buffer(iommu, cmd, tail); |
| 946 | |
| 947 | /* We need to sync now to make sure all commands are processed */ |
| 948 | iommu->need_sync = sync; |
| 949 | |
| 950 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 951 | |
| 952 | return 0; |
| 953 | } |
| 954 | |
| 955 | static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) |
| 956 | { |
| 957 | return iommu_queue_command_sync(iommu, cmd, true); |
| 958 | } |
| 959 | |
| 960 | /* |
| 961 | * This function queues a completion wait command into the command |
| 962 | * buffer of an IOMMU |
| 963 | */ |
| 964 | static int iommu_completion_wait(struct amd_iommu *iommu) |
| 965 | { |
| 966 | struct iommu_cmd cmd; |
| 967 | volatile u64 sem = 0; |
| 968 | int ret; |
| 969 | |
| 970 | if (!iommu->need_sync) |
| 971 | return 0; |
| 972 | |
| 973 | build_completion_wait(&cmd, (u64)&sem); |
| 974 | |
| 975 | ret = iommu_queue_command_sync(iommu, &cmd, false); |
| 976 | if (ret) |
| 977 | return ret; |
| 978 | |
| 979 | return wait_on_sem(&sem); |
| 980 | } |
| 981 | |
| 982 | static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) |
| 983 | { |
| 984 | struct iommu_cmd cmd; |
| 985 | |
| 986 | build_inv_dte(&cmd, devid); |
| 987 | |
| 988 | return iommu_queue_command(iommu, &cmd); |
| 989 | } |
| 990 | |
| 991 | static void iommu_flush_dte_all(struct amd_iommu *iommu) |
| 992 | { |
| 993 | u32 devid; |
| 994 | |
| 995 | for (devid = 0; devid <= 0xffff; ++devid) |
| 996 | iommu_flush_dte(iommu, devid); |
| 997 | |
| 998 | iommu_completion_wait(iommu); |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * This function uses heavy locking and may disable irqs for some time. But |
| 1003 | * this is no issue because it is only called during resume. |
| 1004 | */ |
| 1005 | static void iommu_flush_tlb_all(struct amd_iommu *iommu) |
| 1006 | { |
| 1007 | u32 dom_id; |
| 1008 | |
| 1009 | for (dom_id = 0; dom_id <= 0xffff; ++dom_id) { |
| 1010 | struct iommu_cmd cmd; |
| 1011 | build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, |
| 1012 | dom_id, 1); |
| 1013 | iommu_queue_command(iommu, &cmd); |
| 1014 | } |
| 1015 | |
| 1016 | iommu_completion_wait(iommu); |
| 1017 | } |
| 1018 | |
| 1019 | static void iommu_flush_all(struct amd_iommu *iommu) |
| 1020 | { |
| 1021 | struct iommu_cmd cmd; |
| 1022 | |
| 1023 | build_inv_all(&cmd); |
| 1024 | |
| 1025 | iommu_queue_command(iommu, &cmd); |
| 1026 | iommu_completion_wait(iommu); |
| 1027 | } |
| 1028 | |
| 1029 | static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) |
| 1030 | { |
| 1031 | struct iommu_cmd cmd; |
| 1032 | |
| 1033 | build_inv_irt(&cmd, devid); |
| 1034 | |
| 1035 | iommu_queue_command(iommu, &cmd); |
| 1036 | } |
| 1037 | |
| 1038 | static void iommu_flush_irt_all(struct amd_iommu *iommu) |
| 1039 | { |
| 1040 | u32 devid; |
| 1041 | |
| 1042 | for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++) |
| 1043 | iommu_flush_irt(iommu, devid); |
| 1044 | |
| 1045 | iommu_completion_wait(iommu); |
| 1046 | } |
| 1047 | |
| 1048 | void iommu_flush_all_caches(struct amd_iommu *iommu) |
| 1049 | { |
| 1050 | if (iommu_feature(iommu, FEATURE_IA)) { |
| 1051 | iommu_flush_all(iommu); |
| 1052 | } else { |
| 1053 | iommu_flush_dte_all(iommu); |
| 1054 | iommu_flush_irt_all(iommu); |
| 1055 | iommu_flush_tlb_all(iommu); |
| 1056 | } |
| 1057 | } |
| 1058 | |
| 1059 | /* |
| 1060 | * Command send function for flushing on-device TLB |
| 1061 | */ |
| 1062 | static int device_flush_iotlb(struct iommu_dev_data *dev_data, |
| 1063 | u64 address, size_t size) |
| 1064 | { |
| 1065 | struct amd_iommu *iommu; |
| 1066 | struct iommu_cmd cmd; |
| 1067 | int qdep; |
| 1068 | |
| 1069 | qdep = dev_data->ats.qdep; |
| 1070 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 1071 | |
| 1072 | build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); |
| 1073 | |
| 1074 | return iommu_queue_command(iommu, &cmd); |
| 1075 | } |
| 1076 | |
| 1077 | /* |
| 1078 | * Command send function for invalidating a device table entry |
| 1079 | */ |
| 1080 | static int device_flush_dte(struct iommu_dev_data *dev_data) |
| 1081 | { |
| 1082 | struct amd_iommu *iommu; |
| 1083 | u16 alias; |
| 1084 | int ret; |
| 1085 | |
| 1086 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 1087 | alias = dev_data->alias; |
| 1088 | |
| 1089 | ret = iommu_flush_dte(iommu, dev_data->devid); |
| 1090 | if (!ret && alias != dev_data->devid) |
| 1091 | ret = iommu_flush_dte(iommu, alias); |
| 1092 | if (ret) |
| 1093 | return ret; |
| 1094 | |
| 1095 | if (dev_data->ats.enabled) |
| 1096 | ret = device_flush_iotlb(dev_data, 0, ~0UL); |
| 1097 | |
| 1098 | return ret; |
| 1099 | } |
| 1100 | |
| 1101 | /* |
| 1102 | * TLB invalidation function which is called from the mapping functions. |
| 1103 | * It invalidates a single PTE if the range to flush is within a single |
| 1104 | * page. Otherwise it flushes the whole TLB of the IOMMU. |
| 1105 | */ |
| 1106 | static void __domain_flush_pages(struct protection_domain *domain, |
| 1107 | u64 address, size_t size, int pde) |
| 1108 | { |
| 1109 | struct iommu_dev_data *dev_data; |
| 1110 | struct iommu_cmd cmd; |
| 1111 | int ret = 0, i; |
| 1112 | |
| 1113 | build_inv_iommu_pages(&cmd, address, size, domain->id, pde); |
| 1114 | |
| 1115 | for (i = 0; i < amd_iommus_present; ++i) { |
| 1116 | if (!domain->dev_iommu[i]) |
| 1117 | continue; |
| 1118 | |
| 1119 | /* |
| 1120 | * Devices of this domain are behind this IOMMU |
| 1121 | * We need a TLB flush |
| 1122 | */ |
| 1123 | ret |= iommu_queue_command(amd_iommus[i], &cmd); |
| 1124 | } |
| 1125 | |
| 1126 | list_for_each_entry(dev_data, &domain->dev_list, list) { |
| 1127 | |
| 1128 | if (!dev_data->ats.enabled) |
| 1129 | continue; |
| 1130 | |
| 1131 | ret |= device_flush_iotlb(dev_data, address, size); |
| 1132 | } |
| 1133 | |
| 1134 | WARN_ON(ret); |
| 1135 | } |
| 1136 | |
| 1137 | static void domain_flush_pages(struct protection_domain *domain, |
| 1138 | u64 address, size_t size) |
| 1139 | { |
| 1140 | __domain_flush_pages(domain, address, size, 0); |
| 1141 | } |
| 1142 | |
| 1143 | /* Flush the whole IO/TLB for a given protection domain */ |
| 1144 | static void domain_flush_tlb(struct protection_domain *domain) |
| 1145 | { |
| 1146 | __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0); |
| 1147 | } |
| 1148 | |
| 1149 | /* Flush the whole IO/TLB for a given protection domain - including PDE */ |
| 1150 | static void domain_flush_tlb_pde(struct protection_domain *domain) |
| 1151 | { |
| 1152 | __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); |
| 1153 | } |
| 1154 | |
| 1155 | static void domain_flush_complete(struct protection_domain *domain) |
| 1156 | { |
| 1157 | int i; |
| 1158 | |
| 1159 | for (i = 0; i < amd_iommus_present; ++i) { |
| 1160 | if (!domain->dev_iommu[i]) |
| 1161 | continue; |
| 1162 | |
| 1163 | /* |
| 1164 | * Devices of this domain are behind this IOMMU |
| 1165 | * We need to wait for completion of all commands. |
| 1166 | */ |
| 1167 | iommu_completion_wait(amd_iommus[i]); |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | |
| 1172 | /* |
| 1173 | * This function flushes the DTEs for all devices in domain |
| 1174 | */ |
| 1175 | static void domain_flush_devices(struct protection_domain *domain) |
| 1176 | { |
| 1177 | struct iommu_dev_data *dev_data; |
| 1178 | |
| 1179 | list_for_each_entry(dev_data, &domain->dev_list, list) |
| 1180 | device_flush_dte(dev_data); |
| 1181 | } |
| 1182 | |
| 1183 | /**************************************************************************** |
| 1184 | * |
| 1185 | * The functions below are used the create the page table mappings for |
| 1186 | * unity mapped regions. |
| 1187 | * |
| 1188 | ****************************************************************************/ |
| 1189 | |
| 1190 | /* |
| 1191 | * This function is used to add another level to an IO page table. Adding |
| 1192 | * another level increases the size of the address space by 9 bits to a size up |
| 1193 | * to 64 bits. |
| 1194 | */ |
| 1195 | static bool increase_address_space(struct protection_domain *domain, |
| 1196 | gfp_t gfp) |
| 1197 | { |
| 1198 | u64 *pte; |
| 1199 | |
| 1200 | if (domain->mode == PAGE_MODE_6_LEVEL) |
| 1201 | /* address space already 64 bit large */ |
| 1202 | return false; |
| 1203 | |
| 1204 | pte = (void *)get_zeroed_page(gfp); |
| 1205 | if (!pte) |
| 1206 | return false; |
| 1207 | |
| 1208 | *pte = PM_LEVEL_PDE(domain->mode, |
| 1209 | virt_to_phys(domain->pt_root)); |
| 1210 | domain->pt_root = pte; |
| 1211 | domain->mode += 1; |
| 1212 | domain->updated = true; |
| 1213 | |
| 1214 | return true; |
| 1215 | } |
| 1216 | |
| 1217 | static u64 *alloc_pte(struct protection_domain *domain, |
| 1218 | unsigned long address, |
| 1219 | unsigned long page_size, |
| 1220 | u64 **pte_page, |
| 1221 | gfp_t gfp) |
| 1222 | { |
| 1223 | int level, end_lvl; |
| 1224 | u64 *pte, *page; |
| 1225 | |
| 1226 | BUG_ON(!is_power_of_2(page_size)); |
| 1227 | |
| 1228 | while (address > PM_LEVEL_SIZE(domain->mode)) |
| 1229 | increase_address_space(domain, gfp); |
| 1230 | |
| 1231 | level = domain->mode - 1; |
| 1232 | pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; |
| 1233 | address = PAGE_SIZE_ALIGN(address, page_size); |
| 1234 | end_lvl = PAGE_SIZE_LEVEL(page_size); |
| 1235 | |
| 1236 | while (level > end_lvl) { |
| 1237 | if (!IOMMU_PTE_PRESENT(*pte)) { |
| 1238 | page = (u64 *)get_zeroed_page(gfp); |
| 1239 | if (!page) |
| 1240 | return NULL; |
| 1241 | *pte = PM_LEVEL_PDE(level, virt_to_phys(page)); |
| 1242 | } |
| 1243 | |
| 1244 | /* No level skipping support yet */ |
| 1245 | if (PM_PTE_LEVEL(*pte) != level) |
| 1246 | return NULL; |
| 1247 | |
| 1248 | level -= 1; |
| 1249 | |
| 1250 | pte = IOMMU_PTE_PAGE(*pte); |
| 1251 | |
| 1252 | if (pte_page && level == end_lvl) |
| 1253 | *pte_page = pte; |
| 1254 | |
| 1255 | pte = &pte[PM_LEVEL_INDEX(level, address)]; |
| 1256 | } |
| 1257 | |
| 1258 | return pte; |
| 1259 | } |
| 1260 | |
| 1261 | /* |
| 1262 | * This function checks if there is a PTE for a given dma address. If |
| 1263 | * there is one, it returns the pointer to it. |
| 1264 | */ |
| 1265 | static u64 *fetch_pte(struct protection_domain *domain, |
| 1266 | unsigned long address, |
| 1267 | unsigned long *page_size) |
| 1268 | { |
| 1269 | int level; |
| 1270 | u64 *pte; |
| 1271 | |
| 1272 | if (address > PM_LEVEL_SIZE(domain->mode)) |
| 1273 | return NULL; |
| 1274 | |
| 1275 | level = domain->mode - 1; |
| 1276 | pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; |
| 1277 | *page_size = PTE_LEVEL_PAGE_SIZE(level); |
| 1278 | |
| 1279 | while (level > 0) { |
| 1280 | |
| 1281 | /* Not Present */ |
| 1282 | if (!IOMMU_PTE_PRESENT(*pte)) |
| 1283 | return NULL; |
| 1284 | |
| 1285 | /* Large PTE */ |
| 1286 | if (PM_PTE_LEVEL(*pte) == 7 || |
| 1287 | PM_PTE_LEVEL(*pte) == 0) |
| 1288 | break; |
| 1289 | |
| 1290 | /* No level skipping support yet */ |
| 1291 | if (PM_PTE_LEVEL(*pte) != level) |
| 1292 | return NULL; |
| 1293 | |
| 1294 | level -= 1; |
| 1295 | |
| 1296 | /* Walk to the next level */ |
| 1297 | pte = IOMMU_PTE_PAGE(*pte); |
| 1298 | pte = &pte[PM_LEVEL_INDEX(level, address)]; |
| 1299 | *page_size = PTE_LEVEL_PAGE_SIZE(level); |
| 1300 | } |
| 1301 | |
| 1302 | if (PM_PTE_LEVEL(*pte) == 0x07) { |
| 1303 | unsigned long pte_mask; |
| 1304 | |
| 1305 | /* |
| 1306 | * If we have a series of large PTEs, make |
| 1307 | * sure to return a pointer to the first one. |
| 1308 | */ |
| 1309 | *page_size = pte_mask = PTE_PAGE_SIZE(*pte); |
| 1310 | pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1); |
| 1311 | pte = (u64 *)(((unsigned long)pte) & pte_mask); |
| 1312 | } |
| 1313 | |
| 1314 | return pte; |
| 1315 | } |
| 1316 | |
| 1317 | /* |
| 1318 | * Generic mapping functions. It maps a physical address into a DMA |
| 1319 | * address space. It allocates the page table pages if necessary. |
| 1320 | * In the future it can be extended to a generic mapping function |
| 1321 | * supporting all features of AMD IOMMU page tables like level skipping |
| 1322 | * and full 64 bit address spaces. |
| 1323 | */ |
| 1324 | static int iommu_map_page(struct protection_domain *dom, |
| 1325 | unsigned long bus_addr, |
| 1326 | unsigned long phys_addr, |
| 1327 | int prot, |
| 1328 | unsigned long page_size) |
| 1329 | { |
| 1330 | u64 __pte, *pte; |
| 1331 | int i, count; |
| 1332 | |
| 1333 | BUG_ON(!IS_ALIGNED(bus_addr, page_size)); |
| 1334 | BUG_ON(!IS_ALIGNED(phys_addr, page_size)); |
| 1335 | |
| 1336 | if (!(prot & IOMMU_PROT_MASK)) |
| 1337 | return -EINVAL; |
| 1338 | |
| 1339 | count = PAGE_SIZE_PTE_COUNT(page_size); |
| 1340 | pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL); |
| 1341 | |
| 1342 | if (!pte) |
| 1343 | return -ENOMEM; |
| 1344 | |
| 1345 | for (i = 0; i < count; ++i) |
| 1346 | if (IOMMU_PTE_PRESENT(pte[i])) |
| 1347 | return -EBUSY; |
| 1348 | |
| 1349 | if (count > 1) { |
| 1350 | __pte = PAGE_SIZE_PTE(phys_addr, page_size); |
| 1351 | __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC; |
| 1352 | } else |
| 1353 | __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC; |
| 1354 | |
| 1355 | if (prot & IOMMU_PROT_IR) |
| 1356 | __pte |= IOMMU_PTE_IR; |
| 1357 | if (prot & IOMMU_PROT_IW) |
| 1358 | __pte |= IOMMU_PTE_IW; |
| 1359 | |
| 1360 | for (i = 0; i < count; ++i) |
| 1361 | pte[i] = __pte; |
| 1362 | |
| 1363 | update_domain(dom); |
| 1364 | |
| 1365 | return 0; |
| 1366 | } |
| 1367 | |
| 1368 | static unsigned long iommu_unmap_page(struct protection_domain *dom, |
| 1369 | unsigned long bus_addr, |
| 1370 | unsigned long page_size) |
| 1371 | { |
| 1372 | unsigned long long unmapped; |
| 1373 | unsigned long unmap_size; |
| 1374 | u64 *pte; |
| 1375 | |
| 1376 | BUG_ON(!is_power_of_2(page_size)); |
| 1377 | |
| 1378 | unmapped = 0; |
| 1379 | |
| 1380 | while (unmapped < page_size) { |
| 1381 | |
| 1382 | pte = fetch_pte(dom, bus_addr, &unmap_size); |
| 1383 | |
| 1384 | if (pte) { |
| 1385 | int i, count; |
| 1386 | |
| 1387 | count = PAGE_SIZE_PTE_COUNT(unmap_size); |
| 1388 | for (i = 0; i < count; i++) |
| 1389 | pte[i] = 0ULL; |
| 1390 | } |
| 1391 | |
| 1392 | bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size; |
| 1393 | unmapped += unmap_size; |
| 1394 | } |
| 1395 | |
| 1396 | BUG_ON(unmapped && !is_power_of_2(unmapped)); |
| 1397 | |
| 1398 | return unmapped; |
| 1399 | } |
| 1400 | |
| 1401 | /**************************************************************************** |
| 1402 | * |
| 1403 | * The next functions belong to the address allocator for the dma_ops |
| 1404 | * interface functions. They work like the allocators in the other IOMMU |
| 1405 | * drivers. Its basically a bitmap which marks the allocated pages in |
| 1406 | * the aperture. Maybe it could be enhanced in the future to a more |
| 1407 | * efficient allocator. |
| 1408 | * |
| 1409 | ****************************************************************************/ |
| 1410 | |
| 1411 | /* |
| 1412 | * The address allocator core functions. |
| 1413 | * |
| 1414 | * called with domain->lock held |
| 1415 | */ |
| 1416 | |
| 1417 | /* |
| 1418 | * Used to reserve address ranges in the aperture (e.g. for exclusion |
| 1419 | * ranges. |
| 1420 | */ |
| 1421 | static void dma_ops_reserve_addresses(struct dma_ops_domain *dom, |
| 1422 | unsigned long start_page, |
| 1423 | unsigned int pages) |
| 1424 | { |
| 1425 | unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT; |
| 1426 | |
| 1427 | if (start_page + pages > last_page) |
| 1428 | pages = last_page - start_page; |
| 1429 | |
| 1430 | for (i = start_page; i < start_page + pages; ++i) { |
| 1431 | int index = i / APERTURE_RANGE_PAGES; |
| 1432 | int page = i % APERTURE_RANGE_PAGES; |
| 1433 | __set_bit(page, dom->aperture[index]->bitmap); |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | /* |
| 1438 | * This function is used to add a new aperture range to an existing |
| 1439 | * aperture in case of dma_ops domain allocation or address allocation |
| 1440 | * failure. |
| 1441 | */ |
| 1442 | static int alloc_new_range(struct dma_ops_domain *dma_dom, |
| 1443 | bool populate, gfp_t gfp) |
| 1444 | { |
| 1445 | int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT; |
| 1446 | struct amd_iommu *iommu; |
| 1447 | unsigned long i, old_size, pte_pgsize; |
| 1448 | |
| 1449 | #ifdef CONFIG_IOMMU_STRESS |
| 1450 | populate = false; |
| 1451 | #endif |
| 1452 | |
| 1453 | if (index >= APERTURE_MAX_RANGES) |
| 1454 | return -ENOMEM; |
| 1455 | |
| 1456 | dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp); |
| 1457 | if (!dma_dom->aperture[index]) |
| 1458 | return -ENOMEM; |
| 1459 | |
| 1460 | dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp); |
| 1461 | if (!dma_dom->aperture[index]->bitmap) |
| 1462 | goto out_free; |
| 1463 | |
| 1464 | dma_dom->aperture[index]->offset = dma_dom->aperture_size; |
| 1465 | |
| 1466 | if (populate) { |
| 1467 | unsigned long address = dma_dom->aperture_size; |
| 1468 | int i, num_ptes = APERTURE_RANGE_PAGES / 512; |
| 1469 | u64 *pte, *pte_page; |
| 1470 | |
| 1471 | for (i = 0; i < num_ptes; ++i) { |
| 1472 | pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE, |
| 1473 | &pte_page, gfp); |
| 1474 | if (!pte) |
| 1475 | goto out_free; |
| 1476 | |
| 1477 | dma_dom->aperture[index]->pte_pages[i] = pte_page; |
| 1478 | |
| 1479 | address += APERTURE_RANGE_SIZE / 64; |
| 1480 | } |
| 1481 | } |
| 1482 | |
| 1483 | old_size = dma_dom->aperture_size; |
| 1484 | dma_dom->aperture_size += APERTURE_RANGE_SIZE; |
| 1485 | |
| 1486 | /* Reserve address range used for MSI messages */ |
| 1487 | if (old_size < MSI_ADDR_BASE_LO && |
| 1488 | dma_dom->aperture_size > MSI_ADDR_BASE_LO) { |
| 1489 | unsigned long spage; |
| 1490 | int pages; |
| 1491 | |
| 1492 | pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE); |
| 1493 | spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT; |
| 1494 | |
| 1495 | dma_ops_reserve_addresses(dma_dom, spage, pages); |
| 1496 | } |
| 1497 | |
| 1498 | /* Initialize the exclusion range if necessary */ |
| 1499 | for_each_iommu(iommu) { |
| 1500 | if (iommu->exclusion_start && |
| 1501 | iommu->exclusion_start >= dma_dom->aperture[index]->offset |
| 1502 | && iommu->exclusion_start < dma_dom->aperture_size) { |
| 1503 | unsigned long startpage; |
| 1504 | int pages = iommu_num_pages(iommu->exclusion_start, |
| 1505 | iommu->exclusion_length, |
| 1506 | PAGE_SIZE); |
| 1507 | startpage = iommu->exclusion_start >> PAGE_SHIFT; |
| 1508 | dma_ops_reserve_addresses(dma_dom, startpage, pages); |
| 1509 | } |
| 1510 | } |
| 1511 | |
| 1512 | /* |
| 1513 | * Check for areas already mapped as present in the new aperture |
| 1514 | * range and mark those pages as reserved in the allocator. Such |
| 1515 | * mappings may already exist as a result of requested unity |
| 1516 | * mappings for devices. |
| 1517 | */ |
| 1518 | for (i = dma_dom->aperture[index]->offset; |
| 1519 | i < dma_dom->aperture_size; |
| 1520 | i += pte_pgsize) { |
| 1521 | u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize); |
| 1522 | if (!pte || !IOMMU_PTE_PRESENT(*pte)) |
| 1523 | continue; |
| 1524 | |
| 1525 | dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, |
| 1526 | pte_pgsize >> 12); |
| 1527 | } |
| 1528 | |
| 1529 | update_domain(&dma_dom->domain); |
| 1530 | |
| 1531 | return 0; |
| 1532 | |
| 1533 | out_free: |
| 1534 | update_domain(&dma_dom->domain); |
| 1535 | |
| 1536 | free_page((unsigned long)dma_dom->aperture[index]->bitmap); |
| 1537 | |
| 1538 | kfree(dma_dom->aperture[index]); |
| 1539 | dma_dom->aperture[index] = NULL; |
| 1540 | |
| 1541 | return -ENOMEM; |
| 1542 | } |
| 1543 | |
| 1544 | static unsigned long dma_ops_area_alloc(struct device *dev, |
| 1545 | struct dma_ops_domain *dom, |
| 1546 | unsigned int pages, |
| 1547 | unsigned long align_mask, |
| 1548 | u64 dma_mask, |
| 1549 | unsigned long start) |
| 1550 | { |
| 1551 | unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE; |
| 1552 | int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT; |
| 1553 | int i = start >> APERTURE_RANGE_SHIFT; |
| 1554 | unsigned long boundary_size, mask; |
| 1555 | unsigned long address = -1; |
| 1556 | unsigned long limit; |
| 1557 | |
| 1558 | next_bit >>= PAGE_SHIFT; |
| 1559 | |
| 1560 | mask = dma_get_seg_boundary(dev); |
| 1561 | |
| 1562 | boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT : |
| 1563 | 1UL << (BITS_PER_LONG - PAGE_SHIFT); |
| 1564 | |
| 1565 | for (;i < max_index; ++i) { |
| 1566 | unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT; |
| 1567 | |
| 1568 | if (dom->aperture[i]->offset >= dma_mask) |
| 1569 | break; |
| 1570 | |
| 1571 | limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset, |
| 1572 | dma_mask >> PAGE_SHIFT); |
| 1573 | |
| 1574 | address = iommu_area_alloc(dom->aperture[i]->bitmap, |
| 1575 | limit, next_bit, pages, 0, |
| 1576 | boundary_size, align_mask); |
| 1577 | if (address != -1) { |
| 1578 | address = dom->aperture[i]->offset + |
| 1579 | (address << PAGE_SHIFT); |
| 1580 | dom->next_address = address + (pages << PAGE_SHIFT); |
| 1581 | break; |
| 1582 | } |
| 1583 | |
| 1584 | next_bit = 0; |
| 1585 | } |
| 1586 | |
| 1587 | return address; |
| 1588 | } |
| 1589 | |
| 1590 | static unsigned long dma_ops_alloc_addresses(struct device *dev, |
| 1591 | struct dma_ops_domain *dom, |
| 1592 | unsigned int pages, |
| 1593 | unsigned long align_mask, |
| 1594 | u64 dma_mask) |
| 1595 | { |
| 1596 | unsigned long address; |
| 1597 | |
| 1598 | #ifdef CONFIG_IOMMU_STRESS |
| 1599 | dom->next_address = 0; |
| 1600 | dom->need_flush = true; |
| 1601 | #endif |
| 1602 | |
| 1603 | address = dma_ops_area_alloc(dev, dom, pages, align_mask, |
| 1604 | dma_mask, dom->next_address); |
| 1605 | |
| 1606 | if (address == -1) { |
| 1607 | dom->next_address = 0; |
| 1608 | address = dma_ops_area_alloc(dev, dom, pages, align_mask, |
| 1609 | dma_mask, 0); |
| 1610 | dom->need_flush = true; |
| 1611 | } |
| 1612 | |
| 1613 | if (unlikely(address == -1)) |
| 1614 | address = DMA_ERROR_CODE; |
| 1615 | |
| 1616 | WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size); |
| 1617 | |
| 1618 | return address; |
| 1619 | } |
| 1620 | |
| 1621 | /* |
| 1622 | * The address free function. |
| 1623 | * |
| 1624 | * called with domain->lock held |
| 1625 | */ |
| 1626 | static void dma_ops_free_addresses(struct dma_ops_domain *dom, |
| 1627 | unsigned long address, |
| 1628 | unsigned int pages) |
| 1629 | { |
| 1630 | unsigned i = address >> APERTURE_RANGE_SHIFT; |
| 1631 | struct aperture_range *range = dom->aperture[i]; |
| 1632 | |
| 1633 | BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL); |
| 1634 | |
| 1635 | #ifdef CONFIG_IOMMU_STRESS |
| 1636 | if (i < 4) |
| 1637 | return; |
| 1638 | #endif |
| 1639 | |
| 1640 | if (address >= dom->next_address) |
| 1641 | dom->need_flush = true; |
| 1642 | |
| 1643 | address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT; |
| 1644 | |
| 1645 | bitmap_clear(range->bitmap, address, pages); |
| 1646 | |
| 1647 | } |
| 1648 | |
| 1649 | /**************************************************************************** |
| 1650 | * |
| 1651 | * The next functions belong to the domain allocation. A domain is |
| 1652 | * allocated for every IOMMU as the default domain. If device isolation |
| 1653 | * is enabled, every device get its own domain. The most important thing |
| 1654 | * about domains is the page table mapping the DMA address space they |
| 1655 | * contain. |
| 1656 | * |
| 1657 | ****************************************************************************/ |
| 1658 | |
| 1659 | /* |
| 1660 | * This function adds a protection domain to the global protection domain list |
| 1661 | */ |
| 1662 | static void add_domain_to_list(struct protection_domain *domain) |
| 1663 | { |
| 1664 | unsigned long flags; |
| 1665 | |
| 1666 | spin_lock_irqsave(&amd_iommu_pd_lock, flags); |
| 1667 | list_add(&domain->list, &amd_iommu_pd_list); |
| 1668 | spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); |
| 1669 | } |
| 1670 | |
| 1671 | /* |
| 1672 | * This function removes a protection domain to the global |
| 1673 | * protection domain list |
| 1674 | */ |
| 1675 | static void del_domain_from_list(struct protection_domain *domain) |
| 1676 | { |
| 1677 | unsigned long flags; |
| 1678 | |
| 1679 | spin_lock_irqsave(&amd_iommu_pd_lock, flags); |
| 1680 | list_del(&domain->list); |
| 1681 | spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); |
| 1682 | } |
| 1683 | |
| 1684 | static u16 domain_id_alloc(void) |
| 1685 | { |
| 1686 | unsigned long flags; |
| 1687 | int id; |
| 1688 | |
| 1689 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| 1690 | id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); |
| 1691 | BUG_ON(id == 0); |
| 1692 | if (id > 0 && id < MAX_DOMAIN_ID) |
| 1693 | __set_bit(id, amd_iommu_pd_alloc_bitmap); |
| 1694 | else |
| 1695 | id = 0; |
| 1696 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| 1697 | |
| 1698 | return id; |
| 1699 | } |
| 1700 | |
| 1701 | static void domain_id_free(int id) |
| 1702 | { |
| 1703 | unsigned long flags; |
| 1704 | |
| 1705 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| 1706 | if (id > 0 && id < MAX_DOMAIN_ID) |
| 1707 | __clear_bit(id, amd_iommu_pd_alloc_bitmap); |
| 1708 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| 1709 | } |
| 1710 | |
| 1711 | #define DEFINE_FREE_PT_FN(LVL, FN) \ |
| 1712 | static void free_pt_##LVL (unsigned long __pt) \ |
| 1713 | { \ |
| 1714 | unsigned long p; \ |
| 1715 | u64 *pt; \ |
| 1716 | int i; \ |
| 1717 | \ |
| 1718 | pt = (u64 *)__pt; \ |
| 1719 | \ |
| 1720 | for (i = 0; i < 512; ++i) { \ |
| 1721 | /* PTE present? */ \ |
| 1722 | if (!IOMMU_PTE_PRESENT(pt[i])) \ |
| 1723 | continue; \ |
| 1724 | \ |
| 1725 | /* Large PTE? */ \ |
| 1726 | if (PM_PTE_LEVEL(pt[i]) == 0 || \ |
| 1727 | PM_PTE_LEVEL(pt[i]) == 7) \ |
| 1728 | continue; \ |
| 1729 | \ |
| 1730 | p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \ |
| 1731 | FN(p); \ |
| 1732 | } \ |
| 1733 | free_page((unsigned long)pt); \ |
| 1734 | } |
| 1735 | |
| 1736 | DEFINE_FREE_PT_FN(l2, free_page) |
| 1737 | DEFINE_FREE_PT_FN(l3, free_pt_l2) |
| 1738 | DEFINE_FREE_PT_FN(l4, free_pt_l3) |
| 1739 | DEFINE_FREE_PT_FN(l5, free_pt_l4) |
| 1740 | DEFINE_FREE_PT_FN(l6, free_pt_l5) |
| 1741 | |
| 1742 | static void free_pagetable(struct protection_domain *domain) |
| 1743 | { |
| 1744 | unsigned long root = (unsigned long)domain->pt_root; |
| 1745 | |
| 1746 | switch (domain->mode) { |
| 1747 | case PAGE_MODE_NONE: |
| 1748 | break; |
| 1749 | case PAGE_MODE_1_LEVEL: |
| 1750 | free_page(root); |
| 1751 | break; |
| 1752 | case PAGE_MODE_2_LEVEL: |
| 1753 | free_pt_l2(root); |
| 1754 | break; |
| 1755 | case PAGE_MODE_3_LEVEL: |
| 1756 | free_pt_l3(root); |
| 1757 | break; |
| 1758 | case PAGE_MODE_4_LEVEL: |
| 1759 | free_pt_l4(root); |
| 1760 | break; |
| 1761 | case PAGE_MODE_5_LEVEL: |
| 1762 | free_pt_l5(root); |
| 1763 | break; |
| 1764 | case PAGE_MODE_6_LEVEL: |
| 1765 | free_pt_l6(root); |
| 1766 | break; |
| 1767 | default: |
| 1768 | BUG(); |
| 1769 | } |
| 1770 | } |
| 1771 | |
| 1772 | static void free_gcr3_tbl_level1(u64 *tbl) |
| 1773 | { |
| 1774 | u64 *ptr; |
| 1775 | int i; |
| 1776 | |
| 1777 | for (i = 0; i < 512; ++i) { |
| 1778 | if (!(tbl[i] & GCR3_VALID)) |
| 1779 | continue; |
| 1780 | |
| 1781 | ptr = __va(tbl[i] & PAGE_MASK); |
| 1782 | |
| 1783 | free_page((unsigned long)ptr); |
| 1784 | } |
| 1785 | } |
| 1786 | |
| 1787 | static void free_gcr3_tbl_level2(u64 *tbl) |
| 1788 | { |
| 1789 | u64 *ptr; |
| 1790 | int i; |
| 1791 | |
| 1792 | for (i = 0; i < 512; ++i) { |
| 1793 | if (!(tbl[i] & GCR3_VALID)) |
| 1794 | continue; |
| 1795 | |
| 1796 | ptr = __va(tbl[i] & PAGE_MASK); |
| 1797 | |
| 1798 | free_gcr3_tbl_level1(ptr); |
| 1799 | } |
| 1800 | } |
| 1801 | |
| 1802 | static void free_gcr3_table(struct protection_domain *domain) |
| 1803 | { |
| 1804 | if (domain->glx == 2) |
| 1805 | free_gcr3_tbl_level2(domain->gcr3_tbl); |
| 1806 | else if (domain->glx == 1) |
| 1807 | free_gcr3_tbl_level1(domain->gcr3_tbl); |
| 1808 | else |
| 1809 | BUG_ON(domain->glx != 0); |
| 1810 | |
| 1811 | free_page((unsigned long)domain->gcr3_tbl); |
| 1812 | } |
| 1813 | |
| 1814 | /* |
| 1815 | * Free a domain, only used if something went wrong in the |
| 1816 | * allocation path and we need to free an already allocated page table |
| 1817 | */ |
| 1818 | static void dma_ops_domain_free(struct dma_ops_domain *dom) |
| 1819 | { |
| 1820 | int i; |
| 1821 | |
| 1822 | if (!dom) |
| 1823 | return; |
| 1824 | |
| 1825 | del_domain_from_list(&dom->domain); |
| 1826 | |
| 1827 | free_pagetable(&dom->domain); |
| 1828 | |
| 1829 | for (i = 0; i < APERTURE_MAX_RANGES; ++i) { |
| 1830 | if (!dom->aperture[i]) |
| 1831 | continue; |
| 1832 | free_page((unsigned long)dom->aperture[i]->bitmap); |
| 1833 | kfree(dom->aperture[i]); |
| 1834 | } |
| 1835 | |
| 1836 | if (dom->domain.id) |
| 1837 | domain_id_free(dom->domain.id); |
| 1838 | |
| 1839 | kfree(dom); |
| 1840 | } |
| 1841 | |
| 1842 | /* |
| 1843 | * Allocates a new protection domain usable for the dma_ops functions. |
| 1844 | * It also initializes the page table and the address allocator data |
| 1845 | * structures required for the dma_ops interface |
| 1846 | */ |
| 1847 | static struct dma_ops_domain *dma_ops_domain_alloc(void) |
| 1848 | { |
| 1849 | struct dma_ops_domain *dma_dom; |
| 1850 | |
| 1851 | dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL); |
| 1852 | if (!dma_dom) |
| 1853 | return NULL; |
| 1854 | |
| 1855 | if (protection_domain_init(&dma_dom->domain)) |
| 1856 | goto free_dma_dom; |
| 1857 | |
| 1858 | dma_dom->domain.mode = PAGE_MODE_2_LEVEL; |
| 1859 | dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL); |
| 1860 | dma_dom->domain.flags = PD_DMA_OPS_MASK; |
| 1861 | dma_dom->domain.priv = dma_dom; |
| 1862 | if (!dma_dom->domain.pt_root) |
| 1863 | goto free_dma_dom; |
| 1864 | |
| 1865 | dma_dom->need_flush = false; |
| 1866 | |
| 1867 | add_domain_to_list(&dma_dom->domain); |
| 1868 | |
| 1869 | if (alloc_new_range(dma_dom, true, GFP_KERNEL)) |
| 1870 | goto free_dma_dom; |
| 1871 | |
| 1872 | /* |
| 1873 | * mark the first page as allocated so we never return 0 as |
| 1874 | * a valid dma-address. So we can use 0 as error value |
| 1875 | */ |
| 1876 | dma_dom->aperture[0]->bitmap[0] = 1; |
| 1877 | dma_dom->next_address = 0; |
| 1878 | |
| 1879 | |
| 1880 | return dma_dom; |
| 1881 | |
| 1882 | free_dma_dom: |
| 1883 | dma_ops_domain_free(dma_dom); |
| 1884 | |
| 1885 | return NULL; |
| 1886 | } |
| 1887 | |
| 1888 | /* |
| 1889 | * little helper function to check whether a given protection domain is a |
| 1890 | * dma_ops domain |
| 1891 | */ |
| 1892 | static bool dma_ops_domain(struct protection_domain *domain) |
| 1893 | { |
| 1894 | return domain->flags & PD_DMA_OPS_MASK; |
| 1895 | } |
| 1896 | |
| 1897 | static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats) |
| 1898 | { |
| 1899 | u64 pte_root = 0; |
| 1900 | u64 flags = 0; |
| 1901 | |
| 1902 | if (domain->mode != PAGE_MODE_NONE) |
| 1903 | pte_root = virt_to_phys(domain->pt_root); |
| 1904 | |
| 1905 | pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK) |
| 1906 | << DEV_ENTRY_MODE_SHIFT; |
| 1907 | pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV; |
| 1908 | |
| 1909 | flags = amd_iommu_dev_table[devid].data[1]; |
| 1910 | |
| 1911 | if (ats) |
| 1912 | flags |= DTE_FLAG_IOTLB; |
| 1913 | |
| 1914 | if (domain->flags & PD_IOMMUV2_MASK) { |
| 1915 | u64 gcr3 = __pa(domain->gcr3_tbl); |
| 1916 | u64 glx = domain->glx; |
| 1917 | u64 tmp; |
| 1918 | |
| 1919 | pte_root |= DTE_FLAG_GV; |
| 1920 | pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; |
| 1921 | |
| 1922 | /* First mask out possible old values for GCR3 table */ |
| 1923 | tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; |
| 1924 | flags &= ~tmp; |
| 1925 | |
| 1926 | tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; |
| 1927 | flags &= ~tmp; |
| 1928 | |
| 1929 | /* Encode GCR3 table into DTE */ |
| 1930 | tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; |
| 1931 | pte_root |= tmp; |
| 1932 | |
| 1933 | tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; |
| 1934 | flags |= tmp; |
| 1935 | |
| 1936 | tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; |
| 1937 | flags |= tmp; |
| 1938 | } |
| 1939 | |
| 1940 | flags &= ~(0xffffUL); |
| 1941 | flags |= domain->id; |
| 1942 | |
| 1943 | amd_iommu_dev_table[devid].data[1] = flags; |
| 1944 | amd_iommu_dev_table[devid].data[0] = pte_root; |
| 1945 | } |
| 1946 | |
| 1947 | static void clear_dte_entry(u16 devid) |
| 1948 | { |
| 1949 | /* remove entry from the device table seen by the hardware */ |
| 1950 | amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV; |
| 1951 | amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK; |
| 1952 | |
| 1953 | amd_iommu_apply_erratum_63(devid); |
| 1954 | } |
| 1955 | |
| 1956 | static void do_attach(struct iommu_dev_data *dev_data, |
| 1957 | struct protection_domain *domain) |
| 1958 | { |
| 1959 | struct amd_iommu *iommu; |
| 1960 | u16 alias; |
| 1961 | bool ats; |
| 1962 | |
| 1963 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 1964 | alias = dev_data->alias; |
| 1965 | ats = dev_data->ats.enabled; |
| 1966 | |
| 1967 | /* Update data structures */ |
| 1968 | dev_data->domain = domain; |
| 1969 | list_add(&dev_data->list, &domain->dev_list); |
| 1970 | |
| 1971 | /* Do reference counting */ |
| 1972 | domain->dev_iommu[iommu->index] += 1; |
| 1973 | domain->dev_cnt += 1; |
| 1974 | |
| 1975 | /* Update device table */ |
| 1976 | set_dte_entry(dev_data->devid, domain, ats); |
| 1977 | if (alias != dev_data->devid) |
| 1978 | set_dte_entry(alias, domain, ats); |
| 1979 | |
| 1980 | device_flush_dte(dev_data); |
| 1981 | } |
| 1982 | |
| 1983 | static void do_detach(struct iommu_dev_data *dev_data) |
| 1984 | { |
| 1985 | struct amd_iommu *iommu; |
| 1986 | u16 alias; |
| 1987 | |
| 1988 | /* |
| 1989 | * First check if the device is still attached. It might already |
| 1990 | * be detached from its domain because the generic |
| 1991 | * iommu_detach_group code detached it and we try again here in |
| 1992 | * our alias handling. |
| 1993 | */ |
| 1994 | if (!dev_data->domain) |
| 1995 | return; |
| 1996 | |
| 1997 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 1998 | alias = dev_data->alias; |
| 1999 | |
| 2000 | /* decrease reference counters */ |
| 2001 | dev_data->domain->dev_iommu[iommu->index] -= 1; |
| 2002 | dev_data->domain->dev_cnt -= 1; |
| 2003 | |
| 2004 | /* Update data structures */ |
| 2005 | dev_data->domain = NULL; |
| 2006 | list_del(&dev_data->list); |
| 2007 | clear_dte_entry(dev_data->devid); |
| 2008 | if (alias != dev_data->devid) |
| 2009 | clear_dte_entry(alias); |
| 2010 | |
| 2011 | /* Flush the DTE entry */ |
| 2012 | device_flush_dte(dev_data); |
| 2013 | } |
| 2014 | |
| 2015 | /* |
| 2016 | * If a device is not yet associated with a domain, this function does |
| 2017 | * assigns it visible for the hardware |
| 2018 | */ |
| 2019 | static int __attach_device(struct iommu_dev_data *dev_data, |
| 2020 | struct protection_domain *domain) |
| 2021 | { |
| 2022 | int ret; |
| 2023 | |
| 2024 | /* |
| 2025 | * Must be called with IRQs disabled. Warn here to detect early |
| 2026 | * when its not. |
| 2027 | */ |
| 2028 | WARN_ON(!irqs_disabled()); |
| 2029 | |
| 2030 | /* lock domain */ |
| 2031 | spin_lock(&domain->lock); |
| 2032 | |
| 2033 | ret = -EBUSY; |
| 2034 | if (dev_data->domain != NULL) |
| 2035 | goto out_unlock; |
| 2036 | |
| 2037 | /* Attach alias group root */ |
| 2038 | do_attach(dev_data, domain); |
| 2039 | |
| 2040 | ret = 0; |
| 2041 | |
| 2042 | out_unlock: |
| 2043 | |
| 2044 | /* ready */ |
| 2045 | spin_unlock(&domain->lock); |
| 2046 | |
| 2047 | return ret; |
| 2048 | } |
| 2049 | |
| 2050 | |
| 2051 | static void pdev_iommuv2_disable(struct pci_dev *pdev) |
| 2052 | { |
| 2053 | pci_disable_ats(pdev); |
| 2054 | pci_disable_pri(pdev); |
| 2055 | pci_disable_pasid(pdev); |
| 2056 | } |
| 2057 | |
| 2058 | /* FIXME: Change generic reset-function to do the same */ |
| 2059 | static int pri_reset_while_enabled(struct pci_dev *pdev) |
| 2060 | { |
| 2061 | u16 control; |
| 2062 | int pos; |
| 2063 | |
| 2064 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); |
| 2065 | if (!pos) |
| 2066 | return -EINVAL; |
| 2067 | |
| 2068 | pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control); |
| 2069 | control |= PCI_PRI_CTRL_RESET; |
| 2070 | pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control); |
| 2071 | |
| 2072 | return 0; |
| 2073 | } |
| 2074 | |
| 2075 | static int pdev_iommuv2_enable(struct pci_dev *pdev) |
| 2076 | { |
| 2077 | bool reset_enable; |
| 2078 | int reqs, ret; |
| 2079 | |
| 2080 | /* FIXME: Hardcode number of outstanding requests for now */ |
| 2081 | reqs = 32; |
| 2082 | if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE)) |
| 2083 | reqs = 1; |
| 2084 | reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET); |
| 2085 | |
| 2086 | /* Only allow access to user-accessible pages */ |
| 2087 | ret = pci_enable_pasid(pdev, 0); |
| 2088 | if (ret) |
| 2089 | goto out_err; |
| 2090 | |
| 2091 | /* First reset the PRI state of the device */ |
| 2092 | ret = pci_reset_pri(pdev); |
| 2093 | if (ret) |
| 2094 | goto out_err; |
| 2095 | |
| 2096 | /* Enable PRI */ |
| 2097 | ret = pci_enable_pri(pdev, reqs); |
| 2098 | if (ret) |
| 2099 | goto out_err; |
| 2100 | |
| 2101 | if (reset_enable) { |
| 2102 | ret = pri_reset_while_enabled(pdev); |
| 2103 | if (ret) |
| 2104 | goto out_err; |
| 2105 | } |
| 2106 | |
| 2107 | ret = pci_enable_ats(pdev, PAGE_SHIFT); |
| 2108 | if (ret) |
| 2109 | goto out_err; |
| 2110 | |
| 2111 | return 0; |
| 2112 | |
| 2113 | out_err: |
| 2114 | pci_disable_pri(pdev); |
| 2115 | pci_disable_pasid(pdev); |
| 2116 | |
| 2117 | return ret; |
| 2118 | } |
| 2119 | |
| 2120 | /* FIXME: Move this to PCI code */ |
| 2121 | #define PCI_PRI_TLP_OFF (1 << 15) |
| 2122 | |
| 2123 | static bool pci_pri_tlp_required(struct pci_dev *pdev) |
| 2124 | { |
| 2125 | u16 status; |
| 2126 | int pos; |
| 2127 | |
| 2128 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); |
| 2129 | if (!pos) |
| 2130 | return false; |
| 2131 | |
| 2132 | pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status); |
| 2133 | |
| 2134 | return (status & PCI_PRI_TLP_OFF) ? true : false; |
| 2135 | } |
| 2136 | |
| 2137 | /* |
| 2138 | * If a device is not yet associated with a domain, this function |
| 2139 | * assigns it visible for the hardware |
| 2140 | */ |
| 2141 | static int attach_device(struct device *dev, |
| 2142 | struct protection_domain *domain) |
| 2143 | { |
| 2144 | struct pci_dev *pdev = to_pci_dev(dev); |
| 2145 | struct iommu_dev_data *dev_data; |
| 2146 | unsigned long flags; |
| 2147 | int ret; |
| 2148 | |
| 2149 | dev_data = get_dev_data(dev); |
| 2150 | |
| 2151 | if (domain->flags & PD_IOMMUV2_MASK) { |
| 2152 | if (!dev_data->passthrough) |
| 2153 | return -EINVAL; |
| 2154 | |
| 2155 | if (dev_data->iommu_v2) { |
| 2156 | if (pdev_iommuv2_enable(pdev) != 0) |
| 2157 | return -EINVAL; |
| 2158 | |
| 2159 | dev_data->ats.enabled = true; |
| 2160 | dev_data->ats.qdep = pci_ats_queue_depth(pdev); |
| 2161 | dev_data->pri_tlp = pci_pri_tlp_required(pdev); |
| 2162 | } |
| 2163 | } else if (amd_iommu_iotlb_sup && |
| 2164 | pci_enable_ats(pdev, PAGE_SHIFT) == 0) { |
| 2165 | dev_data->ats.enabled = true; |
| 2166 | dev_data->ats.qdep = pci_ats_queue_depth(pdev); |
| 2167 | } |
| 2168 | |
| 2169 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| 2170 | ret = __attach_device(dev_data, domain); |
| 2171 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| 2172 | |
| 2173 | /* |
| 2174 | * We might boot into a crash-kernel here. The crashed kernel |
| 2175 | * left the caches in the IOMMU dirty. So we have to flush |
| 2176 | * here to evict all dirty stuff. |
| 2177 | */ |
| 2178 | domain_flush_tlb_pde(domain); |
| 2179 | |
| 2180 | return ret; |
| 2181 | } |
| 2182 | |
| 2183 | /* |
| 2184 | * Removes a device from a protection domain (unlocked) |
| 2185 | */ |
| 2186 | static void __detach_device(struct iommu_dev_data *dev_data) |
| 2187 | { |
| 2188 | struct protection_domain *domain; |
| 2189 | |
| 2190 | /* |
| 2191 | * Must be called with IRQs disabled. Warn here to detect early |
| 2192 | * when its not. |
| 2193 | */ |
| 2194 | WARN_ON(!irqs_disabled()); |
| 2195 | |
| 2196 | if (WARN_ON(!dev_data->domain)) |
| 2197 | return; |
| 2198 | |
| 2199 | domain = dev_data->domain; |
| 2200 | |
| 2201 | spin_lock(&domain->lock); |
| 2202 | |
| 2203 | do_detach(dev_data); |
| 2204 | |
| 2205 | spin_unlock(&domain->lock); |
| 2206 | } |
| 2207 | |
| 2208 | /* |
| 2209 | * Removes a device from a protection domain (with devtable_lock held) |
| 2210 | */ |
| 2211 | static void detach_device(struct device *dev) |
| 2212 | { |
| 2213 | struct protection_domain *domain; |
| 2214 | struct iommu_dev_data *dev_data; |
| 2215 | unsigned long flags; |
| 2216 | |
| 2217 | dev_data = get_dev_data(dev); |
| 2218 | domain = dev_data->domain; |
| 2219 | |
| 2220 | /* lock device table */ |
| 2221 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| 2222 | __detach_device(dev_data); |
| 2223 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| 2224 | |
| 2225 | if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) |
| 2226 | pdev_iommuv2_disable(to_pci_dev(dev)); |
| 2227 | else if (dev_data->ats.enabled) |
| 2228 | pci_disable_ats(to_pci_dev(dev)); |
| 2229 | |
| 2230 | dev_data->ats.enabled = false; |
| 2231 | } |
| 2232 | |
| 2233 | static int amd_iommu_add_device(struct device *dev) |
| 2234 | { |
| 2235 | struct iommu_dev_data *dev_data; |
| 2236 | struct iommu_domain *domain; |
| 2237 | struct amd_iommu *iommu; |
| 2238 | u16 devid; |
| 2239 | int ret; |
| 2240 | |
| 2241 | if (!check_device(dev) || get_dev_data(dev)) |
| 2242 | return 0; |
| 2243 | |
| 2244 | devid = get_device_id(dev); |
| 2245 | iommu = amd_iommu_rlookup_table[devid]; |
| 2246 | |
| 2247 | ret = iommu_init_device(dev); |
| 2248 | if (ret) { |
| 2249 | if (ret != -ENOTSUPP) |
| 2250 | pr_err("Failed to initialize device %s - trying to proceed anyway\n", |
| 2251 | dev_name(dev)); |
| 2252 | |
| 2253 | iommu_ignore_device(dev); |
| 2254 | dev->archdata.dma_ops = &nommu_dma_ops; |
| 2255 | goto out; |
| 2256 | } |
| 2257 | init_iommu_group(dev); |
| 2258 | |
| 2259 | dev_data = get_dev_data(dev); |
| 2260 | |
| 2261 | BUG_ON(!dev_data); |
| 2262 | |
| 2263 | if (iommu_pass_through || dev_data->iommu_v2) |
| 2264 | iommu_request_dm_for_dev(dev); |
| 2265 | |
| 2266 | /* Domains are initialized for this device - have a look what we ended up with */ |
| 2267 | domain = iommu_get_domain_for_dev(dev); |
| 2268 | if (domain->type == IOMMU_DOMAIN_IDENTITY) |
| 2269 | dev_data->passthrough = true; |
| 2270 | else |
| 2271 | dev->archdata.dma_ops = &amd_iommu_dma_ops; |
| 2272 | |
| 2273 | out: |
| 2274 | iommu_completion_wait(iommu); |
| 2275 | |
| 2276 | return 0; |
| 2277 | } |
| 2278 | |
| 2279 | static void amd_iommu_remove_device(struct device *dev) |
| 2280 | { |
| 2281 | struct amd_iommu *iommu; |
| 2282 | u16 devid; |
| 2283 | |
| 2284 | if (!check_device(dev)) |
| 2285 | return; |
| 2286 | |
| 2287 | devid = get_device_id(dev); |
| 2288 | iommu = amd_iommu_rlookup_table[devid]; |
| 2289 | |
| 2290 | iommu_uninit_device(dev); |
| 2291 | iommu_completion_wait(iommu); |
| 2292 | } |
| 2293 | |
| 2294 | /***************************************************************************** |
| 2295 | * |
| 2296 | * The next functions belong to the dma_ops mapping/unmapping code. |
| 2297 | * |
| 2298 | *****************************************************************************/ |
| 2299 | |
| 2300 | /* |
| 2301 | * In the dma_ops path we only have the struct device. This function |
| 2302 | * finds the corresponding IOMMU, the protection domain and the |
| 2303 | * requestor id for a given device. |
| 2304 | * If the device is not yet associated with a domain this is also done |
| 2305 | * in this function. |
| 2306 | */ |
| 2307 | static struct protection_domain *get_domain(struct device *dev) |
| 2308 | { |
| 2309 | struct protection_domain *domain; |
| 2310 | struct iommu_domain *io_domain; |
| 2311 | |
| 2312 | if (!check_device(dev)) |
| 2313 | return ERR_PTR(-EINVAL); |
| 2314 | |
| 2315 | io_domain = iommu_get_domain_for_dev(dev); |
| 2316 | if (!io_domain) |
| 2317 | return NULL; |
| 2318 | |
| 2319 | domain = to_pdomain(io_domain); |
| 2320 | if (!dma_ops_domain(domain)) |
| 2321 | return ERR_PTR(-EBUSY); |
| 2322 | |
| 2323 | return domain; |
| 2324 | } |
| 2325 | |
| 2326 | static void update_device_table(struct protection_domain *domain) |
| 2327 | { |
| 2328 | struct iommu_dev_data *dev_data; |
| 2329 | |
| 2330 | list_for_each_entry(dev_data, &domain->dev_list, list) { |
| 2331 | set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled); |
| 2332 | |
| 2333 | if (dev_data->devid == dev_data->alias) |
| 2334 | continue; |
| 2335 | |
| 2336 | /* There is an alias, update device table entry for it */ |
| 2337 | set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled); |
| 2338 | } |
| 2339 | } |
| 2340 | |
| 2341 | static void update_domain(struct protection_domain *domain) |
| 2342 | { |
| 2343 | if (!domain->updated) |
| 2344 | return; |
| 2345 | |
| 2346 | update_device_table(domain); |
| 2347 | |
| 2348 | domain_flush_devices(domain); |
| 2349 | domain_flush_tlb_pde(domain); |
| 2350 | |
| 2351 | domain->updated = false; |
| 2352 | } |
| 2353 | |
| 2354 | /* |
| 2355 | * This function fetches the PTE for a given address in the aperture |
| 2356 | */ |
| 2357 | static u64* dma_ops_get_pte(struct dma_ops_domain *dom, |
| 2358 | unsigned long address) |
| 2359 | { |
| 2360 | struct aperture_range *aperture; |
| 2361 | u64 *pte, *pte_page; |
| 2362 | |
| 2363 | aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; |
| 2364 | if (!aperture) |
| 2365 | return NULL; |
| 2366 | |
| 2367 | pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; |
| 2368 | if (!pte) { |
| 2369 | pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page, |
| 2370 | GFP_ATOMIC); |
| 2371 | aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page; |
| 2372 | } else |
| 2373 | pte += PM_LEVEL_INDEX(0, address); |
| 2374 | |
| 2375 | update_domain(&dom->domain); |
| 2376 | |
| 2377 | return pte; |
| 2378 | } |
| 2379 | |
| 2380 | /* |
| 2381 | * This is the generic map function. It maps one 4kb page at paddr to |
| 2382 | * the given address in the DMA address space for the domain. |
| 2383 | */ |
| 2384 | static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom, |
| 2385 | unsigned long address, |
| 2386 | phys_addr_t paddr, |
| 2387 | int direction) |
| 2388 | { |
| 2389 | u64 *pte, __pte; |
| 2390 | |
| 2391 | WARN_ON(address > dom->aperture_size); |
| 2392 | |
| 2393 | paddr &= PAGE_MASK; |
| 2394 | |
| 2395 | pte = dma_ops_get_pte(dom, address); |
| 2396 | if (!pte) |
| 2397 | return DMA_ERROR_CODE; |
| 2398 | |
| 2399 | __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC; |
| 2400 | |
| 2401 | if (direction == DMA_TO_DEVICE) |
| 2402 | __pte |= IOMMU_PTE_IR; |
| 2403 | else if (direction == DMA_FROM_DEVICE) |
| 2404 | __pte |= IOMMU_PTE_IW; |
| 2405 | else if (direction == DMA_BIDIRECTIONAL) |
| 2406 | __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW; |
| 2407 | |
| 2408 | WARN_ON(*pte); |
| 2409 | |
| 2410 | *pte = __pte; |
| 2411 | |
| 2412 | return (dma_addr_t)address; |
| 2413 | } |
| 2414 | |
| 2415 | /* |
| 2416 | * The generic unmapping function for on page in the DMA address space. |
| 2417 | */ |
| 2418 | static void dma_ops_domain_unmap(struct dma_ops_domain *dom, |
| 2419 | unsigned long address) |
| 2420 | { |
| 2421 | struct aperture_range *aperture; |
| 2422 | u64 *pte; |
| 2423 | |
| 2424 | if (address >= dom->aperture_size) |
| 2425 | return; |
| 2426 | |
| 2427 | aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; |
| 2428 | if (!aperture) |
| 2429 | return; |
| 2430 | |
| 2431 | pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; |
| 2432 | if (!pte) |
| 2433 | return; |
| 2434 | |
| 2435 | pte += PM_LEVEL_INDEX(0, address); |
| 2436 | |
| 2437 | WARN_ON(!*pte); |
| 2438 | |
| 2439 | *pte = 0ULL; |
| 2440 | } |
| 2441 | |
| 2442 | /* |
| 2443 | * This function contains common code for mapping of a physically |
| 2444 | * contiguous memory region into DMA address space. It is used by all |
| 2445 | * mapping functions provided with this IOMMU driver. |
| 2446 | * Must be called with the domain lock held. |
| 2447 | */ |
| 2448 | static dma_addr_t __map_single(struct device *dev, |
| 2449 | struct dma_ops_domain *dma_dom, |
| 2450 | phys_addr_t paddr, |
| 2451 | size_t size, |
| 2452 | int dir, |
| 2453 | bool align, |
| 2454 | u64 dma_mask) |
| 2455 | { |
| 2456 | dma_addr_t offset = paddr & ~PAGE_MASK; |
| 2457 | dma_addr_t address, start, ret; |
| 2458 | unsigned int pages; |
| 2459 | unsigned long align_mask = 0; |
| 2460 | int i; |
| 2461 | |
| 2462 | pages = iommu_num_pages(paddr, size, PAGE_SIZE); |
| 2463 | paddr &= PAGE_MASK; |
| 2464 | |
| 2465 | INC_STATS_COUNTER(total_map_requests); |
| 2466 | |
| 2467 | if (pages > 1) |
| 2468 | INC_STATS_COUNTER(cross_page); |
| 2469 | |
| 2470 | if (align) |
| 2471 | align_mask = (1UL << get_order(size)) - 1; |
| 2472 | |
| 2473 | retry: |
| 2474 | address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask, |
| 2475 | dma_mask); |
| 2476 | if (unlikely(address == DMA_ERROR_CODE)) { |
| 2477 | /* |
| 2478 | * setting next_address here will let the address |
| 2479 | * allocator only scan the new allocated range in the |
| 2480 | * first run. This is a small optimization. |
| 2481 | */ |
| 2482 | dma_dom->next_address = dma_dom->aperture_size; |
| 2483 | |
| 2484 | if (alloc_new_range(dma_dom, false, GFP_ATOMIC)) |
| 2485 | goto out; |
| 2486 | |
| 2487 | /* |
| 2488 | * aperture was successfully enlarged by 128 MB, try |
| 2489 | * allocation again |
| 2490 | */ |
| 2491 | goto retry; |
| 2492 | } |
| 2493 | |
| 2494 | start = address; |
| 2495 | for (i = 0; i < pages; ++i) { |
| 2496 | ret = dma_ops_domain_map(dma_dom, start, paddr, dir); |
| 2497 | if (ret == DMA_ERROR_CODE) |
| 2498 | goto out_unmap; |
| 2499 | |
| 2500 | paddr += PAGE_SIZE; |
| 2501 | start += PAGE_SIZE; |
| 2502 | } |
| 2503 | address += offset; |
| 2504 | |
| 2505 | ADD_STATS_COUNTER(alloced_io_mem, size); |
| 2506 | |
| 2507 | if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) { |
| 2508 | domain_flush_tlb(&dma_dom->domain); |
| 2509 | dma_dom->need_flush = false; |
| 2510 | } else if (unlikely(amd_iommu_np_cache)) |
| 2511 | domain_flush_pages(&dma_dom->domain, address, size); |
| 2512 | |
| 2513 | out: |
| 2514 | return address; |
| 2515 | |
| 2516 | out_unmap: |
| 2517 | |
| 2518 | for (--i; i >= 0; --i) { |
| 2519 | start -= PAGE_SIZE; |
| 2520 | dma_ops_domain_unmap(dma_dom, start); |
| 2521 | } |
| 2522 | |
| 2523 | dma_ops_free_addresses(dma_dom, address, pages); |
| 2524 | |
| 2525 | return DMA_ERROR_CODE; |
| 2526 | } |
| 2527 | |
| 2528 | /* |
| 2529 | * Does the reverse of the __map_single function. Must be called with |
| 2530 | * the domain lock held too |
| 2531 | */ |
| 2532 | static void __unmap_single(struct dma_ops_domain *dma_dom, |
| 2533 | dma_addr_t dma_addr, |
| 2534 | size_t size, |
| 2535 | int dir) |
| 2536 | { |
| 2537 | dma_addr_t flush_addr; |
| 2538 | dma_addr_t i, start; |
| 2539 | unsigned int pages; |
| 2540 | |
| 2541 | if ((dma_addr == DMA_ERROR_CODE) || |
| 2542 | (dma_addr + size > dma_dom->aperture_size)) |
| 2543 | return; |
| 2544 | |
| 2545 | flush_addr = dma_addr; |
| 2546 | pages = iommu_num_pages(dma_addr, size, PAGE_SIZE); |
| 2547 | dma_addr &= PAGE_MASK; |
| 2548 | start = dma_addr; |
| 2549 | |
| 2550 | for (i = 0; i < pages; ++i) { |
| 2551 | dma_ops_domain_unmap(dma_dom, start); |
| 2552 | start += PAGE_SIZE; |
| 2553 | } |
| 2554 | |
| 2555 | SUB_STATS_COUNTER(alloced_io_mem, size); |
| 2556 | |
| 2557 | dma_ops_free_addresses(dma_dom, dma_addr, pages); |
| 2558 | |
| 2559 | if (amd_iommu_unmap_flush || dma_dom->need_flush) { |
| 2560 | domain_flush_pages(&dma_dom->domain, flush_addr, size); |
| 2561 | dma_dom->need_flush = false; |
| 2562 | } |
| 2563 | } |
| 2564 | |
| 2565 | /* |
| 2566 | * The exported map_single function for dma_ops. |
| 2567 | */ |
| 2568 | static dma_addr_t map_page(struct device *dev, struct page *page, |
| 2569 | unsigned long offset, size_t size, |
| 2570 | enum dma_data_direction dir, |
| 2571 | struct dma_attrs *attrs) |
| 2572 | { |
| 2573 | unsigned long flags; |
| 2574 | struct protection_domain *domain; |
| 2575 | dma_addr_t addr; |
| 2576 | u64 dma_mask; |
| 2577 | phys_addr_t paddr = page_to_phys(page) + offset; |
| 2578 | |
| 2579 | INC_STATS_COUNTER(cnt_map_single); |
| 2580 | |
| 2581 | domain = get_domain(dev); |
| 2582 | if (PTR_ERR(domain) == -EINVAL) |
| 2583 | return (dma_addr_t)paddr; |
| 2584 | else if (IS_ERR(domain)) |
| 2585 | return DMA_ERROR_CODE; |
| 2586 | |
| 2587 | dma_mask = *dev->dma_mask; |
| 2588 | |
| 2589 | spin_lock_irqsave(&domain->lock, flags); |
| 2590 | |
| 2591 | addr = __map_single(dev, domain->priv, paddr, size, dir, false, |
| 2592 | dma_mask); |
| 2593 | if (addr == DMA_ERROR_CODE) |
| 2594 | goto out; |
| 2595 | |
| 2596 | domain_flush_complete(domain); |
| 2597 | |
| 2598 | out: |
| 2599 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2600 | |
| 2601 | return addr; |
| 2602 | } |
| 2603 | |
| 2604 | /* |
| 2605 | * The exported unmap_single function for dma_ops. |
| 2606 | */ |
| 2607 | static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, |
| 2608 | enum dma_data_direction dir, struct dma_attrs *attrs) |
| 2609 | { |
| 2610 | unsigned long flags; |
| 2611 | struct protection_domain *domain; |
| 2612 | |
| 2613 | INC_STATS_COUNTER(cnt_unmap_single); |
| 2614 | |
| 2615 | domain = get_domain(dev); |
| 2616 | if (IS_ERR(domain)) |
| 2617 | return; |
| 2618 | |
| 2619 | spin_lock_irqsave(&domain->lock, flags); |
| 2620 | |
| 2621 | __unmap_single(domain->priv, dma_addr, size, dir); |
| 2622 | |
| 2623 | domain_flush_complete(domain); |
| 2624 | |
| 2625 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2626 | } |
| 2627 | |
| 2628 | /* |
| 2629 | * The exported map_sg function for dma_ops (handles scatter-gather |
| 2630 | * lists). |
| 2631 | */ |
| 2632 | static int map_sg(struct device *dev, struct scatterlist *sglist, |
| 2633 | int nelems, enum dma_data_direction dir, |
| 2634 | struct dma_attrs *attrs) |
| 2635 | { |
| 2636 | unsigned long flags; |
| 2637 | struct protection_domain *domain; |
| 2638 | int i; |
| 2639 | struct scatterlist *s; |
| 2640 | phys_addr_t paddr; |
| 2641 | int mapped_elems = 0; |
| 2642 | u64 dma_mask; |
| 2643 | |
| 2644 | INC_STATS_COUNTER(cnt_map_sg); |
| 2645 | |
| 2646 | domain = get_domain(dev); |
| 2647 | if (IS_ERR(domain)) |
| 2648 | return 0; |
| 2649 | |
| 2650 | dma_mask = *dev->dma_mask; |
| 2651 | |
| 2652 | spin_lock_irqsave(&domain->lock, flags); |
| 2653 | |
| 2654 | for_each_sg(sglist, s, nelems, i) { |
| 2655 | paddr = sg_phys(s); |
| 2656 | |
| 2657 | s->dma_address = __map_single(dev, domain->priv, |
| 2658 | paddr, s->length, dir, false, |
| 2659 | dma_mask); |
| 2660 | |
| 2661 | if (s->dma_address) { |
| 2662 | s->dma_length = s->length; |
| 2663 | mapped_elems++; |
| 2664 | } else |
| 2665 | goto unmap; |
| 2666 | } |
| 2667 | |
| 2668 | domain_flush_complete(domain); |
| 2669 | |
| 2670 | out: |
| 2671 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2672 | |
| 2673 | return mapped_elems; |
| 2674 | unmap: |
| 2675 | for_each_sg(sglist, s, mapped_elems, i) { |
| 2676 | if (s->dma_address) |
| 2677 | __unmap_single(domain->priv, s->dma_address, |
| 2678 | s->dma_length, dir); |
| 2679 | s->dma_address = s->dma_length = 0; |
| 2680 | } |
| 2681 | |
| 2682 | mapped_elems = 0; |
| 2683 | |
| 2684 | goto out; |
| 2685 | } |
| 2686 | |
| 2687 | /* |
| 2688 | * The exported map_sg function for dma_ops (handles scatter-gather |
| 2689 | * lists). |
| 2690 | */ |
| 2691 | static void unmap_sg(struct device *dev, struct scatterlist *sglist, |
| 2692 | int nelems, enum dma_data_direction dir, |
| 2693 | struct dma_attrs *attrs) |
| 2694 | { |
| 2695 | unsigned long flags; |
| 2696 | struct protection_domain *domain; |
| 2697 | struct scatterlist *s; |
| 2698 | int i; |
| 2699 | |
| 2700 | INC_STATS_COUNTER(cnt_unmap_sg); |
| 2701 | |
| 2702 | domain = get_domain(dev); |
| 2703 | if (IS_ERR(domain)) |
| 2704 | return; |
| 2705 | |
| 2706 | spin_lock_irqsave(&domain->lock, flags); |
| 2707 | |
| 2708 | for_each_sg(sglist, s, nelems, i) { |
| 2709 | __unmap_single(domain->priv, s->dma_address, |
| 2710 | s->dma_length, dir); |
| 2711 | s->dma_address = s->dma_length = 0; |
| 2712 | } |
| 2713 | |
| 2714 | domain_flush_complete(domain); |
| 2715 | |
| 2716 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2717 | } |
| 2718 | |
| 2719 | /* |
| 2720 | * The exported alloc_coherent function for dma_ops. |
| 2721 | */ |
| 2722 | static void *alloc_coherent(struct device *dev, size_t size, |
| 2723 | dma_addr_t *dma_addr, gfp_t flag, |
| 2724 | struct dma_attrs *attrs) |
| 2725 | { |
| 2726 | u64 dma_mask = dev->coherent_dma_mask; |
| 2727 | struct protection_domain *domain; |
| 2728 | unsigned long flags; |
| 2729 | struct page *page; |
| 2730 | |
| 2731 | INC_STATS_COUNTER(cnt_alloc_coherent); |
| 2732 | |
| 2733 | domain = get_domain(dev); |
| 2734 | if (PTR_ERR(domain) == -EINVAL) { |
| 2735 | page = alloc_pages(flag, get_order(size)); |
| 2736 | *dma_addr = page_to_phys(page); |
| 2737 | return page_address(page); |
| 2738 | } else if (IS_ERR(domain)) |
| 2739 | return NULL; |
| 2740 | |
| 2741 | size = PAGE_ALIGN(size); |
| 2742 | dma_mask = dev->coherent_dma_mask; |
| 2743 | flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32); |
| 2744 | flag |= __GFP_ZERO; |
| 2745 | |
| 2746 | page = alloc_pages(flag | __GFP_NOWARN, get_order(size)); |
| 2747 | if (!page) { |
| 2748 | if (!gfpflags_allow_blocking(flag)) |
| 2749 | return NULL; |
| 2750 | |
| 2751 | page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, |
| 2752 | get_order(size)); |
| 2753 | if (!page) |
| 2754 | return NULL; |
| 2755 | } |
| 2756 | |
| 2757 | if (!dma_mask) |
| 2758 | dma_mask = *dev->dma_mask; |
| 2759 | |
| 2760 | spin_lock_irqsave(&domain->lock, flags); |
| 2761 | |
| 2762 | *dma_addr = __map_single(dev, domain->priv, page_to_phys(page), |
| 2763 | size, DMA_BIDIRECTIONAL, true, dma_mask); |
| 2764 | |
| 2765 | if (*dma_addr == DMA_ERROR_CODE) { |
| 2766 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2767 | goto out_free; |
| 2768 | } |
| 2769 | |
| 2770 | domain_flush_complete(domain); |
| 2771 | |
| 2772 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2773 | |
| 2774 | return page_address(page); |
| 2775 | |
| 2776 | out_free: |
| 2777 | |
| 2778 | if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) |
| 2779 | __free_pages(page, get_order(size)); |
| 2780 | |
| 2781 | return NULL; |
| 2782 | } |
| 2783 | |
| 2784 | /* |
| 2785 | * The exported free_coherent function for dma_ops. |
| 2786 | */ |
| 2787 | static void free_coherent(struct device *dev, size_t size, |
| 2788 | void *virt_addr, dma_addr_t dma_addr, |
| 2789 | struct dma_attrs *attrs) |
| 2790 | { |
| 2791 | struct protection_domain *domain; |
| 2792 | unsigned long flags; |
| 2793 | struct page *page; |
| 2794 | |
| 2795 | INC_STATS_COUNTER(cnt_free_coherent); |
| 2796 | |
| 2797 | page = virt_to_page(virt_addr); |
| 2798 | size = PAGE_ALIGN(size); |
| 2799 | |
| 2800 | domain = get_domain(dev); |
| 2801 | if (IS_ERR(domain)) |
| 2802 | goto free_mem; |
| 2803 | |
| 2804 | spin_lock_irqsave(&domain->lock, flags); |
| 2805 | |
| 2806 | __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL); |
| 2807 | |
| 2808 | domain_flush_complete(domain); |
| 2809 | |
| 2810 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2811 | |
| 2812 | free_mem: |
| 2813 | if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) |
| 2814 | __free_pages(page, get_order(size)); |
| 2815 | } |
| 2816 | |
| 2817 | /* |
| 2818 | * This function is called by the DMA layer to find out if we can handle a |
| 2819 | * particular device. It is part of the dma_ops. |
| 2820 | */ |
| 2821 | static int amd_iommu_dma_supported(struct device *dev, u64 mask) |
| 2822 | { |
| 2823 | return check_device(dev); |
| 2824 | } |
| 2825 | |
| 2826 | static struct dma_map_ops amd_iommu_dma_ops = { |
| 2827 | .alloc = alloc_coherent, |
| 2828 | .free = free_coherent, |
| 2829 | .map_page = map_page, |
| 2830 | .unmap_page = unmap_page, |
| 2831 | .map_sg = map_sg, |
| 2832 | .unmap_sg = unmap_sg, |
| 2833 | .dma_supported = amd_iommu_dma_supported, |
| 2834 | }; |
| 2835 | |
| 2836 | int __init amd_iommu_init_api(void) |
| 2837 | { |
| 2838 | return bus_set_iommu(&pci_bus_type, &amd_iommu_ops); |
| 2839 | } |
| 2840 | |
| 2841 | int __init amd_iommu_init_dma_ops(void) |
| 2842 | { |
| 2843 | swiotlb = iommu_pass_through ? 1 : 0; |
| 2844 | iommu_detected = 1; |
| 2845 | |
| 2846 | /* |
| 2847 | * In case we don't initialize SWIOTLB (actually the common case |
| 2848 | * when AMD IOMMU is enabled), make sure there are global |
| 2849 | * dma_ops set as a fall-back for devices not handled by this |
| 2850 | * driver (for example non-PCI devices). |
| 2851 | */ |
| 2852 | if (!swiotlb) |
| 2853 | dma_ops = &nommu_dma_ops; |
| 2854 | |
| 2855 | amd_iommu_stats_init(); |
| 2856 | |
| 2857 | if (amd_iommu_unmap_flush) |
| 2858 | pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n"); |
| 2859 | else |
| 2860 | pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n"); |
| 2861 | |
| 2862 | return 0; |
| 2863 | } |
| 2864 | |
| 2865 | /***************************************************************************** |
| 2866 | * |
| 2867 | * The following functions belong to the exported interface of AMD IOMMU |
| 2868 | * |
| 2869 | * This interface allows access to lower level functions of the IOMMU |
| 2870 | * like protection domain handling and assignement of devices to domains |
| 2871 | * which is not possible with the dma_ops interface. |
| 2872 | * |
| 2873 | *****************************************************************************/ |
| 2874 | |
| 2875 | static void cleanup_domain(struct protection_domain *domain) |
| 2876 | { |
| 2877 | struct iommu_dev_data *entry; |
| 2878 | unsigned long flags; |
| 2879 | |
| 2880 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| 2881 | |
| 2882 | while (!list_empty(&domain->dev_list)) { |
| 2883 | entry = list_first_entry(&domain->dev_list, |
| 2884 | struct iommu_dev_data, list); |
| 2885 | __detach_device(entry); |
| 2886 | } |
| 2887 | |
| 2888 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| 2889 | } |
| 2890 | |
| 2891 | static void protection_domain_free(struct protection_domain *domain) |
| 2892 | { |
| 2893 | if (!domain) |
| 2894 | return; |
| 2895 | |
| 2896 | del_domain_from_list(domain); |
| 2897 | |
| 2898 | if (domain->id) |
| 2899 | domain_id_free(domain->id); |
| 2900 | |
| 2901 | kfree(domain); |
| 2902 | } |
| 2903 | |
| 2904 | static int protection_domain_init(struct protection_domain *domain) |
| 2905 | { |
| 2906 | spin_lock_init(&domain->lock); |
| 2907 | mutex_init(&domain->api_lock); |
| 2908 | domain->id = domain_id_alloc(); |
| 2909 | if (!domain->id) |
| 2910 | return -ENOMEM; |
| 2911 | INIT_LIST_HEAD(&domain->dev_list); |
| 2912 | |
| 2913 | return 0; |
| 2914 | } |
| 2915 | |
| 2916 | static struct protection_domain *protection_domain_alloc(void) |
| 2917 | { |
| 2918 | struct protection_domain *domain; |
| 2919 | |
| 2920 | domain = kzalloc(sizeof(*domain), GFP_KERNEL); |
| 2921 | if (!domain) |
| 2922 | return NULL; |
| 2923 | |
| 2924 | if (protection_domain_init(domain)) |
| 2925 | goto out_err; |
| 2926 | |
| 2927 | add_domain_to_list(domain); |
| 2928 | |
| 2929 | return domain; |
| 2930 | |
| 2931 | out_err: |
| 2932 | kfree(domain); |
| 2933 | |
| 2934 | return NULL; |
| 2935 | } |
| 2936 | |
| 2937 | static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) |
| 2938 | { |
| 2939 | struct protection_domain *pdomain; |
| 2940 | struct dma_ops_domain *dma_domain; |
| 2941 | |
| 2942 | switch (type) { |
| 2943 | case IOMMU_DOMAIN_UNMANAGED: |
| 2944 | pdomain = protection_domain_alloc(); |
| 2945 | if (!pdomain) |
| 2946 | return NULL; |
| 2947 | |
| 2948 | pdomain->mode = PAGE_MODE_3_LEVEL; |
| 2949 | pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL); |
| 2950 | if (!pdomain->pt_root) { |
| 2951 | protection_domain_free(pdomain); |
| 2952 | return NULL; |
| 2953 | } |
| 2954 | |
| 2955 | pdomain->domain.geometry.aperture_start = 0; |
| 2956 | pdomain->domain.geometry.aperture_end = ~0ULL; |
| 2957 | pdomain->domain.geometry.force_aperture = true; |
| 2958 | |
| 2959 | break; |
| 2960 | case IOMMU_DOMAIN_DMA: |
| 2961 | dma_domain = dma_ops_domain_alloc(); |
| 2962 | if (!dma_domain) { |
| 2963 | pr_err("AMD-Vi: Failed to allocate\n"); |
| 2964 | return NULL; |
| 2965 | } |
| 2966 | pdomain = &dma_domain->domain; |
| 2967 | break; |
| 2968 | case IOMMU_DOMAIN_IDENTITY: |
| 2969 | pdomain = protection_domain_alloc(); |
| 2970 | if (!pdomain) |
| 2971 | return NULL; |
| 2972 | |
| 2973 | pdomain->mode = PAGE_MODE_NONE; |
| 2974 | break; |
| 2975 | default: |
| 2976 | return NULL; |
| 2977 | } |
| 2978 | |
| 2979 | return &pdomain->domain; |
| 2980 | } |
| 2981 | |
| 2982 | static void amd_iommu_domain_free(struct iommu_domain *dom) |
| 2983 | { |
| 2984 | struct protection_domain *domain; |
| 2985 | struct dma_ops_domain *dma_dom; |
| 2986 | |
| 2987 | domain = to_pdomain(dom); |
| 2988 | |
| 2989 | if (domain->dev_cnt > 0) |
| 2990 | cleanup_domain(domain); |
| 2991 | |
| 2992 | BUG_ON(domain->dev_cnt != 0); |
| 2993 | |
| 2994 | if (!dom) |
| 2995 | return; |
| 2996 | |
| 2997 | switch (dom->type) { |
| 2998 | case IOMMU_DOMAIN_DMA: |
| 2999 | dma_dom = domain->priv; |
| 3000 | dma_ops_domain_free(dma_dom); |
| 3001 | break; |
| 3002 | default: |
| 3003 | if (domain->mode != PAGE_MODE_NONE) |
| 3004 | free_pagetable(domain); |
| 3005 | |
| 3006 | if (domain->flags & PD_IOMMUV2_MASK) |
| 3007 | free_gcr3_table(domain); |
| 3008 | |
| 3009 | protection_domain_free(domain); |
| 3010 | break; |
| 3011 | } |
| 3012 | } |
| 3013 | |
| 3014 | static void amd_iommu_detach_device(struct iommu_domain *dom, |
| 3015 | struct device *dev) |
| 3016 | { |
| 3017 | struct iommu_dev_data *dev_data = dev->archdata.iommu; |
| 3018 | struct amd_iommu *iommu; |
| 3019 | u16 devid; |
| 3020 | |
| 3021 | if (!check_device(dev)) |
| 3022 | return; |
| 3023 | |
| 3024 | devid = get_device_id(dev); |
| 3025 | |
| 3026 | if (dev_data->domain != NULL) |
| 3027 | detach_device(dev); |
| 3028 | |
| 3029 | iommu = amd_iommu_rlookup_table[devid]; |
| 3030 | if (!iommu) |
| 3031 | return; |
| 3032 | |
| 3033 | iommu_completion_wait(iommu); |
| 3034 | } |
| 3035 | |
| 3036 | static int amd_iommu_attach_device(struct iommu_domain *dom, |
| 3037 | struct device *dev) |
| 3038 | { |
| 3039 | struct protection_domain *domain = to_pdomain(dom); |
| 3040 | struct iommu_dev_data *dev_data; |
| 3041 | struct amd_iommu *iommu; |
| 3042 | int ret; |
| 3043 | |
| 3044 | if (!check_device(dev)) |
| 3045 | return -EINVAL; |
| 3046 | |
| 3047 | dev_data = dev->archdata.iommu; |
| 3048 | |
| 3049 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 3050 | if (!iommu) |
| 3051 | return -EINVAL; |
| 3052 | |
| 3053 | if (dev_data->domain) |
| 3054 | detach_device(dev); |
| 3055 | |
| 3056 | ret = attach_device(dev, domain); |
| 3057 | |
| 3058 | iommu_completion_wait(iommu); |
| 3059 | |
| 3060 | return ret; |
| 3061 | } |
| 3062 | |
| 3063 | static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, |
| 3064 | phys_addr_t paddr, size_t page_size, int iommu_prot) |
| 3065 | { |
| 3066 | struct protection_domain *domain = to_pdomain(dom); |
| 3067 | int prot = 0; |
| 3068 | int ret; |
| 3069 | |
| 3070 | if (domain->mode == PAGE_MODE_NONE) |
| 3071 | return -EINVAL; |
| 3072 | |
| 3073 | if (iommu_prot & IOMMU_READ) |
| 3074 | prot |= IOMMU_PROT_IR; |
| 3075 | if (iommu_prot & IOMMU_WRITE) |
| 3076 | prot |= IOMMU_PROT_IW; |
| 3077 | |
| 3078 | mutex_lock(&domain->api_lock); |
| 3079 | ret = iommu_map_page(domain, iova, paddr, prot, page_size); |
| 3080 | mutex_unlock(&domain->api_lock); |
| 3081 | |
| 3082 | return ret; |
| 3083 | } |
| 3084 | |
| 3085 | static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, |
| 3086 | size_t page_size) |
| 3087 | { |
| 3088 | struct protection_domain *domain = to_pdomain(dom); |
| 3089 | size_t unmap_size; |
| 3090 | |
| 3091 | if (domain->mode == PAGE_MODE_NONE) |
| 3092 | return -EINVAL; |
| 3093 | |
| 3094 | mutex_lock(&domain->api_lock); |
| 3095 | unmap_size = iommu_unmap_page(domain, iova, page_size); |
| 3096 | mutex_unlock(&domain->api_lock); |
| 3097 | |
| 3098 | domain_flush_tlb_pde(domain); |
| 3099 | domain_flush_complete(domain); |
| 3100 | |
| 3101 | return unmap_size; |
| 3102 | } |
| 3103 | |
| 3104 | static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, |
| 3105 | dma_addr_t iova) |
| 3106 | { |
| 3107 | struct protection_domain *domain = to_pdomain(dom); |
| 3108 | unsigned long offset_mask, pte_pgsize; |
| 3109 | u64 *pte, __pte; |
| 3110 | |
| 3111 | if (domain->mode == PAGE_MODE_NONE) |
| 3112 | return iova; |
| 3113 | |
| 3114 | pte = fetch_pte(domain, iova, &pte_pgsize); |
| 3115 | |
| 3116 | if (!pte || !IOMMU_PTE_PRESENT(*pte)) |
| 3117 | return 0; |
| 3118 | |
| 3119 | offset_mask = pte_pgsize - 1; |
| 3120 | __pte = *pte & PM_ADDR_MASK; |
| 3121 | |
| 3122 | return (__pte & ~offset_mask) | (iova & offset_mask); |
| 3123 | } |
| 3124 | |
| 3125 | static bool amd_iommu_capable(enum iommu_cap cap) |
| 3126 | { |
| 3127 | switch (cap) { |
| 3128 | case IOMMU_CAP_CACHE_COHERENCY: |
| 3129 | return true; |
| 3130 | case IOMMU_CAP_INTR_REMAP: |
| 3131 | return (irq_remapping_enabled == 1); |
| 3132 | case IOMMU_CAP_NOEXEC: |
| 3133 | return false; |
| 3134 | } |
| 3135 | |
| 3136 | return false; |
| 3137 | } |
| 3138 | |
| 3139 | static void amd_iommu_get_dm_regions(struct device *dev, |
| 3140 | struct list_head *head) |
| 3141 | { |
| 3142 | struct unity_map_entry *entry; |
| 3143 | u16 devid; |
| 3144 | |
| 3145 | devid = get_device_id(dev); |
| 3146 | |
| 3147 | list_for_each_entry(entry, &amd_iommu_unity_map, list) { |
| 3148 | struct iommu_dm_region *region; |
| 3149 | |
| 3150 | if (devid < entry->devid_start || devid > entry->devid_end) |
| 3151 | continue; |
| 3152 | |
| 3153 | region = kzalloc(sizeof(*region), GFP_KERNEL); |
| 3154 | if (!region) { |
| 3155 | pr_err("Out of memory allocating dm-regions for %s\n", |
| 3156 | dev_name(dev)); |
| 3157 | return; |
| 3158 | } |
| 3159 | |
| 3160 | region->start = entry->address_start; |
| 3161 | region->length = entry->address_end - entry->address_start; |
| 3162 | if (entry->prot & IOMMU_PROT_IR) |
| 3163 | region->prot |= IOMMU_READ; |
| 3164 | if (entry->prot & IOMMU_PROT_IW) |
| 3165 | region->prot |= IOMMU_WRITE; |
| 3166 | |
| 3167 | list_add_tail(®ion->list, head); |
| 3168 | } |
| 3169 | } |
| 3170 | |
| 3171 | static void amd_iommu_put_dm_regions(struct device *dev, |
| 3172 | struct list_head *head) |
| 3173 | { |
| 3174 | struct iommu_dm_region *entry, *next; |
| 3175 | |
| 3176 | list_for_each_entry_safe(entry, next, head, list) |
| 3177 | kfree(entry); |
| 3178 | } |
| 3179 | |
| 3180 | static const struct iommu_ops amd_iommu_ops = { |
| 3181 | .capable = amd_iommu_capable, |
| 3182 | .domain_alloc = amd_iommu_domain_alloc, |
| 3183 | .domain_free = amd_iommu_domain_free, |
| 3184 | .attach_dev = amd_iommu_attach_device, |
| 3185 | .detach_dev = amd_iommu_detach_device, |
| 3186 | .map = amd_iommu_map, |
| 3187 | .unmap = amd_iommu_unmap, |
| 3188 | .map_sg = default_iommu_map_sg, |
| 3189 | .iova_to_phys = amd_iommu_iova_to_phys, |
| 3190 | .add_device = amd_iommu_add_device, |
| 3191 | .remove_device = amd_iommu_remove_device, |
| 3192 | .device_group = pci_device_group, |
| 3193 | .get_dm_regions = amd_iommu_get_dm_regions, |
| 3194 | .put_dm_regions = amd_iommu_put_dm_regions, |
| 3195 | .pgsize_bitmap = AMD_IOMMU_PGSIZES, |
| 3196 | }; |
| 3197 | |
| 3198 | /***************************************************************************** |
| 3199 | * |
| 3200 | * The next functions do a basic initialization of IOMMU for pass through |
| 3201 | * mode |
| 3202 | * |
| 3203 | * In passthrough mode the IOMMU is initialized and enabled but not used for |
| 3204 | * DMA-API translation. |
| 3205 | * |
| 3206 | *****************************************************************************/ |
| 3207 | |
| 3208 | /* IOMMUv2 specific functions */ |
| 3209 | int amd_iommu_register_ppr_notifier(struct notifier_block *nb) |
| 3210 | { |
| 3211 | return atomic_notifier_chain_register(&ppr_notifier, nb); |
| 3212 | } |
| 3213 | EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); |
| 3214 | |
| 3215 | int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) |
| 3216 | { |
| 3217 | return atomic_notifier_chain_unregister(&ppr_notifier, nb); |
| 3218 | } |
| 3219 | EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); |
| 3220 | |
| 3221 | void amd_iommu_domain_direct_map(struct iommu_domain *dom) |
| 3222 | { |
| 3223 | struct protection_domain *domain = to_pdomain(dom); |
| 3224 | unsigned long flags; |
| 3225 | |
| 3226 | spin_lock_irqsave(&domain->lock, flags); |
| 3227 | |
| 3228 | /* Update data structure */ |
| 3229 | domain->mode = PAGE_MODE_NONE; |
| 3230 | domain->updated = true; |
| 3231 | |
| 3232 | /* Make changes visible to IOMMUs */ |
| 3233 | update_domain(domain); |
| 3234 | |
| 3235 | /* Page-table is not visible to IOMMU anymore, so free it */ |
| 3236 | free_pagetable(domain); |
| 3237 | |
| 3238 | spin_unlock_irqrestore(&domain->lock, flags); |
| 3239 | } |
| 3240 | EXPORT_SYMBOL(amd_iommu_domain_direct_map); |
| 3241 | |
| 3242 | int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) |
| 3243 | { |
| 3244 | struct protection_domain *domain = to_pdomain(dom); |
| 3245 | unsigned long flags; |
| 3246 | int levels, ret; |
| 3247 | |
| 3248 | if (pasids <= 0 || pasids > (PASID_MASK + 1)) |
| 3249 | return -EINVAL; |
| 3250 | |
| 3251 | /* Number of GCR3 table levels required */ |
| 3252 | for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) |
| 3253 | levels += 1; |
| 3254 | |
| 3255 | if (levels > amd_iommu_max_glx_val) |
| 3256 | return -EINVAL; |
| 3257 | |
| 3258 | spin_lock_irqsave(&domain->lock, flags); |
| 3259 | |
| 3260 | /* |
| 3261 | * Save us all sanity checks whether devices already in the |
| 3262 | * domain support IOMMUv2. Just force that the domain has no |
| 3263 | * devices attached when it is switched into IOMMUv2 mode. |
| 3264 | */ |
| 3265 | ret = -EBUSY; |
| 3266 | if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) |
| 3267 | goto out; |
| 3268 | |
| 3269 | ret = -ENOMEM; |
| 3270 | domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); |
| 3271 | if (domain->gcr3_tbl == NULL) |
| 3272 | goto out; |
| 3273 | |
| 3274 | domain->glx = levels; |
| 3275 | domain->flags |= PD_IOMMUV2_MASK; |
| 3276 | domain->updated = true; |
| 3277 | |
| 3278 | update_domain(domain); |
| 3279 | |
| 3280 | ret = 0; |
| 3281 | |
| 3282 | out: |
| 3283 | spin_unlock_irqrestore(&domain->lock, flags); |
| 3284 | |
| 3285 | return ret; |
| 3286 | } |
| 3287 | EXPORT_SYMBOL(amd_iommu_domain_enable_v2); |
| 3288 | |
| 3289 | static int __flush_pasid(struct protection_domain *domain, int pasid, |
| 3290 | u64 address, bool size) |
| 3291 | { |
| 3292 | struct iommu_dev_data *dev_data; |
| 3293 | struct iommu_cmd cmd; |
| 3294 | int i, ret; |
| 3295 | |
| 3296 | if (!(domain->flags & PD_IOMMUV2_MASK)) |
| 3297 | return -EINVAL; |
| 3298 | |
| 3299 | build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); |
| 3300 | |
| 3301 | /* |
| 3302 | * IOMMU TLB needs to be flushed before Device TLB to |
| 3303 | * prevent device TLB refill from IOMMU TLB |
| 3304 | */ |
| 3305 | for (i = 0; i < amd_iommus_present; ++i) { |
| 3306 | if (domain->dev_iommu[i] == 0) |
| 3307 | continue; |
| 3308 | |
| 3309 | ret = iommu_queue_command(amd_iommus[i], &cmd); |
| 3310 | if (ret != 0) |
| 3311 | goto out; |
| 3312 | } |
| 3313 | |
| 3314 | /* Wait until IOMMU TLB flushes are complete */ |
| 3315 | domain_flush_complete(domain); |
| 3316 | |
| 3317 | /* Now flush device TLBs */ |
| 3318 | list_for_each_entry(dev_data, &domain->dev_list, list) { |
| 3319 | struct amd_iommu *iommu; |
| 3320 | int qdep; |
| 3321 | |
| 3322 | /* |
| 3323 | There might be non-IOMMUv2 capable devices in an IOMMUv2 |
| 3324 | * domain. |
| 3325 | */ |
| 3326 | if (!dev_data->ats.enabled) |
| 3327 | continue; |
| 3328 | |
| 3329 | qdep = dev_data->ats.qdep; |
| 3330 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 3331 | |
| 3332 | build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, |
| 3333 | qdep, address, size); |
| 3334 | |
| 3335 | ret = iommu_queue_command(iommu, &cmd); |
| 3336 | if (ret != 0) |
| 3337 | goto out; |
| 3338 | } |
| 3339 | |
| 3340 | /* Wait until all device TLBs are flushed */ |
| 3341 | domain_flush_complete(domain); |
| 3342 | |
| 3343 | ret = 0; |
| 3344 | |
| 3345 | out: |
| 3346 | |
| 3347 | return ret; |
| 3348 | } |
| 3349 | |
| 3350 | static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid, |
| 3351 | u64 address) |
| 3352 | { |
| 3353 | INC_STATS_COUNTER(invalidate_iotlb); |
| 3354 | |
| 3355 | return __flush_pasid(domain, pasid, address, false); |
| 3356 | } |
| 3357 | |
| 3358 | int amd_iommu_flush_page(struct iommu_domain *dom, int pasid, |
| 3359 | u64 address) |
| 3360 | { |
| 3361 | struct protection_domain *domain = to_pdomain(dom); |
| 3362 | unsigned long flags; |
| 3363 | int ret; |
| 3364 | |
| 3365 | spin_lock_irqsave(&domain->lock, flags); |
| 3366 | ret = __amd_iommu_flush_page(domain, pasid, address); |
| 3367 | spin_unlock_irqrestore(&domain->lock, flags); |
| 3368 | |
| 3369 | return ret; |
| 3370 | } |
| 3371 | EXPORT_SYMBOL(amd_iommu_flush_page); |
| 3372 | |
| 3373 | static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid) |
| 3374 | { |
| 3375 | INC_STATS_COUNTER(invalidate_iotlb_all); |
| 3376 | |
| 3377 | return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, |
| 3378 | true); |
| 3379 | } |
| 3380 | |
| 3381 | int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid) |
| 3382 | { |
| 3383 | struct protection_domain *domain = to_pdomain(dom); |
| 3384 | unsigned long flags; |
| 3385 | int ret; |
| 3386 | |
| 3387 | spin_lock_irqsave(&domain->lock, flags); |
| 3388 | ret = __amd_iommu_flush_tlb(domain, pasid); |
| 3389 | spin_unlock_irqrestore(&domain->lock, flags); |
| 3390 | |
| 3391 | return ret; |
| 3392 | } |
| 3393 | EXPORT_SYMBOL(amd_iommu_flush_tlb); |
| 3394 | |
| 3395 | static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc) |
| 3396 | { |
| 3397 | int index; |
| 3398 | u64 *pte; |
| 3399 | |
| 3400 | while (true) { |
| 3401 | |
| 3402 | index = (pasid >> (9 * level)) & 0x1ff; |
| 3403 | pte = &root[index]; |
| 3404 | |
| 3405 | if (level == 0) |
| 3406 | break; |
| 3407 | |
| 3408 | if (!(*pte & GCR3_VALID)) { |
| 3409 | if (!alloc) |
| 3410 | return NULL; |
| 3411 | |
| 3412 | root = (void *)get_zeroed_page(GFP_ATOMIC); |
| 3413 | if (root == NULL) |
| 3414 | return NULL; |
| 3415 | |
| 3416 | *pte = __pa(root) | GCR3_VALID; |
| 3417 | } |
| 3418 | |
| 3419 | root = __va(*pte & PAGE_MASK); |
| 3420 | |
| 3421 | level -= 1; |
| 3422 | } |
| 3423 | |
| 3424 | return pte; |
| 3425 | } |
| 3426 | |
| 3427 | static int __set_gcr3(struct protection_domain *domain, int pasid, |
| 3428 | unsigned long cr3) |
| 3429 | { |
| 3430 | u64 *pte; |
| 3431 | |
| 3432 | if (domain->mode != PAGE_MODE_NONE) |
| 3433 | return -EINVAL; |
| 3434 | |
| 3435 | pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); |
| 3436 | if (pte == NULL) |
| 3437 | return -ENOMEM; |
| 3438 | |
| 3439 | *pte = (cr3 & PAGE_MASK) | GCR3_VALID; |
| 3440 | |
| 3441 | return __amd_iommu_flush_tlb(domain, pasid); |
| 3442 | } |
| 3443 | |
| 3444 | static int __clear_gcr3(struct protection_domain *domain, int pasid) |
| 3445 | { |
| 3446 | u64 *pte; |
| 3447 | |
| 3448 | if (domain->mode != PAGE_MODE_NONE) |
| 3449 | return -EINVAL; |
| 3450 | |
| 3451 | pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); |
| 3452 | if (pte == NULL) |
| 3453 | return 0; |
| 3454 | |
| 3455 | *pte = 0; |
| 3456 | |
| 3457 | return __amd_iommu_flush_tlb(domain, pasid); |
| 3458 | } |
| 3459 | |
| 3460 | int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid, |
| 3461 | unsigned long cr3) |
| 3462 | { |
| 3463 | struct protection_domain *domain = to_pdomain(dom); |
| 3464 | unsigned long flags; |
| 3465 | int ret; |
| 3466 | |
| 3467 | spin_lock_irqsave(&domain->lock, flags); |
| 3468 | ret = __set_gcr3(domain, pasid, cr3); |
| 3469 | spin_unlock_irqrestore(&domain->lock, flags); |
| 3470 | |
| 3471 | return ret; |
| 3472 | } |
| 3473 | EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); |
| 3474 | |
| 3475 | int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid) |
| 3476 | { |
| 3477 | struct protection_domain *domain = to_pdomain(dom); |
| 3478 | unsigned long flags; |
| 3479 | int ret; |
| 3480 | |
| 3481 | spin_lock_irqsave(&domain->lock, flags); |
| 3482 | ret = __clear_gcr3(domain, pasid); |
| 3483 | spin_unlock_irqrestore(&domain->lock, flags); |
| 3484 | |
| 3485 | return ret; |
| 3486 | } |
| 3487 | EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); |
| 3488 | |
| 3489 | int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid, |
| 3490 | int status, int tag) |
| 3491 | { |
| 3492 | struct iommu_dev_data *dev_data; |
| 3493 | struct amd_iommu *iommu; |
| 3494 | struct iommu_cmd cmd; |
| 3495 | |
| 3496 | INC_STATS_COUNTER(complete_ppr); |
| 3497 | |
| 3498 | dev_data = get_dev_data(&pdev->dev); |
| 3499 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 3500 | |
| 3501 | build_complete_ppr(&cmd, dev_data->devid, pasid, status, |
| 3502 | tag, dev_data->pri_tlp); |
| 3503 | |
| 3504 | return iommu_queue_command(iommu, &cmd); |
| 3505 | } |
| 3506 | EXPORT_SYMBOL(amd_iommu_complete_ppr); |
| 3507 | |
| 3508 | struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev) |
| 3509 | { |
| 3510 | struct protection_domain *pdomain; |
| 3511 | |
| 3512 | pdomain = get_domain(&pdev->dev); |
| 3513 | if (IS_ERR(pdomain)) |
| 3514 | return NULL; |
| 3515 | |
| 3516 | /* Only return IOMMUv2 domains */ |
| 3517 | if (!(pdomain->flags & PD_IOMMUV2_MASK)) |
| 3518 | return NULL; |
| 3519 | |
| 3520 | return &pdomain->domain; |
| 3521 | } |
| 3522 | EXPORT_SYMBOL(amd_iommu_get_v2_domain); |
| 3523 | |
| 3524 | void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum) |
| 3525 | { |
| 3526 | struct iommu_dev_data *dev_data; |
| 3527 | |
| 3528 | if (!amd_iommu_v2_supported()) |
| 3529 | return; |
| 3530 | |
| 3531 | dev_data = get_dev_data(&pdev->dev); |
| 3532 | dev_data->errata |= (1 << erratum); |
| 3533 | } |
| 3534 | EXPORT_SYMBOL(amd_iommu_enable_device_erratum); |
| 3535 | |
| 3536 | int amd_iommu_device_info(struct pci_dev *pdev, |
| 3537 | struct amd_iommu_device_info *info) |
| 3538 | { |
| 3539 | int max_pasids; |
| 3540 | int pos; |
| 3541 | |
| 3542 | if (pdev == NULL || info == NULL) |
| 3543 | return -EINVAL; |
| 3544 | |
| 3545 | if (!amd_iommu_v2_supported()) |
| 3546 | return -EINVAL; |
| 3547 | |
| 3548 | memset(info, 0, sizeof(*info)); |
| 3549 | |
| 3550 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS); |
| 3551 | if (pos) |
| 3552 | info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; |
| 3553 | |
| 3554 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); |
| 3555 | if (pos) |
| 3556 | info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; |
| 3557 | |
| 3558 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); |
| 3559 | if (pos) { |
| 3560 | int features; |
| 3561 | |
| 3562 | max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); |
| 3563 | max_pasids = min(max_pasids, (1 << 20)); |
| 3564 | |
| 3565 | info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; |
| 3566 | info->max_pasids = min(pci_max_pasids(pdev), max_pasids); |
| 3567 | |
| 3568 | features = pci_pasid_features(pdev); |
| 3569 | if (features & PCI_PASID_CAP_EXEC) |
| 3570 | info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; |
| 3571 | if (features & PCI_PASID_CAP_PRIV) |
| 3572 | info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; |
| 3573 | } |
| 3574 | |
| 3575 | return 0; |
| 3576 | } |
| 3577 | EXPORT_SYMBOL(amd_iommu_device_info); |
| 3578 | |
| 3579 | #ifdef CONFIG_IRQ_REMAP |
| 3580 | |
| 3581 | /***************************************************************************** |
| 3582 | * |
| 3583 | * Interrupt Remapping Implementation |
| 3584 | * |
| 3585 | *****************************************************************************/ |
| 3586 | |
| 3587 | union irte { |
| 3588 | u32 val; |
| 3589 | struct { |
| 3590 | u32 valid : 1, |
| 3591 | no_fault : 1, |
| 3592 | int_type : 3, |
| 3593 | rq_eoi : 1, |
| 3594 | dm : 1, |
| 3595 | rsvd_1 : 1, |
| 3596 | destination : 8, |
| 3597 | vector : 8, |
| 3598 | rsvd_2 : 8; |
| 3599 | } fields; |
| 3600 | }; |
| 3601 | |
| 3602 | struct irq_2_irte { |
| 3603 | u16 devid; /* Device ID for IRTE table */ |
| 3604 | u16 index; /* Index into IRTE table*/ |
| 3605 | }; |
| 3606 | |
| 3607 | struct amd_ir_data { |
| 3608 | struct irq_2_irte irq_2_irte; |
| 3609 | union irte irte_entry; |
| 3610 | union { |
| 3611 | struct msi_msg msi_entry; |
| 3612 | }; |
| 3613 | }; |
| 3614 | |
| 3615 | static struct irq_chip amd_ir_chip; |
| 3616 | |
| 3617 | #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6) |
| 3618 | #define DTE_IRQ_REMAP_INTCTL (2ULL << 60) |
| 3619 | #define DTE_IRQ_TABLE_LEN (8ULL << 1) |
| 3620 | #define DTE_IRQ_REMAP_ENABLE 1ULL |
| 3621 | |
| 3622 | static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table) |
| 3623 | { |
| 3624 | u64 dte; |
| 3625 | |
| 3626 | dte = amd_iommu_dev_table[devid].data[2]; |
| 3627 | dte &= ~DTE_IRQ_PHYS_ADDR_MASK; |
| 3628 | dte |= virt_to_phys(table->table); |
| 3629 | dte |= DTE_IRQ_REMAP_INTCTL; |
| 3630 | dte |= DTE_IRQ_TABLE_LEN; |
| 3631 | dte |= DTE_IRQ_REMAP_ENABLE; |
| 3632 | |
| 3633 | amd_iommu_dev_table[devid].data[2] = dte; |
| 3634 | } |
| 3635 | |
| 3636 | #define IRTE_ALLOCATED (~1U) |
| 3637 | |
| 3638 | static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic) |
| 3639 | { |
| 3640 | struct irq_remap_table *table = NULL; |
| 3641 | struct amd_iommu *iommu; |
| 3642 | unsigned long flags; |
| 3643 | u16 alias; |
| 3644 | |
| 3645 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| 3646 | |
| 3647 | iommu = amd_iommu_rlookup_table[devid]; |
| 3648 | if (!iommu) |
| 3649 | goto out_unlock; |
| 3650 | |
| 3651 | table = irq_lookup_table[devid]; |
| 3652 | if (table) |
| 3653 | goto out; |
| 3654 | |
| 3655 | alias = amd_iommu_alias_table[devid]; |
| 3656 | table = irq_lookup_table[alias]; |
| 3657 | if (table) { |
| 3658 | irq_lookup_table[devid] = table; |
| 3659 | set_dte_irq_entry(devid, table); |
| 3660 | iommu_flush_dte(iommu, devid); |
| 3661 | goto out; |
| 3662 | } |
| 3663 | |
| 3664 | /* Nothing there yet, allocate new irq remapping table */ |
| 3665 | table = kzalloc(sizeof(*table), GFP_ATOMIC); |
| 3666 | if (!table) |
| 3667 | goto out; |
| 3668 | |
| 3669 | /* Initialize table spin-lock */ |
| 3670 | spin_lock_init(&table->lock); |
| 3671 | |
| 3672 | if (ioapic) |
| 3673 | /* Keep the first 32 indexes free for IOAPIC interrupts */ |
| 3674 | table->min_index = 32; |
| 3675 | |
| 3676 | table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC); |
| 3677 | if (!table->table) { |
| 3678 | kfree(table); |
| 3679 | table = NULL; |
| 3680 | goto out; |
| 3681 | } |
| 3682 | |
| 3683 | memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32)); |
| 3684 | |
| 3685 | if (ioapic) { |
| 3686 | int i; |
| 3687 | |
| 3688 | for (i = 0; i < 32; ++i) |
| 3689 | table->table[i] = IRTE_ALLOCATED; |
| 3690 | } |
| 3691 | |
| 3692 | irq_lookup_table[devid] = table; |
| 3693 | set_dte_irq_entry(devid, table); |
| 3694 | iommu_flush_dte(iommu, devid); |
| 3695 | if (devid != alias) { |
| 3696 | irq_lookup_table[alias] = table; |
| 3697 | set_dte_irq_entry(alias, table); |
| 3698 | iommu_flush_dte(iommu, alias); |
| 3699 | } |
| 3700 | |
| 3701 | out: |
| 3702 | iommu_completion_wait(iommu); |
| 3703 | |
| 3704 | out_unlock: |
| 3705 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| 3706 | |
| 3707 | return table; |
| 3708 | } |
| 3709 | |
| 3710 | static int alloc_irq_index(u16 devid, int count) |
| 3711 | { |
| 3712 | struct irq_remap_table *table; |
| 3713 | unsigned long flags; |
| 3714 | int index, c; |
| 3715 | |
| 3716 | table = get_irq_table(devid, false); |
| 3717 | if (!table) |
| 3718 | return -ENODEV; |
| 3719 | |
| 3720 | spin_lock_irqsave(&table->lock, flags); |
| 3721 | |
| 3722 | /* Scan table for free entries */ |
| 3723 | for (c = 0, index = table->min_index; |
| 3724 | index < MAX_IRQS_PER_TABLE; |
| 3725 | ++index) { |
| 3726 | if (table->table[index] == 0) |
| 3727 | c += 1; |
| 3728 | else |
| 3729 | c = 0; |
| 3730 | |
| 3731 | if (c == count) { |
| 3732 | for (; c != 0; --c) |
| 3733 | table->table[index - c + 1] = IRTE_ALLOCATED; |
| 3734 | |
| 3735 | index -= count - 1; |
| 3736 | goto out; |
| 3737 | } |
| 3738 | } |
| 3739 | |
| 3740 | index = -ENOSPC; |
| 3741 | |
| 3742 | out: |
| 3743 | spin_unlock_irqrestore(&table->lock, flags); |
| 3744 | |
| 3745 | return index; |
| 3746 | } |
| 3747 | |
| 3748 | static int modify_irte(u16 devid, int index, union irte irte) |
| 3749 | { |
| 3750 | struct irq_remap_table *table; |
| 3751 | struct amd_iommu *iommu; |
| 3752 | unsigned long flags; |
| 3753 | |
| 3754 | iommu = amd_iommu_rlookup_table[devid]; |
| 3755 | if (iommu == NULL) |
| 3756 | return -EINVAL; |
| 3757 | |
| 3758 | table = get_irq_table(devid, false); |
| 3759 | if (!table) |
| 3760 | return -ENOMEM; |
| 3761 | |
| 3762 | spin_lock_irqsave(&table->lock, flags); |
| 3763 | table->table[index] = irte.val; |
| 3764 | spin_unlock_irqrestore(&table->lock, flags); |
| 3765 | |
| 3766 | iommu_flush_irt(iommu, devid); |
| 3767 | iommu_completion_wait(iommu); |
| 3768 | |
| 3769 | return 0; |
| 3770 | } |
| 3771 | |
| 3772 | static void free_irte(u16 devid, int index) |
| 3773 | { |
| 3774 | struct irq_remap_table *table; |
| 3775 | struct amd_iommu *iommu; |
| 3776 | unsigned long flags; |
| 3777 | |
| 3778 | iommu = amd_iommu_rlookup_table[devid]; |
| 3779 | if (iommu == NULL) |
| 3780 | return; |
| 3781 | |
| 3782 | table = get_irq_table(devid, false); |
| 3783 | if (!table) |
| 3784 | return; |
| 3785 | |
| 3786 | spin_lock_irqsave(&table->lock, flags); |
| 3787 | table->table[index] = 0; |
| 3788 | spin_unlock_irqrestore(&table->lock, flags); |
| 3789 | |
| 3790 | iommu_flush_irt(iommu, devid); |
| 3791 | iommu_completion_wait(iommu); |
| 3792 | } |
| 3793 | |
| 3794 | static int get_devid(struct irq_alloc_info *info) |
| 3795 | { |
| 3796 | int devid = -1; |
| 3797 | |
| 3798 | switch (info->type) { |
| 3799 | case X86_IRQ_ALLOC_TYPE_IOAPIC: |
| 3800 | devid = get_ioapic_devid(info->ioapic_id); |
| 3801 | break; |
| 3802 | case X86_IRQ_ALLOC_TYPE_HPET: |
| 3803 | devid = get_hpet_devid(info->hpet_id); |
| 3804 | break; |
| 3805 | case X86_IRQ_ALLOC_TYPE_MSI: |
| 3806 | case X86_IRQ_ALLOC_TYPE_MSIX: |
| 3807 | devid = get_device_id(&info->msi_dev->dev); |
| 3808 | break; |
| 3809 | default: |
| 3810 | BUG_ON(1); |
| 3811 | break; |
| 3812 | } |
| 3813 | |
| 3814 | return devid; |
| 3815 | } |
| 3816 | |
| 3817 | static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info) |
| 3818 | { |
| 3819 | struct amd_iommu *iommu; |
| 3820 | int devid; |
| 3821 | |
| 3822 | if (!info) |
| 3823 | return NULL; |
| 3824 | |
| 3825 | devid = get_devid(info); |
| 3826 | if (devid >= 0) { |
| 3827 | iommu = amd_iommu_rlookup_table[devid]; |
| 3828 | if (iommu) |
| 3829 | return iommu->ir_domain; |
| 3830 | } |
| 3831 | |
| 3832 | return NULL; |
| 3833 | } |
| 3834 | |
| 3835 | static struct irq_domain *get_irq_domain(struct irq_alloc_info *info) |
| 3836 | { |
| 3837 | struct amd_iommu *iommu; |
| 3838 | int devid; |
| 3839 | |
| 3840 | if (!info) |
| 3841 | return NULL; |
| 3842 | |
| 3843 | switch (info->type) { |
| 3844 | case X86_IRQ_ALLOC_TYPE_MSI: |
| 3845 | case X86_IRQ_ALLOC_TYPE_MSIX: |
| 3846 | devid = get_device_id(&info->msi_dev->dev); |
| 3847 | if (devid >= 0) { |
| 3848 | iommu = amd_iommu_rlookup_table[devid]; |
| 3849 | if (iommu) |
| 3850 | return iommu->msi_domain; |
| 3851 | } |
| 3852 | break; |
| 3853 | default: |
| 3854 | break; |
| 3855 | } |
| 3856 | |
| 3857 | return NULL; |
| 3858 | } |
| 3859 | |
| 3860 | struct irq_remap_ops amd_iommu_irq_ops = { |
| 3861 | .prepare = amd_iommu_prepare, |
| 3862 | .enable = amd_iommu_enable, |
| 3863 | .disable = amd_iommu_disable, |
| 3864 | .reenable = amd_iommu_reenable, |
| 3865 | .enable_faulting = amd_iommu_enable_faulting, |
| 3866 | .get_ir_irq_domain = get_ir_irq_domain, |
| 3867 | .get_irq_domain = get_irq_domain, |
| 3868 | }; |
| 3869 | |
| 3870 | static void irq_remapping_prepare_irte(struct amd_ir_data *data, |
| 3871 | struct irq_cfg *irq_cfg, |
| 3872 | struct irq_alloc_info *info, |
| 3873 | int devid, int index, int sub_handle) |
| 3874 | { |
| 3875 | struct irq_2_irte *irte_info = &data->irq_2_irte; |
| 3876 | struct msi_msg *msg = &data->msi_entry; |
| 3877 | union irte *irte = &data->irte_entry; |
| 3878 | struct IO_APIC_route_entry *entry; |
| 3879 | |
| 3880 | data->irq_2_irte.devid = devid; |
| 3881 | data->irq_2_irte.index = index + sub_handle; |
| 3882 | |
| 3883 | /* Setup IRTE for IOMMU */ |
| 3884 | irte->val = 0; |
| 3885 | irte->fields.vector = irq_cfg->vector; |
| 3886 | irte->fields.int_type = apic->irq_delivery_mode; |
| 3887 | irte->fields.destination = irq_cfg->dest_apicid; |
| 3888 | irte->fields.dm = apic->irq_dest_mode; |
| 3889 | irte->fields.valid = 1; |
| 3890 | |
| 3891 | switch (info->type) { |
| 3892 | case X86_IRQ_ALLOC_TYPE_IOAPIC: |
| 3893 | /* Setup IOAPIC entry */ |
| 3894 | entry = info->ioapic_entry; |
| 3895 | info->ioapic_entry = NULL; |
| 3896 | memset(entry, 0, sizeof(*entry)); |
| 3897 | entry->vector = index; |
| 3898 | entry->mask = 0; |
| 3899 | entry->trigger = info->ioapic_trigger; |
| 3900 | entry->polarity = info->ioapic_polarity; |
| 3901 | /* Mask level triggered irqs. */ |
| 3902 | if (info->ioapic_trigger) |
| 3903 | entry->mask = 1; |
| 3904 | break; |
| 3905 | |
| 3906 | case X86_IRQ_ALLOC_TYPE_HPET: |
| 3907 | case X86_IRQ_ALLOC_TYPE_MSI: |
| 3908 | case X86_IRQ_ALLOC_TYPE_MSIX: |
| 3909 | msg->address_hi = MSI_ADDR_BASE_HI; |
| 3910 | msg->address_lo = MSI_ADDR_BASE_LO; |
| 3911 | msg->data = irte_info->index; |
| 3912 | break; |
| 3913 | |
| 3914 | default: |
| 3915 | BUG_ON(1); |
| 3916 | break; |
| 3917 | } |
| 3918 | } |
| 3919 | |
| 3920 | static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, |
| 3921 | unsigned int nr_irqs, void *arg) |
| 3922 | { |
| 3923 | struct irq_alloc_info *info = arg; |
| 3924 | struct irq_data *irq_data; |
| 3925 | struct amd_ir_data *data; |
| 3926 | struct irq_cfg *cfg; |
| 3927 | int i, ret, devid; |
| 3928 | int index = -1; |
| 3929 | |
| 3930 | if (!info) |
| 3931 | return -EINVAL; |
| 3932 | if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI && |
| 3933 | info->type != X86_IRQ_ALLOC_TYPE_MSIX) |
| 3934 | return -EINVAL; |
| 3935 | |
| 3936 | /* |
| 3937 | * With IRQ remapping enabled, don't need contiguous CPU vectors |
| 3938 | * to support multiple MSI interrupts. |
| 3939 | */ |
| 3940 | if (info->type == X86_IRQ_ALLOC_TYPE_MSI) |
| 3941 | info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; |
| 3942 | |
| 3943 | devid = get_devid(info); |
| 3944 | if (devid < 0) |
| 3945 | return -EINVAL; |
| 3946 | |
| 3947 | ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); |
| 3948 | if (ret < 0) |
| 3949 | return ret; |
| 3950 | |
| 3951 | if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { |
| 3952 | if (get_irq_table(devid, true)) |
| 3953 | index = info->ioapic_pin; |
| 3954 | else |
| 3955 | ret = -ENOMEM; |
| 3956 | } else { |
| 3957 | index = alloc_irq_index(devid, nr_irqs); |
| 3958 | } |
| 3959 | if (index < 0) { |
| 3960 | pr_warn("Failed to allocate IRTE\n"); |
| 3961 | goto out_free_parent; |
| 3962 | } |
| 3963 | |
| 3964 | for (i = 0; i < nr_irqs; i++) { |
| 3965 | irq_data = irq_domain_get_irq_data(domain, virq + i); |
| 3966 | cfg = irqd_cfg(irq_data); |
| 3967 | if (!irq_data || !cfg) { |
| 3968 | ret = -EINVAL; |
| 3969 | goto out_free_data; |
| 3970 | } |
| 3971 | |
| 3972 | ret = -ENOMEM; |
| 3973 | data = kzalloc(sizeof(*data), GFP_KERNEL); |
| 3974 | if (!data) |
| 3975 | goto out_free_data; |
| 3976 | |
| 3977 | irq_data->hwirq = (devid << 16) + i; |
| 3978 | irq_data->chip_data = data; |
| 3979 | irq_data->chip = &amd_ir_chip; |
| 3980 | irq_remapping_prepare_irte(data, cfg, info, devid, index, i); |
| 3981 | irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); |
| 3982 | } |
| 3983 | |
| 3984 | return 0; |
| 3985 | |
| 3986 | out_free_data: |
| 3987 | for (i--; i >= 0; i--) { |
| 3988 | irq_data = irq_domain_get_irq_data(domain, virq + i); |
| 3989 | if (irq_data) |
| 3990 | kfree(irq_data->chip_data); |
| 3991 | } |
| 3992 | for (i = 0; i < nr_irqs; i++) |
| 3993 | free_irte(devid, index + i); |
| 3994 | out_free_parent: |
| 3995 | irq_domain_free_irqs_common(domain, virq, nr_irqs); |
| 3996 | return ret; |
| 3997 | } |
| 3998 | |
| 3999 | static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, |
| 4000 | unsigned int nr_irqs) |
| 4001 | { |
| 4002 | struct irq_2_irte *irte_info; |
| 4003 | struct irq_data *irq_data; |
| 4004 | struct amd_ir_data *data; |
| 4005 | int i; |
| 4006 | |
| 4007 | for (i = 0; i < nr_irqs; i++) { |
| 4008 | irq_data = irq_domain_get_irq_data(domain, virq + i); |
| 4009 | if (irq_data && irq_data->chip_data) { |
| 4010 | data = irq_data->chip_data; |
| 4011 | irte_info = &data->irq_2_irte; |
| 4012 | free_irte(irte_info->devid, irte_info->index); |
| 4013 | kfree(data); |
| 4014 | } |
| 4015 | } |
| 4016 | irq_domain_free_irqs_common(domain, virq, nr_irqs); |
| 4017 | } |
| 4018 | |
| 4019 | static void irq_remapping_activate(struct irq_domain *domain, |
| 4020 | struct irq_data *irq_data) |
| 4021 | { |
| 4022 | struct amd_ir_data *data = irq_data->chip_data; |
| 4023 | struct irq_2_irte *irte_info = &data->irq_2_irte; |
| 4024 | |
| 4025 | modify_irte(irte_info->devid, irte_info->index, data->irte_entry); |
| 4026 | } |
| 4027 | |
| 4028 | static void irq_remapping_deactivate(struct irq_domain *domain, |
| 4029 | struct irq_data *irq_data) |
| 4030 | { |
| 4031 | struct amd_ir_data *data = irq_data->chip_data; |
| 4032 | struct irq_2_irte *irte_info = &data->irq_2_irte; |
| 4033 | union irte entry; |
| 4034 | |
| 4035 | entry.val = 0; |
| 4036 | modify_irte(irte_info->devid, irte_info->index, data->irte_entry); |
| 4037 | } |
| 4038 | |
| 4039 | static struct irq_domain_ops amd_ir_domain_ops = { |
| 4040 | .alloc = irq_remapping_alloc, |
| 4041 | .free = irq_remapping_free, |
| 4042 | .activate = irq_remapping_activate, |
| 4043 | .deactivate = irq_remapping_deactivate, |
| 4044 | }; |
| 4045 | |
| 4046 | static int amd_ir_set_affinity(struct irq_data *data, |
| 4047 | const struct cpumask *mask, bool force) |
| 4048 | { |
| 4049 | struct amd_ir_data *ir_data = data->chip_data; |
| 4050 | struct irq_2_irte *irte_info = &ir_data->irq_2_irte; |
| 4051 | struct irq_cfg *cfg = irqd_cfg(data); |
| 4052 | struct irq_data *parent = data->parent_data; |
| 4053 | int ret; |
| 4054 | |
| 4055 | ret = parent->chip->irq_set_affinity(parent, mask, force); |
| 4056 | if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) |
| 4057 | return ret; |
| 4058 | |
| 4059 | /* |
| 4060 | * Atomically updates the IRTE with the new destination, vector |
| 4061 | * and flushes the interrupt entry cache. |
| 4062 | */ |
| 4063 | ir_data->irte_entry.fields.vector = cfg->vector; |
| 4064 | ir_data->irte_entry.fields.destination = cfg->dest_apicid; |
| 4065 | modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry); |
| 4066 | |
| 4067 | /* |
| 4068 | * After this point, all the interrupts will start arriving |
| 4069 | * at the new destination. So, time to cleanup the previous |
| 4070 | * vector allocation. |
| 4071 | */ |
| 4072 | send_cleanup_vector(cfg); |
| 4073 | |
| 4074 | return IRQ_SET_MASK_OK_DONE; |
| 4075 | } |
| 4076 | |
| 4077 | static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) |
| 4078 | { |
| 4079 | struct amd_ir_data *ir_data = irq_data->chip_data; |
| 4080 | |
| 4081 | *msg = ir_data->msi_entry; |
| 4082 | } |
| 4083 | |
| 4084 | static struct irq_chip amd_ir_chip = { |
| 4085 | .irq_ack = ir_ack_apic_edge, |
| 4086 | .irq_set_affinity = amd_ir_set_affinity, |
| 4087 | .irq_compose_msi_msg = ir_compose_msi_msg, |
| 4088 | }; |
| 4089 | |
| 4090 | int amd_iommu_create_irq_domain(struct amd_iommu *iommu) |
| 4091 | { |
| 4092 | iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu); |
| 4093 | if (!iommu->ir_domain) |
| 4094 | return -ENOMEM; |
| 4095 | |
| 4096 | iommu->ir_domain->parent = arch_get_ir_parent_domain(); |
| 4097 | iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain); |
| 4098 | |
| 4099 | return 0; |
| 4100 | } |
| 4101 | #endif |